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Abstract Sound duration is responsible for rhythm and speech rate. Fur-
thermore, in some languages phoneme length is an important phonetic and
prosodic factor. For example, in Arabic, gemination and vowel quantity are two
important characteristics of the language. Therefore, accurate duration mod-
elling is crucial for Arabic TTS systems. This paper is interested in improving
the modelling of phone duration for Arabic statistical parametric speech syn-
thesis using DNN-based models. In fact, since a few years, DNN have been
frequently used for parametric speech synthesis, instead of HMM. Therefore,
several variants of DNN-based duration models for Arabic are investigated.
The novelty consists in training a specific DNN model for each class of sounds,
i.e. short vowels, long vowels, simple consonants and geminated consonants.
The main idea behind this choice is the improvement that we already achieved
in the quality of Arabic parametric speech synthesis by the introduction of two
specific features of Arabic, i.e. gemination and vowel quantity into the standard
HTS feature set. Both objective and subjective evaluations show that using a
specific model for each class of sounds leads to a more accurate modelling of
the phone duration in Arabic parametric speech synthesis, outperforming the
state-of-the-art duration modelling systems.
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1 Introduction

Text-To-Speech synthesis (TTS) has been historically used as help for people
with visual impairments, for reading ebooks and messages. Now it is being used
worldwide in a large range of applications varying from consumer electronics,
talking devices and especially as a cost-effective alternative to human speakers,
in charge of broadcasting routine messages like news bulletins, weather fore-
casts and traffic alerts. More recently, it started to be also used for language
learning and online translation.

Overview of Text-To-Speech systems

Several TTS techniques have been developed since more than half a century:
formant synthesis [1], articulatory synthesis [2], concatenative methods, i.e.
diphone synthesis [3,4] and unit selection synthesis [5], and parametric speech
synthesis based either on hidden Markov models (HMM) or on deep neural
networks (DNN). In fact, this timeline order depends on the progress of storage
abilities and of computational resources. Hence, the first methods, i.e. formant
synthesis and diphone synthesis need only a small database, whereas unit
selection synthesis has been feasible only when it had been possible to store
huge databases of speech segments. Finally, statistical parametric synthesis
methods, based on HMM and DNN, were promoted by the development of
complex algorithms able to deal with the corresponding computational load.
Therefore, each technique has its advantages and drawbacks that depend on
the background approach: whereas formant synthesis and diphone synthesis do
not require high memory, the output sound quality is not quite satisfactory. On
the opposite side, unit selection synthesis provides a high quality sound, at the
cost of using a huge database. Finally, parametric speech synthesis represents
a trade-off between relatively small memory and high quality of sound.

Parametric speech synthesis

The first parametric speech synthesis technique was based on HMM to model
and predict the speech parameters, i.e. duration, fundamental frequency (F0)
and spectrum. Decision trees were used to share context-dependent param-
eters, and thus to select the best-fitting HMM parameters according to the
available contextual information [6]. The generated parameters were fed into
a vocoder, like MLSA (Mel Log Spectrum Approximation) [7], to generate the
output speech signal. Therefore, it was possible to develop this technique using
less speech data than for unit selection. However, the naturalness of its output
speech has been so far less appreciated than that of unit selection synthesis,
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mainly due to oversmoothing, acoustic modelling and vocoding [8]. DNN-based
speech synthesis is another parametric speech synthesis approach. Instead of
relying on HMMs and associated decision trees to predict the speech param-
eters, DNNs map the input contextual features to the corresponding speech
parameters [9]. Then, in the same way, the output speech is generated by a
vocoder. Furthermore, recent relevant developments in sequence-to-sequence
DNN-based TTS such as Tacotron [10,11] have given good subjective evalu-
ation results. These models outperform state-of-the-art results through com-
bining alignment, duration and acoustic parameters modelling. It should be
noted that in the recent benchmark evaluations of TTS techniques, paramet-
ric speech synthesis, either based on HMM or DNN, has always been ranked
amongst the best quality techniques, notwithstanding the development of novel
techniques, mainly based on deep learning [56]. Such a good rating can be ex-
plained by the particularity of parametric speech synthesis, based on modelling
prosody specifically for each target language.

Prosody modelling

Prosody modelling is a key component in any TTS system, especially in para-
metric speech synthesis. Prosody refers to intonation, rhythm and loudness
[12]. Phonetically speaking, these aspects are expressed by F0, duration and en-
ergy. Except unit-selection TTS, where signal modification is avoided [5], most
concatenative speech synthesis systems rely on signal modification to adapt the
values of the prosodic parameters of the database units to the predicted ones,
in order to ensure intelligibility and naturalness of the output speech. In the
case of parametric speech synthesis, duration and acoustic parameters (F0 and
spectrum) are modelled either by HMM or by neural networks. These models
rely on label features that cover most of contextual, linguistic and phonolog-
ical information that may influence the output parameters, i.e. duration, F0
and spectrum. A medium size database, e.g. 450 sentences in [6], was used
to train the context-dependent HMM models, nevertheless larger databases
lead to better speech synthesis quality. The context-dependent HMMs are
clustered using a decision tree, whose binary questions refer to the label fea-
tures. The binary tree is constructed by iteratively selecting the most relevant
question, that is the question that leads to the largest log-likelihood gain of
the training data. The size of the decision tree depends on some threshold of
the training criterion, i.e. MDL (Minimum Description Length) value [13] or
cross-validation [6].

Prosody modelling for parametric TTS

The main advantage of parametric speech synthesis consists in its ability to
model the acoustic parameters for a wide range of contexts. In fact, thanks to
decision trees clustering where parameters distributions are shared, the effect
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of unseen contexts and data sparsity is reduced. Though parametric speech
synthesis has been proved to produce accurate prosody models in many lan-
guages, such as Japanese [6], English [8], Arabic [14], etc., it did not succeed
to reach the unit-selection speech quality as reported in [15]. This is due to
several reasons, namely vocoding, acoustic modelling and oversmoothing. As
far as vocoding is concerned, since the output speech is generated using MLSA
filter [7], based on a pulse train and white noise excitation, a buzz effect is
usually perceived. To cope with this issue, many vocoders were tried out, to
enhance the quality of the output speech, such as STRAIGHT [15] and more
recently WORLD [16]. For acoustic modelling, though decision trees are able to
match the contextual features to the adequate HMM model, the whole system
suffers from the simple frame-wise acoustic parameter modelling [9]. Actually,
speech and more particularly prosody parameters generation is a continuous
process, which might be considered as recurrent rather than simply overlap-
ping. To resolve this problem, many modifications were brought to the HMM
structure, to enhance their ability to model acoustic parameters taking into
account their inherent dependencies [9]. The last issue, i.e. oversmoothing, is
due to using statistical averaging in the training phase, to reduce the data
sparsity. Besides, in the synthesis phase, dynamic constraints are used. Both
techniques yield in over-smoothed trajectories of the acoustic parameters (F0
and spectrum), so that a muffling effect is perceived by the listener, because
the micro-prosodic variations cannot be captured [9]. To overcome this ef-
fect, simple solutions like post-filtering or explicitly using the training data
as constraints in the parameter prediction algorithm were suggested [9]. An-
other solution is to use multiple-level statistics, like global variance (GV) when
generating speech parameters trajectories [9].

