
HAL Id: hal-03004882
https://inria.hal.science/hal-03004882v2

Submitted on 2 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and control of Mendelian and maternal
inheritance for biological control of dengue vectors

Pastor E. Pérez Estigarribia, Pierre-Alexandre Bliman, Christian E. Schaerer

To cite this version:
Pastor E. Pérez Estigarribia, Pierre-Alexandre Bliman, Christian E. Schaerer. Modelling and control
of Mendelian and maternal inheritance for biological control of dengue vectors. ECC 2021 - European
Control Conference, Jun 2021, Rotterdam / Virtual, Netherlands. �hal-03004882v2�

https://inria.hal.science/hal-03004882v2
https://hal.archives-ouvertes.fr


Modelling and control of Mendelian and maternal inheritance

for biological control of dengue vectors*

Pastor E. Pérez Estigarribia1, Pierre-Alexandre Bliman2,⋆ and Christian E. Schaerer1

Abstract— Mosquitoes are vectors of viral diseases with
epidemic potential in many regions of the world, and in absence
of vaccines or therapies, their control is the main alternative.
Chemical control through insecticides has been one of the
conventional strategies, but induces insecticide resistance, which
may affect other insects and cause ecological damage. Biological
control, through the release of mosquitoes infected by the
maternally inherited bacterium Wolbachia, which inhibits their
vector competence, has been proposed as an alternative. The
effects of both techniques may be intermingled in practice:
prior insecticide spraying may debilitate wild population, so
facilitating subsequent invasion by the bacterium; but the latter
may also be hindered by the release of susceptible mosquitoes
in an environment where the wild population became resistant,
as a result of preexisting undesired exposition to insecticide.
To tackle such situations, we propose here a unifying model
allowing to account for the cross effects of both control
techniques, and based on the latter, design release strategies
able to infect a wild population. The latter are feedback laws,
whose stabilizing properties are studied.

I. INTRODUCTION

Due to resistance evolution [1], [2], [3], [4] and potential

ecological damages [5], progress has been made in the last

fifteen years in the development of strategies alternative to

the chemical control of vectors, ranging from biological

control to genetic modification [6], [7], [8]. These control

techniques may have the purpose of suppressing a popu-

lation, or replacing it by mosquitoes with reduced or null

vector competence [9], [10], [11]. One of the new promising

strategies is the use of Wolbachia, an intracellular bacterium

passed in the insect from mother to offspring that, depending

on the strain, can reduce vector competence of Aedes species

relative to arboviruses transmissible to humans [12], [13].

Mathematical models for the release of mosquitoes infected

by Wolbachia have been proposed, see e.g. [14], [15], [16],

[17], [18], [19], [20], [21], and [22], [23], [24] in the context

of dengue epidemic.

The use of chemical control has been mentioned as a way

to facilitate the incorporation of Wolbachia into a population

[25]. On the other hand, it has been reported that undesired

exposition to insecticide may weaken the action of released

susceptible mosquitoes against resistant wild population [26],
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[27], [28]. The purpose of this note is to provide a model

capable to describe such complex situations and offer a

framework to design feedback control laws aiming at spread-

ing Wolbachia infection among mosquito population.

A 12-dimensional controlled model with pre-reproductive

and reproductive life phases is provided in Section II, ac-

counting for Mendelian inheritance of insecticide resistance,

as well as maternal transmission of Wolbachia infection.

Assuming that the larval phase is significantly faster than the

adult phase, the model is then simplified by slow manifold

theory into the 6-dimensional model (7), whose qualitative

properties are studied. This extends the model of Mendelian

inheritance in [29], following [30], which constitutes a model

of diploid population with setting of two alleles in a single

locus. Section III provides useful balance equations. Number

and stability of the equilibria of (7) in absence of release

is the subject of Section IV. Results of stabilization by

state-feedback are then given in Section V, applying ideas

from [31]. Under adequate assumptions, they allow to infect

the wild population even in presence of insecticide in the

environment, yielding installation of the resistant infected

population. Illustrative simulations are shown in Section VI.

For sake of space, only hints of proofs are provided.

II. CONTROLLED MODELS

A. Preliminaries

1) Notations: Generally speaking, in the sequel the capital

letters U,W refer to uninfected (U ) and Wolbachia-infected

(W ) populations; while the small letter j = r, s refers to

the two alleles (resistant and susceptible) and the number

i = 1, 2, 3 to the three genotypes. By convention, i = 1,

resp. i = 2, resp. i = 3 corresponds to genotype (r, r),
resp. (r, s), resp. (s, s). In the notations adopted below, the

reference to infective status is put in exponent, while the

information relative to genotypic/allelic status is put in index.

