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Abstract. Automata models are well-established in many areas of com-
puter science and are supported by a wealth of theoretical results including
a wide range of algorithms and techniques to specify and analyse systems.
We introduce choreography automata for the choreographic modelling of
communicating systems. The projection of a choreography automaton
yields a system of communicating finite-state machines. We consider both
the standard asynchronous semantics of communicating systems and
a synchronous variant of it. For both, the projections of well-formed
automata are proved to be live as well as lock- and deadlock-free.

1 Introduction

Choreographies are gaining momentum in the design and implementation of
distributed applications also in the ICT industrial sector. This is witnessed by
the effort of defining standards for specification languages such as WS-CDL [31]
or BPMN [40] as well as the recognition of choreographies as suitable approaches
to describe modern architectures such as microservices [12,2]. Choreographic
approaches to the modelling, analysis, and programming of message-passing
applications abound. For instance, in [34,5] abstract models have been applied
to verify and debug BPMN specifications. Also, behavioural types have been
proposed as suitable formalisations of choreographies [29] and for the analysis of
properties such as liveness or deadlock freedom (e.g., [45,20] and the survey [30] to
mention but few), while other approaches have considered syntax-free models [48].
At a programming level, choreographic programming has been explored in [35,39].

A distinguished trait of choreographies is the coexistence of two distinct but
related views of a distributed system: the global and the local views. The former
is an abstraction that yields a holistic description of the system. A global view
indeed describes the coordination necessary among the various components of
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the system “altogether”. In contrast, the local views specify the behaviour of the
single components in “isolation”.

In this paper we revisit the use of finite state automata to formally specify (and
analyse) global views of message-passing systems, following an intuition similar
to conversation protocols (CP) [26,16,27], a formalism where choreographies for
asynchronous systems are described by means of Büchi automata. Our model,
dubbed choreography automata (c-automata, for short), differs from CP in spite
of some similarities. A comparison is given in § 6. The transitions of c-automata
are labelled with interactions. As in most approaches, an interaction A−→B : m
states that participant A sends message m to participant B, which in turn receives
it. For instance, consider the c-automaton

0Cref , 1 2 3 42

5 6

C−→S : req S−→C : res S−→L : cnt

C−→S : ref

C−→S : ok

S−→C : res

S−→C : noRefC
−→

S
:
b
ye

S−→L : bye

(1)

used to illustrate our model and as our working example through the paper.
The c-automaton Cref specifies the coordination among participants C, S, and L
whereby a request req from client C is served by server S which replies with a
message (of type) res and logs some meta-information cnt on a service L (e.g.,
for billing purposes). Client C may acknowledge a response of S (i) with an ok
message to restart the protocol, or (ii) by requiring a refinement of the response
with a ref message, or else (iii) by ending the protocol with a bye message which
S forwards to L. In the second case, S sends C either a noRef message if no
refinement is possible or another res (with the corresponding cnt to L).

Note that Cref has nested as well as entangled loops. The support for entangled
loops is a distinguished and expressive feature of c-automata, not present in
many existing models of choreographies or multiparty session types (MST), and
that we shall discuss in § 6.

We argue that c-automata provide a number of benefits. An advantage of
c-automata is that finite state automata are well-known structures used both in
theoretical and applied computer science. For instance, the c-automaton Cref
above can be easily understood by practitioners while retaining rigour. Another
advantage is that c-automata are syntax-independent ; they do not rely on complex
linguistic constructs (such as the process algebraic constructs usually adopted
in behavioural types). More crucially, we can re-use well-known results of the
theory of automata and formal languages (e.g., we use determinisation and trace
equivalence) as well as related algorithms. We discuss these advantages more
extensively in § 6.

Choreographies enable a so called top-down approach whereby local views
can be projected from the global view. Projections are expected to reflect the
global specification without spoiling communication soundness (e.g., deadlock
freedom, liveness, etc.). These results do not hold in general. In fact, global
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views abstract away from “low level” peculiarities and projections may exhibit
unintended behaviour.

The realisability of a global specification is a natural question to ask:

Can global views such as Cref be realised by distributed components C,
S, and L coordinating with each other without intermediaries?

The answer to such question (obviously) depends on the communication infras-
tructure the distributed components use for the coordination. In fact, global
views in general abstractly specify the coordination disregarding several details.
For instance, the c-automaton Cref in (1) is oblivious of the communication
infrastructure used by the participants to coordinate with each other. Are the
communications among C, S, and L synchronous or asynchronous? In the latter
case, are messages received in their sending order? How is the sequencing reflected
at the local level? For instance, should the messages that C sends from state 3 in
(1) be sent after L receives the message cnt from S?

Tackling the realisability of global views is not a trivial endeavour. For instance,
the recent analysis done in [45] highlights glitches in several projection operations
of behavioural types. Also, some decidability results on the realisability of CPs [9],
the only other automata-based choreographic setting that we are aware of, have
been recently proved erroneous [24].

One would also like to understand whether the distributed components realis-
ing a choreography enjoy nice communication properties, e.g., will a component
ready to engage in a communication eventually progress? Will a message sent by
a participant eventually be received? We will consider such problems, showing
that a set of conditions we define on c-automata do guarantee the choreography
both to be realisable and to enjoy a number of relevant communication properties
such as liveness and deadlock freedom.

Contributions & Structure. After a preliminary section (§ 2) recalling the main
notions we deal with in the paper, in § 3 we formalise c-automata and their
projections.We adopt communicating systems [13] (reviewed in § 2 ) for the local
views of choreographies.

