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Abstract

Federated learning usually employs a server-client architecture where an orches-
trator iteratively aggregates model updates from remote clients and pushes them
back a re ned model. This approach may be inef cient in cross-silo settings, as
close-by data silos with high-speed access links may exchange information faster
than with the orchestrator, and the orchestrator may become a communication
bottleneck. In this paper we de ne the problem of topology design for cross-silo
federated learning using the theory of max-plus linear systems to compute the sys-
tem throughput—number of communication rounds per time unit. We also propose
practical algorithms that, under the knowledge of measurable network character-
istics, nd a topology with the largest throughput or with provable throughput
guarantees. In realistic Internet networks with 10 Gbps access links at silos, our
algorithms speed up training by a factor 9 and 1.5 in comparison to the server-client
architecture and to state-of-the-art MATCHA, respectively. Speedups are even
larger with slower access links.

1 Introduction

Federated learning (FL)irfvolves training statistical models over remote devices or siloed data
centers, such as mobile phones or hospitals, while keeping data locqlafijdecause of privacy
concerns or limited communication resources. The de nition implicitly distinguishes two different
settings|[41]: theross-devicacenario including a large number (millions or even more) of unreliable
mobile/edge devices with limited computing capabilities and slow Internet connections, amdgse

silo scenario with at most a few hundreds of reliable data silos with powerful computing resources
and high-speed access links. While the rst FL papers|[72, 51] emphasized the cross-device setting,
the cross-silo scenario has become popular for distributed training among banks [107], hospitals [19,
93,/69], pharmaceutical labs [67], and manufacturers [74].

In federated learning, clients (e.g., mobile devices or whole organizations) usually train the model
through an iterative procedure under the supervision of a central orchestrator, which, for example,
decides to launch the training process and coordinates training advances. Often—e.g., in [FgdAvg [72],
SCAFFOLD [45], and FedProx [57]—the orchestrator directly participates to the training, by aggre-
gating clients' updates, generating a new model, and pushing it back to the clients. Hence, clients
only communicate with a potentially far-away (e.g., in another continent) orchestrator and do not
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exploit communication opportunities with close-by clients. This choice is justi ed in the cross-device
setting, where inter-device communication is unreliable (devices may drop-out from training at any
time) and slow (a message needs to traverse two slow access links). But in the cross-silo setting,
data silos (e.g., data centers) are almost always available, enjoy high-speed connectivity comparable
to the orchestrator's one, and may exchange information faster with some other silos than with
the orchestrator. An orchestrator-centered communication topology is then potentially inef cient,
because it ignores fast inter-silo communication opportunities and makes the orchestrator a candidate
for congestion. A current trend [104, |18, 100/ 5] 7|,/49, 53] is then to replace communication
with the orchestrator by peer-to-peer communications between individual silos, which perform local
partial aggregations of model updates. We also consider this scenario and study how to design the
communication topology.

The communication topology has two contrasting effects on training duration. First, a more connected
topology leads to faster convergence in terms of iterations or communication rounds, as quanti ed by
classic worst-case convergence bounds in terms of the spectral properties of the topadlogy| [75, 24, 89,
90,/103[ 40]. Second, a more connected topology increases the duration of a communication round
(e.g., it may cause network congestion), motivating the use of degree-bounded topologies where every
client sends and receives a small number of messages at each|rdund [5, 61]. Recent experimental
and theoretical work suggests that, in practibe, rst effect has been over-estimated by classic
worst-case convergence boun&eference [79] partially explains the phenomenon and overviews
theoretical results proving asymptotic topology-independende [61) 81, 5]. [50, Sect. 6.3] extends
some of the conclusions ih [[79] to dynamic topologies and multiple local updates. Experimental
evidence on image classi cation tasks ([79, Fig. 2],/[66, Fig 20.], [61, Fig. 3]) and natural language
processing tasks ([61, Figs. 13-16]) con rms this nding. Motivated by these observations, this paper
focuses on the effect of topology on the duration of communication rounds.

Only a few studies have designed topologies taking into account the duration of a communication
round. Under the simplistic assumption that the communication time is proportional to node degree,
MATCHA [104] decomposes the set of possible communications into matchings (disjoint pairs of
clients) and, at each communication round, randomly selects some matchings and allows their pairs to
transmit. MATCHA chooses the matchings' selection probabilities in order to optimize the algebraic
connectivity of the expected topology. Refererice [78] studies how to select the degree of a regular
topology when the duration of a communication round is determined by stradglers [44, 55]. Apart
from these corner case$)dw to design a [decentralized] model averaging policy that achieves the
fastest convergence remains an open problg].

Our paper addresses this open problem. It uses the theory of linear systems in the max-plus al-
gebra([6] to design cross-silo FL topologies that minimize the duration of communication rounds,

or equivalently maximize the systetimroughput i.e., the number of completed rounds per time

unit. The theory holds for synchronous systems and has been successfully applied in other elds
(e.g., manufacturing [16], communication networks [54], biolagy [12], railway systems [31], and
road networks [25]). Synchronous optimization algorithms are often preferred for federated learn-
ing [9], because they enjoy stronger convergence guarantees than their asynchronous counterparts
and can be easily combined with cryptographic secure aggregation profdcols [8], differential privacy
techniques [1], and model and update compression [1171| 101,188, 13].

To the best of our knowledge, this paper is the rst work to take explicitly in consideration all
delay components contributing to the total training time including computation times, link latencies,
transmission times, and queueing delays. It complements the topology design approaches listed
above that only account for congestion at access linkg [104] and straggler|efiect [78].

The algorithms we propose (S€dt. 3) are either optimal or enjoy guaranteed approximation factors.
Numerical results in Sedt] 4 show signi cant training speed-up in realistic network settings; the
slower the access links, the larger the speedups.
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Figure 1. Examples for underlay, connectivity graph, and overlay, with routers (blue nodes), silos
(red nodes), underlay links (solid black lines), and information exchanges (dashed lines).

2 Problem Formulation

2.1 Machine Learning Training

We consider a network dfl siloed data centers who collaboratively train a global machine learning
model, solving the following optimization problem:

X
minimize  pE  [fi(w; )]; 1)
w2 Rd i=1

wheref;(w; ;) is the loss of model at a sample; drawn from data distribution at siicand the
coef cient p; > 0 speci es the relative importance of each silo, with two natural settings hging
equal tol or to the size of sila's local dataset [56]. In the rest of the paper we consler 1, but
our analysis is not affected by the choiceppf

In order to solve Probler(d) in an FL scenario, silos do not share the local datasets, but periodically
transmit model updates, and different distributed algorithms have been proposed| [57,/ 72, 58, 45,
104, 52| 10B]. In this paper we consider as archetype the decentralized periodic averaging stochastic
gradient descent (DPASGD) [103], where silos are represented as vertices of a communication graph
that we calloverlay Each siloi maintains a local model; and performs mini-batch gradient
updates before sending its model to a subset of dllos(its out-neighbours in the overlay). It then
aggregates its model with those received by a (potentially different) set of\§iloits in-neighbours).
Formally, the algorithm is described by the following equations:

(P _
wik+1= AT ig Ay Wi (K); ifk 0 (mods+1); @
| wik) A w0 5 othewise

wherem is the batch size, > 0is a potentially varying learning rate, add2 RN N is a matrix

of non-negative weights, referred to as tmmsensus matri¥or particular choices of the matri

and the number of local updatesDPASGD reduces to other schemes previously proposed [61, 58,
110], including FedAvg [72], where the orchestrator just performs the averaging step (this corresponds
to its local loss functiorf; (:) being a constant). Convergence[df (2) was proved in|[103].

In this paper we study how to design the overlay in order to minimize the training time. While we
consider DPASGD, our results are applicable to any synchronous iterative algorithm where each silo
alternates a local computation phase and a communication phase during which it needs to receive
inputs from a given subset of silos before moving to the next computation phase. This includes the
distributed algorithms already cited, as well as push-sum training schemes|[5] 91,187, 76} 23}, 98, 109]
and in general thblack-box optimization procedures de ned in[90].

2.2 Underlay, Connectivity graph, and Overlay

FL silos are connected by a communication infrastructure (e.g., the Internet or some private net-
work), which we callunderlay The underlay can be represented as a directed graph (digraph)
G = (V[V %E), whereV denotes the set of silog? the set of other nodes (e.g., routers) in the
network, andg, the set of communication links. For simplicity, we consider that each gI¥ is
connected to the rest of the network through a single(ink?), wherei®2 Vv °, with uplink capacity

Cue(i) and downlink capacitfpn(i). The example in Fig.|1 illustrates the underlay and the other
concepts we are going to de ne.



Theconnectivity graptG. = (V; &) captures the possible direct communications among silos. Often

the connectivity graph is fully connected, but speci c NAT or rewall con gurations may prevent
some pairs of silos to communicate(ifj ) 2 E, i can transmit its updated modeljtoThe message
experiences a delay that is the sum of two contributions: 1) an end-to-end (igjgyaccounting for

link latencies, and queueing delays long the path, and 2) a term depending on the mollleleside
theavailable bandwidl[HA(i;j ) of the path. Each pair of sild$;j ) can use probing packeis [39, 84,

38] to measure end-to-end delays and available bandwidths and communicate them to the orchestrator,
which then designs the topology. We assume that in the stable cross-silo setting these quantities do
not vary or vary slowly, so that the topology is recomputed only occasionally, if at all.

The training algorithm ir{Z) does not need to use all potential connections. The orchestrator can
select a connected subgraph@f We call such subgrapbverlayand denote it by, = (V; &),
whereE, E .. Only nodes directly connected & will exchange messages. We can associate a
delay to each linKi;j ) 2 E,, corresponding to the time interval between the beginning of a local
computation at node and the receiving afs updated model by:

do(i;j)=s Tc(i)+I(i;j)+ AGTy - S Te(i)+ 1(i5) )+ M ; (3
(i53) min cJ:NuT(uj) c]NDN(J) INCIE

whereT.(i) denotes the time to compute one local update of the model. We also dg(ine) =

s Tc(i). Equation(3) holds under the following assumptions. First, eachisilploads its model

in parallel to its out-neighbours iN; (with a rate at mos€yp(i)=jN; j). Second, downloads at

j happen in parallel too. While messages from different in-neighbours may not arrive at the same
time atj 's downlink, their transmissions are likely to partially overlap. Finally, different messages do
not interfere signi cantly in the core network, where they are only a minor component of the total
network traf ¢ (A(i%] 9 does not depend o&,).