We define the vectors eU :=
(

1 0
)

T

, eW :=
(

0 1
)

T

,

e1 :=
(

1 0 0
)

T

, e2 :=
(

0 1 0
)

T

, e3 :=
(

0 0 1
)

T

,

12 :=
(

1 1
)

T

, 13 :=
(

1 1 1
)

T

, 16 := 12 ⊗ 13, where ⊗
denotes the Kronecker product. Kronecker delta is defined

as usual: for any a, b, δba = 1 if a = b, δba = 0 otherwise.

Last, for any z ∈ R, let |z|+ := max{z; 0}.

2) State variables: For η ∈ {U,W} and i ∈ {1, 2, 3},

denote Aη
i ∈ R+ the density of adults of genotype i

uninfected (η = U ) or Wolbachia-infected (η = W ).

Let A :=
(

AU
1 AU

2 AU
3 AW

1 AW
2 AW

3

)

T

, Aη :=
(

Aη
1 Aη

2 Aη
3

)

T

for η = U,W , and Ai :=
(

AU
i AW

i

)

T

for i = 1, 2, 3. One shows easily that A =
∑3

i=1(Ai⊗ ei) =



G1 =





1 1/2 0
1/2 1/4 0
0 0 0



 , G2 =





0 1/2 1
1/2 1/2 1/2
1 1/2 0



 , G3 =





0 0 0
0 1/4 1/2
0 1/2 1



 (1)

αη
i (A) :=

1

|A|
AT(Gη ⊗Gi)A, α(A) :=

∑

η=U,W

∑

i=1,2,3

αη
i (A)(e

η ⊗ ei) (2)

Lη
i =

ωηαη
i (A)

µ̂η
i (b

∗(α(A))) + ν
, b∗(A) =

3
∑

i=1

∑

η=U,W

ωηAη
i

µ̂η
i (b

∗(A)) + ν
(3)

∑

η=U,W (eη⊗Aη). We will use the L1 norm of these vectors,

denoted |A| := 1
T

6A, |Aη| := 1
T

3A
η, |Ai| := 1

T

2Ai.

We will also consider the densities of alleles in the unin-

fected and infected populations, namely Aη
r := Aη

1 + 1
2A

η
2

and Aη
s := Aη

3 + 1
2A

η
2 , for any η = U,W . One then has1

the vectorial identities: Ar = A1 +
1
2A2, As = A3 +

1
2A2.

We will in general write such formulas as Aj = Ai +
1
2A2,

adopting the convention that i = 1 (resp. i = 3) whenever

j = r (resp. j = s). Coherently with the previous notations,

define the norms |Aj | := AU
j +AW

j , j = r, s.

Similar notations are used for the early phase densities Lη
i .

We make the following qualitative definitions.

Definition 1 (Monomorphic and polymorphic states):

Any point A ∈ R
6
+ is called a monomorphic state if it

contains only one allele, i.e. Aη
1 > 0 = Aη

2 = Aη
3 for every

η = U,W , or Aη
1 = Aη

2 = 0 < Aη
3 for every η = U,W .

Non-monomorphic points are called polymorphic.

Definition 2 (Homogeneous and heterogeneous states):

Any point A ∈ R
6
+ is called a homogeneous state if it

contains only uninfected populations, that is AW
i = 0,

i = 1, 2, 3; or if it contains only Wolbachia infected

populations, that is AU
i = 0, i = 1, 2, 3. Non-homogeneous

points are called heterogeneous.

3) Inheritance modelling: In order to deal with maternal

inheritance of Wolbachia (with complete cytoplasmic incom-

patibility, defined later), we need the following notations:

GU := eUeUT =

(

1 0
0 0

)

, GW := 12e
W T =

(

0 1
0 1

)

.

On the other hand, handling of the Mendelian inheritance

will require ur :=
(

1 1/2 0
)

T

, us :=
(

0 1/2 1
)

T

, and

G1 := uru
T

r, G2 := uru
T

s + usu
T

r, G3 := usu
T

s, that is (1).

Notice that ur + us = 13 and G1 +G2 +G3 = 131
T

3.

We now define a key notion, the heredity functions, which

give the repartition of offspring of a population A, according

to the distribution of genotypes and infectiousness. These

are scalar functions αη
i : R

6
+ \ {06} → R+, η = U,W ,

i = 1, 2, 3, given in (2), which permit to form the matrix

heredity function α. One extends by continuity the previous

definitions to 06, putting α(06) = 06. Observe that α so

defined is positively homogeneous of degree 1.

B. Complete and reduced inheritance models

Introducing input variables vAi corresponding to releases

of infected adults of genotypes 1, 2 or 3, yields the following

1By slight abuse of notations, one denotes indifferently in index the
genotypes (using letter i = 1, 2, 3) or the alleles (using letter j = r, s).

controlled model of Wolbachia infection in presence of

insecticide resistance:

L̇η
i = ωηαη

i (A) − µ̂η
i (|L|)L

η
i − νLη

i (4a)

Ȧη
i = νLη

i − µη
iA

η
i + δWη vAi, (4b)

η = U,W , i = 1, 2, 3, where the αη
i are defined in (2). The

positive constants ωη, resp. µη
i , are fertility, resp. mortality,

rates. The mortality rate µ̂η
i (|L|) in pre-reproductive phase,

is an increasing function of the density |L| in this phase.