We consider both the case of synchronous and asynchronous communications
for the local views. The projection from c-automata to communicating systems
is defined in § 3 while in § 4 we define the class of well-formed c-automata
for the synchronous case. There we show that, on well-formed c-automata, our
notion of projection is correct (cf. Thm. 4.14) and guarantees liveness, lock-
and deadlock-freedom in the synchronous semantics (cf. Thm. 4.15). In § 5 we
generalise the above results to the case of asynchronous communications (cf.
Thms. 5.6 and 5.7). Concluding remarks, related and future work are discussed
in § 6. Additional material and complete proofs can be found in [7].

Some interesting technical points are worth noticing. Firstly, most of our
constructions and results rely on basic notions of formal languages and automata
theory. This greatly simplifies the presentation and the proofs. The generalisa-
tion from synchronous to asynchronous communications requires only a mild
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strengthening of our notion of well-formedness and no changes to c-automata or
their projection. These are further advantages of the use of finite-state automata.

2 Preliminaries

A Labelled Transition System (LTS) is a tuple A = 〈S, s0,L,→〉 where

– S is a set of states (ranged over by s, q, . . .) and s0 ∈ S is the initial state;
– L is a finite set of labels (ranged over by l, λ, . . .);
– →⊆ S× (L ∪ { ε })× S is a set of transitions where ε 6∈ L is a distinguished

label.

We define a Finite-State Automaton (FSA) as an LTS where S is finite. We use

the usual notation s1
λ−→ s2 for the transition (s1, λ, s2) ∈−→, and s1 −→ s2 when

there exists λ such that s1
λ−→ s2, as well as −→∗ for the reflexive and transitive

closure of −→. The set of reachable states of A is R(A) = { s | s0 −→∗ s }.

Remark 2.1. Our definition of FSA omits the set of accepting states since we
consider only FSAs where each state is accepting (which is the normal case in
LTSs). We discuss this point further at the end of the paper. �

We recall standard notions on LTSs.

Definition 2.2 (Traces and Trace equivalence). A run of an LTS A =
〈S, s0,L,→〉 is a (possibly empty) finite or infinite sequence of consecutive tran-

sitions starting at s0. The trace (or word) w of a run (si−1

λi−1−−−→ si)1≤i≤n of
A is the concatenation of the labels of the run (assume n = ∞ if the run is
infinite), namely w = λ0 · λ1 · · ·λn; label ε, as usual, denotes the identity element
of concatenation; if the run is empty then w = ε.

The language L(A) of A is the set of the traces of the runs of A. Two LTSs
A and B are trace equivalent iff L(A) = L(B). Also, A accepts w if w ∈ L(A),
A accepts w from s if w ∈ L(〈S, s,L,→〉), and an s-run (resp. s-trace) of A is a
run (resp. trace) of 〈S, s,L,→〉.

The notion of language in the definition above includes infinite words; this
extends the standard notion of language accepted by an FSA. In particular, we
consider an infinite word to be accepted by an FSA if each of its prefixes is
accepted in the standard way. This is equivalent to look at an FSA both as a
standard FSA and as a Büchi automaton where all the states are final.

Definition 2.3 (Deterministic LTSs). An LTS A = 〈S, s0,L,→〉 is deter-
ministic if
− it is ε-free, i.e. there is no transition of the form q

ε−→ q′, and

− whenever q
λ−→ q1 and q

λ−→ q2 then q1 = q2.
We denote the determinisation of A (i.e. the translation of a nondeterministic
LTS/FSA to a deterministic one) as det(A) 4.

4 The result of det(A) may actually depend on the chosen algorithm, but that is
irrelevant for our results.
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We adopt communicating finite-state machines (CFSMs) [13] to model the
local behaviour of systems of distributed components. The following definitions
are borrowed from [13] and adapted to our context.

Let P be a set of participants (or roles, ranged over by A, B, etc.) and M a
set of messages (ranged over by m, n, etc.). We take P and M disjoint.

Definition 2.4 (Communicating system). A communicating finite-state ma-
chine (CFSM) is an FSA on the set

Lact = {AB!m,AB?m | A,B ∈ P,m ∈M}

of actions. The subject of an output (resp. input) action AB!m (resp. AB?m) is
A (resp. B). A CFSM is A-local if all its transitions have subject A.

A (communicating) system is a map S = (MA)A∈P assigning an A-local CFSM
MA to each participant A ∈ P such that P ⊆ P is finite and any participant
occurring in a transition of MA is in P.

Note that CFSMs may contain ε-transitions. However, projection (see Def. 3.3
below) yields ε-free CFSMs.

Besides being a well-known and widely adopted model, CFSMs are equipped
with both synchronous and asynchronous semantics. This enables a uniform
treatment of both communication models. The use of CFMSs is also helpful to
compare c-automata with other models which are projected on CFSMs as well,
such as global graphs [37] and some versions of global types [23].

The synchronous semantics of communicating systems is an LTS where labels
are interactions:

Lint = {A−→B : m | A 6= B ∈ P and m ∈M}

Definition 2.5 (Synchronous semantics). Let S = (MA)A∈P be a commu-
nicating system where MA = 〈SA, q0A,Lact,→A〉 for each participant A ∈ P.
A synchronous configuration of S is a map s = (qA)A∈P assigning a local state
qA ∈ SA to each A ∈ P. We denote qA by s(A) and may denote s by ~q.

The synchronous semantics of S is the transition system JSKs = 〈S, ~q0,Lint,→〉
defined as follows

– S is the set of synchronous configurations of S, as defined above, and ~q0 =
(q0A)A∈P ∈ S is the initial configuration

– ~q1
A−→B : m−−−−−→ ~q2 if

1. ~q1(A)
A B!m−−−→A ~q2(A) and ~q1(B)

A B?m−−−→B ~q2(B), and
2. for all C 6= A,B, ~q1(C) = ~q2(C).