Duration modelling for parametric TTS

Several approaches have been developed to model segmental duration since
the beginning of TTS technology. These approaches can be classified into two
main families: rule-based approaches and data-driven ones. In the first family,
an explicit formulation of segment duration is found out, where phone and/or
syllable duration is calculated using analytic formulas [1], or assuming the
existence of a common compression/extension factor for all phone durations
within a syllable [17]. In [18], the duration of a segment is calculated as the
sum of products of a hypothetic intrinsic duration multiplied by some con-
textual factors like phoneme class, stress and place of articulation. However,
such empiric rules do not provide high accuracy, and were criticized for the
lack of fundamental and consistent proofs [12]. In the second family, segment
duration is obtained through training. Particularly, in HMM-based speech syn-
thesis, state duration distributions are estimated. Each state duration is ex-
plicitly modelled by a Gaussian distribution. Context-dependent decision trees
are used to cluster the duration distributions. In the synthesis part, the state
duration is obtained by mapping the contextual feature vector to the corre-
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sponding state duration HMM. Finally, the phone duration is obtained by
summing its state durations [6]. Nevertheless, the main critic of HMM-based
speech synthesis, and in particular HMM-based phone duration modelling is
the averaged output, since HMM models are mostly relying on Gaussian dis-
tribution [8]. Therefore, a better way to model the micro-variations of prosody,
including phone duration, is looked for through replacing HMM by DNN in
parametric speech synthesis.

Arabic parametric TTS

Modern Standard Arabic (MSA), which is widely used among all Arab-speaking
countries as the official and literary language, has 28 consonants and three
vowels, /a/, /u/ and /i/ [19]. Most consonants could be geminated (doubled)
which is indicated in writing through adding the specific diacritic sign (shadda)
whereas each vowel has a short and a long version. One of the main compo-
nents of prosody is segmental duration. In fact, rhythm, speech rate, and partly
intonation, depend on units durations. Moreover, in some languages like Ara-
bic, a change in vowel quantity (long vs. short) and in gemination alters the

meaning of the word, e.g. (
	

�Q«) /aradha/ ”he presented”, (
	

�PA«) /a:radha/

(he objected) and (
	

��Q«) /arradha/(he exposed).

Application of TTS to the Arabic language has started since the beginning
of TTS technology. Unit selection TTS was successfully adapted to Arabic [20]
as well as the HMM-based TTS toolkit (HTS) [14]. Also in [14], the synthesis
filter was modified to improve its quality: the set of acoustic parameters con-
sisted of spectrum amplitude and multi-band voicing decision, and the MLSA
filter has been replaced by a multi-band excitation vocoder [21]. Prosody and
more particularly duration modelling has been studied specifically for Ara-
bic to be integrated into Arabic TTS using diphone synthesis techniques like
PSOLA and MBROLA. Such duration models were based either on rule-based
methods, i.e. explicit formulas for phoneme duration in [22], or data-driven
techniques like artificial neural networks (ANN) in [23,24]. However, prosody
modelling for Arabic can be improved by implementing specific models, tak-
ing care of its characteristics. In fact, such an approach has been proved to
be efficient in improving the overall quality of Arabic speech synthesis, in our
previous work [25].
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Paper’s scope and organization

Since the prosodic module is one of the key components of any parametric
speech synthesis system, the work presented in this paper aims to improve
prosody modelling in general, and phone duration modelling in particular.
This goal is met by finding out DNN-based duration models that allow en-
hancing the quality of HMM-based parametric speech synthesis for Arabic.
DNN-based duration models are developed using additional linguistic features
of Arabic, i.e. vowel quantity and gemination, which have recently been suc-
cessfully introduced into HTS system for Arabic TTS [25]. The novelty of the
proposed approach consists in establishing a specific duration model for each
class of Arabic phonemes. The duration predicted externally by the specific
DNN models is then introduced into the HTS system for generating F0 and
spectrum features, and then the speech output. Both objective and subjective
evaluations show that using a specific model for each class of sounds leads to
a more accurate modelling of the phone duration. The objective evaluation
results have already been briefly presented in [26], whereas in this paper it
will be extended and a subjective assessment will be added.

The rest of the paper is organized as follows, Section 2 presents duration
modelling for parametric speech synthesis, starting from the baseline HMM
model to current DNN ones, including other external models tried out for
parametric speech synthesis. Section 3 describes DNN and recurrent neural
network (RNN) duration models that we investigated for Arabic, with a spe-
cial care to recall the modifications of the input features set to meet Arabic
language requirements, that have been recently proposed for Arabic paramet-
ric speech synthesis using HMM [25]. Section 4 details the objective evaluation
measures and subjective listening test results. Finally, a discussion and a con-
clusion end the paper.

2 Duration modelling for parametric speech synthesis

In HMM-based parametric speech synthesis, prosody and acoustic modules
rely on HMMs to generate duration and excitation features, i.e. log(F0) and the
spectral parameters (and their dynamic counterparts ∆ and ∆∆). However,
in order to improve naturalness, other approaches have been investigated in a
bid to replace the HMM duration model.

Data-driven duration modelling for parametric speech synthesis

HSMM duration model for parametric speech synthesis

For the modelling of the state durations in parametric speech synthesis sys-
tems, explicit state duration models have been introduced. As it is conven-
tional in context-dependent HMMs, context-dependent parameters are clus-
tered through the use of decision trees. This is also the case for the state
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duration distributions; and the decision trees are built using the contextual
features (previous and following phonemes, position in the syllable, in the
word, in the phrase, etc.). During synthesis, the duration Gaussian distribu-
tions used are those returned by the decision tree, according to the contextual
features, and the state durations are determined in order to maximise the
duration probabilities.