The maturation rate ν from pre-reproductive to reproductive

phase, is taken independent of genotype and infection.

The functions αη
i account for the inheritance mechanisms.

Considering all possible crosses given a random mating, the

expected frequency of two allele combinations in a diploid

population is obtained from Punnett Square [32]. This is

captured by the matrices Gi, i = 1, 2, 3. On the other hand,

Wolbachia induces cytoplasmic incompatibility (CI): when

an uninfected female is inseminated by an infected male, the

mating leads to sterile eggs. This crossing effect is grasped

by the matrices Gη , η = U,W (CI is complete here: no

viable offspring hatch from such an encounter, see [33] for

modelling of incomplete CI).

The pre-adult phase being fast relatively to the adult

one, one approximates the system by singular perturbation.

Consider instead of (4a) the algebraic formula ωηαη
i (A) −

µ̂η
i (|L|)L

η
i − νLη

i = 0, yielding Lη
i =

ωηα
η

i
(A)

µ̂
η

i
(|L|)+ν

. Summing

up these six expressions gives an equation in the unknown

|L|, which by standard argument has unique solution if the

functions µ̂η
i are increasing (see Section II-C). This solution

is written b∗(α(A)), for b∗ : R
6
+ → R+ defined implicitly in

(3). The components Lη
i may then be expressed with respect

to the Aη
i , see (3). Putting these expressions in (4b) yields

Ȧη
i = mη

i (b
∗(α(A)))αη

i (A) − µη
iA

η
i + δWη vAi, (5a)

where b∗ is defined in (3) and, for any b ∈ R+,

mη
i (b) :=

νωη

µ̂η
i (b) + ν

. (5b)

The nonlinear controlled density-dependent inheritance sys-

tem (5) is developed in (6), and writes compactly as:

Ȧ = m(b∗(α(A)))α(A) − µA+

(

03
vA(t)

)

, (7a)

m(b) := diag{mη
i (b)}, µ := diag{µη

i } (7b)



ȦU
i =

mU
i (b

∗(α(A)))

|A|

(

AU
i +

1

2
AU

2

)(

AU
i +

1

2
AU

2

)

− µU
i A

U
i , i = 1, 3 (6a)

ȦU
2 = 2

mU
2 (b

∗(α(A)))

|A|

(

AU
1 +

1

2
AU

2

)(

AU
3 +

1

2
AU

2

)

− µU
2 A

U
2 (6b)

ȦW
i =

mW
i (b∗(α(A)))

|A|

(

AU
i +

1

2
AU

2 +AW
i +

1

2
AW

2

)(

AW
i +

1

2
AW

2

)

− µW
i AW

i + vAi(t), i = 1, 3 (6c)

ȦW
2 =

mW
2 (b∗(α(A)))

|A|

(

AU
3 +

1

2
AU

2 +AW
3 +

1

2
AW

2

)(

AW
1 +

1

2
AW

2

)

+
mW

2 (b∗(α(A)))

|A|

(

AU
1 +

1

2
AU

2 +AW
1 +

1

2
AW

2

)(

AW
3 +

1

2
AW

2

)

− µW
2 AW

2 + vA2(t) (6d)

C. Assumptions on the dynamical system (7)

Wolbachia infection induces fitness reduction [9], [35],

[23], and in presence of insecticide, resistant mosquitoes

have larger fitness than susceptible ones. We thus posit that,

for any η = U,W , i, i′ = 1, 2, 3,

• µη
i : R+ → R+ non-decreasing; µ̂η

i : R+ → R+

increasing and unbounded

• i < i′ implies µ̂η
i ≤ µ̂η

i′ and µη
i ≤ µη

i′

• µ̂U
i ≤ µ̂W

i and µU
i ≤ µW

i

Moreover, we assume that some of the previous inequalities

are strict (see details in [29], [33]), by assuming that

• µU
1 < µW

2 .

One deduces easily from the previous assumptions that

• mη
i : R+ → R+ decreasing with limit zero

• i > i′ implies mη
i > mη

i′

• mU
i > mW

i

and in particular, the definition of b∗ in (3) is meaningful.

D. Well-posedness and qualitative properties

We assume in the sequel that the control input vA is locally

integrable and almost everywhere positive. Showing the well-

posed of system (7) then presents no specific difficulty.

We first establish that any genotype once present may only

disappear in infinite time, whatever the control input.

Theorem 1 (Polymorphic and heterogeneous trajectories):

Whatever the (nonnegative-valued) input signal vA, all

trajectories of system (7) fulfil the following properties.

1) For any trajectory such that Aη
i (0) > 0 for some η =

U,W , i = 1, 2, 3, one has Aη
i (t) > 0 for any t ≥ 0.