Borrowing the terminology from P2P networks [71] we call a netwedkie-capacitated access

links delays can be neglected, otherwise we say thanibike-capacitatedwhile in cross-device FL

the network is de nitely node-capacitated, in cross-silo FL—the focus of our work—silos may be
geo-distributed data centers or branches of a company and then have high-speed connections, so that
neglecting access link delays may be an acceptable approximation.

Our model is more general than those considered in related work] [104] condidels) =
M jN , j=Cyp(i) and [78] considersl,(i;j ) = Tc(i) (but it accounts for random computation
times).

2.3 Time per Communication Round (Cycle Time)

Lett; (k) denote the time at which workéstarts computingy; ((s + 1) k + 1) according tafZ)) with
ti(0) = 0. Asi needs to wait for the inputs; ((s + 1) k) from its in-neighbours, the following
recurrence relation holds
ti(k+1)= max (tj(k)+ do(j;i)): 4
j2N I ig
This set of relations generalizes the concept of a linear system in the max-plus algebra, where the
max operator replaces the usual sum and+theperator replaces the usual product. We refer the

reader to[[B] for the general theory of such systems and we present here only the key results for our
analysis.

We call the time interval betweemn(k) andt;(k + 1) acycle The average cycle time for silo
isdenedas; =limy; tj(k)=k. The cycle time 1) does not depend on the speci c silo (i.e.,
i = j)[6, Sect. 7.3.4], and 2) can be computed directly from the g6, Thm. 3.23]. In fact:

do( ).

(&) = max (®)

where is a generic circuit, i.e., a patly;:::;ip = i1) V\fgere the initial node and the nal node
coincide,j j = pis the length of the circuit, and,( ) = k 1 d0(|k ik+1 ) is the sum of delays

1The available bandwidth of a path is the maximum rate that the path can provide to a ow, taking into
account the rest of the traf ¢ [15, 89]; it is then smaller than the minimum link capacity of the path.



Table 1: Algorithms to design the overl&y from the connectivity grapks..

Network Conditions Algorithm Complexity Guarantees

Edge-capacitated Undirect&d Prim's Algorithm |85] O(JEcj + jVjlogjVj) Optimal solution (Prop. 3]1

Edge/Node-capacitated Euclide@n Christo des' Algorithm [73]  O(jVj2 logjVj) 3N -approximation (Prop. 3|3,3.6)
. Euclideal . . R, .

Node-capacitated and undilﬁted}o AIgorlthm(Appendl ) O(jEjjVij logjVj) 6-approximation (Prop. 3|5)

on . Acircuit of G is calledcritical if (&) = do( )5 j. There exist algorithms with different
complexity to compute the cycle time [46,|20].

The cycle time is a key performance metric for the system because the diffgtgkde (&) K|

is bounded for alk 0 so that, for large enoudh t; (k) (&) k. In particular, the inverse

of the cycle time is thehroughputof the system, i.e., the number of communication rounds per
time unit. An overlay with minimal cycle time minimizes the time required for a given number of
communication rounds. This observation leads to our optimization problem.

2.4 Optimization Problem

Given a connectivity graply;, we want the overlayz, to be a strong digraph (i.e., a strongly
connected directed graph) with minimal cycle time. Formally, we de ne the followlingmal Cycle
Timeproblem:

Minimal Cycle Time (McT)
Input: A strong digraptG.=(V; E), f Cup(i); Con(j ); 1(i:j ); A% ] 9 Te(i); 8(i; ) 2 Ecg.
Output: A strong spanning subdigraph &f with minimal cycle time.

Note that the input does not include detailed information about the und@glayut only information
available or measurable at the silos (see $edt. 2.2). To the best of our knowledge, our paper is the rst
effort to studyMcT. The closest problem considered in the literature is, for a given overlay, to select
the largest delays that guarantee a minimum throughput [28, 21].

3 Theoretical Results and Algorithms

In this section we present complexity results fdcT and algorithms to design the optimal topology

in different settings. Tablg 1 lists these algorithms, their time-complexity, and their guarantees. We
note that in some cases we adapt known algorithms to $dlve. All proofs and auxiliary lemmas

are in Appendix E.

3.1 Edge-capacitated networks

Remember that we call a network edge-capacitated if access links delays can be neglected, as itis
for example the case whenevgr min (Cup(i); Con(j))  A(i%j9 for each(i;j ) 2 E. Inthis
setting [(3) becomes

Goliij)= s Teli)+ I(ij)+ A(.MW (6)

and then the delay between two silos does not depend on the selected Gerlay

FL algorithms often use amndirectedoverlay with symmetric communications, i.€i;,j ) 2 E, )

(I;i) 2 Eo. This is the case of centralized schemes, like FedAvg, but is also common for other
consensus-based optimization schemes where the consensusAnatriequired to be doubly-
stochastic/[7]7, 87, 103]—a condition simpler to achieve w@gis undirected.

When building an undirected overlay, we can restrict ourselves to consider trees as solulfizts of
(LemmdE.1). In fact, additional links can only increase the number of circuits and then increase
the cycle time (se€h)). Moreover, we can prove that the overlay has simple critical circuits of
the form = (i;j;i ), for whichdo( )5 j = (do(i;j ) + do(j;i))=2 (Lemmg E.D). Intuitively, if

we progressively build a tree using the linksGawith the smallest average of delays in the two
directions, we obtain the overlay with minimal cycle time. This construction corresponds to nding a
minimum weight spanning tree (MST) in an opportune undirected versi@g: of



Proposition 3.1. Consider an undirected weighted gragél”’ = (V; E{"), where(i;j ) 2 E* iff
(i;j) 2 Ecand(j;i) 2 E; and wherg(i;j ) 2 EM has Weigh'déu)(i;j ) = (do(i;j )+ dofj;i))=2.
A minimum weight spanning tree af") is a solution oMcT whenG; is edge-capacitated an@, is
required to be undirected.

Prim's algorithm [85] is an ef cient algorithm to nd an MST with complexi®(JE;j + jV]jlogjVj)
and then suited for the usual cross-silo scenarios with at most a few hundred/nddes [41].

We have pointed out a simple algorithm when the overlay is undirected, but directed overlays can
have arbitrarily shorter cycle times than undirected ones even in simple settings where all links in the
underlay are bidirectional with identical delays in the two directions (see Appgfdix C). Unfortunately,
computing optimal directed overlays is NP-hard:

Proposition 3.2. McT is NP-hard even whe@; is a complete Euclidean edge-capacitated graph.

We call a connectivity grap@. Euclideanif its delaysd.(i;j ), s Tc(i)+ 1(i;j )+ M=A(i%]9

are symmetricdc(i;j ) = dc(j;i);8i;j 2 V) and satisfy the triangle inequalitgdd(i;j )  dc(i; k) +

dc(k;j); 8i;j;k 2 V). These assumptions are roughly satis ed for geographically distant computing
clusters with similar computation times, as the delay to transmit a message between two silos is
roughly an af ne function of the geodesic distance between thiem [32]. Under this conditon

can be approximated:

Proposition 3.3. Christo des' algorithm [73] is a3N -approximation algorithm foM cT whenG
is edge-capacitated and Euclidean.

The result follows from Christo des' algorithm being a 1.5-approximation algorithm for the Travelling
Salesman Problem [73], and our proof shows that a solution of the Travelling Salesman Problem
provides &N -approximation of McT. Note that Christo des' algorithm ndsing topologies.

3.2 Node-capacitated networks

When silos do not enjoy high-speed connectivity, congestion at access links can become the dominant
contribution to network delays, especially when one silo communicates with many others. Intuitively,
in this setting, good overlays will exhibit small degrees.

If G is required to be undirectet¥ cT can be reduced from the problem of nding the minimum
bottleneck spanning tree with bounded degree1 ( -MBsT for short)E]which is NP-hard.

Proposition 3.4. In node-capacitated networlkd cT is NP-hard even when the overlay is required
to be undirected.

We propose Algorithri|1 (see Appendiix D), which combines existing approximation algorithms for
-MBsT on a particular graph built fror@.

Proposition 3.5. Algorithm[] is a6-approximation algorithm foM cT whenG: is node-capacitated
and Euclidean withCup(i) ~ min 200 A(%j9 | 8(i;j) 2 Ec, and G, is required to be
undirected.

Finding directed overlays is obviously an NP-hard problem also for node-capacitated networks.
Christo des' algorithm holds its approximation factor also in this more general case:

Proposition 3.6. Christo des' algorithm is a3N -approximation algorithm foMcT whenG; is
node-capacitated and Euclidean.

4 Numerical Experiments

We adapted PyTorch with the MPI backend to run DPASGD (@eon a GPU cluster. We
also developed a separate network simulator that takes as input an arbitrary underlay topology
described in the Graph Modelling Languafe|[36] and silos' computation times and calculates the
time instants at which local modelg; (k) are computed according (@) (Appendix[}). While

2A  -MBST is a spanning tree with degree at most which the largest edge delay is as small as possible.



Table 2: Datasets and Models. Mini-batch gradient computation time with NVIDIA Tesla P100.

Parameters Model Size Computation

Samples Batch

Dataset Task Model

(x10%) Size (x 10%) (Mbits)  Time (ms)
Shakespeare [14, 72] Next-Character Predictiod; 226 512 Stacked-GRU [17] 840 3:23 389:6
FEMNIST [14] Image classi cation 805 128 2-layers CNN 1; 207 4.62 4.6
Sentiment14(C [30]  Sentiment analysis 1,600 512 GloVe|[82]+LSTM|37] 4,810 18:38 9:8
iNaturalist [99] Image classi cation 450 16 ResNet-1§ [35] 11; 217 42:88 25:4

Table 3: iNaturalist training over different networkisGbps core links capacitie$Q Gbps access
links capacities. One local computation step=(1).