Hidden-semi Markov models [27,28] based on explicit duration Gaussian
models were used to model duration in the HMM-based speech synthesis sys-
tem (HTS) [29]. However, they did not considerably improve the naturalness
of parametric speech synthesis output speech in comparison to unit selection
synthesis, as reported in [8].

Other data-driven duration models for parametric speech synthesis

One of the most perceived weaknesses of parametric speech synthesis consists
is bland prosody, partly due to over-averaging, particularly in duration, which
results from the use of Gaussian distributions [30]. To enhance the ability of
parametric speech synthesis to generate more natural rhythm and speech rate,
many duration models were proposed to refine or to replace the original HSMM
one. For the refinement methods, the HSMM-based state duration modelling
was extended to the phoneme and/or the syllable level in [31,32]. In the same
way, the diagonal Gaussian distribution of the HSMM model was replaced by
a full-covariance Gaussian distribution in [33], or by a gamma distribution,
with fine tuning of the gamma parameter [34]. The second option consists in
simply replacing the HSMM duration model by a better performing one. Sev-
eral data-driven duration modelling techniques have shown high performance
in modelling segmental duration for diphone synthesis, such as artificial neural
networks (ANN) [17], classification and regression trees (CART) [35], support
vector regression (SVR) [36] and multi-adaptive regression splines (MARS)
[37]. Therefore, many machine learning based models were externally trained
to provide more accurate state, phone or syllable durations for parametric
speech synthesis [38].

State duration modelling using MLP instead of decision trees

In [38], external SVR and Multi-layer perceptron (MLP) models explicitly
provide state or phone duration to the parametric speech synthesis system.
Another approach consists in replacing the context-based decision tree of du-
ration HMMs by an MLP, in a hybrid HMM-MLP scheme [39]. This is done
in a two-stage process, where the state durations (in number of frames) are
obtained by training monophone HMMs and Viterbi state alignment. In the
second stage, the obtained state durations are trained as outputs of the MLP,
whose inputs are the contextual, linguistic and phonological features, which
used to be fed into the decision tree. Objective evaluation of phone duration
prediction has shown a decrease in RMSE (ms) while measured for the overall
phonemes, and partial decrease with respect to phoneme identity, mainly for
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vowels and semi-vowels. Listening tests have shown rather a preference for the
hybrid model, though the ”no preference” answer has been dominating.

DNN-based duration modelling for parametric speech synthesis

Thanks to their proved ability to approximate continuous functions, DNN have
become the state-of-the-art tool in regression problems. Particularly, duration
modelling for speech synthesis has been achieved using several approaches with
DNN.

DNN-based state duration distribution vs. segmental duration models

DNN-based duration modelling for parametric speech synthesis can be used in
two ways. In the first case, DNN are used instead of decision trees in the HSMM
duration model to map the label features to the pre-trained state duration
HMMs; whereas in the second case, raw segmental durations, i.e. state, phone
or syllable durations, are directly estimated from the label features using DNN.

– DNN-based state duration distribution modelling
Since the work of [9], DNN have been preferred to decision trees to model
state duration HMMs for parametric speech synthesis due to some limita-
tions of decision trees. Actually, decision trees are not well-fitted to model
complicated functions like XOR, d-bit parity function or multiplex prob-
lems [9]. Furthermore, decision trees have a poor generalization power, since
they process input data by partitioning the input space into regions, each
associated with a terminal node. This yields in neglecting some ”weak”
features [40]; whereas using DNN involves training all the input data while
updating weights, which means a better generalization. On the other side,
the outputs are the parameters of duration HMM, i.e. the mean value and
the variance. Actually, predicting these statistic parameters and then gen-
erating durations using the Gaussian distribution ensure average values. It
should be also mentioned that in this internal scheme, only state durations
can be predicted, like in HSMM-based duration modelling, then the phone
duration is obtained as the sum of the durations of its states.

– DNN-based segmental duration modelling
In this model, raw segmental duration, i.e. state, phone or syllable duration
is directly predicted from the label features using DNN. In the synthesis
stage, the predicted durations are included to the parametric speech syn-
thesis system. However, the way phone durations are predicted may depend
on the DNN architecture. In some works, like [41], discrete phone durations
are directly predicted from label features using DNN, whereas in [42] phone
durations were predicted by adding an explicit constraint, which consists
in the mean square error between the phone duration and the sum of the
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phone’s state durations (Lec) (cf. (1)):

Lec =

N∑
j=1

(

5∑
s=1

d̂j,s − dj)2, (1)

where N is the number of phonemes, d̂j,s and dj are respectively the pre-
dicted duration of state s within phone j and the target duration of phone
j.

DNN architectures for duration modelling

Duration modelling may also take advantage from the different architectures
of DNN, i.e. feedforward, recurrent or multi-task learning, which have all been
already applied for this purpose.

– Feedforward-DNN
A feedforward-DNN is the simplest DNN architecture. Based on MLP
structure, current networks usually contain more hidden layers than former
MLP. Actually, feedforward-DNN’s benefit from the advances of GPU to
include many hidden layers, which might increase the prediction accuracy
[43]. Feedforward DNN can be used for classification, if output parame-
ters are a finite set of discrete labels, or for regression, in case of contin-
uous values. Since duration is a regression task, with continuous values,
feedforward-DNN are well fitted to model it. Therefore, feedforward-DNN
models have been used, internally as a replacement of context-based deci-
sion trees to predict state duration distributions, as in [9], or externally to
estimate raw duration.

– LSTM neural networks
In feedforward-DNN, features are processed without recurrence. This means
that the sequential aspect of speech, in particular affecting rhythm and
speech rate, is neglected. However, this aspect is primordial in speech pro-
duction. Recurrent neural networks (RNN) are based on forward or back-
ward time propagation of the input features. Amongst RNN variants, long-
short-term memory (LSTM) have been particularly praised for addressing
the vanishing gradient problem in standard RNN’s [44]. In LSTM, the out-
put at each layer is generated from its input and a memory cell, which
is obtained from the previous time memory cell and a set of gates (in-
put, output and forget gates) in addition to the current layer’s input itself
[43]. Hence, at each layer, each feature passes through the input, forget
and output gates in addition to the memory cell, before the output is ob-
tained. This ensures that the previous phonemes are taken into account
while calculating the current phoneme duration.