2) Any trajectory originating from monomorphic (resp.

homogeneous) state remains monomorphic (resp. ho-

mogeneous) for any t ≥ 0 if no other genotype (resp.

no population with other infection status) is introduced.

3) Any trajectory originating from polymorphic (resp.

heterogeneous) state remains polymorphic (resp. het-

erogeneous) for any t ≥ 0. �

As a consequence, one may talk about homogeneous or

heterogeneous trajectories, and similarly about monomorphic

or polymorphic trajectories. We now study boundedness.

Theorem 2 (Trajectory boundedness): Assume the input

control vA uniformly bounded on [0,+∞). Then all trajec-

tories of (7) are uniformly ultimately bounded. �

The proof comes from the inequality
d|A|
dt

≤
(

mU
1 (b

∗(α(A))) − µU
1

)

|A| + ‖vA‖L∞ , and the fact

that mU
1 (b) is decreasing and vanishes at infinity.

The last result unveils some mixing properties, character-

istic of the underlying genetic mechanisms involved.

Theorem 3 (Genotypic properties): For any nonnegative-

valued input signal, the trajectories of system (7) fulfil the

following properties.

1) If both alleles are present at t = 0 in the uninfected

(resp. infected) population, then all genotypes are

present in the uninfected (resp. infected) population

for any t > 0.

2) If some allele is present at t = 0 in the uninfected

population and the other one in the infected, then all

genotypes are present in the infected population for

any t > 0.

3) If only the allele j ∈ {r, s} is present at t = 0 in

the uninfected population (i.e. AU
1 (0) > 0 = AU

2 (0) =
AU

3 (0) if j = r, or AU
1 (0) = AU

2 (0) = 0 < AU
3 (0) if

j = s), then the same holds true for any t ≥ 0. �

The proof of Theorem 3 uses centrally results from The-

orem 1 and Lemma A.3.

III. BALANCE EQUATIONS

Summing equations in (5) yields interesting balance equa-

tions. We provide an allelic description of the evolution in

Section III-A, and uninfected/infected balance equations in

Section III-B. None of them forms a replicator equation [34].

A. Evolution at allelic level

We aim here at a description in terms of the 4 allelic

variables Aη
j , η = U,W , j = r, s. From (5a) and with the

definitions in Section II-A.2, one gets by summation

Ȧη
j = m̃η

j (A)

(

αη
i (A) +

1

2
αη
2(A)

)

−µ̃η
j (A)A

η
j+δWη vAi, (8)

η = U,W , j = r, s, where the mean allelic recruitment

and mortality rates m̃η
j (A), µ̃

η
j are defined in (9). (The

convention: i = 1 for j = r, i = 3 for j = s is used.)



m̃η
j (A) :=

αη
i (A)m

η
i (b

∗(α(A))) + 1
2α

η
2(A)m

η
2(b

∗(α(A)))

αη
i (A) +

1
2α

η
2(A)

, µ̃η
j (A) :=

Aη
i µ

η
i +

1
2A

η
2µ

η
2

Aη
i +

1
2A

η
2

, η = U,W, j = r, s (9)

d|Aη|

dt
= m̃η(t)

3
∑

i=1

αη
i (A)− µ̃η(t)

3
∑

i=1

Aη
i + δWη |vA|, m̃η(t) :=

∑3
i=1 m

η
i (b

∗(α(A)))αη
i (A)

∑3
i=1 α

η
i (A)

, µ̃η(t) :=

∑3
i=1 µ

η
iA

η
i

∑3
i=1 A

η
i

(10)

mW
i (b∗(α(AU∗∗

j (eU ⊗ ei) +AW∗∗
j (eW ⊗ ei))))

µW
i

= 1,
AW∗∗

j

AU∗∗
j

=
mU

i (b
∗(α(AU∗∗

j (eU ⊗ ei) + AW∗∗
j (eW ⊗ ei))))

µU
i

− 1 (11)

Using Lemma A.2, one may express system (8) as

ȦU
j =

(

m̃U
j (t)

|AU |

|A|
− µ̃U

j (t)

)

AU
j , (12a)

ȦW
j =

1

2
m̃W

j (t)

(

AW
j +

|Aj ||A
W |

|A|

)

− µ̃W
j (t)AW

j + vAj ,

(12b)

j = r, s, or in expanded form:

ȦU
r =

(

m̃U
r (t)

|AU |

|A|
− µ̃U

r (t)

)

AU
r (13a)

ȦU
s =

(

m̃U
s (t)

|AU |

|A|
− µ̃U

s (t)

)

AU
s (13b)

ȦW
r =

1

2
m̃W

r (t)

(

AW
r +

|Ar||A
W |

|A|

)

− µ̃W
r (t)AW

r + vAr

(13c)

ȦW
s =

1

2
m̃W

s (t)

(

AW
s +

|As||A
W |

|A|

)

− µ̃W
s (t)AW

s + vAs

(13d)