Network name Silos| Links Cycl+e time (ms) Ring's training speaad-up
STAR|MATCHA®™ | MST| -MBST|RING|vs STAR|  vs MATCHA™
Gaia [3€] 11 | 55 |391|228(228) 138 138/118| 2:65 1:54 (1:54)
AWS North America|[96] 22 | 231 | 288|124 (124) 90 90| 81| 341 1:47 (147)
Géant|[29] 40 | 61 |634|452(106)101| 101|109 4:85| 3:46 (0:81)
Exodus[68] 79 | 147 |912|593 (142) 145/ 145/103| 878 | 5:71 (137)
Ebone [68] 87 | 161 |902|580 (123) 122 122| 95| 8:83 | 6:09 (1:29)

PyTorch trains the model as fast as the cluster permits, the network simulator reconstructs the real
timeline on the considered underlay. The code is availatigtps://github.com/omarfoq/
communication-in-cross-silo-fl

We considered three real topologies fr&ucketfuel enginf94] (Exodus and Ebone) and froihe

Internet Topology Zof#8] (Géant), and two synthetic topologies (AWS North-America and Gaia)
built from the geographical locations of AWS data center$[[38, 96] (Tgble 3). These topologies have
between 11 and 87 nodes located in the same continent with the exception of Gaia, which spans four
continents. We considered that each node is connected to a geographically close silo by a symmetric
access link. See AppendiXe$ G and H for a detailed description of the experiments and additional
results.

We evaluated our solutions on three standard federated datasets from|LEAF [14] and on iNaturalist
dataset|[99] with geolocalized images from over 8,000 different species of plants and animals
(Tableg[2). For LEAF datasets, we generated non-iid data distributions following the procedure in [57].
For iNaturalist we assigned half of the images uniformly at random and half to the closest silo
obtaining local datasets different in size and in the species represented (Agpgndix G).

Table[3 shows the effect of 6 different overlays when training ResNet-18 over iNaturalist in networks

with capacities equal to 1 Gbps and 10 Gbps for core links and access links, resp@cﬁkzelya

overlays ar€1l) the STAR, corresponding to the usual server-client setting, where the orchestrator

(located at the node with the highest load centra|lity [11]) averages all models at each communication

round,(2) a dynamic topology built from MATCHA starting from the connectivity graf$),one

built starting from the underlay and denoted as MATCH@n both cases MATCHA's parametél;,

equald:5 as in experiments in [1(@2, (4) the minimum spanning tree (MST) from Pr@ﬁ(ﬂ) the
-minimum bottleneck tree (MBST) from Prop[ 3.p, an¢6) the directed RING from Prop. 3.6. In

this particular setting,-MBST selects the same overlay as MST. The consensus ndatixselected

according to the local-degree rule [@].

The overlays found by our algorithms achieve a higher throughput (smaller cycle time) than the STAR
(the server-client architecture) and, in most cases, than state-of-the-art MATCHin particular,

3The delay in the core network is determined by the available bandwidth(@ iAvailable bandwidths are
often limited to tens or hundreds of Mbps even over inter-datacenter links with capacities between 100 Gbps and
1 Tbps|[38] 65, 83, 47]. By selectirigGbps core links in our simulator, which ignores other traf c, we obtain
available bandwidth distributions comparable to those observed in experimental studies|like [38] (A@endix G).
“4Additional experiments ne tuning, were carried out, conclusions remain the same (App H.6).
SAdditional experiments were conducted selecting the matras solution of the fastest distributed linear
averaging problem de ned in [62] (Appendix H.4).
6As MATCHA and MATCHA®™ select random overlays at each iteration, we compute their average cycle
time.
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Figure 2:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training four different datasets on AWS North America undetl&pps core links capacities,
100 Mbps access links capacities= 1.

the RING is between 3.3 (391=1180n Gaia) and 9.4 ( 902=95 on Ebone) times faster than the
STAR and between 1.5 and 6 times faster than MATCHA. MATCHglies on the knowledge of

the underlay—probably an unrealistic assumption in an Internet setting—while our algorithms only
require information about the connectivity graph. Still, the RING is also faster than MATChiA

on Géant network (where MST is the fastest overlay). From now on, we show only the results for
MATCHA™* , as it outperforms MATCHA.

The nal training time is the product of the cycle time and the number of communication rounds
required to converge. The overlay also in uences the number of communication rounds, with sparser
overlays demanding more rounds |75} 24]. The last two columns in [Table 3 show that this is a second
order effect: the RING requires at most 20% more communication rounds than the STAR and then
maintains almost the same relative performance in terms of the traininff] fifhese results (and
those in Fig[ R) con rm that the number of communication rounds to converge is weakly sensitive
to the topology (as already observed|in|[61,/60/ 49, 66] and partially explained {n (86, 5, 79]). The
conclusion is that overlays should indeed be designed for throughput improvement rather than to
optimize their spectral properties: the topologies selected by our algorithms achieve faster training
time than the STAR, which has optimal spectral properties, and MATCHA/MATCHAvhich
optimize spectral properties given a communication budget.

The same qualitative results hold for other datasets anff|Fig. 2 shows the training loss versus the number
of communication rounds (top row) and versus time (bottom row) when training on AWS North
America with 100 times slower access links. Other metrics for model evaluation (e.g., training/test
accuracy) are shown in Appendix {.2. The advantage of designing the topology on the basis of the
underlay characteristics is evident also in this setting.

Figure[3 illustrates the effect of access link speeds on the cycle time and the training time. When all
silos have the same access link capacity (Fip. 3a), for capacity values smaller than 6 Gbps, the RING
has the largest throughput followed BWMBST, MST and MATCHA' almost paired, and nally

the STAR. The advantage of topologies with small nodes' degrees @BST and the RING) is
someway expected in the slow access link regime, as access link delays become the dominant term
in (3. In particular, Eq(5) and some simple calculations in Appendix B show that, Witkilos, the

RING is up to2N (=80 for Géant) times faster than the STAR &yl max(degre€G,)) (=5 for

Géant) times faster then MATCHA for slow access links as con rmed in F3a (left plot). What

is less expected (but aligned with our observations above about the importance to design overlays
for throughput improvement) is that RING's throughput speedups lead to almost as large training

"Training time is evaluated as the time to reach a training accuracy eg6a%4055%, 55%, 50% and50%
for Gaia, AWS North America, Géant, Exodus, and Ebone networks, respectively. Note that data distribution is
different in each network, so that a different global model is learned when solving Pr{fjj¢see explanations

in Appendi{H.5).
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Figure 3:Effect of access link capacities on the cycle time and the training time when training iNaturalist on
Géant network1 Gbps core links capacities,= 1. (33): All access links have the same capadity] (3b): One
node (the center of the star) has a xed 10 Ghps access link capacity. The training time is the time when training
accuracy reachesb%.

Figure 4: Throughput speedup in comparison to the STAR, when training iNaturalist over Exodus
network. All links with1 Gbps capacity.

time speedups, even larger than those in Table 3: e.g. 72x in comparison to the STAR and 5.6x in
comparison to MATCHA for 100 Mbps access link capacities.

When the most central node (which is also the center of the STAR) maintains a xed capacity value
equal tol0 Gbps (Fig[ 3p), the STAR performs better, but still is twice slower than the RING and
only as fast as-MBST. This result may appear surprising at rst, but it is another consequence of
Eq. (B) discussed in Append|x|B. Again the relative performance of different overlays in terms of
throughput is essentially maintained when looking at the nal training time, with differences across
topologies emerging only for those with very close throughputs, i.e., MST and MATCldAd

STAR and -MBST in the heterogeneous setting of Fig] 3b.

When local computation requires less time than transmission of model updates, the silo may perform
s local computation steps before a communication rounds ssreases, the total computation time

(s Tc(i)) becomes dominant if8) and the throughput of different overlays become more and more
similar (Fig.@f] Too many local steps may degrade the quality of the nal model, and how tastune

is still an open research area [106, 105,/102] 64/ (108, 50]. Our next research goal is to study this
aspect in conjunction with topology design. Intuitively, a faster overlay reduces the number of local
steps needed to amortize the communication cost and may lead to better models given the available
time budget for training.

5 Conclusions

We used the theory of max-plus linear systems to propose topology design algorithms that can
signi cantly speed-up federated learning training by maximizing the system throughput. Our results
show that this approach is more promising than targeting topologies with the best spectral properties,
as MATCHA™) does. In future work, we will explore how to further speed-up training, e.g., by
enriching the topologies found by our algorithms with additional links that improve connectivity
without decreasing the throughput, and by carefully optimizing the weights of the consensus matrix.

®In AppendixH.], we show tables similar to Taple 3 for different values of



6 Broader Impact

We have proposed topology design algorithms that can signi cantly speed-up federated learning in a
cross-silo setting. Improving the ef ciency of federated learning can foster its adoption, allowing
different entities to share datasets that otherwise would not be available for training.

Federated learning is intended to protect data privacy, as the data is not collected at a single point. At
the same time a federated learning system, as any Internet-scale distributed system, may be more
vulnerable to different attacks aiming to jeopardize training or to infer some characteristics of the
local dataset by looking at the different messages|[26, 92]. Encryption [1LO, 80, 8] and differential
privacy [1] techniques may help preventing such attacks.

Federated learning is less ef cient than training in a highly-optimized computing cluster. It may

in particular increase energy training costs, due to a more discontinuous usage of local computing

resources and the additional cost of transmitting messages over long distance links. To the best of our
knowledge, energetic considerations for federated learning have not been adequately explored, but
for a few papers considering FL for mobile devices| [42, 97].
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A Graph Theory

We now list concepts of graph theory which will be used later on.

Predecessor, successor, neighbauf in a graph(i;j ) 2 E, theni is called a predecessor
ofj,j is called a successor ofindj, resp.i is called a neighbour af, resp.j . The set of
predecessors ¢fis indicated by (j) (or Nj+ ), the set of all successors iofs denoted (i)

(orN; ) and the set of neighbours bfs denotedN;. Note that in the case of undirected
graphsNi = (i)= (i).

C =(i1;::1;1p = i1) is an elementary circuit if the pafing;:::;ip 1) is elementary, an

of the arcs of WhichF;t is composed, i.gGj = p, and its weight is the sum of the weights of
itsarcs, i.ed(C) = P d(ix;ik+1).

Subgraph, spanning subgraph:Given a graplG = (V; E), a graphG® = (V% E9) is said
to be a subgraph @if VY V andE E ° G’is said to be a spanning subgrapVff= V.

Strongly connected graph:A digraph is said to bstrongly connectedr strongif for any
two different node$ andj in V there exists a path fromto j .