– BLSTM neural networks
Furthermore, forward and backward information propagation in LSTM
can be combined. Such variant is called bi-directional LSTM (BLSTM).
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In this scheme, the hidden activation functions are defined as positive-
direction or negative-direction, respectively for forward or backward direc-
tion. The same for the weight matrices and the recurrent matrices. LSTM
and BLSTM were both successfully utilized to model state durations in [45,
46] and raw phone duration in [41,47,48] for parametric speech synthesis.

Continuous vs. discrete duration modelling using DNN

In the case of continuous phone duration modelling, the optimization crite-
rion is the mean square error Lmsei expressed for each utterance i having ni
phonemes (cf. (2)):

Lmsei =
1

ni

ni∑
j=1

(di,j − d̂i,j)2, (2)

where di,j and d̂i,j are the reference and the predicted phone durations respec-
tively of the phoneme sequence (vi,1, vi,2, ..., vi,ni) of the ith utterance [41].

Another strategy consists in the estimation of the discrete probability dis-
tribution of the phone duration. The interest of this method lies in estimating
the probability of the current phone duration given the phoneme sequence
history (vi,1, vi,2, ..., vi,j) to be expressed by the cross-entropy criterion Lcei

for each utterance ui (cf. (3)):

Lcei = −log(p(d̂i|vi)) = −
ni∑
j=1

log(p(d̂i,j |vi,1, ..., vi,j)), (3)

where p(d̂i,j |vi,1, ..., vi,j) is the duration probability distribution of phoneme
vi,j given the sequence vi,1, ..., vi,j [41]. Though both criteria, i.e. Lmse for con-
tinuous duration and Lce for discrete duration probability density are equiv-
alent from the perspective of probability distribution [41], we have relied in
this work on continuous duration modelling, since we use continuous values,
instead of discrete probability densities of phone duration.

3 Proposed DNN-based duration modelling for Arabic parametric
speech synthesis

Based on the aforementioned approaches, in particular those applied for DNN-
based parametric speech synthesis, and aiming at taking care of Arabic speech
requirements, we introduce a set of DNN-based models, specifically designed
for Arabic parametric speech synthesis, along with the speech materials and
the feature set.
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Fig. 1 Workflow of the proposed class-specific duration modelling approach: Each class of
Arabic phonemes is processed independently to train its own DNN-based duration model.

Workflow of the proposed approach

The main idea behind the proposed approach consists in designing a dedicated
DNN-based duration model for Arabic, and to introduce it into the standard
HTS parametric speech synthesis toolkit [53]. As illustrated in Figure 1, the
novelty consists in (a) adding some novel features to the standard HTS feature
set [8], namely vowel quantity and gemination, (b) training a specific DNN
duration model for each class of Arabic phonemes, namely short vowels, long
vowels, simple consonants and geminated consonants, instead of using one
duration model for all phonemes. The ultimate goal, and the real added value
of this work consists in exploiting the results of the proposed DNN-based
duration model as an external input to the HTS system, instead of the internal
HMM-based duration model of HTS, in order to improve the performance of
HTS, specifically for Arabic (cf. Figure 2).

Introduction of DNN-based duration model into HMM-based parametric
speech synthesis system

Since our aim is to improve the quality of parametric speech synthesis for Ara-
bic, using characteristic features of Arabic, i.e. gemination and vowel quantity,
and since it has been proven that the aforementioned DNN models outperform
all the state-of-the-art duration prediction techniques, we propose to improve
the duration prediction performance of HMM-based parametric speech synthe-
sis for Arabic, by using external DNN models, dedicated for duration predic-
tion, instead of relying on the classical duration HMM’s used in HTS system.
This is feasible since HTS allows imposing parameters values, whether for
excitation, i.e log(F0), spectrum or duration, so that the values provided by
the internal HMM models will be replaced by those introduced from exter-
nal sources. Figure 2 shows the whole HTS system, where only the duration
HMM module is replaced by an external DNN. In the following, the steps of
the experimental protocol will be detailed.
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Fig. 2 Overview of the modified HMM-based parametric speech synthesis system with
external duration DNN modelling

Speech material

In order to train the DNN-based duration models, a set of 1597 utterances was
used. The utterances were taken from an Arabic speech corpus [55,52], rep-
resenting news bulletin in MSA (Modern Standard Arabic), read by a native-
Arabic male speaker. The signals were recorded at 48 KHz sampling rate, with
16-bit precision. The corpus was divided into three subsets, approximately 70%
of utterances for training, 20% for development and 10% for test. The label
features and output target duration have undertaken the required preprocess-
ing, i.e. label features coding and output durations normalization. Categorical
label features were coded in binary, e.g. like stressed/not stressed syllables, or
in discrete values, e.g. phoneme identity, whereas unlimited-value features like
phoneme’s position in the syllable were coded numerically. The label features
were coded into a 445-coefficient vector. On the other side, output duration
distribution was analysed and a log-transform was applied to normalize it.
In fact, duration distribution normalization was suggested in [50] to increase
the prediction ability of neural networks. In addition, [51] suggests that using
an adequate normalizing transformation of input data may dramatically re-
duce the estimation errors and the calculating time during the training phase.
Therefore the numeric contextual features were normalized in the interval [0, 1]
by dividing their values on the maximum value in the training set. Since the
main contribution of this work concerns the modelling of phone duration by
phoneme class, the reference durations have been statistically analysed by
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phoneme class. Table 1 reports, for each class of sounds, the number of phone
occurrences, the mean duration, and its associated standard deviation value.

Table 1 Statistics of phone durations by phoneme class for the training, validation and
test sets

Dataset Class Number of Mean Standard
occurences value (ms) deviation (ms)

Training Simple consonant 37872 91 37
Geminated consonant 4040 180 43
Short vowel 23670 71 36
Long vowel 11565 120 49
Pauses 2458 340 156

Validation Simple consonant 5850 95 43
Geminated consonant 831 202 38
Short vowel 3825 85 44
Long vowel 1929 116 59
Pauses 1132 445 211

Test Simple consonant 3658 93 38
Geminated consonant 450 202 46
Short vowel 2466 82 38
Long vowel 1004 138 61
Pauses 548 454 126

Features extraction

The baseline contextual feature set is similar to the one used in Arabic speech
synthesis using HTS [14], where the features can be classified into three main
subsets:

– Positional features, e.g. position of the current phoneme in the current syl-
lable (forward and backward), number of phonemes in the current syllable,
etc.

