
�>���G �A�/�, �?���H�@�y�j�y�y�d�3�j�9

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�j�y�y�d�3�j�9�p�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�d �L�Q�p �k�y�k�y

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�h�?�`�Q�m�;�?�T�m�i�@�P�T�i�B�K���H �h�Q�T�Q�H�Q�;�v �.�2�b�B�;�M �7�Q�` �*�`�Q�b�b�@�a�B�H�Q
�6�2�/�2�`���i�2�/ �G�2���`�M�B�M�;

�P�i�?�K���M�2 �J���`�7�Q�[�- �*�?�m���M �s�m�- �:�B�Q�p���M�M�B �L�2�;�H�B���- �_�B�+�?���`�/ �o�B�/���H

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�P�i�?�K���M�2 �J���`�7�Q�[�- �*�?�m���M �s�m�- �:�B�Q�p���M�M�B �L�2�;�H�B���- �_�B�+�?���`�/ �o�B�/���H�X �h�?�`�Q�m�;�?�T�m�i�@�P�T�i�B�K���H �h�Q�T�Q�H�Q�;�v �.�2�b�B�;�M
�7�Q�` �*�`�Q�b�b�@�a�B�H�Q �6�2�/�2�`���i�2�/ �G�2���`�M�B�M�;�X �L�2�m�`�A�S�a �k�y�k�y �@ �j�9�i�? �*�Q�M�7�2�`�2�M�+�2 �Q�M �L�2�m�`���H �A�M�7�Q�`�K���i�B�Q�M �S�`�Q�+�2�b�b�B�M�;
�a�v�b�i�2�K�b�- �.�2�+ �k�y�k�y�- �o���M�+�Q�m�p�2�` �f �P�M�H�B�M�2�- �*���M���/���X ���?���H�@�y�j�y�y�d�3�j�9�p�k��

https://hal.inria.fr/hal-03007834v2
https://hal.archives-ouvertes.fr

Throughput-Optimal Topology Design
for Cross-Silo Federated Learning

Othmane Marfoq
Inria, Université Côte d'Azur,

Accenture Labs,
Sophia Antipolis, France
othmane.marfoq@inria.fr

Chuan Xu
Inria, Université Côte d'Azur,

Sophia Antipolis, France
chuan.xu@inria.fr

Giovanni Neglia
Inria, Université Côte d'Azur,

Sophia Antipolis, France
giovanni.neglia@inria.fr

Richard Vidal
Accenture Labs,

Sophia Antipolis, France
richard.vidal@accenture.com

Abstract

Federated learning usually employs a server-client architecture where an orches-
trator iteratively aggregates model updates from remote clients and pushes them
back a re�ned model. This approach may be inef�cient in cross-silo settings, as
close-by data silos with high-speed access links may exchange information faster
than with the orchestrator, and the orchestrator may become a communication
bottleneck. In this paper we de�ne the problem of topology design for cross-silo
federated learning using the theory of max-plus linear systems to compute the sys-
tem throughput—number of communication rounds per time unit. We also propose
practical algorithms that, under the knowledge of measurable network character-
istics, �nd a topology with the largest throughput or with provable throughput
guarantees. In realistic Internet networks with 10 Gbps access links at silos, our
algorithms speed up training by a factor 9 and 1.5 in comparison to the server-client
architecture and to state-of-the-art MATCHA, respectively. Speedups are even
larger with slower access links.

1 Introduction

Federated learning (FL) “involves training statistical models over remote devices or siloed data
centers, such as mobile phones or hospitals, while keeping data localized” [56] because of privacy
concerns or limited communication resources. The de�nition implicitly distinguishes two different
settings [41]: thecross-devicescenario including a large number (millions or even more) of unreliable
mobile/edge devices with limited computing capabilities and slow Internet connections, and thecross-
silo scenario with at most a few hundreds of reliable data silos with powerful computing resources
and high-speed access links. While the �rst FL papers [72, 51] emphasized the cross-device setting,
the cross-silo scenario has become popular for distributed training among banks [107], hospitals [19,
93, 69], pharmaceutical labs [67], and manufacturers [74].

In federated learning, clients (e.g., mobile devices or whole organizations) usually train the model
through an iterative procedure under the supervision of a central orchestrator, which, for example,
decides to launch the training process and coordinates training advances. Often—e.g., in FedAvg [72],
SCAFFOLD [45], and FedProx [57]—the orchestrator directly participates to the training, by aggre-
gating clients' updates, generating a new model, and pushing it back to the clients. Hence, clients
only communicate with a potentially far-away (e.g., in another continent) orchestrator and do not

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

exploit communication opportunities with close-by clients. This choice is justi�ed in the cross-device
setting, where inter-device communication is unreliable (devices may drop-out from training at any
time) and slow (a message needs to traverse two slow access links). But in the cross-silo setting,
data silos (e.g., data centers) are almost always available, enjoy high-speed connectivity comparable
to the orchestrator's one, and may exchange information faster with some other silos than with
the orchestrator. An orchestrator-centered communication topology is then potentially inef�cient,
because it ignores fast inter-silo communication opportunities and makes the orchestrator a candidate
for congestion. A current trend [104, 18, 100, 95, 7, 49, 53] is then to replace communication
with the orchestrator by peer-to-peer communications between individual silos, which perform local
partial aggregations of model updates. We also consider this scenario and study how to design the
communication topology.