Optimal tour : In a Hamiltonian graph (i.e., a graph having a Hamiltonian cycle) a Hamil-
tonian cycle with minimum weight is called aptimal tour. Finding the optimal tour in

a complete graph is a well known problem and is referred to as the Traveling Salesman
Problem (TSP), see for example [4].

Tree, acyclic graph, and Minimum Spanning Tree (MST) A tree, or equivalently a
connected acyclic undirected graph, is an undirected graph in which any two vertices are
connected by exactly one path. An acyclic graphis said to be a spanning tree of an
undirected graplgif T is a connected spanning subgrapl©ofT is said to be an MST of

Gif it has minimal weight (the weight of a tree is the sum of the weights of all its edges)
among all spanning trees Gf

Cut, cut-set, and cut property. A cutis a partition of the vertices of a graph into two
disjoint subsets. For a cufthe cut-set is the set of edges connecting two nodes from the
two disjoint subsets. In a tree, deleting an edge, induces a partition of the set of vertices. For
any cutc of the graph, if the weight of an edgedn the cut-set ot is strictly smaller than

the weights of all other edges of the cut-setahen this edge belongs to all MSTs of the
graph.
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B On STAR and MATCHA ®) Cycle Times

For a graphG, let degre¢i; G) denote the degree nodein G and max(degre€G)) denote the
maximum degree of the nodes@ We show that, wittN silos, the RING is up t@N times faster
than the STAR and approximateGy max(degre€G,)) times faster then MATCH&) for slow
homogeneous access links as shown also i Flg. 3a.

Since access links are homogeneous, €gp(i) = Cpn(i) = Cup(j) = Con(j) = C;8i;j 2V,
and slow access links determine the delays,Cgr(i) A(i%j9 ands T¢(i)+ I(i;j ) A(Mi;j 3
according to[(B), we have:

- . M
do(i;j ) =max  jN; j;jN;" ] 6:

Then, the cycle time of the RING can be obtained frpin (5):
PN g @Gi+1) M N M
i=1 Yol - C — .

RING = N N c-

Remember that a cycle is the time interval between two consecutive computations at a given silo. For
the STAR, it corresponds to the time interval between when the central node sends the new aggregate
model to all silos and when it receives all updated local models. Therefore, we have:
M M M
= — N+ — N=2N —:

STAR C C C
For MATCHA* , at each communication round, we select a random subgsapbt degreéi; G)
denote the degree of silan G. If Gis drawn, the duration of the communication rountlisC
max(degre€G)). The cycle time is then

M
MATCHA* = EEG [maxdegre¢G)] :

Letj be the silo such thgf has the largest degree@. MATCHA* usesmax(degre¢G,)) + 1
matchings. The edges phelong to different matchings. As MATCHAactivates at any commu-
nication round a fractio}, of all matchings, the average degree of npdeEg [degre¢j; G)]

Cp degre¢j; G)) = C, max(degre€,)). Then

M
MATCHA* E Cp max(degreéGU)):
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(a) A 3-node example. (b) Example with arbitrarily different cycle times.

Figure 5: Networks where a directed topology outperforms an undirected one.

C Directed Overlays may be Faster than Undirected Overlays

We provide two examples where the underlay network is undirected and still a directed overlay can
have shorter cycle time than directed overlays. Examples are ia]Fig. 5, where numbers associated to
links are the corresponding delays (in the two directions).

The network in Fig@a has only three nod¥s= f1;2;39. We haved;(1;2) = d.(2;1) = 1,

de(2;3) = de(3;2) = 3, andde(1;3) = dc(3;1) = 4. The fastest undirected overlay@s" =
(V;f(1;2);(2;3)g). Consider the directed rinG, = (V;f(1;2);(2; 3); (3; 1)g). We have:

1+1 3+3 1+3+1+3

GY  =max 5 7 =3; (1)
(Gb): w:g< 3 (8)

The network in Fig[ 5p shows that a directed ring can be arbitrarily faster than an undirected one.
Similarly to above, the fastest undirected overla@%) and coincides with the underlay. The

directed overlay istherinfl ! 2! 3! :::n! n+1! 1). We have
G = ©)

~(n 1) 1+n+(n+(n 1) 1) 4n 2
(&)= n+1 T el (10)

The ratio of the two cycle times can be made arbitrarily large.
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D Approximation Algorithm for M cT on Node-Capacitated Networks

In this section, we describe AlgoritHm 1 that provides an approximate solutidvi¢arwhen the
network is node-capacitated a@ is complete. Algorithnf [L combines existing approximation
algorithms for -MBST on a particular undirected graph built fra® and denoted ngé“) (Iinesﬁ@).
Lemm establishes a connection between the bottleneck bfaise of G and the cycle time

of McT on G when the overlay is required to be undirected. To get an approxin2altéslsT on

&Y we apply the best know8-approximation algorithm from [3, Sect. 3.2.1] (Iir@QG-S) which
requiresG"’ to be Euclidean (Lem@ﬁ), and take its result as one candidate for our solution
(Iine@). The cube of a grapB, denoted byG®, is the super-graph @ such that the edgei(Vv) is in

G® if and only if there is a path betweenandv in G with three or fewer edges. It has been proved
that the cube of a connected graph is Hamiltonian and to nd a Hamiltonian path in such a cube can
be done in polynomial time [43]. OtherBSTs built by Algorithn{ 2 for3 N are considered

as candidates (lin¢s[f0]11) and we nally provide as solution the overlay with the smallest cycle time

(line[13).

Algorithm 1: Approximation algorithm for M T on node-capacitated networks.

Input: G = (V; E), uplink capacityCyp(i), end-to-end delal(i; ] ), computation timd (i)
and model sizé/ .

Result: Undirected overlays,.

1 CreateG") = (V; E{") where(i:j ) 2 E&M iff (i;j ) 2 Ec and(j;i ) 2 Eg ;
2 for (i;j ) 2 E& do
3 | A=l (Tel)+ Tel)+ 1)+ 1G1) + My + o422
4 end
5 S ; ;I the set of candidate solutions
[* consider 2- Mbst approximate solution on G as one candidate */

6 T aminimum weight spanning tree @é”) ;
7 T2  the cube ofT ;
8 H  aHamiltonian path i 2 ;
9 S fHg ;
[* consider other -BST for 3 N as candidates */
10 for 2f3;4;5;::;;Ngdo
1 \ s s[f -PriM(G")g/ -Prim(G") gives a -BST on G“
12 end
/* choose the one with the minimum cycle time as output overlay */
13 & argming,s~(G)

Algorithm 2:  -PrRIM[2]
1 Function -Prim (G=(V;E)):
2 Vt = fvpgfor somevy 2 V;
3 Er = fg;

4 | T=(Vr;Er);
5
6

while jErj < jVj 1do
Find the smallest weight edde; v) such thau 2 V1, v 62 ¥, and
DEGREEr (U) <

7 Addv to Vr;
8 Add (u;Vv) to Er;
9 end

10 return T ;
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E Proofs

We use some graph terminology and notation introduced in Appg@rjdix A.

E.1 Proof of Proposition[3.1

When we require the overldy, to be undirected, if we include linf;j ) 2 G; then we will also
include link(j;i). It is then convenient to consider the undirected gl@b’ﬁ =(V; EC(“)), where
(i;5)) 2 EM iff (i;j) 2 Ec and(j;i) 2 E¢, from which we want to extract an undirected strong
subgraphG, with minimal cycle time. We also associate to each efge) 2 Gé“) the weight
dﬁ”)(i;j ) = (de(i;j ) + dc(j;1))=2. Remember thal.(i;] ) is de ned as follows
de(izj), s Te(i)+ 1))+ M=A(%]9):
Note that an undirected weighted graph can be also seen as a particular directed graph where for each

link (i;j ) in one direction, there exists a lirfk i ) with the opposite direction and the same weight.
The concept of cycle time can then immediately be extended to undirected graphs.

Lemma E.1. Consider the undirected weighted gragf” = (V;E"), where(i;j) 2 E") iff
(i;j) 2 Ec and(j;i) 2 Ec. When& is edge-capacitated an@, is required to be undirected, the set
of solutionsM cT includes a spanning tree 6%“).

Proof. McCT is a discrete optimization problem on a nite gjahus the set of solutions ®ficT is
non-empty. Suppose by contradiction that the set of solutions does not contain any spanning tree of
G and conside6, to be one of such solutions.

As G, is not a spanning tree and it is strongly connected, there exist circull.inFor any

circuit C = (iq;ip;:iiyip = 1) in Gy, we consider the edgec, such thatdé“)(ec) =
ning subgraph o&") and its cycle time is not greater then the cycle tim&gf We can now proceed
in the same way oéo until the residual graph has no more circuits and it is then a spanning tree

of Gé”) with cycle time not greater than the cycle time@f. This tree is also a solution dficT
contradicting the fact that no spanning tree is in the set of solutions. O

Lemma E.2. Consider an undirected trée = ( V; E), weighted with a delay functicaf”) : v v 7!

R, . Its cycle time is (T) = maxy; ge dS (i; ).

Proof. The cycle time ofT is given by Equatiorf5). (T)=maxc % where the maximum is
taken over all the elementary circuits Bf SinceT is acyclic, the only elementary circuits ©f are
of the form(i;j;i ) for somefi;j g 2 E. By de nition j(i;j;i )j = 2 andw((i;j;i)) = d(c“)(i;j ). It
follows that (T) = max yj; g 2 G 901 = may . oc d (i ). O

Proposition. Consider an undirected weighted grag” = (V; E")), where(i;j ) 2 E") iff
(i;j) 2 Ec and(j;i) 2 Ec and where(i;j ) 2 E{") has weightl™ (i;j ) = (do(i;j ) + do(jii ))=2.
A minimum weight spanning tree & is a solution oMcT whenG; is edge-capacitated an@, is
required to be undirected.

Proof. Denote byG the solution ofMcT whenG is edge-capacitated ari@ is required to be
undirected, and deno® an MST of G" weighted withd™), and suppose by contradiction that
(T)> (G).By Lemm, it follows that there is an edge of T such thad(c”)(eT )=

(T ). Moreover, it follows thaBe 2 E(G ), d*)(e) (G)< (T)= d¥er ). If we
removeer fromT , the two components de ne a cut Gf. The edge ofs , sayey,: belonging

to the cut-set is such thdtu)(ecut) < dgu)(er ), and this is a contradiction with the cut property
satis ed by minimum cost spanning trees. O

The set of subgraphs of an undirected gr&plis nite.
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E.2 Proof of Proposition[3.2

Proposition[3.32. McT is NP-hard even whe@; is a complete Euclidean edge-capacitated graph.