In this case, we say that ~q1(A)
A B!m−−−→A ~q2(A) and ~q1(B)

A B?m−−−→B ~q2(B) are

component transitions of ~q1
A−→B : m−−−−−→ ~q2.

– ~q1
ε−→ ~q2 if ~q1(A)

ε−→A ~q2(A), and for all B 6= A, ~q1(B) = ~q2(B).

Note that ε-transitions in the semantics of a communicating system are
induced by those of the constituent CFSMs. Also, JSKs is finite; in fact, it is in
general a non-deterministic automaton on the alphabet Lint.

As one would expect, the notion of synchronous semantics is invariant under
language equivalence of CFSMs.
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Proposition 2.6. Let S = (MA)A∈P and S′ = (M ′A)A∈P be two communicating
systems. If L(MA) = L(M ′A) for all A ∈ P then L(JSKs) = L(JS′Ks).

The asynchronous semantics of systems is defined in terms of transition
systems which keep track of both the state of each machine and the content of
unbounded FIFO queues bAB which are associated to each channel (A,B) ∈ C,
where C = P × P \ {(A,A)

∣∣ A ∈ P}. The queue bAB is where MA puts the
messages to MB and from which MB consumes the messages from MA. To avoid
cumbersome parenthesis, we write AB ∈ C for (A,B) ∈ C.

Definition 2.7 (Asynchronous semantics). Let S = (MA)A∈P be a commu-
nicating system where MA = 〈SA, q0A,Lact,→A〉 for each participant A ∈ P. An

asynchronous configuration of S is a pair s = 〈~q ; ~b〉 where ~q = (qA)A∈P with

qA ∈ QA and ~b = (bAB)AB∈C with bAB ∈M∗; we write s(A) for ~q(A) and denote by
ε the empty queue. The asynchronous semantics of S is the transition system
JSKa = 〈S, s0,Lact,→〉 defined as follows

– S is the set of asynchronous configurations of S and s0 = 〈~q0 ; ~b〉 is the initial
configuration where ~q0 = (q0A)A∈P and all the queues are empty.

– s
l−→ s′ if s = 〈~q ; ~b〉, s′ = 〈~q′ ; ~b′〉 and either (1) or (2) below holds:

1. l = AB!m and s(A)
l−→A s′(A) and

a. s(C)′ = s(C) ∀C 6= A ∈ P and
b. b′A B = bA B.m and
c. b′CD = bCD for all CD ∈ C,CD 6= AB

2. l = AB?m and s(B)
l−→B s′(B) and

a. s′(C) = s(C) ∀C 6= B ∈ P and
b. bA B = m.b′A B and
c. b′CD = bCD for all CD ∈ C,CD 6= AB

In the first (resp. second) case we say that s(A)
A B!m−−−→A s′(A) (resp. s(B)

A B?m−−−→B

s′(B)) is a component transition of s
A−→B : m−−−−−→ s′.

– 〈~q ; ~b〉 ε−→ 〈~q′ ; ~b′〉 if ~q(A)
ε−→ ~q′(A) for some A ∈ P and for all B 6= A,

~q(B) = ~q′(B), and ~b = ~b′.

State qA keeps track of the state of the machine MA and buffer bAB keeps track
of the messages sent from A to B (and not yet received by B). In a transition

s
A B!m−−−→ s′, participant A adds message m in the queue of the channel AB and

symmetrically, in a transition s
A B?m−−−→ s′, participant B consumes message m from

the top of the queue of the channel AB. In both cases, any machine or queue not
involved in the transition is left unchanged.

The asynchronous semantics is also invariant under equivalence of CFSMs.

Proposition 2.8. Let S = (MA)A∈P and S′ = (M ′A)A∈P be two communicating
systems. If L(MA) = L(M ′A) for all A ∈ P then L(JSKa) = L(JS′Ka).

For both the synchronous and the asynchronous semantics we restrict the
attention to fair runs. An infinite run is fair if each transition which is continuously
enabled is taken in a finite number of steps. A finite run is always fair.

We are interested in standard properties of communicating systems which we
now recall. Definitions are alike in the synchronous and asynchronous semantics,
hence, to avoid repetitions, below J K stands for J Ka or J Ks.
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Definition 2.9 (Communication properties). Let S = (MA)A∈P be a com-
municating system.

i) Liveness: S is live if for each configuration s ∈ R(JSK), each A ∈ P and
each outgoing transition t from s(A) in MA there exists a run of JSK from s
including a transition which has t as component transition.

ii) Lock freedom: A configuration s ∈ R(JSK) is a lock if
– there is A ∈ P with an outgoing transition t from s(A) in MA and
– there exists a run of JSK starting from s, maximal w.r.t. prefix order,

and containing no transition t′ involving A.
System S is lock-free if for each s ∈ R(JSK), s is not a lock.

iii) Deadlock freedom: A configuration s ∈ R(JSK) is a deadlock if
– s has no outgoing transitions in JSK and
– there exists A ∈ P such that s(A) has an outgoing transition in MA.

System S is deadlock-free if for each s ∈ R(JSK), s is not a deadlock.

Liveness, as in [41], establishes the progress of communicating systems we are
interested in. Lock freedom casts in our framework the idea that, similarly
to [33,32], certain communications happen, whereas deadlock freedom extends
the definition of deadlock in [19] to a setting which can be synchronous or
asynchronous (as done also in [37,48]).

3 Choreography Automata

We introduce choreography automata (c-automata) as an expressive and flex-
ible model of global specifications, following the styles of conversation proto-
cols [27], choreographies [14,31,40], global graphs [48] and multiparty session
types [17,28,30]. As customary in choreographic frameworks, we show how to
project c-automata on local specifications. As anticipated, our projection yields
a system of CFSMs formalising the local behaviour of the participants of a
choreography.