The communication topology has two contrasting effects on training duration. First, a more connected
topology leads to faster convergence in terms of iterations or communication rounds, as quanti�ed by
classic worst-case convergence bounds in terms of the spectral properties of the topology [75, 24, 89,
90, 103, 40]. Second, a more connected topology increases the duration of a communication round
(e.g., it may cause network congestion), motivating the use of degree-bounded topologies where every
client sends and receives a small number of messages at each round [5, 61]. Recent experimental
and theoretical work suggests that, in practice,the �rst effect has been over-estimated by classic
worst-case convergence bounds. Reference [79] partially explains the phenomenon and overviews
theoretical results proving asymptotic topology-independence [61, 81, 5]. [50, Sect. 6.3] extends
some of the conclusions in [79] to dynamic topologies and multiple local updates. Experimental
evidence on image classi�cation tasks ([79, Fig. 2], [66, Fig 20.], [61, Fig. 3]) and natural language
processing tasks ([61, Figs. 13-16]) con�rms this �nding. Motivated by these observations, this paper
focuses on the effect of topology on the duration of communication rounds.

Only a few studies have designed topologies taking into account the duration of a communication
round. Under the simplistic assumption that the communication time is proportional to node degree,
MATCHA [104] decomposes the set of possible communications into matchings (disjoint pairs of
clients) and, at each communication round, randomly selects some matchings and allows their pairs to
transmit. MATCHA chooses the matchings' selection probabilities in order to optimize the algebraic
connectivity of the expected topology. Reference [78] studies how to select the degree of a regular
topology when the duration of a communication round is determined by stragglers [44, 55]. Apart
from these corner cases, “how to design a [decentralized] model averaging policy that achieves the
fastest convergence remains an open problem” [41].

Our paper addresses this open problem. It uses the theory of linear systems in the max-plus al-
gebra [6] to design cross-silo FL topologies that minimize the duration of communication rounds,
or equivalently maximize the systemthroughput, i.e., the number of completed rounds per time
unit. The theory holds for synchronous systems and has been successfully applied in other �elds
(e.g., manufacturing [16], communication networks [54], biology [12], railway systems [31], and
road networks [25]). Synchronous optimization algorithms are often preferred for federated learn-
ing [9], because they enjoy stronger convergence guarantees than their asynchronous counterparts
and can be easily combined with cryptographic secure aggregation protocols [8], differential privacy
techniques [1], and model and update compression [111, 101, 88, 13].

To the best of our knowledge, this paper is the �rst work to take explicitly in consideration all
delay components contributing to the total training time including computation times, link latencies,
transmission times, and queueing delays. It complements the topology design approaches listed
above that only account for congestion at access links [104] and straggler effect [78].

The algorithms we propose (Sect. 3) are either optimal or enjoy guaranteed approximation factors.
Numerical results in Sect. 4 show signi�cant training speed-up in realistic network settings; the
slower the access links, the larger the speedups.

2

(a) UnderlayGu = (V [V 0; Eu) (b) Connectivity graphGc = (V; Ec) (c) OverlayGo = (V; Eo)

Figure 1: Examples for underlay, connectivity graph, and overlay, with routers (blue nodes), silos
(red nodes), underlay links (solid black lines), and information exchanges (dashed lines).

2 Problem Formulation

2.1 Machine Learning Training

We consider a network ofN siloed data centers who collaboratively train a global machine learning
model, solving the following optimization problem:

minimize
w 2 Rd

NX

i =1

pi E� i [f i (w ; � i)] ; (1)

wheref i (w ; � i) is the loss of modelw at a sample� i drawn from data distribution at siloi and the
coef�cient pi > 0 speci�es the relative importance of each silo, with two natural settings beingpi
equal to1 or to the size of siloi 's local dataset [56]. In the rest of the paper we considerpi = 1 , but
our analysis is not affected by the choice ofpi .

In order to solve Problem(1) in an FL scenario, silos do not share the local datasets, but periodically
transmit model updates, and different distributed algorithms have been proposed [57, 72, 58, 45,
104, 52, 103]. In this paper we consider as archetype the decentralized periodic averaging stochastic
gradient descent (DPASGD) [103], where silos are represented as vertices of a communication graph
that we calloverlay. Each siloi maintains a local modelw i and performss mini-batch gradient
updates before sending its model to a subset of silosN �

i (its out-neighbours in the overlay). It then
aggregates its model with those received by a (potentially different) set of silosN +

i (its in-neighbours).
Formally, the algorithm is described by the following equations:

w i (k + 1) =

(P
j 2N +

i [f i g A i;j w j (k) ; if k � 0 (mod s + 1) ;

w i (k) � � k
1
m

P m
h=1 r f i

�
w i (k) ; � (h)

i (k)
�

; otherwise:
(2)

wherem is the batch size,� k > 0 is a potentially varying learning rate, andA 2 RN � N is a matrix
of non-negative weights, referred to as theconsensus matrix. For particular choices of the matrixA
and the number of local updatess, DPASGD reduces to other schemes previously proposed [61, 58,
110], including FedAvg [72], where the orchestrator just performs the averaging step (this corresponds
to its local loss functionf i (:) being a constant). Convergence of (2) was proved in [103].

In this paper we study how to design the overlay in order to minimize the training time. While we
consider DPASGD, our results are applicable to any synchronous iterative algorithm where each silo
alternates a local computation phase and a communication phase during which it needs to receive
inputs from a given subset of silos before moving to the next computation phase. This includes the
distributed algorithms already cited, as well as push-sum training schemes [5, 91, 87, 76, 23, 98, 109]
and in general theblack-box optimization proceduresas de�ned in [90].