Proof. WhenG is an edge-capacitated graph(i;j ) = s Tc(i)+ I(i;j )+ % & is complete
and Euclidean means thai(i;j ) = dc(j;i), forall (i;j) 2V V and thatd; veri es triangular
inequality, i.e.dc(i;j )  dc(i; k) + dc(k;j), for everyi;j;k 2 V.

We consider the decision probledhc T-DECISION associated to the particular caseMET whenG,
is an Euclidean edge-capacitated graph and we prove that it is NP-complete.

Euclidean Edge-Capacitated Minimal Cycle Time - Decisiorc(MDECISION)
Input: A strong digraphz =( V; E), delays functiord, and a real number,
Output: Is there a strong spanning subdigraptGefvith cycle time at mosty?

We rst prove thatMcT-DECISION is NPB Several algorithms (e.g., Karp's Algorithm [20]) de-
termines the cycle time of a given graph in a polynomial time. Thus for a proposed solution of
McT-DECISION, we can compute its cycle time in polynomial time, and we can verify if the graph is
strongly connected using for example depth rst search. It follows that¥decisioNis NP.

To prove thaM cT-DECISIONis NP-complete, we show that Hamiltonian Cydtéd) can be reduced
in a polynomial time to MT-DECISION, i.e., HC , MCT-DECISION.

Hamiltonian cycle problem is the following decision problem:

Hamiltonian Cycle (H)
Input: A connected (undirected) grafth= (V; E).
Output: Is there a Hamiltonian cycle iD?

Given an instance oHc with an undirected grapp = (V;E), we construct an instance of
McT-DECISION with a complete digraple, = (V;V V), a real numbery = NNi where
N is the size ofv, and delay functioml;, where for a given arbitrary choice of vertey, d; is de ned

as.
(1 i ((i:j)2E)" (j 8 Vo)™ (i & Vo),
de(izj)= 2 i (((i;]) 2E) ™ ((G = vo) _ (i = vo))) _ (((i;]) ZE) " (j & vo) " (i & Vo)) ;
3 if((i;)) ZE) ™ ((J = Vo) _ (i = vo)):

The constructed digrap®. is complete and the delays are symmetric and verify triangular inequality.
In fact for three distinct nodeisj , andk in V, we prove thatd:(i;j )  dc(i;k) + de(k;j) by
distinguishing three possible cases:

1. If i 6 vp andj 6 vg, thend.(i;j) 2, but every delay is at least equal to one and then
2 de(i;k) + de(k;j); it follows thatde(i;j ) dc(i; k) + de(k;j).

2. Ifi = vp, thendc(vo; k) 2, thusdc(vo; k) + de(k;j) 3. It follows thatd:(vo;j) 3
de(Vo; K) + de(k;j).

3. The case whenp= v is analogous to the case whiea vg.

If D has a Hamiltonian cycle, then the (directed) graph induced by this cycle is a strong spanning
subdigraph of3; and its cycle time isyc = (N 2*2 = N&2

If G has a strong spanning sub-digraph, €&y having a cycle time N2 'let C be an

elementary circuit o5 containingvp (such a circuit always exists because the graph is strongly

connected). By de nition of cycle timed,J?é—(j:) =1+ Ni . We are going to prove th& is a

Hamiltonian cycle oD.

We prove rst by contradiction thaf contains only the arcs frof. Suppose by contradiction that
there exists an ar@;j ) 2E in C, two cases are possible:

10A decision problem is NP if we can verify in a polynomial time that the answer for a given instance is YES.

22



1. If j 6 v, andi 6 v thend.(i;j ) =2 and sincesy 2 C, there exist two nodeg, 2 (Vo)
andvy 2 (Vo) in C. It follows thatd.(C)  dc(i;j ) + d(vg ;Vo) + de(Vo;vg ) + 1
(JCj 3) 2+2+2+ jCj 3=jCj+3. SinceC is an elementary circuit, it follows
thatjCj N, thusd°(?) 1+ 3, and this contradict% 1+ 2.

ic
2. 1f i = vo, letv] be the predecessor @f in C, it follows thatd.(C)  dc(Vvg; Vo) +
dvo;j)+1 (Cj 2) 3+2+jCj 2=3+|Cj thus®{ 1+ 2 and using

the same argument as for the rst case we get a contradiction.

3. The case wheh= vg is analogous to the case whiea vg.

It follows that any arc ofC is in E.

We prove next tha€ is a Hamiltonian Cycle, i.ejCj = N. Sincevg 2 C, there exist two nodes
Vg 2 (Vo)andv, 2 (Vvo)inC,itfollows thatd.(C) = dc(vy ;Vo)+ de(Vo; vy )+1 (jCj 2)=
2+2+ jCj 2=2+jCj.

Sincedj?((:?) =1+ G, itfollowsthatl+ Z 1+ Z, thusjCj N.AsC isan elementary
circuit it follows thatjCj = N, i.e.,C is a Hamiltonian cycle. Sinc€ is a circuit containing only
arcs fromD, it follows thatD has a Hamiltonian cycle.

So we have proved th&@ has a Hamiltonian cycle if and only & has strong spanning subdigraph of
cycle time at mosty = N*2 | |t follows thatM cT-DECISIONis NP-complete, thuM cT is NP-hard
even wherz is a complete Euclidean edge-capacitated graph. O

E.3 Proof of Proposition[3.3

Under the assumption that the connectivity topology is Euclidean (delays are symmetric and verify
triangular inequality), we rst show that the solution of Travelling Salesman Problesn) ([33]

is guaranteed to be within2N -multiplicative factor of the solution dficT (Lemmg E.B). As a
result, the Christo des algorithm [73] which is a 1.5-approximation algorithmTsp, is a 3N -
approximation algorithm for Mt (Prop[3.3).

Lemma E.3. Consider an Euclidean digrap& with N nodes and leH denote its optimal tour.
Then% 2N , where is the optimal cycle time that can be achieved by a strong spanning
subdigraph ofx..

Proof. LetG be a spanning digraph & with optimal cycle time

.....

for eachj (as illustrated in Fig. §a). Consider an auxiliary gragtwhosec nodes represent the

c circuits and whose links correspond to two circuits sharing a nodeT Lt a spanning tree of

G. Starting from the root oT , we can de ne an order of the nodes in each circuit and an order
of the children of each circuit as follows. Given the orientation of the circuit corresponding to the
root, consider the rst node they share with each child. We order the children according to such
order (solving arbitrarily possible ties). For each child we reorder its nodes starting from the node
they share with the father and following the orientation of the circuit. We consider then the ordered

children according to the order introduced above (as illustrated if Fig. 6b).

From we can build two closed walk#/; andW,, both spanning all nodes & . The walkW;

is built by considering all circuits in the order they appear jrand then concatenating their nodes
as follows. The rst time we visit one circuit we take all nodes in the circuit in their order (but the
last one in each circuit that coincides with the rst one). When we come back to the circuit, we only
pick the nodes needed to move to the following circuit inThe walkW is built by considering

thec circuits in the order they rst appear in, and then again concatenating their nodes (but the
last one in each circuit that coincides with the rst one). Boip sequences of nodes de ne wéks as
is Euclidean and then complete. The lengtf is jW,j = fﬂ jGj N?, as we can have at
mostN 1 elementary circuits and each of them has length at Mos$ee Figd. §c arjd fd for the
examples ofV; andW,.

23



(a) Circuits decomposition (b) Nodes ordering

(c) Walk W1 (d) Walk W
Figure 6: lllustration of building walks used in the proof of Lemimal E.3.

We observe thad.(W1) 2P f:l d.(G) as the walkW; passes through each link in each cirdgit
at most twice: it walks through the r§Gj 1 edges ofG the rsttime it visitsG, and uses once
more the edges i@ to visit the other circuits and go back to the root. Ws is a sublist of the nodes
in W, and delays satisfy the triangle inequality, it hot§éW,)  d.(W,).

Finally, from the walkW, we can extract a Hamiltonian cydt that has an even smaller delay. Let
H be an optimal tour. It follows

dc(H ) dc(H) dc(WZ)

H)= —— — —~ 11
HO=Z0T WG ()

JW2j dc(W2)
Hj JW3j (12)

2
NT (W) (13)
R N(e)
2N P31 =2 14
de.(G) _ .

2Ni:r11;z:;}:>;<C iCi =2N (15)
O

Proposition[3.3. Christo des' algorithm [73] is a3N -approximation algorithm foM cT whenG
is edge-capacitated and Euclidean.

Proof. Christo des algorithm provides é—approximation for the traveling salesman probléspP

de ned in |‘4] Given an instance d¥icT let & denote the output of Christo des algorithm and
C denote the optimal tour d&. It follows thatd.(C) %dC(C ). Since both€ andC are

11g5ee([73] for the proof.
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Hamiltonian cyclesjCj = jC j. Using Lemm. it follows thaﬁ% 2N % =3N

Thus the graph obtained using only the edge§ @ a3N -approximation of thécT problem when
G is edge-capacitated and Euclidean. O

Observation E.4. Christo des' algorithm [73] is a ( N)-approximation algorithm foMcT when
& is edge-capacitated and Euclidean.

Proof. Christo des' algorithm returns a ring as solution. We provide an example of an Euclidean
underlay where any ring has cycle time at lelds#4 times larger than the optimal overlay. We
consider a complete connectivity gra@h= (V;V V ) to which we associate a delay functidn

verifying

8(ij)2V V ; do(ij)= o g L ZIBEING . (16)

& is clearly an Euclidean graph.

A Hamiltonian cycleH of G; needs to use exactBN different edges and in particuldr different
atleasN 0+ N 1= N,anditscycletime(H) o = 3.

Consider a directed overldy, = (V; E), with

BE=f(;i+1); i2f1:::;N 1gg] [ f(N;K); (K; 1)g: a7

For any circuitCx 2 C,
0O (N 1)+2 1_ 2

Ck)= = :

() N +1 N +1

It follows that the minimal cycle timegpt = ﬁ and (H) Nzl opt for any Hamiltonian cycle
H of G.. O

E.4 Proof of Proposition[3.4

We prove that in a node-capacitated netwdvic T is NP-hard even whef, is required to be
undirected. We start introducing the associated decision problem:

McT-U-Decision

Input: A strongly connected directed graphG =(V;E), model size M,
fCup(i); Con(j ); 1] ); A% 9; Te(i); 8(i;j ) 2 Ecg, and a constan > 0.