C-automata (ranged over by CA, CB, etc.) are FSAs with labels in Lint.

Definition 3.1 (Choreography automata). A choreography automaton (c-
automaton) is an FSA on the alphabet Lint. Elements of L∗int are choreography
words, subsets of L∗int are choreography languages.

Remark 3.2. Def. 3.1 admits non-deterministic c-automata. This does not increase
the expressiveness of our framework. In fact, (i) the notions that we use for our
results rely on traces and (ii) our projection operation (cf. Def. 3.3) is insensitive
to non-determinism (cf. Prop. 3.6). Non-deterministic specifications are however
desirable since they are easier to attain for the designer. �

Given a c-automaton, our projection operation builds the corresponding
communicating system consisting of the set of projections of the c-automaton on
each participant, each projection yelding a CFSM. Hereafter, P ⊆ P is the set of
participants of c-automata; note that P is necessarily finite.



8

Definition 3.3 (Automata Projection). The projection on A of a transition

t = q
λ−→ q′ of a c-automaton, written t↓A, is defined by:

t↓A =


q

A C!m−−−→ q′ if λ = B−→C : m and B = A

q
B A?m−−−→ q′ if λ = B−→C : m and C = A

q
ε−→ q′ otherwise

The projection of a c-automaton CA = 〈S, q0,Lint,→〉 on a participant A ∈ P,
denoted CA ↓A, is obtained by determinising and minimising up-to-language
equivalence the intermediate automaton

AA = 〈S, q0,Lact ∪ { ε }, { (q
λ−→ q′)↓A | q

λ−→ q′ }〉

The projection of CA, written CA↓, is the communicating system (CA↓A)A∈P .
The projection function trivially extends to choreography words and languages.

The projection defined above, apart for determinisation and minimisation,
is essentially homomorphic, as most of the projections in the literature. Other
approaches such as [43,25] add hidden communications to be able to deal with
larger classes of choreographies. We prefer the former approach for its simplicity.
Hidden communications can however be added directly at the choreographic level
as proposed in [36].

It is a simple observation that the projection on A of CA is A-local, de-
terministic and hence ε-free. Thanks to the properties of determinisation and
minimisation (as, e.g., in the partition refinement algorithm [42]), the states of
CA↓A are sets of states of CA.

Example 3.4 (Projections of Cref). The projections of our working example are

{ 0 }

{ 1 } { 2, 3 }

{ 4 }

{ 5, 6 }

Cref ↓C

C
S
!req

S C?res

C
S
!r
ef

C S!bye

C
S!ok

S
C
?
res

S
C
?
n
o
R
ef

{ 0 }

Cref ↓S

{ 1 } { 2 }

{ 3 }

{ 4 }

{ 5 } { 6 }

C
S
?
req

S C!res

S
L!cnt

C S?refC
S?
by
e

C
S?ok

S C!res

S C!noRef

S C!bye

{0, 1, 2
3, 4, 5}

{ 6 }

Cref ↓L
S L?cnt

S
L
?
b
ye

For instance, Cref ↓C is obtained by determinising (minimisation is the identity in
this case) the following intermediate automaton obtained as described in Def. 3.3.

0AC 1 2 3 42

5 6

C S!req S C?res ε

C S!ref

C S!ok

S C?res

S C?noRef

C
S
!b
ye

ε

�
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The following proposition relates the language of the projection with the
language of the original automaton.

Proposition 3.5. For all c-automata CA and A ∈ P, L(CA↓A) = L(CA)↓A.

The projection operation is well-behaved with respect to trace equivalence.

Proposition 3.6. If CA and CA′ are trace-equivalent c-automata then
CA↓A and CA′ ↓A are isomorphic for each participant A ∈ P.

4 Well-formed Choreography Automata

To ensure that the communicating system obtained by projection of a c-automaton
is well-behaved, some conditions are necessary. Since the conditions depend on the
used communication infrastructure, we consider first synchronous communication,
leaving to § 5 the case of asynchronous communication.

Definition 4.1 (Concurrent transitions). Let CA = 〈S, q0,L,→〉. Two tran-

sitions q
l1−→ q1 and q

l2−→ q2 are concurrent iff there is a state q′ ∈ S and

transitions q1
l2−→ q′ and q2

l1−→ q′.

Well-branchedness (cf. Def. 4.6) is a key notion which intuitively states that
each participant is aware of the choices made in the choreography when its
behaviour depends on those choices. The awareness of choice is checked on spans,
namely pairs of runs that may constitute alternative branches of choices. Spans
are formalised building on the notion of candidate branch which, in turn, is
defined in terms of pre-candidate branch.

Definition 4.2 (Candidate q-branch). Let q be a state of a c-automaton
CA. A pre-candidate q-branch of CA is a q-run of CA such that each cycle
has at most one occurrence within the whole run (i.e. any subsequence of the
form q −→ . . . −→ q, where q occurs only at the beginning and at the end of the
subsequence, is not present more than once in the run). A candidate q-branch is
a maximal pre-candidate q-branch with respect to prefix order.

We often refer to a (pre-)candidate q-branch simply as “(pre-)candidate of q”.
Due to the condition about cycles in Def. 4.2, the following holds trivially.

Fact 1. Given a state q of a c-automaton CA, the set of its pre-canditates is
finite, and so is, a fortiori, that of its candidates.