2.2 Underlay, Connectivity graph, and Overlay

FL silos are connected by a communication infrastructure (e.g., the Internet or some private net-
work), which we callunderlay. The underlay can be represented as a directed graph (digraph)
Gu = (V [V 0; Eu), whereV denotes the set of silos,V0 the set of other nodes (e.g., routers) in the
network, andEu the set of communication links. For simplicity, we consider that each siloi 2 V is
connected to the rest of the network through a single link(i; i 0), wherei 0 2 V 0, with uplink capacity
CUP(i) and downlink capacityCDN(i). The example in Fig. 1 illustrates the underlay and the other
concepts we are going to de�ne.

3

Theconnectivity graphGc = (V; Ec) captures the possible direct communications among silos. Often
the connectivity graph is fully connected, but speci�c NAT or �rewall con�gurations may prevent
some pairs of silos to communicate. If(i; j) 2 Ec, i can transmit its updated model toj . The message
experiences a delay that is the sum of two contributions: 1) an end-to-end delayl(i; j) accounting for
link latencies, and queueing delays long the path, and 2) a term depending on the model sizeM and
theavailable bandwidth1 A(i; j) of the path. Each pair of silos(i; j) can use probing packets [39, 84,
38] to measure end-to-end delays and available bandwidths and communicate them to the orchestrator,
which then designs the topology. We assume that in the stable cross-silo setting these quantities do
not vary or vary slowly, so that the topology is recomputed only occasionally, if at all.

The training algorithm in(2) does not need to use all potential connections. The orchestrator can
select a connected subgraph ofGc. We call such subgraphoverlayand denote it byGo = (V; Eo),
whereEo � E c. Only nodes directly connected inGo will exchange messages. We can associate a
delay to each link(i; j) 2 Eo, corresponding to the time interval between the beginning of a local
computation at nodei , and the receiving ofi 's updated model byj :

do(i; j) = s� Tc(i)+ l(i; j)+
M

A(i; j)
= s� Tc(i)+ l(i; j)+

M

min
�

CUP(i)
jN �

i j
; CDN(j)

jN +
j j

; A(i 0; j 0)
� ; (3)

whereTc(i) denotes the time to compute one local update of the model. We also de�nedo(i; i) =
s � Tc(i). Equation(3) holds under the following assumptions. First, each siloi uploads its model
in parallel to its out-neighbours inN �

i (with a rate at mostCUP(i)=jN �
i j). Second, downloads at

j happen in parallel too. While messages from different in-neighbours may not arrive at the same
time atj 's downlink, their transmissions are likely to partially overlap. Finally, different messages do
not interfere signi�cantly in the core network, where they are only a minor component of the total
network traf�c (A(i 0; j 0) does not depend onGo).

Borrowing the terminology from P2P networks [71] we call a networkedge-capacitatedif access
links delays can be neglected, otherwise we say that it isnode-capacitated. While in cross-device FL
the network is de�nitely node-capacitated, in cross-silo FL—the focus of our work—silos may be
geo-distributed data centers or branches of a company and then have high-speed connections, so that
neglecting access link delays may be an acceptable approximation.

Our model is more general than those considered in related work: [104] considersdo(i; j) =
M � jN �

i j=CUP(i) and [78] considersdo(i; j) = Tc(i) (but it accounts for random computation
times).

2.3 Time per Communication Round (Cycle Time)

Let t i (k) denote the time at which workeri starts computingwi ((s + 1) k + 1) according to(2) with
t i (0) = 0 . As i needs to wait for the inputswj ((s + 1) k) from its in-neighbours, the following
recurrence relation holds

t i (k + 1) = max
j 2N +

i [f i g
(t j (k) + do(j; i)) : (4)

This set of relations generalizes the concept of a linear system in the max-plus algebra, where the
max operator replaces the usual sum and the+ operator replaces the usual product. We refer the
reader to [6] for the general theory of such systems and we present here only the key results for our
analysis.

We call the time interval betweent i (k) andt i (k + 1) a cycle. The average cycle time for siloi
is de�ned as� i = lim k !1 t i (k)=k. The cycle time 1) does not depend on the speci�c silo (i.e.,
� i = � j) [6, Sect. 7.3.4], and 2) can be computed directly from the graphGo [6, Thm. 3.23]. In fact:

� (Go) = max

do()
j j

; (5)

where is a generic circuit, i.e., a path(i 1; : : : ; i p = i 1) where the initial node and the �nal node
coincide,j j = p is the length of the circuit, anddo() =

P p� 1
k=1 do(i k ; i k+1) is the sum of delays

1The available bandwidth of a path is the maximum rate that the path can provide to a �ow, taking into
account the rest of the traf�c [15, 39]; it is then smaller than the minimum link capacity of the path.

4

Table 1: Algorithms to design the overlayGo from the connectivity graphGc.
Network Conditions Algorithm Complexity Guarantees

Edge-capacitated UndirectedGo Prim's Algorithm [85] O(jEcj + jVj log jVj) Optimal solution (Prop. 3.1)
Edge/Node-capacitated EuclideanGc Christo�des' Algorithm [73] O(jVj2 log jVj) 3N -approximation (Prop. 3.3,3.6)

Node-capacitated
EuclideanGc
and undirectedGo

Algorithm 1 (Appendix D) O(jEcjjVj log jVj) 6-approximation (Prop. 3.5)

on . A circuit of Go is calledcritical if � (Go) = do()=j j. There exist algorithms with different
complexity to compute the cycle time [46, 20].

The cycle time is a key performance metric for the system because the differencejt i (k) � � (Go) � kj
is bounded for allk � 0 so that, for large enoughk, t i (k) � � (Go) � k. In particular, the inverse
of the cycle time is thethroughputof the system, i.e., the number of communication rounds per
time unit. An overlay with minimal cycle time minimizes the time required for a given number of
communication rounds. This observation leads to our optimization problem.