Output: Is there a strong spanning undirected subgi@pbf G, such that (&) 0?

McT-U-Decision is closely related to tliegree-constrained spanning tré@csT) de ned below:

Degree-constrained spanning treec)
Input:  An N -node connected undirected grapls ( V; E); positive integek N .
Output: DoesG have a spanning tree in which no node has degree greatekthan

DcsTis a simpler version of-MBsST, where we look for a spanning tree with degree at rkasmtd
minimum bottleneck.

DcsTis NP-complete [27]. For example fer= 2 it can be shown by a reduction fromdd

Proposition[3.4. In node-capacitated networRdcT is NP-hard even when the overlay is required
to be undirected.
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Proof. Our proof is based on a reduction o£BTto McT-U-Decision.

Given an instance dbdcsTwith anN -node connected undirected graphl (V; E) and a positive
integerk N, we de ne an instance d¥lcT-U-Decision on a connected grafh = ( Vc; E.) built

from G according to the following mapping: For each node in V, there are two nodeg? and

v in V; and(v®® ;v@) 2 E, and for an ar¢v;;v;) 2 E, there is an arcvi(l) vP)Y in E. We

setCUP’E"V(l)) =1, CUP'EAV(Z)) = k+1forallv2V,T(i)=0,Cpy (i)= 1 foralli 2 V, and

1(i;j)=0;A(@%]%9 =1 forall (i;j ) 2 E; . Finally, we considerg = k + 1.

Suppose thaG has a spanning treé = (V;Er) in which no node has degree greater ttkan
and denotel, = ( T) (i.e., we apply the same mapping described abovg)is a spanning
tree of & (it is acyclic and spans all nodes ). All elementary circuits ofT. are either of

the form (v(l) (2), (1)) for somey; 2 V, or of the form(v(l) (1), (1)) for some(v.,v,) 2
Er. Moreover, (v?;v{®;v{V)) = ardegeer ) 41 and (v ;v®;v?)) =

degreey (vi)rlx degreer (V'L i 41, Itfollows that (Tg) k+1= o.

Inversely, suppose th& has an MSTI, having a cycle time at mosg, and lefT = Y(T.), where

L(T) is obtained by deleting all the vertices of the fcvﬁz? forvi 2 V. T is a spanning tree @&
(it contains all nodes oB and is acyclic). We prove by contradiction tiiegree(T) k. Suppose

that there exists a node2 V such thaiN, (T)j >k, it follows that circuitf v(l) ; (2) (1) gisa

circuit of Te, and (v ;v ;viV)) = KN, ML 5 4 1. It follows that (TC) >k +1,
thusk+1 < g=k+1 (contradlctlon)

Then the answer tBcsTis positive if and only if the answer 9l cT-U-Decision is positive. In
addition, we have a polynomial reduction algorithm. It follows tht T-U-Decision is NP-hard. [

E.5 Proof of Proposition[3.5

The bottleneck of a tre€ is its maximum edge weight, denoted BYT ). To prove Pr05, we

start by proving that the bottleneck of ttBssT of the undirected grapﬁé”) (considered in Iinﬂ3
of Algo.[1)) is smaller than or equal to the minimal cycle time of the connectivity g&ph

We consider a node-capacitated case wiigigi) min C%(”;A(ia,jo) , 8(i;j ) 2 E¢c. Thus,
according to[(B), the overla, has weights

holii)=s Tel)+ 1)+ "ol 8(ii) 2 e a8

Note that the weights de ned for the undirected gr@l‘? =(V; EC(”)) are

s (Te(i)+ TGN+ 1G)+ 16D+ gl +
2

M
d(ij) = wl) - g(i;j) 2 EM:  (19)

Lemma E.5. Consider the case whe is node-capacitated witBup(i) min 20 A(i%j9) |
8(i;j ) 2 Ec, and the overlay is required to be undirected. Lef{G.) be the cycle time dficT on G
andTuest (G") be theMBsT of & . The bottleneck 6fysst (G") is smaller than or equal
o (G)ie B(Tusst (GV)  (G).

Proof. DenoteT (&) the undirected overlay @& with minimal cycle time. We consider the edge

(w;v) = argmax d"(i;j):
(5 )2E(T (G))

By de nition, B (Tusst (G™)) = min 25T (a) MaXGj )2& (1) d™ (i;j ), whereST(G") is the
set of spanning trees &". SinceT (G) 2 ST(G"), we have:

B(Twsst (G"))  d™ (w;v)
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@S (Te(w) + Te(v)) + I(w;v) + 1(v;w) + M=Cyp(w) + M=Cyp(V)

- 2
s (Te(w) + Te(v)) + I(w;v) + I(v;w) + JN, jM=Cyp(w) + jN, jM=Cyp(V)
2
@@ %o (W; V) + do(v; W)
- 2
(&);

where the second inequality follows frgi,, j;jN, j 1, and the last inequality comes from the
de nition of cycle time. O

Lemm establishes a connection between the bottleneck dtise of G and the cycle
time of MCT on G when the overlay is required to be undirected. To get an approxin2atéglst

onG", we apply the best knowB-approximation algorithm from [3, Sect. 3.2.1] (see IiEﬂg 6-8
in Algo.@) which requireﬁé“) to be Euclidean. So in the following, we show that ind&dY is
Euclidean.

Lemma E.6. If G is Euclidean, ther@é”) is Euclidean.

Proof. Remind that the connectivity gragh is Euclidean on a node-capacitated network, if its
delaysdc(i;j) = s Tc(i) + I(i;j ) are symmetricdc(i;j ) = dc(j;i);8i;j 2 V) and satisfy the
triangle inequality. FronfI3)it is easy to check thatt" (i;j ) = d{"(j;i). Consider three nodes
i;j;k 2V, we have:
de(i;j ) + de(j;i) + M=Cyp(i) + M=Cyp(j )
2
de(i; k) + de(k;j) + de(j; k) + de(k;i) + M=Cuyp(i) + M=Cuyp(j )
2
de(isk) + de(k;j) + de(jik) + de(k;i) + M=Cyp(i) + M=Cuyp(j ) + 2M=Cyp(k)
2

dW(i;j ) =

= d (i k) + d (k;);

where the rst inequality follows from the triangle inequality fd¢(i; j ) and the second inequality
from Cyp(k) 0. O

Proposition[3.5. Algorithm[] is a6-approximation algorithm foM cT whenG is node-capacitated
and Euclidean withCup(i) ~ min <201 A(%j9 | 8(i;j) 2 E;, and G, is required to be
undirected.

Proof. Algorithm[]] considers, as a candidate solution, an opportune Hamiltoniarpgithe [d) for
which reference |3, Thm. 8] proves that

B(H) 3 B(Twest (G") (20)
asG" is Euclidean (Lemm.6). Moreover,
do(i] ) + do(j;i)

H) =
) (i;jn;?EX(H) 2
. . .. .. iN. i MiN . j
C o S Te(i)+ s Te()+ I1(;j)+ 1(;i)+ 'Vét':('i)' + ci,p(Jj)J
(i )2E (H) 2
; ; M M
oS Te(i)+s Te()+ 1G)+ 161 +2 o0 + 26y
(i )2E (H) 2
max s Tc(i)+s Tc(G)+ I1(;5)+ I1(j;i)+ + M
(i )2E (H) ¢ ¢ ’ ’ Cup(i)  Cue(j)
- (U) fins
2(i:JT2Ea)((H)d° (5)
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=2B(H); (21)

where the rst inequality follows from nodes in a path having degree at most 2. ComiZiijg
(1), and Lemmp EJ5, it follows tha(H) 6 (Q). O

E.6 Proof of Proposition[3.6

Proposition[3.6. Christo des' algorithm is a3N -approximation algorithm foMcT whenG is
node-capacitated and Euclidean.

Proof. Let G be a Welghted graph with the same topologyGasvith weightsd¥(i;j ) = s Tc(i) +
I(i;j )+ RO CDN(J)A(l oy - DenoteC the output of Christo des' algorithm when used &,
and denote&€ the optimal tour of3. Since Christo des' algorithm prowdes%rapproxmatlon to

Tsp, it follows thatd(€)  3dYC ). AsC€ andC are directed rings, it holddYC€) = do(C) and
d(C ) = do(C ). Using Lemma EJ3 it follows that

v 0y
(&= B _ O 3dAC) _ 3di(C) _ g

i i 2iCj 2jCj

Thus the graph obtained using only the edge€ i a3N -approximation algorithm foMcT when
G is node-capacitated and Euclidean. O

(C) 3N
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F Time Simulator

The time simulator reconstructs the wall-clock time. It requires the complete knowledge about the
underlay topology, i.e., the capacities of all physical links and the upload and download capacities for
each silo. For a given overlay topolo@ = (V; E), the purpose of the proposed time simulator
(Alg. h is to computet (k) = (tj(k)); ; . i-e., the time at which each silo starts computing for the

k-th time. The simulator needs to compute the delay required to send a message with a known size
on each physical link of the underlay. This delay is the sum of two terms [59]:

Latency: it is the time required by the rst transmitted bit to travel from the source to the
destination. The latency of a linfk j ) essentially depends on the length of the link and the
speed of the light in the link's transmission medium. We have estimated the latency using
the formula proposed in [32P:0085 distancéi;j ) + 4, where the distance is expressed

in kilometers and the latency in milliseconds. The latency of a path is the sum of the link
latencies.

Transmission Delay: it is the time between the reception of the rst bit of the message and
the reception of the last bit. It depends on the minimum available bandwidth along the path.

We compute it ad1= min TNU—P('J) l?NLEJ']);A(iO;j o .
i i
Finally, the simulator also accounts for the total time spent in computation by each node, that is the
product of the number of local step&nd the time needed to perform one local step (in milliseconds),
i.e.,s  Tc(i).