Formally, one may interpret (12) as describing the infec-

tion of two populations of alleles. But the situation is more

intricate, as the coefficients appearing are not merely func-

tions of the Aη
j , see (9). However, they fulfil the following

useful properties, for any A ∈ R
6
+ \ {06}:

mη
3(b

∗(α(A))) ≤ m̃η
s (A) ≤ mη

2(b
∗(α(A)))

≤ m̃η
r (A) ≤ mη

1(b
∗(α(A))), (14a)

µη
1 ≤ µ̃η

r (A) ≤ µη
2 ≤ µ̃η

s (A) ≤ µη
3 , (14b)

m̃W
j (A) ≤ m̃U

j (A), µ̃U
j (A) ≤ µ̃W

j (A). (14c)

B. Uninfected/infected balance equations

For η = U,W , the evolution of |Aη| = Aη
1 + Aη

2 + Aη
3

obeys equation (10), where we put by definition |vA| :=
∑3

i=1 vAi. This may be expressed as
d|Aη|
dt

= m̃η(t)αη (A)−
µ̃η(t)|Aη |+ δWη |vA|, η = U,W , or in developed form, as

d|AU |

dt
=

(

m̃U (t)
|AU |

|AU |+ |AW |
− µ̃U (t)

)

|AU | (15a)

d|AW |

dt
= (m̃W (t)− µ̃W (t))|AW |+ |vA| (15b)

Similarly to (13), equation (15) describes an evolution

which is only apparently independent of the infection status,

as the latter is involved in the mean recruitment and mortality

rates m̃η, µ̃η, η = U,W , defined in (10). One checks easily

from the assumptions that m̃U ≥ m̃W , µ̃U ≤ µ̃W , and

mη
3 ≤ m̃η ≤ mη

1 , µη
1 ≤ µ̃η ≤ µη

3 , η = U,W .

IV. EQUILIBRIA OF THE UNCONTROLLED SYSTEM

We study here the number and properties of the equilib-

rium points of the uncontrolled system (7).

A. Existence of equilibrium points

First is determined the number and type of the equilibria.

Theorem 4 (Equilibria of (7) with vA ≡ 0): Apart from

the extinction equilibrium 06, the equilibrium points of the

uncontrolled system (7) fulfil the following properties.

• There are at most six monomorphic equilibrium points:

- at most four monomorphic, homogeneous, equilibria,

equal to the vectors Aη∗
j (eη ⊗ ei), η = U,W , j = r, s,

for Aη∗
j unique positive solution of the scalar equation

mη
i

(

b∗(Aη∗
j (eη ⊗ ei))

)

= µη
i ;

- at most two monomorphic, heterogeneous, coexistence

equilibria AU∗∗
j (eU ⊗ ei) + AW∗∗

j (eW ⊗ ei), j = r, s,

for (AU∗∗
j , AW∗∗

j ) unique positive solution of (11).

• If any, the polymorphic equilibria fulfil

AU
3 , A

W
1 , AW

2 , AW
3 > 0, AU

1 = AU
2 = 0. (16)

By convention, i = 1 (resp. i = 3) when j = r (resp. j = s)

in the statement. �

Theorem 4 completely characterizes the monomor-

phic equilibria. A monomorphic homogeneous equilibria

Aη∗
j (eη ⊗ ei) distinct from extinction equilibrium exists iff

mη
i (0) > µη

i . (17)

This condition expresses that the recruitment rate of emerg-

ing population is larger than the mortality rate, i.e. that

the corresponding homozygous homogeneous population is

viable for certain population level —which is then unique

and plays the role of a carrying capacity.

Similarly, a nonzero monomorphic heterogeneous equilib-

rium AU∗∗
j (eU ⊗ ei) +AW∗∗

j (eW ⊗ ei) exists iff (17) holds

for η = W , and then the values of b∗(α(AU∗∗
j (eU ⊗ ei) +

AW∗∗
j (eW ⊗ ei))) and of the ratio

AW∗∗

j

AU∗∗

j

are uniquely deter-

mined by (11). There is thus at most one such equilibrium

for each allele. Notice that if (17) holds for η = W , it also

holds for η = U , due to assumptions in Section II-C.

The result concerning the polymorphic equilibria is partial:

it establishes the possible general form of such a point, but

does not decide about existence or uniqueness.

Last, the equilibrium points of (7) and (4) being in one-

to-one correspondence, Theorem 4 also holds for (4).



Hint of proof: Monomorphic (homogeneous or heteroge-

neous) equilibria present no difficulty. For any polymorphic

equilibrium A, show first that one of the two values AU
r , A

U
s

is nonzero; otherwise
µ̃U
r

m̃U
r
=

µ̃U
s

m̃U
s

and, by virtue of the strict

inequality assumption in Section II-C, AU
1 = AU

3 = 0 >
AU

2 , which is impossible at equilibrium, see Lemma A.3.