2.4 Optimization Problem

Given a connectivity graphGc, we want the overlayGo to be a strong digraph (i.e., a strongly
connected directed graph) with minimal cycle time. Formally, we de�ne the followingMinimal Cycle
Timeproblem:

Minimal Cycle Time (MCT)
Input: A strong digraphGc =(V; Ec), f CUP(i); CDN(j); l (i; j); A(i 0; j 0); Tc(i); 8(i; j) 2 Ecg.
Output: A strong spanning subdigraph ofGc with minimal cycle time.

Note that the input does not include detailed information about the underlayGu , but only information
available or measurable at the silos (see Sect. 2.2). To the best of our knowledge, our paper is the �rst
effort to studyMCT. The closest problem considered in the literature is, for a given overlay, to select
the largest delays that guarantee a minimum throughput [28, 21].

3 Theoretical Results and Algorithms

In this section we present complexity results forMCT and algorithms to design the optimal topology
in different settings. Table 1 lists these algorithms, their time-complexity, and their guarantees. We
note that in some cases we adapt known algorithms to solveMCT. All proofs and auxiliary lemmas
are in Appendix E.

3.1 Edge-capacitated networks

Remember that we call a network edge-capacitated if access links delays can be neglected, as it is
for example the case whenever1

N � min (CUP(i); CDN(j)) � A(i 0; j 0) for each(i; j) 2 Ec. In this
setting (3) becomes

do(i; j) = s � Tc(i) + l(i; j) +
M

A(i 0; j 0)
; (6)

and then the delay between two silos does not depend on the selected overlayGo.

FL algorithms often use anundirectedoverlay with symmetric communications, i.e.,(i; j) 2 Eo)
(j; i) 2 Eo. This is the case of centralized schemes, like FedAvg, but is also common for other
consensus-based optimization schemes where the consensus matrixA is required to be doubly-
stochastic [77, 87, 103]—a condition simpler to achieve whenGo is undirected.

When building an undirected overlay, we can restrict ourselves to consider trees as solutions ofMCT
(Lemma E.1). In fact, additional links can only increase the number of circuits and then increase
the cycle time (see(5)). Moreover, we can prove that the overlay has simple critical circuits of
the form = (i; j; i), for which do()=j j = (do(i; j) + do(j; i))=2 (Lemma E.2). Intuitively, if
we progressively build a tree using the links inGc with the smallest average of delays in the two
directions, we obtain the overlay with minimal cycle time. This construction corresponds to �nding a
minimum weight spanning tree (MST) in an opportune undirected version ofGc:

5

Proposition 3.1. Consider an undirected weighted graphG(u)
c = (V; E(u)

c), where(i; j) 2 E(u)
c iff

(i; j) 2 Ec and(j; i) 2 Ec and where(i; j) 2 E(u)
c has weightd(u)

c (i; j) = (do(i; j) + do(j; i))=2.
A minimum weight spanning tree ofG(u)

c is a solution ofMCT whenGc is edge-capacitated andGo is
required to be undirected.

Prim's algorithm [85] is an ef�cient algorithm to �nd an MST with complexityO(jEcj + jVj log jVj)
and then suited for the usual cross-silo scenarios with at most a few hundred nodes [41].

We have pointed out a simple algorithm when the overlay is undirected, but directed overlays can
have arbitrarily shorter cycle times than undirected ones even in simple settings where all links in the
underlay are bidirectional with identical delays in the two directions (see Appendix C). Unfortunately,
computing optimal directed overlays is NP-hard:

Proposition 3.2. MCT is NP-hard even whenGc is a complete Euclidean edge-capacitated graph.

We call a connectivity graphGc Euclideanif its delaysdc(i; j) , s � Tc(i) + l(i; j) + M=A(i 0; j 0)
are symmetric (dc(i; j) = dc(j; i); 8i; j 2 V) and satisfy the triangle inequality (dc(i; j) � dc(i; k) +
dc(k; j); 8i; j; k 2 V). These assumptions are roughly satis�ed for geographically distant computing
clusters with similar computation times, as the delay to transmit a message between two silos is
roughly an af�ne function of the geodesic distance between them [32]. Under this conditionMCT
can be approximated:

Proposition 3.3. Christo�des' algorithm [73] is a3N -approximation algorithm forMCT whenGc
is edge-capacitated and Euclidean.

The result follows from Christo�des' algorithm being a 1.5-approximation algorithm for the Travelling
Salesman Problem [73], and our proof shows that a solution of the Travelling Salesman Problem
provides a2N -approximation of MCT. Note that Christo�des' algorithm �ndsring topologies.

3.2 Node-capacitated networks

When silos do not enjoy high-speed connectivity, congestion at access links can become the dominant
contribution to network delays, especially when one silo communicates with many others. Intuitively,
in this setting, good overlays will exhibit small degrees.

If Go is required to be undirected,MCT can be reduced from the problem of �nding the minimum
bottleneck spanning tree with bounded degree� > 1 (� -MBST for short),2 which is NP-hard.

Proposition 3.4. In node-capacitated networksMCT is NP-hard even when the overlay is required
to be undirected.

We propose Algorithm 1 (see Appendix D), which combines existing approximation algorithms for
� -MBST on a particular graph built fromGc.

Proposition 3.5. Algorithm 1 is a6-approximation algorithm forMCT whenGc is node-capacitated

and Euclidean withCUP(i) � min
�

CDN(j)
N ; A(i 0; j 0)

�
, 8(i; j) 2 Ec, and Go is required to be

undirected.