Algorithm 3: Time Simulator
Inpm: (li;j )(i;j )2G, ! (Tic)iz\/ y (CDN(i))izv and(CUP(i))izv
Result:t 2 RN K

1 for i 2V do

2 | ti(0)=0;

3 end

afor k2f1;:::;Kgdg 1
5| (k) =max . Bk 1)+ 16 )+ M LS.

min ?NUP('v) ;C.DN+(Jv) A% 9)
NG i

6 | ti(k)=ti(k)+s Te(i);
7 end
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(a) Available bandwidth between some pairs of sil@8) Available bandwidth measurements between Gaia
in Géant as computed through our model. sites [38, Fig. 2].

Figure 7: Our simulator with 1 Gbps capacity links generates a distribution of available bandwidths
with the same variability observed in real networks.

(a) Underlay (b) Star (c) MST (d) Ring

Figure 8: Géant Network: the underlay (a) and selected overlays computed when core links have 1 Gbps
capacity and access links have 10 Gbps capacity (b-d).

G Experiments Detailed Description

G.1 Networks and Communication model

We considered three real topologies frétncketfuel enginf94] (Exodus and Ebone) and from

The Internet Topology Zo@8] (Géant), and two synthetic topologies (AWS North-America and
Gaia) built from AWS data centeris [38,/96] (Taple 3). For the synthetic topologies, we consider a
full-meshed underlay. We assume all underlays support a shortest path routing with the geographical
distance (or equivalently the latency) as link cost. These topologies have between 11 and 87 nodes
located in the same continent with the exception of Gaia, which spans four continents. The Géant and
Ebone network connect European cities and Exodus network connect American cities. We considered
that each network node is connected to a geographically close silo by a symmetric access link.

Some underlays and examples of overlays are shown in Figijrgs 8,[9,]and 10.

G.2 Datasets and Models

We provide full details on datasets and models used in our experiments. We use multiple datasets
spanning a wide range of machine learning tasks (sentiment analysis, language modeling, image

classi cation, handwritten character recognition), including those used in prior work on federated
learning [72], and in LEAK [14] benchmark, and a cross-silo speci ¢ dataset based on iNaturalist [99].

iNaturalist dataset. iNaturalist [99] consists of images from over 8,000 different species of plants
and animals. We choose the dataset from iNaturalist 2018 competition which contains 450,000
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(a) Underlay (b) Star (c) MST (d) Ring

Figure 9:Gaia Network: the underlay (a) and selected overlays computed when core links have 1 Gbps capacity
and access links have 10 Gbps capacity (b-d).

(a) Underlay (b) Star (c) MST (d) Ring

Figure 10:AWS-North America Network: the underlay (a) and selected overlays computed when core links
have 1 Gbps capacity and access links have 10 Gbps capacity (b-d).

imageE] where the geo-locations of these images are provided. Due to a large class imbalance,
iNaturalist species classi cation is a tough learning task, which requires large computation resources.
In our experiments, we started by using a subset of the original iNaturalist dataset, selecting images
containing theBO most popular speci¢s. We have also conducted additional experiments on the
full iNaturalist dataset, whose corresponding results are presented in Appenfix H.4. We refer to the
complete dataset as Full-iNaturalist.

In order to simulate a realistic cross-silo environment with non-iid local datasets, one can assign the
images to the geographically closest silo obtaining local datasets different in size and in the species
represented. This distribution would lead some silos to have no point. We decided then to assign half
of the images uniformly at random and half to the closest silo. Moreover, since most of the images in
iNaturalist are from North America, for European networks such as Ebone and Géant, we mapped the
European cities westward by reducing their longitude by 90 degrees.[Table 4 shows that our method
generates quite unbalanced data distribution (e.g., for Ebone, one silo can have up to 50 times more
images than another one).

To classify iNaturalist images we netuned a pretrained ResNet-18 on ImageNet [22]. In particular
we used the torchvision [70] implementation of ResNet-18.

LEAF datasets. LEAF [14] is a benchmark framework for learning in federated settings. We used
three LEAF datasets in our experiments on AWS North America network where w@86kf the
samples randomly as our dat@Statistics for the corresponding data distributions are in '@ble 5.

FEMNIST (Federated ExtendeBINIST): A 62-class image classi cation dataset built by
partitioning the data of Extended MNIST based on the writer of the digits/characters. In our
experiments, we associate each silo with a random number of writers following a lognormal
distribution with mean equal td and standard deviation equalitb.

We train a convolutional neural network, similar to LeNet, with two convolutional layers
followed by a max-pooling layer and two fully connected layers.

2iNaturalist 2018 competition is part of theGV C® workshop at CVPR Https://github.com/
visipedia/inat_comp/blob/master/2018/README.md ).

“*The dataset size is reduced from 120GB to 18GB containing 67,000 images. We subsamp2&ddhen
from this dataset for training.

¥ pctually, the amount of data we considered is comparable to the federated learning paper [56]: we considered
10 times more data for FEMNIST and the same amount of data for Sentiment140 and Shakespeare.
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Table 4: Statistics of iNaturalist dataset distribution for different networks.

: Samples/silo
Network name Slloﬁ\/lean Stdev Min Max
Gaia 11 1213 1143 610 3981
AWS North America 22 606 731 113 3216
Géant 40 333 644 152 4261
Exodus 79 168 96 92 576
Ebone 87 153 394 68 3389

Table 5: Statistics of LEAF dataset distribution for AWS North America network (22 silos).

Samples/silo
Mean Stdev Min Max

Shakespeare 36359 6837 24207 50736
FEMNIST 6847 7473 196 26469
Sentiment140 13101 14273 424 50562

Dataset

Shakespeare A dataset built fromThe Complete Works of William Shakespearkich

is partitioned by the speaking rolés [72]. In our experiment, we associate each silo with a
random number of speaking roles following a lognormal distribution with mean eqgbal to
and standard deviation equalltb.

We consider character-level based language modeling on this dataset. The model takes
as input a sequence 800 English characters and predicts the next character. The model
embeds th@00characters into a learnakl® dimensional embedding space, and uses two
stacked-GRU layers witB56 hidden units, followed by a densely-connected layer.

Sentiment140[30]: An automatically generated sentiment analysis dataset that annotates
tweets based on their emoticons. In our experiment, we associate each silo with a random
number of Twitter accounts following a lognormal distribution with mean equ&laod
standard deviation equal 1o5.

We use a two layer bi-directional LSTM binary classi er containR&S hidden units with
pretrainedLO0dimensional GloVe embedding [82].

G.3 Implementation Details

Machines. The experiments have been run on a CPU/GPU cluster, with different GPUs available
(e.g., Nvidia Tesla V100, GeForce GTX 1080 Ti, and Titan X).

Libraries.  All code isimplemented in PyTorch Version 1.4.0. We offer two possibilities for running
the codesequentialusing only one GPU) anparallel (using multiple GPUSs). In the parallel setting
MPI backend is used for inter-GPU communications.

Hyperparameters. The dataset is randomly split into 8% training set and 20%testing set.
When training on Gaia, AWS North America, and Géant networks, the initial learning rate is set to
0.001 with Adam optimizer. When training on Exodus and Ebone networks, the initial learning rate
is set t00:1 with SGD optimizer. We decay the learning rate based on the inverse square root of the
number of communication rounds. The batch size is se1&for Sentiment140 and Shakespeare
datasets, ta28for Femnist dataset and fic for iNaturalist dataset.

Consensus Matrix. For a given overlayy, = (V; &), the consensus matri is selected similarly
to the local-degree rule in [62]. The weight on an arc is based on the larger in-degree of its two
incident nodes:

1
© lemax N; N

Ajj ; 8(i)) 2 Eo: (22)
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X
Ai;i =1 Ai;j ) 8i2V: (23)
j2N
The matrixA so-built is symmetric doubly stochastic. The weights can be determined in a fully-
distributed way: every node just needs to exchange degree information with its neighbours.

MATCHA. We implemented MATCHA as described jn [104] but for one difference In MATCHA,
each matching is selected independently with some probabitity With probabilityg= ~; (1 p),

no matching is selected and then no communication occurs. This is equivalent to perform a random
number of local steps between two communication rounds. In order to compare fairly the different
approaches and isolate the effecspfve xed s also for MATCHA as follows. Silos perform a given
number of local steps and then, when a communication should occur, matchings are independently
sampled until at least one of them is selected. In practice, in our experiments, the proljatiy

close to 0, so that the two approaches are practically undistinguishable. Finally, we observe that
MATCHA computes the matchings coloring an initial topology, but it is not explained how this initial
topology is selected. MATCHA and MATCHA operate exactly in the same way but starting from

two different initial topologies: the connectivity graf and the underlag, , respectively. The silos

can easily discover the connectivity gra@ reconstructing the underlay is much more complicated.
Nevertheless, as MATCHAwas in general outperforming MATCHA, we showed the results for
MATCHA™ .
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Table 6: iNaturalist training over different networkisGbps core links capacitie$Q Gbps access
links capacities. Five local computation steps.

. . Cycle time (ms) Ring's training speed-up
Network name | Silos Links STAR| MATCHA®) | MST| -MBST| RING|vs STAR| vs MATCHA®
Gaia [38] 11 | 55 | 4924|3293(329:3)|2397| 2398|2197| 1.79 1:50(1:50)
AWS NA[96] | 22 | 231 | 389.8|226:0(226:0)|191:3| 191:3(182:9| 1:40 1:24(1:24)
Géant|[[29] 40 | 61 | 736:0/5538(207:4)|2026| 2026|210:6| 3:49 2:63(2:96)
Exodus(us) [68] 79 | 147 |10134|695.0(243:8)|246:9| 246:9|2055| 3:95 2:25(1:18)
Ebone(eu) [68]| 87 | 161 |10032|681:6(224:9)|2232| 2232(196:9| 3:04 2:29(1:21)

Table 7: iNaturalist training over different networkisGbps core links capacitie$Q Gbps access
links capacities. Ten local computation steps.