Example 4.3 ((Pre-)candidate branches in Cref). The sequences in Fig. 1 are
runs of the c-automaton of our working example. They are all pre-candidates
of either 3 or 4, but run πe, which is not a pre-candidate of 4 since the cycle
4− 3− 4 occurs twice. Runs πb and πd are also candidates of 3, being maximal
pre-candidates with respect to prefix order. �
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πa :
3 0 1 2

C−→S : ok C−→S : req S−→C : res

πb :
3 0 1 2 3 5 6

C−→S : ok C−→S : req S−→C : res S−→L : cnt C−→S : bye S−→L : bye

πc :
4 3 4 2
S−→C : noRef C−→S : ref S−→C : res

πd :
3 4 2 3 5 6

C−→S : ref S−→C : res S−→L : cnt C−→S : bye S−→L : bye

πe :
4 3 4 3 4 2
S−→C : noRef C−→S : ref S−→C : noRef C−→S : ref S−→C : res

πf :
3 4 2

C−→S : ref S−→C : res

Fig. 1. Runs of Cref.

Definition 4.4 (q-span). Given a state q of a c-automaton CA, a pair (σ, σ′)
of pre-candidate q-branches of CA is a q-span if σ and σ′ are

– either cofinal, with no common node but q and the last one;

– or candidate q-branches with no common node but q;

– or a candidate q-branch and a loop on q with no other common nodes.

A participant A ∈ P chooses at a q-span (σ, σ′) if the first transition of both σ
and σ′ has A as sender.

Example 4.5 (Spans of Cref). The states with spans of our working example
are 3 and 4. A span from 3 is (πa, πf ), where πa and πf are as in Fig. 1. Indeed,
πa and πf are cofinal (in 2) pre-candidates of 3 with no common states but 3
and 2. Participant C chooses at (πa, πf ). The pair (πb, πd), instead, is not a span
from 3, since πb and πd are maximal, but share other nodes than 3. �

Intuitively, a choice is well-branched when the participants other than the
one opting for alternative runs either behave uniformly in each branch, or can
ascertain which branch has been chosen from the messages they receive.

Definition 4.6 (Well-branchedness). A c-automaton CA is well-branched
if for each state q in det(CA) and A ∈ P sender in a transition from q, all of the
following conditions must hold:

(1) all transitions from q involving A, have sender A;

(2) for each transition t from q whose sender is not A and each transition t′

from q whose sender is A, t and t′ are concurrent

(3) for each q-span (σ, σ′) where A chooses at and each participant B 6= A ∈ P,
the first pair of different labels on the runs σ↓B and σ′ ↓B (if any) is of the
form (CB?m,DB?n) with C 6= D or m 6= n.

We dub A a selector at q.
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In the above definition loops are taken into account in item (3) since the
notion of span is defined in terms of candidate branch. The latter is a maximal
run where cycles can be considered at most once, as shown in Example 4.3.

In case of a nondeterministic c-automaton, the conditions of Def. 4.6 are
checked after the c-automaton has been determinised. In fact, recalling Remark 3.2,
we consider properties of languages of c-automata, and determinisation, as well
as minimisation, of FSA preserve languages. Also, both operations preserve the
system resulting from projection (cf. Prop. 3.6). (Observe that here we exploit
classical results of automata theory.) Also, by Fact 1 and the obvious decidability
of the conditions of Defs. 4.4 and 4.6 we get

Fact 2. Well-branchedness is a decidable property.

Example 4.7 (Well-branchedness of Cref). All the states of Cref satisfy the
conditions of Def. 4.6; the only non-trivial cases are states 3 and 4. Condition (1)
holds for C, which is the selector of the choice at 3, and for S, which is the selector
of the choice at 4; condition (2) holds vacuously, and condition (3) holds for both
S and L in all the spans from 3 and from 4. For instance, in the span (πa, πf)
from 3, described in Example 4.5, the first actions of S on πa and πf are the
inputs from C which have different messages, whereas, for what concerns L, the
condition holds vacuously. As a matter of fact, since πa and πf are cofinal in 2,
the well-branchedness conditions on state 2 do guarantee L to behave properly
afterwards, independently on whether πa or πf have been followed before. �

Condition (2), vacuously true in our working example, is needed when multiple
participants act as sender in the same state: this ensures that the only possibility
is that actions of different participants are concurrent so that possible choices at
a state are not affected by independent behaviour.

We add a further condition to rule out c-automata having consecutive transi-
tions involving disjoint participants and not actually concurrent.

Definition 4.8 (Well-sequencedness). A c-automaton CA is well-sequenced

if for each two consecutive transitions q
A−→B : m−−−−−→ q′

C−→D : n−−−−−→ q′′ either

– they share a participant, that is {A,B} ∩ {C,D} 6= ∅, or

– they are concurrent, i.e. there is q′′′ such that q
C−→D : n−−−−−→ q′′′

A−→B : m−−−−−→ q′′.

Notice that, by finiteness of the transition relation of c-automata, we get

Fact 3. Well-sequencedness is a decidable property.

Notation. For the sake of readability, a well-sequenced c-automaton can be
represented by omitting, for each diamond, two of its consecutive transitions. We
call such representation compact. Notice that, given a compact representation, it
is always possible to recover the original c-automaton. So far and hereafter we
assume that all c-automata are compactly represented.

Example 4.9 (Well-sequencedness of Cref). It is not difficult to check that Cref
is well-sequenced because the first condition of Def. 4.8 holds for any pair of
consecutive transitions in Cref. �
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Fig. 2. Failure of well-sequencedness completion.

Well-sequencedness is necessary to establish a precise correspondence between
the language of a c-automaton and of its projection (cf. Thm. 4.14 and the
discussion following it).