Finding directed overlays is obviously an NP-hard problem also for node-capacitated networks.
Christo�des' algorithm holds its approximation factor also in this more general case:

Proposition 3.6. Christo�des' algorithm is a3N -approximation algorithm forMCT whenGc is
node-capacitated and Euclidean.

4 Numerical Experiments

We adapted PyTorch with the MPI backend to run DPASGD (see(2)) on a GPU cluster. We
also developed a separate network simulator that takes as input an arbitrary underlay topology
described in the Graph Modelling Language [36] and silos' computation times and calculates the
time instants at which local modelsw i (k) are computed according to(2) (Appendix F). While

2A � -MBST is a spanning tree with degree at most� in which the largest edge delay is as small as possible.

6

Table 2: Datasets and Models. Mini-batch gradient computation time with NVIDIA Tesla P100.

Dataset Task Samples Batch Model Parameters Model Size Computation
(x 103) Size (x 103) (Mbits) Time (ms)

Shakespeare [14, 72] Next-Character Prediction4; 226 512 Stacked-GRU [17] 840 3:23 389:6
FEMNIST [14] Image classi�cation 805 128 2-layers CNN 1; 207 4.62 4.6
Sentiment140 [30] Sentiment analysis 1; 600 512 GloVe [82]+ LSTM [37] 4; 810 18:38 9:8
iNaturalist [99] Image classi�cation 450 16 ResNet-18 [35] 11; 217 42:88 25:4

Table 3: iNaturalist training over different networks.1 Gbps core links capacities,10Gbps access
links capacities. One local computation step (s = 1).

Network name Silos Links Cycle time (ms) Ring's training speed-up
STAR MATCHA (+) MST � -MBST RING vs STAR vs MATCHA(+)

Gaia [38] 11 55 391 228 (228) 138 138 118 2:65 1:54 (1:54)
AWS North America [96] 22 231 288 124 (124) 90 90 81 3:41 1:47 (1:47)
Géant [29] 40 61 634 452 (106) 101 101 109 4:85 3:46 (0:81)
Exodus [68] 79 147 912 593 (142) 145 145 103 8:78 5:71 (1:37)
Ebone [68] 87 161 902 580 (123) 122 122 95 8:83 6:09 (1:29)

PyTorch trains the model as fast as the cluster permits, the network simulator reconstructs the real
timeline on the considered underlay. The code is available athttps://github.com/omarfoq/
communication-in-cross-silo-fl .

We considered three real topologies fromRocketfuel engine[94] (Exodus and Ebone) and fromThe
Internet Topology Zoo[48] (Géant), and two synthetic topologies (AWS North-America and Gaia)
built from the geographical locations of AWS data centers [38, 96] (Table 3). These topologies have
between 11 and 87 nodes located in the same continent with the exception of Gaia, which spans four
continents. We considered that each node is connected to a geographically close silo by a symmetric
access link. See Appendixes G and H for a detailed description of the experiments and additional
results.

We evaluated our solutions on three standard federated datasets from LEAF [14] and on iNaturalist
dataset [99] with geolocalized images from over 8,000 different species of plants and animals
(Table 2). For LEAF datasets, we generated non-iid data distributions following the procedure in [57].
For iNaturalist we assigned half of the images uniformly at random and half to the closest silo
obtaining local datasets different in size and in the species represented (Appendix G).

Table 3 shows the effect of 6 different overlays when training ResNet-18 over iNaturalist in networks
with capacities equal to 1 Gbps and 10 Gbps for core links and access links, respectively.3 These
overlays are(1) the STAR, corresponding to the usual server-client setting, where the orchestrator
(located at the node with the highest load centrality [11]) averages all models at each communication
round,(2) a dynamic topology built from MATCHA starting from the connectivity graph,(3) one
built starting from the underlay and denoted as MATCHA+ (in both cases MATCHA's parameterCb
equals0:5 as in experiments in [104]4), (4) the minimum spanning tree (MST) from Prop. 3.1,(5) the
� -minimum bottleneck tree (� -MBST) from Prop. 3.5, and(6) the directed RING from Prop. 3.6. In
this particular setting,� -MBST selects the same overlay as MST. The consensus matrixA is selected
according to the local-degree rule [62].5

The overlays found by our algorithms achieve a higher throughput (smaller cycle time) than the STAR
(the server-client architecture) and, in most cases, than state-of-the-art MATCHA(+) . 6 In particular,

3The delay in the core network is determined by the available bandwidth as in(3). Available bandwidths are
often limited to tens or hundreds of Mbps even over inter-datacenter links with capacities between 100 Gbps and
1 Tbps [38, 65, 83, 47]. By selecting1 Gbps core links in our simulator, which ignores other traf�c, we obtain
available bandwidth distributions comparable to those observed in experimental studies like [38] (Appendix G).

4Additional experiments �ne tuningCb were carried out, conclusions remain the same (Appendix H.6).
5Additional experiments were conducted selecting the matrixA as solution of the fastest distributed linear

averaging problem de�ned in [62] (Appendix H.4).
6As MATCHA and MATCHA(+) select random overlays at each iteration, we compute their average cycle

time.