. . Cycle time (ms) Ring's training speed-up
Network name  Silos, Links STAR| MATCHA®) | MST| -MBST| RING|vs STAR| vs MATCHA®
Gaia [36] 11 | 55 | 619:4|456:4(456:4)|366:7| 366:7|346:7| 1:79 1:32(1:32)
AWS NA[96] | 22 | 231 | 516:8|3532(353:2)|3183| 3183|3099| 0:69 0:47(0:47)
Géant|([29] 40 | 61 | 609.0/680:8(334:7)|3296| 3296|337:6| 0:90 1:00(1:98)
Exodus(us) [68] 79 | 147 |11404|8220(370:9)|3739| 373:9|3325| 1:52 1:10(1:23)
Ebone(eu) [68]| 87 | 161 [1130:2|808:6(352:1)[350:4| 350:4|3239| 1:74 |  1:25(1:09)

H Complete Set of Experiments

H.1 Effect of the number of local steps

Tableg § andf]7 show the effect of 6 different overlays when training ResNet-18 over iNaturalist
in networks with 1 Gbps core links and 10 Gbps access links and local steps equal to 5 and 10,
respectively. Fob local steps, the training time is evaluated as the time to reach a training accuracy
equal to65%, 55% 60%, 45%, and45%for Gaia, AWS North America, Géant, Exodus, and Ebone,
respectively. FollOlocal steps, the training time is evaluated as the time to reach a training accuracy
equal to65%, 50%, 50%, 45%, and40%, respectively.

H.2 Full results for training every dataset on AWS North America

In Figure[2, we have shown the training loss w.r.t. communication rounds and wall-clock time
when training four different datasets on AWS North America. Here we provide the complete results
(Figured TI-T4) which include training loss, training accuracy, test loss, and test accuracy w.r.t
communication rounds and wall-clock time.

H.3 Exploring other scenarios

In our experiments, we considered 5 underlays, for which we compared 6 different overlays (e.g., Ta-
ble[3). Moreover, we tested 4 different datasets (e.g.[Fig. 2) and 3 different values for the number
of local stepss = 1;5;10 (e.g., Table§]6 ar{d 7). We were not able to run experiments for all 360
possible combinations. In Figures| [5-24, we show some representative additional results. For each
experimental result, four metrics are shown including the train loss, train accuracy, test loss, and
test accuracy w.r.t. communication rounds and wall-clock time. The common observation is that the
RING converges faster than MATCHAand STAR in terms of wall-clock time. In some cases, the

test loss and accuracy of the model learned by the RING start becoming worse after some time, with
over tting being a possible explanation in some cases (see[Figs. [I5,]17, 40,Jand 22).
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(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 11:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training Shakespeare on AWS North America undefllagbps core links capacities,
100 Mbps access links capacitiess 1.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 12:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training FEMNIST on AWS North America underlaysbps core links capacities0Mbps
access links capacities= 1.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 13:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training Sentiment140 on AWS North America underlagbps core links capacities,
100 Mbps access links capacitiess= 1.
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(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 14:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training iNaturalist on AWS North America underta&bps core links capacities0Mbps
access links capacities= 1.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 15:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Gaia unde@aps
core links capacities,00 Mbps access links capacities= 1 .

(@) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 16:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on AWS North America
underlay.1 Gbps core links capacities)0 Mbps access links capacities= 1.
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(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 17:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Géant unde@bps
core links capacities,00 Mbps access links capacities= 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 18:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Exodus unde@baps
core links capacities,00 Mbps access links capacities= 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 19:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Ebone unde@bps
core links capacities, 00 Mbps access links capacities= 1 .
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(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 20:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Gaia unde@aps
core links capacities,00 Mbps access links capacities= 5 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 21:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on AWS North America
underlay.1 Gbps core links capacities)0 Mbps access links capacities+= 5.

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 22:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Géant unde@bps
core links capacities,00 Mbps access links capacities= 5 .
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(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 23:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Exodus unde@aps
core links capacitied,00 Mbps access links capacities= 5 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 24:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi cation model using iNaturalist on Ebone unde@bps
core links capacitied, 00 Mbps access links capacities= 5 .

H.4 Training on Full-iNaturalist dataset

Full-iNaturalist contains 450,000 images belonging to 8142 classes. The distribution of images across
classes is highly skewed. We randomly split them int@@% training set and 20%testing set,

and ne-tuned a pretained ResNet-50 on ImageNet from torchvision implementation for species
classi cation. When training on Gaia, AWS North America, and Géant networks, the initial learning
rate is set to 5e-5 with Adam optimizer. When training on Exodus and Ebone networks, the initial
learning rate is set t0:1 with SGD optimizer. We decay the learning rate by half every epoch.
The batch size is set @6. Because of the larger model siZE6:06 Mbits) and larger batch size
(compared with the iNaturalist setting in Taple 2), the computation time for one local update of the
model in this case increases3467 ms.

Half of the images are assigned uniformly at random, the other half are assigned to the geographically
closest silo. Tablg]8 shows that our method generates quite unbalanced data distributions (e.qg., for
Ebone, one silo can have up to 43 times more images than another one). Moreovef, Rigure 25 shows
pairwise Jenson-Shannon (JS) divergence [63] for label distributions at different silos under our
method and under a uniformly random repartition. The JS divergence across silos is larger when
the samples are distributed following our method, suggesting that novel data is far from being iid
distributed.

39



Table 8: Statistics of Full-iNaturalist dataset distribution for different networks.
Samples/silo

Network name S'losMean Stdev Min  Max
Gaia 11 37795 29986 19344 112745
AWS North America 22 18897 9915 10502 50727
Géant 40 10393 17535 5102 116498
Exodus 79 5262 3368 2710 18454
Ebone 87 4778 11222 2264 98886

(a) Gaia (b) AWS NA (c) Géant (d) Exodus (e) Ebone

Figure 25:Pairwise Jensen-Shannon divergence across silos labels distributions for Full-iNaturalist dataset on
different networks. The rst row is for data distributed with our method and the second row is for data distributed
uniformly at random.

Differently from the previous experiments, we did not set the consensus weights using the local
degree rule, but, for a given overlay, we computed the consensus ratvith the optimal spectral
properties. For undirected topologies, we solved the symmetric fast distributed linear averaging
problem[[62, Eqg. 17]. This problem is expressed as a semi-de nite program that is convex and can be
solved ef ciently. For the RING, the optimal consensus matrix has all the non-zero entries equal to
1=2.

Table[9 shows the effect of 6 different overlays when training ResNet-50 over Full-iNaturalist in
networks with capacities equal to 1 Gbps for core links and accesﬂrWe. can see that RING
always achieves the best throughput in this setting.

H.5 Dependence of model performance on underlays

The models obtained by the experiments in Table 3 have different performance w.r.t. the underlays.
The reason is that we chose to optimize the mean of local funcfine/hich leads to different
optimization problems when the number of silos changes. The observed difference in the trained
models' performances is related to the fact that each of them is the result of a different optimization
problem. Instead, when optimizing the weighted sum of local functions with weights equal to the
percentage of the data points held by silos, the model performance does not depend on the underlay.
To con rm this claim, we trained ResNet-18 on iNaturalist using the weighted average loss on STAR
topology over the ve underlays considered in the paper. Figufe 26 shows that the obtained models
for these ve underlays have similar performances, reaching a test accuracy bd¥éand48%

H.6 Effect of C, in MATCHA

There is no real con guration criterion f@2, in [104], but [104, Fig. 3] suggests to select the smallest

Cp that has the same spectral norm of vanilla-SGD—but less communication overhead. This criterion
leads to pick for all our topologies, but “AWS North America,” a valueCgf2 [0:4; 0:6], with no

signi cant change to the results in Tafle 3. For “AWS North America” the criterion lea@ to 0:2.

Training time is evaluated as the time to reach a top 5 training accuracy edi#ttor Gaia and tal3%
for other networks. The top 5 training accuracy reached by centralized training ResNet-50 after 50 epochs is
about20%.
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Table 9: Full-iNaturalist training over different networkisGbps core links capacitie$,Gbps access
links capacities. One local computation step=(1).

Network name Silos! Links Cycle time (ms) Ring's training speed-up
STAR | MATCHA® | MST| -MBST| RING|vsSTAR|  vs MATCHA®
Gaia [38] 11 | 55 | 4444|2721 (2721)1498 13631156| 3:84 | 12:10(1210)
AWS North America|[96] 22 | 231 | 7785|4384 (4384)1441] 12971119 6:96 2350 (2350)
Géant|[[29] 40 | 61 |135854912 (1894)1944 1464 1196|11:35 4:10 (1.58)
Exodus||68] 79 | 147 |262586180 (1825)2078 14811194 (1374 2:59 (0:96)
Ebone [68] 87 | 161 |287538045 (1933)2448 1481/1178|1952 5:80 (1:39)

(a) Training loss vs Rounds (b) Test accuracy vs Rounds

Figure 26: The model performance of training iNaturalist on STAR overlays of ve different underlays:
Gaia, AWS North America, Géant, Exodus and Ebone.

Table[ 10, rst row, shows indeed that MATCHA is faster 105 = 0:2, but still RING is1:08 and

3:29 faster than MATCHA for 10 Gbps and 100 Mbps access links capacities, respectively. The table
shows also that this criterion does not lead necessarily to the fastest training time for MATCHA. An
alternative is to seled@,, by running time-consuming training experiments, but in any case we have
always observed RING to outperform MATCHA except on Géant (see [Table 3 and Table 10). Note
that MATCHA is supposed to nd by itself how often to use each link and “achieve a win-win in this
error-runtime trade-off foany arbitrary network topology{L04]. We ran additional experiments

with MATCHA over our topologies (for the RING we considered its undirected version as MATCHA
uses bi-directional communications); however, MATCHA was still slower than RING (last two rows

in Table[10).

Table 10: RING's training speed-up vs MATCHA when training iNaturalist on AWS-North America
network. MATCHA runs on top of underlay, RING, anedMBST with different values of communi-
cation budgeCy,. 1 Gbps core links capacities. The star denotes the resultsGyitiet according to
[104, Fig. 3]. Bold fonts denote the optimal setting @y.

Access links capacities || 10Gbps [ 100Mbps
Communication budget(Cy,)||1:0 |0:8 |0:6 |0:5 |0:4 |0:2 |01 || 1:0 | 0:8 | 0:6 |0:5 |0:4 |0:2 |01
MATCHA over underlay  |[2:02 |1:43|1:57|1:47|1:46|1:08 |1:38||18:85 |1256/12:00|9:94(8:18|3:29 |2:44
MATCHA over -MBST |[1:10 [1:25/1:33|1:12/1:41/1:89 |2:28|| 2:08 | 2:26| 1:56|1:45|1:31|1:15 |1.15
MATCHA over RING 1:00 |1:42/1:40|1:15]1:26|1:35 |1:34|| 1:00 | 2:15| 1:92|1:47|1:54|1:41 |1:28
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