Assuming then AU
s = 0, polymorphism implies AW

i > 0,

i = 1, 2, 3, by Lemma A.3, and contradiction comes from

the fact that one has
µ̃W
r

m̃W
r

=
µ̃W
s

m̃W
s

at the same time. �

B. Stability of the equilibrium points

We now assess stability of the equilibrium points.

Theorem 5 (Stability of the equilibria of (7) with v ≡ 0):

All possible equilibrium points of system (7) are unstable,

except the two homogeneous resistant monomorphic

equilibria Aη∗
r (eη ⊗ e1), η = U,W , which are locally

asymptotically stable if they exist. �

Hint of proof: • Instability of the extinction equilibrium

stems from the assumed viability of the resistant populations.

• Any trajectory departing from homogeneous, polymorphic,

state converges towards the corresponding homogeneous,

resistant (monomorphic), equilibrium Aη∗
r (eη ⊗ e1), the lat-

ter having higher fitness than the susceptible homozygous

Aη∗
s (eη⊗e3): the latter are unstable. Same argument applies

to coexistence equilibria. • Any polymorphic equilibrium

fulfils (16), so d
dt

[

ln
(

AU
r

AU
s

)]

> 0, yielding instability by

integration. • Local asymptotic stability of the homogeneous

monomorphic equilibria Aη∗
r (eη ⊗ e1), η = U,W , comes

from direct inspection of the Jacobian matrices. This com-

putation requires differentiation of α and b∗, see details in

[33]. �

V. STATE-FEEDBACK STABILIZATION

Consider now the issue of synthesizing state-feedback laws

able to drive the system from any initial state towards the de-

sired resistant, fully-infected, equilibrium previously denoted

AW∗
r (eW ⊗e1). We assume from now on lim

c→0+
mη

1(b
∗(c(eη⊗

e1))) > µη
1 , for any η = U,W . In other words, both

resistant homozygous genotypes are viable —a condition

clearly required for lasting infection. As consequence, among

the monomorphic equilibria exhibited in Theorem 4, at least

the resistant ones Aη∗
r (eη ⊗ e1), η = U,W , are nonzero.

Our aim is to control the system and reach the monomor-

phic equilibrium (AU
r , A

U
s , A

W
r , AW

s ) = (0, 0, AW∗
1 , 0), typ-

ically (but not only) departing from the other monomorphic

equilibrium (AU
r , A

U
s , A

W
r , AW

s ) = (AU∗
1 , 0, 0, 0), through

release of infected alleles in (13d) or (13d). Notice that these

values, corresponding to the two different homogeneous

monomorphic equilibria of resistant alleles for the underlying

system (5a), are not really state variables: they constitute

equilibrium points for system (12), given that the time-

varying coefficients m̃η
j (t), µ̃

η
j (t), η = U,W , j = r, s are in

fact state-dependent quantities fulfilling the properties (14).

This task is not trivial in presence of insecticide, in case

where the released infected mosquitos are susceptible. As

a matter of fact, eliminating uninfected mosquitoes requires

sufficient introduction of infected mosquitoes. On the other

hand, the presence of resistant mosquitoes naturally forces

the disappearance of susceptible ones (whose fitness is lower)

through competition. But continued introduction of suscep-

tible may hamper and abolish this trend. When infection

by Wolbachia is achieved through release of susceptible

mosquitoes, the two objectives —namely Wolbachia infec-

tion and onset of insecticide resistance— are thus potentially

conflicting.

A. Growth rate comparison and best fitness selection

The following simple result will be instrumental.

Proposition 6 (Growth rate dominance): Consider posi-

tive, absolutely continuous, scalar functions y, z on [0,+∞).

Assume
ẏ(t)
y(t) −

ż(t)
z(t) ≥ ε > 0 for some ε > 0 and a.e. t ≥ 0.

Then lim
t→+∞

z(t)
y(t) = 0, and lim

t→+∞
z(t) = 0 if y is bounded. �

The mechanism exposed in the previous result is behind

the process of selection of the best fit population in a

homogeneous population. It is applied in Proposition 7.

Proposition 7 (Asymptotic resistance amongst uninfected):

For any initial state A(0) containing uninfected of different

genotypes, consider the solution A of (7). Then |AU |

is uniformly bounded along time, lim
t→+∞

AU
1

|AU | = 1, and

lim
t→+∞

AU
2 = lim

t→+∞
AU

3 = 0. �

Proposition 7 says that the growth of the density of alleles

r pertaining to uninfected exceeds that of the density of

alleles s pertaining to uninfected. This property is insensitive

to the introduction of infected mosquitoes, including say

“massive” release of infected homozygous with genotype

(s, s), and derives from the involved mechanisms of genetic

transmission. See related results in [29, Lemmas 16, 17, 18].