7

https://github.com/omarfoq/communication-in-cross-silo-fl
https://github.com/omarfoq/communication-in-cross-silo-fl

(a) Shakespeare (b) FEMNIST (c) Sentiment140 (d) iNaturalist

Figure 2:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training four different datasets on AWS North America underlay.1 Gbps core links capacities,
100Mbps access links capacities,s = 1 .

the RING is between 3.3 (� 391=118on Gaia) and 9.4 (� 902=95on Ebone) times faster than the
STAR and between 1.5 and 6 times faster than MATCHA. MATCHA+ relies on the knowledge of
the underlay—probably an unrealistic assumption in an Internet setting—while our algorithms only
require information about the connectivity graph. Still, the RING is also faster than MATCHA+ but
on Géant network (where MST is the fastest overlay). From now on, we show only the results for
MATCHA+ , as it outperforms MATCHA.

The �nal training time is the product of the cycle time and the number of communication rounds
required to converge. The overlay also in�uences the number of communication rounds, with sparser
overlays demanding more rounds [75, 24]. The last two columns in Table 3 show that this is a second
order effect: the RING requires at most 20% more communication rounds than the STAR and then
maintains almost the same relative performance in terms of the training time.7 These results (and
those in Fig. 2) con�rm that the number of communication rounds to converge is weakly sensitive
to the topology (as already observed in [61, 60, 49, 66] and partially explained in [86, 5, 79]). The
conclusion is that overlays should indeed be designed for throughput improvement rather than to
optimize their spectral properties: the topologies selected by our algorithms achieve faster training
time than the STAR, which has optimal spectral properties, and MATCHA/MATCHA(+) , which
optimize spectral properties given a communication budget.

The same qualitative results hold for other datasets and Fig. 2 shows the training loss versus the number
of communication rounds (top row) and versus time (bottom row) when training on AWS North
America with 100 times slower access links. Other metrics for model evaluation (e.g., training/test
accuracy) are shown in Appendix H.2. The advantage of designing the topology on the basis of the
underlay characteristics is evident also in this setting.

Figure 3 illustrates the effect of access link speeds on the cycle time and the training time. When all
silos have the same access link capacity (Fig. 3a), for capacity values smaller than 6 Gbps, the RING
has the largest throughput followed by� -MBST, MST and MATCHA+ almost paired, and �nally
the STAR. The advantage of topologies with small nodes' degrees (like� -MBST and the RING) is
someway expected in the slow access link regime, as access link delays become the dominant term
in (3). In particular, Eq.(5) and some simple calculations in Appendix B show that, withN silos, the
RING is up to2N (=80 for Géant) times faster than the STAR andCb � max(degree(Gu)) (= 5 for
Géant) times faster then MATCHA(+) for slow access links as con�rmed in Fig. 3a (left plot). What
is less expected (but aligned with our observations above about the importance to design overlays
for throughput improvement) is that RING's throughput speedups lead to almost as large training

7Training time is evaluated as the time to reach a training accuracy equal to65%, 55%, 55%, 50%and50%
for Gaia, AWS North America, Géant, Exodus, and Ebone networks, respectively. Note that data distribution is
different in each network, so that a different global model is learned when solving Problem(1) (see explanations
in Appendix H.5).

8

(a) Homogeneous access link capacities (b) Central node with10 Gbps access link capacity

Figure 3:Effect of access link capacities on the cycle time and the training time when training iNaturalist on
Géant network.1 Gbps core links capacities,s = 1 . (3a): All access links have the same capacity. (3b): One
node (the center of the star) has a �xed 10 Gbps access link capacity. The training time is the time when training
accuracy reaches55%.

Figure 4: Throughput speedup in comparison to the STAR, when training iNaturalist over Exodus
network. All links with1 Gbps capacity.

time speedups, even larger than those in Table 3: e.g. 72x in comparison to the STAR and 5.6x in
comparison to MATCHA+ for 100 Mbps access link capacities.

When the most central node (which is also the center of the STAR) maintains a �xed capacity value
equal to10 Gbps (Fig. 3b), the STAR performs better, but still is twice slower than the RING and
only as fast as� -MBST. This result may appear surprising at �rst, but it is another consequence of
Eq. (5) discussed in Appendix B. Again the relative performance of different overlays in terms of
throughput is essentially maintained when looking at the �nal training time, with differences across
topologies emerging only for those with very close throughputs, i.e., MST and MATCHA+ , and
STAR and� -MBST in the heterogeneous setting of Fig. 3b.

When local computation requires less time than transmission of model updates, the silo may perform
s local computation steps before a communication round. Ass increases, the total computation time
(s � Tc(i)) becomes dominant in(3) and the throughput of different overlays become more and more
similar (Fig. 4).8 Too many local steps may degrade the quality of the �nal model, and how to tunes
is still an open research area [106, 105, 102, 64, 108, 50]. Our next research goal is to study this
aspect in conjunction with topology design. Intuitively, a faster overlay reduces the number of local
steps needed to amortize the communication cost and may lead to better models given the available
time budget for training.

5 Conclusions

We used the theory of max-plus linear systems to propose topology design algorithms that can
signi�cantly speed-up federated learning training by maximizing the system throughput. Our results
show that this approach is more promising than targeting topologies with the best spectral properties,
as MATCHA(+) does. In future work, we will explore how to further speed-up training, e.g., by
enriching the topologies found by our algorithms with additional links that improve connectivity
without decreasing the throughput, and by carefully optimizing the weights of the consensus matrix.

8In Appendix H.1, we show tables similar to Table 3 for different values ofs.

9

6 Broader Impact

We have proposed topology design algorithms that can signi�cantly speed-up federated learning in a
cross-silo setting. Improving the ef�ciency of federated learning can foster its adoption, allowing
different entities to share datasets that otherwise would not be available for training.