Remark 4.10. We show that not all c-automata can be “completed” to well-
sequenced ones. Consider the c-automaton of Fig. 2(a), which is not well-sequenced
because of the transitions from state 0 to state 1 and from state 1 to 2. By
“completing the diamond” for such transitions (i.e., by adding the new state 3

and the transitions 0
C−→D : c−−−−−→ 3 and 3

A−→B : a−−−−−→ 2) we obtain the c-automaton of

Fig. 2(b). This is still not well sequenced, because of the transitions 3
A−→B : a−−−−−→ 2

and 2
C−→D : c−−−−−→ 0. So we try to make it well-sequenced by completing the diamond

once again and obtain the c-automaton of Fig. 2(c). The resulting c-automaton

is still not well-sequenced, because of the transitions 4
A−→B : a−−−−−→ 0 and 0

C−→D : c−−−−−→ 3.

Again a vain attempt, because of the transitions 5
A−→B : a−−−−−→ 3 and 3

C−→D : c−−−−−→ 4. It
is immediate to check that we could go on indefinitely.

It is impossible to complete the initial c-automaton since the intended com-
pleted automaton should generate a non-regular language (since it should generate
strings with a number of C−→D : c interactions which is, roughly, double of the
number of A−→B : a interactions). It would hence be interesting to know whether,
in case the expected completed interaction language of a c-automaton is regular
and prefix-closed, it is possible to generate it also by means of a well-sequenced
c-automaton. It would be also interesting to establish a condition on cycles (if
any) that guarantees the effectiveness of the completion of a c-automaton. We
leave these questions for future work. �

We show a closure property of the languages of well-sequenced c-automata.

Definition 4.11 (Concurrency closure). The swap relation on choreography
words is the smallest equivalence relation ∼ satisfying

w(A−→B : m)(C−→D : n)w′ ∼ w(C−→D : n)(A−→B : m)w′

where {A,B} ∩ {C,D} = ∅. Given a choreography language L

close(L) = {w ∈ Lint

∣∣ ∃w′ ∈ L. w ∼ w′ }
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Fig. 3. Well-formedness is necessary for Thm. 4.14.

is the concurrency closure of L.

The above relation is reminiscent of the swapping relation introduced in [18],
with similar aims.

Proposition 4.12. Let CA be a well-sequenced c-automaton. Then L(CA) is
concurrency closed, i.e. L(CA) = close(L(CA)).

Notice that the converse of the above proposition does not hold in general. In
fact, consider the following c-automaton

0

1
CA

2

3 4

A−→B : a

C−→D : c

C−→D : c

A−→B : a

we can check that L(CA) = close(L(CA)) but CA is not well-sequenced.
The notion of well-formedness below sums up the requirements needed in

order for a c-automaton to be projected to a well-behaved communicating system.

Definition 4.13 (Well-formedness). A c-automaton is well-formed if it is
both well-branched and well-sequenced.

The next result in Thm. 4.14 establishes that the language of a well-formed
c-automaton coincides with the language of the communicating system obtained
by projection. This provides a correctness criterion for our projection operation.

Theorem 4.14. L(CA) = L(JCA↓Ks) for any well-formed c-automaton CA.

Notice that well-formedness is a necessary condition for the theorem above.
It is in fact easy to check that

(C−→D : m)(A−→B : n) ∈ L(JCA↓Ks) and (C−→D : m)(A−→B : n) 6∈ L(CA)

when CA is one of the c-automata (a), (b) or (c) of Fig. 3. In particular, (a) is
not well-sequenced whereas (b) and (c) are not well-branched: for (b), item (2) of
well-branchedness (Def. 4.6) does not hold; (c) instead violates item (3).

We can now show that the projections of well-formed choreography automata
enjoy the communication properties of Def. 2.9.

Theorem 4.15. Given a well-formed c-automaton CA, its projection (CA↓A)A∈P
is live, lock-free, and deadlock-free with respect to the synchronous semantics.
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5 Asynchronous Communications

We now transfer the results of the previous sections to the asynchronous semantics
of communicating systems (Def. 2.7). Remarkably, the semantics does not affect
the definition of c-automata (and of projections) since it is independent of the
communication model. Hence, any result depending only on the definition of
c-automata still holds. Well-sequencedness instead needs updating.

Definition 5.1 (Asynchronous well-sequencedness). A c-automaton is

asynchronously well-sequenced if for each two consecutive transitions q
A−→B : m−−−−−→

q′
C−→D : n−−−−−→ q′′ either

– the sender of the second transition occurs in the first one, that is C ∈ {A,B},
– or they are concurrent, i.e. there is q′′′ such that q

C−→D : n−−−−−→ q′′′
A−→B : m−−−−−→ q′′.

Asynchronous well-sequencedness (Def. 4.8) implies the synchronous one.
Indeed, asynchronous well-sequencedness requires either two transitions to be
concurrent or that the sender of the second transition occurs in the first one.
The latter condition is weaker than having disjoint participants as required in
the synchronous case.

Note that our working example is well-sequenced but not asynchronously

well-sequenced (because e.g., of transitions 2
S−→L : cnt−−−−−→ 3

C−→S : bye−−−−−−→ 5). Thus, we
now consider it as the compact representation of the actual c-automaton according
to Notation on page 11.

Unlike well-sequencedness, the notion of well-branchedness has not to be
changed in case asynchronous communications are considered. So, in the asyn-
cronous setting, we define asynchronous well-formedness as the conjunction of
asynchronous well-sequencedness (Def. 5.1) and well-branchedness (Def. 4.6).