Hint of proof: • From (15a) one shows that
d|AU |
dt

≤
(mU

1 (b
∗(α(A))) − µU

1 )|A
U |, which is negative for large

values of |A|, so that |AU | is uniformly bounded on [0,+∞).
• Consider a trajectory for which initially AU

i (0) > 0,

for some i ∈ {1, 2, 3}. Due to Theorem 1, AU
i (t) > 0,

t ≥ 0. From (12)-(14), one gets d
dt

[

ln
(

AU
r

AU
s

)]

> 0, so

that the ratio
AU

s

AU
r

decreases along time. One then shows

that, for each trajectory, exist c1, c2 > 0 so that c1A
U
1 (t) ≥

AU
2 (t) ≥ c2A

U
3 (t), t ≥ 0. Invoking uniform boundedness of

the trajectories and Proposition 6 yields lim
t→+∞

AU
s (t)

AU
r (t) = 0. �

B. State-feedback control laws and stabilisation results

We now present the main results. The principle of the

stabilization method is to extend ideas from [31] to the

representation (15), with maps m̃U , µ̃U , m̃W , µ̃W defined in

(10). The first result concerns release of resistant mosquitoes.

Theorem 8 (Infection by release of resistant infected):

Let b∗∗ := b∗(AW∗
r (eW ⊗ e1)) be the population

level corresponding to the resistant Wolbachia infected

homozygote. Assume µU
1 + mW

2 (b∗∗) − µW
2 > 0;

vA1 6≡ 0; and (18) holds for any large enough t, for some

ε ∈ (0, µU
1 + mW

2 (b∗∗) − µW
2 ) ∩ (0, µU

1 ). Then for any

solution of (7), lim
t→+∞

A(t) = AW∗
r (eW ⊗ e1), and there

exists T ≥ 0, such that vA ≡ 0 on [T,+∞). �



vA1(t) =

∣

∣

∣

∣

m̃U (t)
|AU |

|AU |+ |AW |
− µ̃U (t)−

(

m̃W (t)− µ̃W (t)
)

+ ε

∣

∣

∣

∣

+

|AW |, vA2(t) = vA3(t) = 0 (18)

vA1(t) = vA2(t) = 0, vA3(t) =

∣

∣

∣

∣

m̃U (t)
|AU |

|AU |+ |AW |
− µ̃U (t)−

(

m̃W (t)− µ̃W (t)
)

+ ε

∣

∣

∣

∣

+

|AW | (19)

Choosing control (18) thus allows to reach full infection

by use of control vanishing in finite time. Theorem 9 is

analogous, with susceptible mosquitoes. Of course, releasing

susceptible or resistant requires different quantities of insects

to achieve infection, see numerical essays in [33].

Theorem 9 (Infection by release of susceptible infected):

Assume the setting of Theorem 8 holds with µU
1 +mW

3 (b∗∗)−
µW
3 > 0, ε ∈ (0, µU

1 +mW
3 (b∗∗)− µW

3 ) ∩ (0, µU
1 ), and (19)

instead of (18). Then the same conclusions hold. �

When (18) or (19) applies, then (15) yields 1
|AW |

d|AW |
dt

=

max
{

1
|AU |

d|AU |
dt

+ ε, m̃W (t)− µ̃W (t)
}

. The mean growth

rate of Wolbachia infected is thus kept unchanged when

larger than the mean growth rate of uninfected plus ε; and

changed to this value otherwise. The feedback law thus

ensures that the mean growth rate of infected mosquitoes

is always larger than the mean growth rate of uninfected.

This is the principle of the proposed stabilization method.

Hint of the proofs: The proof of Theorems 8 and 9 are sim-

ilar, and based on the following successive steps. First prove

that the proposed (linear in state) control yields (uniformly

ultimately) bounded trajectories. Using Proposition 6, this

shows that the uninfected population vanishes asymptotically,

as well as the ratio between resistant uninfected and resistant

infected population. Using the inequalities assumed in the

statements, this implies that the control feedback term in

(18) or (19) is zero from a certain time and beyond. The

system then behaves asymptotically as a mixing of infected

only mosquitoes of different genotypes, and by virtue of

Proposition 7 converges towards the equilibrium with the

best fitness, i.e. the resistant monomorphic equilibrium. �

VI. NUMERICAL SIMULATIONS

Release of homozygous insecticide-susceptible

Wolbachia-infected mosquitoes in an environment

subject to adulticide and larvicide by applying control

(19) is shown in Fig. 1. We assume 5% of relative

increase in mortality of infected larvae/adults, 7%

(resp. 3.5%) of relative mortality decrease to resistant

homozygote (resp. to heterozygote). Parameters are taken

from [9], [35], [23], [36], [18], [20], [37], [12], [38],

[39] (all units in days−1): µ̂η
i (b) + ν = µ̂η

i0(1 + µ̂b),
ν = 1/10, µ̂U

10 = 0.093, µ̂U
20 = 0.097, µ̂U

30 = 0.1,

µ̂W
10 = 0.098, µ̂W

20 = µ̂W
30 = 0.105, µ̂ = 0.01, µU

1 = 0.057,

µU
2 = 0.059, µU

3 = 0.061, µW
1 = 0.060, µW

2 = 0.062,

µW
3 = 0.064, ωU = 18, ωW = 12. Initial condition

is at monomorphic resistant uninfected equilibrium,

AU∗
r = ν

µ̂µ
η

i

(

νωU

µ̂U
i0µ

U
i

− 1
)

≃ 6.00× 104. An impulse of

susceptible infected mosquitoes equal to 1
3A

U∗
r is released

at t = 50 days. The total amount of released mosquitoes is

3.45× 105, about 5.75 times the initial value AU∗
r .