– Linguistic features, e.g. identity of the current phoneme, guess-part-of-
speech (content-word/non content-word), etc.

– Phonological features, e.g. lexical stress of the current syllable, etc.

Besides, two Arabic-language-specific features, i.e. gemination and vowel
quantity were proved to enhance the quality of parametric speech synthesis
for MSA [25]. Therefore, both were added to the feature set. The original
duration were provided by automatic segmentation, using forced alignment
[49]. In addition, a portion of the corpus was segmented manually by experts,
to evaluate the quality of the automatic segmentation, and to verify whether
the corpus needs a totally manual segmentation [49].
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Benchmarking and proposed duration models

This work aims to improve the prediction of the phoneme durations for para-
metric synthesis, using DNN taking into account some characteristic features
of Arabic (simple consonants/geminated consonants and short vowels/long
vowels). Five duration models were trained and evaluated, all using the same
set of contextual features and the same output reference durations:

1. HMM baseline model (from HTS toolkit [53]),
2. DNN model (from MERLIN toolkit [54]),
3. Feedforward-DNN model,
4. DNN-LSTM model,
5. DNN-BLSTM model.

Besides, feedforward-DNN, DNN-LSTM and DNN-BLSTM models were
trained with various training subsets corresponding to

– either all the phonemes present in the training set,
– or only short vowels for the short vowel dedicated model, only long vowels

for the long vowels dedicated model, only simple consonants for the simple
consonant dedicated model, only geminated consonants for the geminated
consonant dedicated model, and only pauses for the pause dedicated model.

Since learning performance is mainly adjusted empirically, several struc-
tures of the proposed models were tried out by varying the number of hidden
layers, the number of their nodes, and the activation functions. As the task
is to predict continuous values of phone duration, the RMSE minimisation
criterion was adopted for training. The RMSprop optimizer was adopted in
all the experiments. To avoid over-learning, early stopping was used. Thus, if
Lmse evaluated on the development set does not improve after a certain num-
ber of epochs, set to 20 in our case, the training process is stopped. Table 2
shows, for each class of sounds, the DNN structure leading to the best duration
prediction results on the development set.

The class-specific model is defined as the model which gives the best ac-
curacy for the given class of sounds, independently of its performance on the
other classes of sounds.

4 Evaluation protocol

A twofold evaluation process was carried out to assess the quality of the dura-
tion prediction, through an objective evaluation by measuring the differences
between the reference durations and the predicted durations, and a subjective
evaluation based on listening tests.

Objective evaluation

The objective evaluation process consists in comparing the performance of the
class-specific DNN modelling to state-of-the-art models, i.e. HMM model as
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Table 2 Description of the model structure leading to the best accuracy on the development
set for each phoneme class and for pauses

Class Model Training Model description # of
of sounds set epochs
simple DNN- simple 2 feedforward layers 94
consonants BLSTM(1) consonants with 512 units each and

activation function tanh,
plus 2 BLSTM layers
with 128 units each

geminated DNN- geminated 2 feedforward layers 74
consonants BLSTM(2) consonants with 16 units each and

activation function tanh,
plus 2 BLSTM layers
with 16 units each

short DNN- short 2 feedforward layers 89
vowels BLSTM(1) vowels with 512 units each and

activation function tanh,
plus 2 BLSTM layers
with 128 units each

long Feedforward- long 2 feedforward layers with 97
vowels DNN vowels 512 and 256 units resp. and

activation function tanh

pauses DNN- all the 3 LSTM layers with 95
LSTM phonemes 1024, 512 and 512 units resp.

used in HTS, a standard DNN model trained on all phonemes, DNN model as
used in MERLIN, and the former MLP model developed for Arabic [24]. To
select the best class-specific DNN models, many architectures were tried out.
Then, they are selected as the best models on the development set (c.f. Table 2)
because they give the best scores and finally they were kept to be evaluated on
the test set. The standard DNN model trained on all phonemes is built using
three LSTM layers having 1024, 512 and 512 nodes respectively. The DNN
model as used in MERLIN is composed by 6 hidden feedforward layers with
1024 units each and tangent hyperbolic (tanh) as activation function. This
model relies on the same set of features as HTS. The MLP model from [24],
contains two hidden layers with 26 units each, and uses sigmoid and tanh
as activation functions. This model does not use the same set of linguistic
features as HTS. Evaluation is carried out by focusing on the comparison of
the performance of the models on each class of phonemes and on pauses; a
global comparison is also reported that takes into account all the sounds.

Table 3 presents the evaluation of the prediction of the phone durations
on the test set data, as measured by the following criteria: root mean square
error (RMSE), mean absolute error (MAE) and correlation coefficient (corr)
between original and predicted duration, as calculated respectively by (4a),



16 Imene Zangar et al.

Table 3 Comparison of RMSE, MAE and correlation between predicted duration and refer-
ence duration on the test set for each phoneme class and for the various modelling approaches

Class Duration RMSE MAE Corr
of sound model (ms) (ms)
simple HMM from HTS 25 18 0.76
consonants Class-specific DNN 25 17 0.77

DNN-all-phone 28 20 0.72
DNN-MERLIN 26 18 0.75
MLP from [24] 35 25 0.50

geminated HMM from HTS 43 31 0.43
consonants Class-specific DNN 42 32 0.51

DNN-all-phone 48 37 0.34
DNN from MERLIN 54 40 0.15
MLP from [24] 62 50 0.42

short HMM from HTS 22 16 0.82
vowels Class-specific DNN 22 16 0.84

DNN-all-phone 23 17 0.82
DNN from MERLIN 26 19 0.81
MLP from [24] 26 19 0.78

long HMM from HTS 49 34 0.68
vowels Class-specific DNN 40 28 0.77

DNN-all-phone 48 35 0.65
DNN from MERLIN 54 38 0.66
MLP from [24] 68 52 0.07

pauses HMM from HTS 109 73 0.54
Class-specific DNN 109 70 0.54
DNN-all-phone 109 70 0.54
DNN from MERLIN 146 110 0.60
MLP from [24] 188 158 0.56

(4b) and (4c):

RMSE =

√√√√ 1

N

N∑
j=1

(dj − d̂j)2, (4a)

MAE =
1

N

N∑
j=1

|dj − d̂j |, (4b)

corr =
cov(d, d̂)