The correspondence result between the semantics of a c-automaton and of
its projection requires to decide which actions to observe on the projection.
Indeed, in a c-automaton, each interaction is seen as an atomic event, while in the
asynchronous semantics of communicating systems each interaction corresponds
to two events: a sending event and a receving event. We opt to observe sending
events only because (internal) choices are determined by sending events. This
decision also plays well with the notion of well-branchedness, where most of
the conditions concern sender participants. Other possible options are discussed
in [35], in a process algebraic setting. This idea is formalised by sender traces.

Definition 5.2 (Sender traces). The sender traces L!(S) of a communicating
system S are obtained from its asynchronous traces by replacing each output label
AB!m with A−→B : m and each input label AB?m with ε.

The modification of well-sequencedness for the asynchronous case does imply
that we need to “update” the definition of concurrency closure as well.
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Definition 5.3 (Asynchronous concurrency closure). The asynchronous
swap relation on choreography words is the smallest pre-order ≤ satisfying

w(A−→B : m)(C−→D : n)w′ ≤ w(C−→D : n)(A−→B : m)w′ where C /∈ {A,B}.

The downward closure of a choreography language L with respect to ≤
closea(L) = {w ∈ Lint

∣∣ ∃w′ ∈ L. w ≤ w′ }
is the asynchronous concurrency closure of L.

The condition for asynchronous concurrency closure is weaker than the one in
the synchronous case. This is due to the fact that sender-traces must be closed
under asynchronous concurrency (cf. Lemma 5.4 below), so to guarantee that
the traces of an automaton do coincide with the sender-traces of its projection
(Thm. 5.6 below). We discuss such a necessity with an example after Thm. 5.6.

Lemma 5.4. Let CA be a c-automaton. Then L!(JCA↓Ka) = closea(L!(JCA↓Ka)).
We now proceed to prove the correctness of projection for asynchronous

systems. We will reduce it to the corresponding result for synchronous systems
(Thm. 4.14). This is done by showing that all asynchronous runs are pairable
(see below), that is they can be put in a suitable normal form which directly
corresponds to a synchronous run. Notably, such a result is false for c-automata
which are not asynchronously well-formed.

Definition 5.5 (Pairable runs). Let CA be a c-automaton. A run σ in JCA↓Ka
is paired into a run σ′ in JCA↓Ka iff they are coinitial, produce the same sender
trace, and each output AB!m in σ′ is immediately followed by the corresponding
input AB?m. A run σ is pairable if it is paired into a run σ′.

Theorem 5.6. Let CA be an asynchronously well-formed c-automaton.

L!(JCA↓Ka) = L(CA)

Similarly to Thm. 4.14, asynchronous well-formedness is a necessary condi-
tion for Thm. 5.6. Examples (b) and (c) of Fig. 3 work the same also for the
asynchronous case, since we do not changed the definition of well-branchedness.
We changed instead the definition of well-sequencedness to a stricter version and
the c-automaton (a) of Fig. 3 is hence not enough to show the necessity of asyn-
cronous well-sequencedness; this can however be easily done using the following
c-automaton which is well-sequenced but not asynchronouly well-sequenced

0 1CA 2
A−→B : m C−→B : m

Since outputs of asynchronous CFSMs can always be fired, there is a run of
the projected system beginning with CB!m and producing the sender trace
(C−→B : m)(A−→B : m) ∈ L!(JCAKa) which trivially does not belong to L(CA)
because the interactions cannot be swapped (cf. Def. 5.3).

The communication properties for projected systems can also be obtained.

Theorem 5.7. Given an asynchronous well-formed c-automaton CA, its projec-
tion (CA↓A)A∈P is live, lock-free, and deadlock-free with respect to the asyncronous
semantics.
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6 Conclusion, Related Work and Future Work

We introduced a model of choreographies based on FSAs whose transitions are
labelled by interactions. We showed relevant results both for a synchronous
and an asynchronous underlying communication infrastructure. We established
a correspondence between the language of an automaton and the one of its
projection, as well as proofs of liveness, lock, and deadlock freedom for the latter.

The adoption of an automata-based model brings in two main benefits.
Firstly, the constructions that we provided are based on set-theoretic notions
and are syntax-independent. This contrasts with syntax-driven models (such
as behavioural type systems [30]) where expressiveness may be limited and
definitions may be more complex due to syntactic reasons. E.g., the example
in § 1 cannot be modelled in many behavioural type systems since entangled
loops cannot be represented using a recursion operator. Secondly, we can re-use
well-known results of the theory of automata (e.g., we used notions of trace
equivalence and determinisation) and related tools.

Related work Automata-based models for specifying the local behaviour of
distributed compontents are commonplace in the literature (see e.g., [13,21]).
Less so is for the global specifications of choreographies: to the best of our
knowledge, the conversation protocols (CP) in [26,27,9] (and references therein)
are the only such model in the literature. The realisability of CP has been first
studied in [27]; this is indeed the work closest to ours. Conversation protocols are
non-deterministic Büchi automata whose labels resemble our interactions (barred
the fact that, contrarily to our formalism, in [27] the sender and the receiver
of each message are determined by its content). Our c-automata are basically
finite-state automata where infinite words can be taken into account by looking
at them as Büchi automata where all states are actually final. It is not immediate
to provide a detailed comparison between conversation protocols and c-automata
because their semantics and underlying communication models differ. As for the
communication model, conversation protocols are realised in a subclass of CFSMs
(cf. Section 5 of [27]), whereas we consider the unrestricted model of CFSMs, as
well as a synchronous version of it. Concerning the semantics, Definition 4 (item
3(b)) of [27] restricts the runs to those where all messages in queues are eventually
consumed, that is they require by definition a form of liveness. Instead, one of
our goals is to identify conditions that guarantee relevant liveness properties. We
prove them in Theorem 5.7, and in Prop. D.1 in [7] we prove the exact property
assumed in [27]. The realisability conditions of conversation protocols are lossless
join, synchronous compatibility, and autonomy. Those conditions cannot easily
be compared with well-formedness, due to the differences in the models and in
the semantics. Furthermore, the style of the conditions is very different, and it
also induces very different proof strategies in many cases. In particular,

– our well-sequencedness is checked on pairs of consecutive transitions and
well-branchedness on pairs of coinitial paths;

– lossless join is a global property, that is a condition on the automaton
consisting of the product of the languages of the local projections;
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– synchronous compatibility is defined in terms of pairs of traces in the pro-
jection but verified with an algorithm that checks a global property of an
automata costruction, and the same holds for autonomy.