VII. CONCLUSION

We proposed a two-life phase model accounting for

Mendelian and maternal inheritance, allowing to consider

chemical and biological vector control in a unified frame-

work. Feedback laws have been proposed and shown to

induce Wolbachia infection in any situation. To deal with the

lack of full state measurement and the non-permanent nature

of the releases, future research will study output stabilization

and impulsive control. Also, reducing the total number of

released mosquitoes by use of insecticide will be considered.

APPENDIX - THE HEREDITY MATRIX FUNCTION α

By convention, i = 1, resp. i = 3, if j = r, resp. j = s.

Lemma A.1: For any η = U,W , i = 1, 2, 3, α(eη ⊗ ei) =
(eη ⊗ ei). �

Lemma A.2: For any A ∈ R
6
+ and any j = r, s,

αU
i (A) +

1

2
αU
2 (A) =

|AU |

|A|
AU

j ,

αW
i (A) +

1

2
αW
2 (A) =

1

2
AW

j +
1

2

|Aj ||A
W |

|A|
,

3
∑

i=1

αU
i (A) =

|AU |2

|A|
,

3
∑

i=1

αW
i (A) = |AW |,

|α(A)| =
∑

η=U,W

3
∑

i=1

αη
i (A) = |A| −

1

|A|
|AU ||AW |,

∑

η=U,W

αη
i (A) =

1

|A|

(

|Aj |
2 −AW

j AU
j

)

,

∑

η=U,W

αη
2(A) =

1

|A|

(

2|Ar||As| −AW
r AU

s −AW
s AU

r

)

. �

Lemma A.3: Let A ∈ R
6
+.

1) For any j = r, s, Aj = 02 implies αη
i (A) = αη

2(A) =
0, η = U,W .

2) For any η = U,W , Aη = 03 yields αη
i (A) = 0, i =

1, 2, 3.

3) For any η = U,W and i, i′ = 1, 2, 3 such that {i, i′} =
{1, 3} or 2 ∈ {i, i′}, Aη

i > 0, Aη
i′ > 0 yields αη

i′′ (A) >
0, i′′ = 1, 2, 3.

4) For any i, i′ = 1, 2, 3 such that {i, i′} = {1, 3} or

2 ∈ {i, i′}, AU
i > 0, AW

i′ > 0 implies αW
i′′ (A) > 0 or

αW
i′′ (α(A)) > 0, i′′ = 1, 2, 3.

5) For any j = r, s, AU
j = 0 ⇒ αU

i (A) = αU
2 (A) = 0. �

Points 1, 2 indicate that in monomorphic state, all off-

springs have identical homozygous genotype; and in ho-

mogeneous uninfected (resp. infected) state, all offsprings



(a) Solution of the controlled system (b) Control effort vA3(t)

(c) Total population |A(t)| (d) Genotype frequencies
|Ai(t)|
|A(t)|

(e) Relative frequencies
|Aη(t)|
|A(t)|

of uninfected/infected (f) Allelic frequencies of uninfected/infected
|A

η
j
(t)|

|A(t)|

Fig. 1: Release of insecticide-susceptible mosquitoes infected by Wolbachia in a resistant population, according to (19).

are uninfected (resp. infected). The other points describe

the result of mixing. Point 3 states that if two different

uninfected (resp. infected) genotypes are present in some

state, or if heterozygous are present, then the birth rate of

every uninfected (resp. infected) genotype is positive: both

alleles are present, and all genotypes are thus present in the

offspring. More intricate, point 4 says that if a genotype

is present in uninfected mosquitoes and the other one in

infected, or if an heterozygous is present in a heterogeneous

state, then the birth rate of every infected genotype is

positive. Appearance of missing genotypes occurs “directly”

in point 3 during 1st mating (αη
i′′(A) > 0), but this may

happen “indirectly”, after a 2nd mating: αη
i′′(α(A)) > 0.

For example, when mixing uninfected of genotype (r, r)
with infected of genotype (s, s), infected of genotypes (s, s)
and (r, s) arise from first mating, and of genotype (r, r)
only after second one. Due to complete CI, the symmetric

property is not true for the uninfected birth rate, as e.g.

mixing of uninfected mosquitoes bearing genotype (r, r)
with infected of any genotype only produces uninfected of



identical genotype. This property is the meaning of point 5.
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