σdσd̂
, (4c)

where cov(d, d̂) is the covariance of duration vectors d and d̂; and σd, σd̂ are

the standard deviations of d and d̂ respectively.
Table 3 shows that the proposed class-specific DNN models, lead to the

best performance amongst all the evaluated models, i.e. baseline HMM model
(from HTS), the DNN model trained on all phonemes (DNN-all-phone), the
baseline DNN model from MERLIN and the former MLP model, for almost
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every measure, RMSE, MAE and correlation coefficient, and almost every class
of sounds, i.e. short/long vowels, simple/geminated consonants, and pauses.
Table 4 presents the accuracy values computed on all the phonemes, as well
as the accuracy computed on all sounds, i.e., on all the phonemes plus pauses;
it shows that using class specific models improves the prediction duration
accuracy, in comparison to state-of-the-art models. Figure 3 displays the orig-
inal and predicted duration distributions of phone durations for each class of
sounds on the test set. A good match is observed for simple consonants, for
short vowels and for long vowels. However, for the geminated consonants, the
predicted duration distribution is sharper, showing a lower standard deviation
with higher mean values, which means that the predicted duration values are
more concentrated around the average duration than are the reference dura-
tion values.

 

Figure 1: Comparison of the distributions of the phoneme durations between original and predicted values.

Table 2 shows that for each phoneme class, a class 

specific DNN modeling enhances the prediction accuracy of 

the phoneme duration, on the test set data, as measured by the 

various criteria: root mean square error (RMSE), mean 

absolute error (MAE) and correlation coefficient between 

original and predicted duration. Results show that for each 

class of sounds, the novel class-specific DNN modeling 

performs better than the HMM modeling from HTS, the DNN 

modeling from MERLIN, and the former ANN model: the 

root mean square error and the mean absolute error are lower, 

and the correlation between predicted and reference duration 

values is higher. 

Table 3: Comparison of RMSE, MAE and correlation  

between predicted durations and reference durations 

on test set, for the various modeling approaches. 

Phoneme 

Class 

Duration 

modeling 

RMSE 

(ms) 

MAE 

(ms) 

Corr 

All 

phonemes 

HMM from HTS 

Class-specific DNN 
DNN from MERLIN 

ANN from [17] 

30 

28 
33 

41 

20 

19 
22 

28 

0.83 

0.85 
0.80 

0.66 

All 

phonemes 

+pauses 

 

HMM from HTS 

Class-specific DNN 
DNN from MERLIN 

ANN from [17] 

 

40 

39 
50 

63 

 

24 

22 
28 

37 

 

0.93 

0.93 
0.92 

0.87 

 

When the accuracy are computed globally, i.e., on all the 

classes of sounds, as in Table 3, results show that using a 

class-specific modeling leads to a global improvement, 

compared to state of the art models, when all the phonemes 

are considered together in the evaluation, and also when 

considering all the phonemes and the pauses. This confirms 

that optimizing the duration modeling on the development set, 

for each class separately, allows achieving the overall best 

performance on the test set. 

Figure 1 shows the distributions of phoneme durations for 

the original and predicted values on the test set, for each class 

of phonemes. Results show a good match for simple 

consonants, short vowels and long vowels. For the geminated 

consonants, the distribution of the predicted values is sharper, 

i.e. has a lower standard deviation, and slightly shifted 

towards higher durations. This means that the model slightly 

over-estimates the durations of long vowels. 

4. Discussion and conclusions 

This paper has investigated the modeling of the duration of the 

Arabic sounds for text-to-speech synthesis. Various DNN-

based architectures have been developed and evaluated. Each 

model have been trained on various subsets of the training 

data corresponding to classes of sounds, as for example 

training on all phoneme segments, training on vowel segments 

only, training on short vowel segments only, etc. The various 

modeling architectures trained on various subsets of sounds 

have been compared on the development data. It appears that 

it is not the same model and training data, which leads to the 

best prediction accuracy on the various classes of phonemes 

(short vowels, long vowels, simple consonants and geminated 

consonants). This led us to define a class-specific modeling 

approach, which for each sound, uses the model that performs 

the best on the validation set. This class-specific modeling 

approach has been compared on the Arabic test set, to several 

state of the art modeling approaches, as the HMM-based 

modeling from the HTS toolkit and the DNN-based modeling 

from the MERLIN toolkit. Objective evaluations show that the 

proposed approach leads to a better prediction of the sound 

durations. The next steps will consist in integrating this class-

specific duration modeling into state of the art TTS toolkits, in 

order to produce corresponding speech signals necessary for 

subjective evaluation through listening tests. 
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Simple consonants Geminated consonants
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duration (ms)duration (ms)

duration (ms)

Fig. 3 Comparison of the probability distribution of reference (continuous line)and pre-
dicted (dotted line) duration for each class of phonemes

Subjective evaluation

In addition to the objective evaluation, listening tests were conducted to assess
on one side the global quality of the uttered sounds, and on the other side
the perception of phone durations. In both tests, 22 Arabic-native-speaking
listeners, who are not speech specialists, were asked to rate the speech stimuli
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Table 4 Comparison of RMSE, MAE and correlation between predicted duration and ref-
erence duration on the test set for the various modelling approaches

Duration RMSE MAE Corr
model (ms) (ms)

All HMM from HTS 30 20 0.83
phones Class-specific DNN 28 19 0.85

DNN-all-phone 32 22 0.80
DNN-MERLIN 33 22 0.80
MLP from [24] 41 28 0.66

All HMM from HTS 40 24 0.93
phones Class-specific DNN 39 22 0.93
+pauses DNN-all-phone 42 25 0.92

DNN from MERLIN 50 28 0.92
MLP from [24] 63 37 0.87

using a score ranging from 1 (Very poor) to 5 (Very good), i.e. a Mean Opinion
Score (MOS) test, and to compare pairs of stimuli, i.e. a preference test. Each
participant has listened to 24 stimuli, 6 from each phone duration model,
randomly selected amongst 96 stimuli (24 from each phone duration model).
The subjective evaluation concerns the best duration model according to the
objective evaluation above, plus two other duration modelling approaches and
the reference duration signal:

– Natural, this is the reconstructed signal obtained after processing the orig-
inal signal with the STRAIGHT vocoder (hence, corresponds to original
durations).

– Class-specific-DNN, which is the signal synthesized after predicting the
sound durations with the class-specific models, as proposed above.

– DNN-all-phone, which is the signal reconstructed using the durations pre-
dicted by the best DNN model trained over all the phonemes.