Federated learning is intended to protect data privacy, as the data is not collected at a single point. At
the same time a federated learning system, as any Internet-scale distributed system, may be more
vulnerable to different attacks aiming to jeopardize training or to infer some characteristics of the
local dataset by looking at the different messages [26, 92]. Encryption [10, 80, 8] and differential
privacy [1] techniques may help preventing such attacks.

Federated learning is less ef�cient than training in a highly-optimized computing cluster. It may
in particular increase energy training costs, due to a more discontinuous usage of local computing
resources and the additional cost of transmitting messages over long distance links. To the best of our
knowledge, energetic considerations for federated learning have not been adequately explored, but
for a few papers considering FL for mobile devices [42, 97].

7 Acknowledgements

The authors are grateful to the OPAL infrastructure from Université Côte d'Azur for providing
computational resources and technical support.

This work was carried out and partially funded in the framework of a common lab agreement between
Inria and Nokia Bell Labs (ADR `Rethinking the Network').

The authors thank Damiano Carra, Alain Jean-Marie, Marco Lorenzi, and Pietro Michiardi for their
feedback on early versions of this paper, François Baccelli, Bruno Gaujal, Laurent Hardouin, and
Enrico Vicario for pointers to the literature of max-plus linear systems, and the Italian networking
community (in particular Mauro Campanella, Marco Canini, Claudio Cicconetti, Francesca Cuomo,
Paolo Giaccone, Dario Maggiorini, Marco Mellia, Antonio Pescapé, Tommaso Pecorella, and
Luca Valcarenghi) for their suggestions to select realistic network scenarios for federated learning.
Obviously, the authors keep the responsibility for any error in this paper.

10

References

[1] Martin Abadi et al. “Deep learning with differential privacy”. In:Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 2016, pp. 308–318.

[2] Patrick J. Andersen and Charl J. Ras. “Algorithms for Euclidean Degree Bounded Spanning
Tree Problems”. In:Int. J. Comput. Geometry Appl.29.2 (2019), pp. 121–160.

[3] Patrick J. Andersen and Charl J. Ras. “Minimum bottleneck spanning trees with degree
bounds”. In:Networks68.4 (2016), pp. 302–314.DOI: 10.1002/net.21710 .

[4] David L. Applegate et al.The Traveling Salesman Problem: A Computational Study
(Princeton Series in Applied Mathematics). USA: Princeton University Press, 2007.ISBN:
0691129932.

[5] Mahmoud Assran et al. “Stochastic Gradient Push for Distributed Deep Learning”. In:
Proceedings of the 36th International Conference on Machine Learning, ICML 2019. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 344–353.

[6] François Baccelli et al. “Synchronization and Linearity - An Algebra for Discrete Event
Systems”. In:The Journal of the Operational Research Society45 (Jan. 1994).DOI: 10.
2307/2583959.

[7] Aurélien Bellet et al. “Personalized and Private Peer-to-Peer Machine Learning”. In:AISTATS.
2018.

[8] Keith Bonawitz et al. “Practical secure aggregation for privacy-preserving machine learning”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2017, pp. 1175–1191.

[9] Keith Bonawitz et al. “Towards Federated Learning at Scale: System Design”. In:SysML
2019abs/1902.01046 (2019).

[10] Raphael Bost et al. “Machine learning classi�cation over encrypted data.” In:NDSS. Vol. 4324.
2015, p. 4325.

[11] Ulrik Brandes. “On variants of shortest-path betweenness centrality and their generic com-
putation”. In:Social Networks30.2 (2008), pp. 136–145.ISSN: 0378-8733.DOI: https:
//doi.org/10.1016/j.socnet.2007.11.001 . URL: http://www.sciencedirect.
com/science/article/pii/S0378873307000731 .

[12] T. Brunsch, J. Raisch, and L. Hardouin. “Modeling and control of high-throughput screening
systems”. In:Control Engineering Practice20.1 (2012). Special Section: IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS'09) in Zaragoza, Spain, 16th-18th September,
2009, pp. 14–23.ISSN: 0967-0661.DOI: https://doi.org/10.1016/j.conengprac.
2010.12.006 . URL: http : / /www.sciencedirect .com/science/article /pii /
S0967066110002662.

[13] Sebastian Caldas et al. “Expanding the reach of federated learning by reducing client resource
requirements”. In:arXiv preprint arXiv:1812.07210(2018).

[14] Sebastian Caldas et al.LEAF: A Benchmark for Federated Settings. 2018. arXiv:1812.01097
[cs.LG] .

[15] Robert L. Carter and Mark E. Crovella. “Measuring bottleneck link speed in packet-switched
networks”. In:Performance Evaluation27-28 (1996), pp. 297–318.ISSN: 0166-5316.DOI:
https : / / doi . org / 10 . 1016 / S0166 - 5316(96) 90032 - 2 . URL: http : / / www .
sciencedirect.com/science/article/pii/S0166531696900322 .

[16] Vigyan Chandra, Zhongdong Huang, and Ratnesh Kumar. “Automated control synthesis
for an assembly line using discrete event system control theory”. In:IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews)33.2 (2003), pp. 284–289.

[17] Kyunghyun Cho et al. “On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches”. In:Proceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation, Doha, Qatar, 25 October 2014. Ed. by Dekai Wu et al.
Association for Computational Linguistics, 2014, pp. 103–111.DOI: 10.3115/v1/W14-
4012. URL: https://www.aclweb.org/anthology/W14-4012/ .

[18] Igor Colin et al. “Gossip Dual Averaging for Decentralized Optimization of Pairwise Func-
tions”. In: Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48. ICML'16. New York, NY, USA: JMLR.org, 2016, pp. 1388–
1396.