Thus, while the conditions capture similar intuitions, a detailed comparison is very
hard. When restricting to the common part of the two models, well-branchedness
implies autonomy while the opposite does not hold. Indeed, by well-branchedness
the selector is output-ready (according to the terminology in [27]), while any other
participant either behaves uniformly in each branch (and is thus either input-
ready or output-ready or termination-ready) or it is made aware of the choice by
distinct inputs (that is it is input-ready). In all the cases autonomy is satisfied.
In the other direction, a choice between traces (A−→B : l)(B−→C : n)(C−→D : w) and
(A−→B : r)(B−→C : n)(C−→D : z) satisfies autonomy but not well-branchedness.

As for lossless join, we do not assume it. Actually, it is equivalent to one of
our results, namely the correctness of the projection in the synchronous case
(Thm. 4.14). Such a result is also used in the asynchronous case (Thm. 5.6),
which is proved by reduction to the synchronous one via paired runs. We leave
a detailed comparison of the two sets of constraints, in a common setting, for
future work. Later works on CP (see, e.g., [9]) changed the approach and relied
on model checking to show realisability instead of well-formedness conditions.
Unfortunately, some of their main decidability results were flawed [24].

Conditions similar to well-branchedness and well-sequencedness do naturally
arise in investigations related to choreoghraphies and their realisability. A unique
sender driving a choice is a condition present in several multiparty session types
formalisms ([28] and [20] to cite just a couple of them), global graphs formalisms
[48], choreography languages in general (for instance see the notion of dominant
role in [44]). Conditions related to item (3) of Def. 4.6 can also be found in
multiparty session types formalisms [46] or in conversation protocols, as discussed
above. Also, notions close to well-sequencedness turn out to arise quite naturally
in “well-behaved” choreographies (see for instance the notion of well-informedness
of [15] in the context of collaboration diagrams).

Similarly to what discussed in Remark 4.10, some approaches propose tech-
niques to fix choreographies which are not well-behaved. This issue is consid-
ered in some multiparty session types [11,10], in algebraic and automata-based
frameworks for choreographies [36,8] as well as in the choreographic middleware
ChoreOS [3,4]. While they consider different conditions than ours, trying to adapt
their approaches to our setting is an interesting item for future work.

As said, most approaches are not based on automata. For instance, [44,35,22]
use algebraic operators to build larger choreographies from smaller ones, and
give conditions on such operations ensuring that the resulting choreography is
“well-behaved”. This technique is not applicable in our case, since, like most works
on automata, we do not consider an algebra to build automata.

While the main aim of c-automata is to provide a choreography model based
on FSAs, we remark here that it is rather expressive and complements existing
models of choreographies or multiparty session types (MST). In particular, the
expressive power of c-automata is not comparable with the one of the MST in [45],
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which subsumes most systems in the literature. More precisely, the c-automaton
Cref in § 1 cannot be syntactically written in [45] due to the two entangled loops.
That example cannot be expressed in global graphs [48] either, again due to
the intersecting loops. We note that the infinite unfolding of the c-automaton is
regular and therefore it would fit in the session type system considered in [47].
However, this type system has not been conceived for choreographies (it is a
binary session type system) and does not allow non-determinism.

On the other side, examples such as [45, Ex. 2, Fig. 4] cannot be written
in our model (since we expect the same roles to occur in branches which are
coinitial, branches inside loops require that all participants in a loop are notified
when the loop ends). We conjecture that a refinement of well-branchedness is
possible to address this limitation. Global graphs are another model of global
specifications. Their advantage is that they feature parallel composition, which
c-automata lack. We note however that one could use the classical product of
automata on c-automata to model parallel composition in the case where the two
branches have disjoint sets of participants (as typically assumed in MST with
parallel composition). Mapping global graphs without parallel composition into
c-automata is trivial. The same considerations apply to choreography languages
where possible behaviours are defined by a suitable process algebra with parallel
composition such as [35,14].

Future work One of the main motivations to develop a choreography model based
on automata was to lift the compositional mechanism discovered in [6] on CFSMs
to global specifications, in such a way that composition of global specifications
preserves well-formedness. This is the problem we are currently addressing.

An interesting future development is also to adopt Büchi automata as c-
automata. This extension is technically straightforward (just add accepting states
to Def. 3.1 and define ω-languages accordingly), but it probably impacts greatly
the underlying theory. An interesting yet not trivial effort is the identification of
well-formedness conditions on this generalised class of c-automata that guarantee
a precise correspondence with the ω-languages of the projections.

The interplay between FSAs and formal languages could lead to a theory of
projection of choreographies based on languages instead of automata. For instance,
one could try to characterise the languages accepted by well-formed c-automata,
similarly to what done in [1,38,48]. In those approaches global specifications are
rendered as partial orders and the distributed realisability is characterised in
terms of closure properties of languages.

A final direction for future work concerns the implementation of tool support
for the approach. We are currently working in this direction. A very preliminary
and partial implementation by Simone Orlando and Ivan Lanese is available at
https://github.com/simoneorlando/Corinne.
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