– HMM, which corresponds to the signal generated by HTS using the HMM-
based duration model from HTS. This model was used as a baseline above.

It should be emphasized that the acoustic parameters (F0 and spectral pa-
rameters (MGC)) are generated from HMM models in HTS. The duration is
generated externally from DNN duration models in the case of DNN-all-phone
and Class-specific-DNN and from original duration in the case of Natural. In
addition, it should be also mentioned, that all signals were generated with
the HTS toolkit version 2.3 using the STRAIGHT vocoder. Also, it is worth
noting that the subjective evaluation has been conducted following standard
methodologies used for speech quality assessment, as detailed in [57,58].

Assessment of global quality

To assess this aspect, the 22 native Arabic listeners were asked to rate the
overall quality of each stimuli through a MOS evaluation, and then through a
preference test.
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MOS Test Figure 4 shows that the class-specific-DNN duration model reaches
the same MOS value as the natural duration reference. It is also interesting to
note that the DNN-all-phone is ranked last, which means that to outperform
HMM in duration modelling, the DNN should be used class-wise.

3.2

3
3.2

2.9

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Natural HMM Class-specific-DNN DNN-all-phone

Fig. 4 MOS score results for global quality of generated speech

For a further analysis, the MOS values were finely investigated (cf. Fig-
ure 5), to show that this outstanding result for the class-specific-DNN model
is due to the fact that it received a high MOS score (i.e. MOS ≥ 4) in more
than 40% of cases. However, it is interesting to observe that HMM was the
model which received the most of ”Very good” scores (though the difference
with Class-specific-DNN is slight).

0% 20% 40% 60% 80% 100%

Natural

HMM

Class-specific-DNN

DNN-all-phone

Very poor Poor Fair Good Very good

Fig. 5 Analysis of MOS scores for global quality of generated speech
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Preference Test The MOS test results are confirmed by the preference test
(cf. Figure 6), where listeners were asked to choose the sound having the best
quality, for each pair of stimuli synthesized with different duration models.
The main result is the clear preference of Class-specific-DNN above DNN-all-
phone, and above HMM.

Class-specific-DNN

DNN-all-phone

DNN-all-phone

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HMM

HMM

Class-specific-DNN

First No preference Second

Fig. 6 Preference test results for global quality of generated speech

Assessment of duration perception

The second subjective test was conducted to assess the perception of phone
duration. The 22 listeners were asked to rate the overall quality of the duration
of the uttered phones through a MOS evaluation, and then to choose which
stimuli is best with respect to phone duration in a preference test.

MOS test In this test, the listeners were asked to evaluate how they appreciate
the duration of the pronunciation of the phones. The listeners had to choose
one answer among five ranging from ”phone durations are not respected” up to
”phone durations are all respected”. The MOS results are shown in Figure 7.
It looks that HMM duration model was slightly preferred to the class-specific-
DNN model. However, the difference is not significant when compared to the
95% confidence interval; and it is very relevant to note that both have a MOS
result close to the one of the natural duration reference. In addition, Figure 8
shows a finer analysis of the given MOS scores. It is interesting to note that
the class-specific-DNN model received as many high scores (MOS ≥ 4) as the
HMM model, or the natural durations. Finally, the DNN-all-phone model was
again less appreciated than all other models.

Preference test The participants were also asked to listen to pairs of stim-
uli, where for each pair, the same utterance is pronounced using a different
duration model. They were asked to answer how they judge the duration of
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Natural HMM Class-specific-DNN DNN-all-phone

Fig. 7 MOS scores for duration perception

the pronunciation of the phones of the second stimuli in comparison to the
first one. Figure 9 shows the results of the preference test. It appears that the
HMM model and the class-specific-DNN model, are the most preferred, which
matches with the overall quality assessment for duration pronunciation (cf.
Figure 6).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Natural

HMM

Class-specific-DNN

DNN-all-phone

Very poor Poor Fair Good Very good

Fig. 8 Analysis of the MOS scores for duration perception

Interpretation and discussion

The results reported in the objective and the subjective evaluation can be
analyzed further, from quantitative and qualitative viewpoints.



22 Imene Zangar et al.

Class-specific-DNN

DNN-all-phone

DNN-all-phone

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

HMM

HMM

Class-specific-DNN

First No preference Second

Fig. 9 Preference test results for duration perception

Quantitative analysis

The objective evaluation (cf. Table 3 and Table 4) shows that the proposed
class-specific DNN model yields the least error measure, i.e. RMSE and MAE,
and the highest correlation to the original duration values. This can be in-
terpreted as a proof that each class of phonemes, i.e. short/long vowels, sim-
ple/geminated consonants has its own margin of duration. This is to recall a
previous assumption, made by [59] who had stipulated that each phoneme has
its own intrinsic duration, that can be stretched by an elasticity coefficient,
whose value depends on the context. However, such an assumption has not
been proved so far. Besides, a deeper cross-language investigation is neces-
sary to reveal other contributory features affecting phone duration in other
languages, so that the standard HTS features could be personalized for each
target language.

Qualitative analysis

The analysis of MOS and preference test results (cf. Figure 4 to Figure 9)
shows that speech reconstructed with the proposed specific-class DNN dura-
tion model is perceived as equal as that reconstructed with natural duration.
Beyond this positive feedback, that was made by native Arabic speakers, a
further analysis by listeners specialized in linguistics and phonetics should be
carried out to judge the quality of each single type of phonemes. Actually,
gemination is still a controverted phenomenon in Arabic phonetics, since pho-
netically, it is in the frontiers between a double consonant and a standalone
unit. Also, vowel quantity is still a relative notion, since in Arabic, some long
vowels might be pronounced as short ones, especially at the end of the word.
Another point, which is not less important, consists in the necessity to study
the effect such a phoneme-type-related modelling has on the other prosodic
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parameters, such as F0 and spectrum, in correlation with the quality of para-
metric speech synthesis.

5 Conclusion

In this paper, a comprehensive investigation of duration modelling for Arabic
sounds for TTS is described. A variety of DNN-based structures have been
developed and evaluated. Taking into account some characteristics of Arabic,
i.e. vowel quantity (short vs. long vowels) and gemination, the proposed DNN
models were trained on different sets of phonemes, namely DNN-all-phone
model that was trained on all the phonemes, whereas class-specific-DNN mod-
els were trained separately on each phoneme class, i.e. short/long vowels, sim-
ple/geminated consonants and pauses. The validation phase allowed selecting
for each phoneme class the model that performed the best on the development
set for evaluation on the test set. The main finding of the objective evaluation
consists in observing that for each class of phonemes, the class-specific-DNN
model performs better than the generic DNN model trained on all phonemes,
i.e. DNN-all-phone model. This novel class-specific modelling approach was
also compared to state-of-the-art models, i.e. baseline HMM from HTS toolkit
and DNN from MERLIN toolkit. Again, the best accuracy values were ob-
tained by the proposed class-specific DNN models, which results outperformed
those of the baseline DNN from MERLIN in all cases, and were better or equal
to those of HTS.

The subjective evaluation consisted in the assessment of the global quality
of the generated sound and in the appreciation of the predicted sound dura-
tions. Both tests included a MOS and a preference rating. For performing these
listening tests, the predicted duration obtained using the class-specific DNN
model and the generic DNN model applied for all phonemes (DNN-all-phone)
were processed with the HTS toolkit to generate the synthetic speech signals.
In terms of global quality, the preference of listeners to the class-specific-DNN
sounds confirms the objective evaluation results. Actually, class-specific-DNN
was rated as high as natural, i.e. the original-duration-reconstructed sounds.
This proves that the class-specific approach has succeeded to finely model
the phone durations by fitting each DNN model to the corresponding class
of phonemes, instead of the classical approach, i.e. applying one single DNN
model for all phonemes. This proves also the benefit of handling specifically
the various classes of Arabic sounds, through the addition of gemination and
vowel quantity as special features for Arabic to the standard feature set of
HTS, as done in previous studies, and / or through dedicated models as done
in this current study for Arabic phone duration prediction.
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gram, financed by CMCU (Comité mixte de coopération universitaire), grant
No.15G1405.

References

1. Klatt DH (1976) Linguistic uses of segmental duration in English: Acoustic and percep-
tual evidence. The Journal of the Acoustical Society of America 59(5):1208-1221

2. Rubin P, Baer T, Mermelstein P (1981) An articulatory synthesizer for perceptual re-
search. The Journal of the Acoustical Society of America 70(2):321-328

3. Moulines E, Charpentier F (1990) Pitch-synchronous waveform processing techniques for
text-to-speech synthesis using diphones. Speech Communication 9(5-6):453-467

4. Dutoit T, Leich H (1993) MBR-PSOLA: Text-to-speech synthesis based on an MBE
re-synthesis of the segments database. Speech Communication 13(3-4):435-440

5. Hunt AJ, Black AW (1996) Unit selection in a concatenative speech synthesis system
using a large speech database. In: Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing, Atlanta, GA, USA, pp 373–376

6. Yoshimura T, Tokuda K, Masuko T, Kobayashi T, Kitamura T (1999) Simultaneous
modeling of spectrum, pitch and duration in HMM-based speech synthesis. In: Proc. Eu-
ropean Conference on Speech Communication and Technology, Budapest, Hungary, pp
2347–2350

7. Imai S, Sumita K, Furuichi C (1983) Mel log spectrum approximation (MLSA) filter for
speech synthesis. Electronics and Communications in Japan (Part I: Communications),
66(2):10-18

8. Zen H, Tokuda K, Black AW (2009) Statistical parametric speech synthesis. Speech
Communication 51(11):1039-1064

9. Zen H, Senior A, Schuster M (2013) Statistical parametric speech synthesis using deep
neural networks. In: Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, Canada, pp 7962–7966

10. Wang Y, Skerry-Ryan RJ, Stanton D, Wu Y, Weiss RJ, Jaitly N, Yang Z, Xiao Y, Chen
Z, Bengio S, et al (2017) Tacotron: Towards end-to-end speech synthesis. In: Proc. Annual
Conference of the International Speech Communication Association, Stockholm, Sweden,
pp 4006–4010

11. Shen J, Pang R, Weiss RJ, Schuster M, Jaitly N, Yang Z, Chen Z, Zhang Y, Wang
Y, Skerrv-Ryan Rj, et al (2018) Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions. In: Proc. International Conference on Acoustics, Speech and
Signal Processing, Calgary, Alberta, Canada, pp. 4779–4783

12. Mixdorff H(2002) An integrated approach to modeling German prosody, Doktor-
Ingenieur habilitatus Dissertation, Technische Universitaet Dresden

13. Shinoda K, Watanabe T (1997) Acoustic modeling based on the MDL principle for
speech recognition. In: Proc. European Conference on Speech Communication and Tech-
nology, Rhodes, Greece, pp 99–102

14. Abdelhamid O, Abdou SM, Rashwan M (2006) Improving Arabic HMM-based speech
synthesis quality. In: Proc. International Conference on Spoken Language Processing,
Pittsburgh, Pennsylvania, pp 1332–1335

15. Kawahara H (1997) Speech representation and transformation using adaptive inter-
polation of weighted spectrum: vocoder revisited. In: Proc. International Conference on
Acoustics, Speech and Signal Processing, Munich, Germany, pp 1303–1306

16. Morise M, Yokomori F, Ozawa K (2016) WORLD: a vocoder-based high-quality speech
synthesis system for real-time applications. IEICE transactions on Information and Sys-
tems 99(7):1877-1884



Duration modelling and evaluation for Arabic SPSS 25

17. Campbell WN (1993) Predicting segmental durations for accommodation within a
syllable-level timing framework. In: Proc. European Conference on Speech Communication
and Technology, Berlin, Germany, pp 1332–1335

18. Van Santen JP (1994) Assignment of segmentalduration in text-to-speech synthesis.
Computer Speech and Language 8(2):95-128

19. Newman D (1984) The phonetics of Arabic. The Journal of the American Oriental
Society 44:1-6

20. Abdelmalek R, Mnasri Z (2016) High quality Arabic text-to-speech synthesis using unit
selection. In: Proc. IEEE International Multi-Conference on Systems, Signals, Signals &
Devices, Leipzig, Germany, pp 1–5

21. Griffin DW, Lim JS (1988) Multiband excitation vocoder. IEEE Transactions on Acous-
tics, Speech, and Signal Processing 36(8):1223-1235

22. Boukadida F, Ellouze N (2005) Modélisation Statistique de la Durée des Voyelles en
Parole Arabe. In: Proc. Science of Electronics, Telecommunications and Information Tech-
nology Conference, Tunisia, pp 1–4

23. Zaki A, Rajouani A, Najim M (2002) Un modèle prédictif de la durée segmentale pour
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