11

[19] Pierre Courtiol et al. “Deep learning-based classi�cation of mesothelioma improves prediction
of patient outcome”. In:Nature medicine25.10 (2019), pp. 1519–1525.

[20] A. Dasdan and R. K. Gupta. “Faster maximum and minimum mean cycle algorithms for
system-performance analysis”. In:IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems17.10 (1998), pp. 889–899.

[21] X. David-Henriet et al. “Holding Time Maximization Preserving Output Performance for
Timed Event Graphs”. In:IEEE Transactions on Automatic Control59.7 (2014), pp. 1968–
1973.

[22] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In:CVPR09. 2009.
[23] P. Di Lorenzo and G. Scutari. “Distributed nonconvex optimization over time-varying net-

works”. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Mar. 2016, pp. 4124–4128.DOI: 10.1109/ICASSP.2016.7472453.

[24] J. C. Duchi, A. Agarwal, and M. J. Wainwright. “Dual Averaging for Distributed Optimization:
Convergence Analysis and Network Scaling”. In:IEEE Transactions on Automatic Control
57.3 (Mar. 2012), pp. 592–606.ISSN: 1558-2523.DOI: 10.1109/tac.2011.2161027 . URL:
http://dx.doi.org/10.1109/TAC.2011.2161027 .

[25] N. Farhi, M. Goursat, and J.-P. Quadrat. “The traf�c phases of road networks”. In:Trans-
portation Research Part C: Emerging Technologies19.1 (2011), pp. 85–102.ISSN: 0968-
090X. DOI: https://doi.org/10.1016/j.trc.2010.03.011 . URL: http://www.
sciencedirect.com/science/article/pii/S0968090X10000379 .

[26] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model inversion attacks that exploit
con�dence information and basic countermeasures”. In:Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 2015, pp. 1322–1333.

[27] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory
of NP-Completeness (Series of Books in the Mathematical Sciences). First Edition. W.
H. Freeman, 1979.ISBN: 0716710455.URL: http: / /www.amazon.com/Computers-
Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455 .

[28] S. Gaubert. “Resource optimization and (min,+) spectral theory”. In:IEEE Transactions on
Automatic Control40.11 (1995), pp. 1931–1934.

[29] GÉANT - the pan-european research and education network. URL: https://www.geant.
org/Networks (visited on).

[30] Alec Go, Richa Bhayani, and Lei Huang. “Twitter Sentiment Classi�cation using Distant Su-
pervision”. In:Processing(2009), pp. 1–6.URL: http://www.stanford.edu/~alecmgo/
papers/TwitterDistantSupervision09.pdf .

[31] Rob MP Goverde. “The max-plus algebra approach to railway timetable design”. In:WIT
Transactions on The Built Environment37 (1998).

[32] Bamba Gueye et al. “Constraint-Based Geolocation of Internet Hosts”. In:Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement. IMC '04. Taormina, Sicily,
Italy: Association for Computing Machinery, 2004, pp. 288–293.ISBN: 1581138210.DOI:
10.1145/1028788.1028828. URL: https://doi.org/10.1145/1028788.1028828 .

[33] Gregory Gutin and Abraham P Punnen.The traveling salesman problem and its variations.
Vol. 12. Springer Science & Business Media, 2006.

[34] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure,
Dynamics, and Function using NetworkX”. In:Proceedings of the 7th Python in Science
Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA USA,
2008, pp. 11–15.

[35] Kaiming He et al. “Deep residual learning for image recognition”. In:Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[36] Michael Himsolt.GML: A portable graph �le format. Tech. rep. Technical report, Universitat
Passau, 1997.

[37] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:Neural Compu-
tation9.8 (1997), pp. 1735–1780.

[38] Kevin Hsieh et al. “Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds”.
In: Proceedings of the 14th USENIX Conference on Networked Systems Design and Imple-
mentation. NSDI'17. Boston, MA, USA: USENIX Association, 2017, pp. 629–647.ISBN:
9781931971379.

12

[39] Manish Jain and Constantinos Dovrolis. “End-to-End Available Bandwidth: Measurement
Methodology, Dynamics, and Relation with TCP Throughput”. In:SIGCOMM Comput.
Commun. Rev.32.4 (Aug. 2002), pp. 295–308.ISSN: 0146-4833.DOI: 10.1145/964725.
633054. URL: https://doi.org/10.1145/964725.633054 .

[40] Zhanhong Jiang et al. “Collaborative deep learning in �xed topology networks”. In:Advances
in Neural Information Processing Systems. 2017, pp. 5904–5914.

[41] Peter Kairouz et al.Advances and Open Problems in Federated Learning. 2019. arXiv:
1912.04977 [cs.LG] .

[42] Jiawen Kang et al. “Incentive Design for Ef�cient Federated Learning in Mobile Networks:
A Contract Theory Approach”. In:CoRRabs/1905.07479 (2019). arXiv:1905.07479. URL:
http://arxiv.org/abs/1905.07479 .

[43] Jerome J. Karaganis. “On the cube of a graph”. In: 1968.
[44] Can Karakus et al. “Straggler Mitigation in Distributed Optimization Through Data Encoding”.

In: Proc. of NIPS. 2017, pp. 5434–5442.
[45] Sai Praneeth Karimireddy et al.SCAFFOLD: Stochastic Controlled Averaging for Federated

Learning. 2019. arXiv:1910.06378 [cs.LG] .
[46] Richard M. Karp. “A characterization of the minimum cycle mean in a digraph”. In:Discrete

Mathematics23.3 (1978), pp. 309–311.ISSN: 0012-365X.DOI: https://doi.org/10.
1016/0012-365X(78)90011-0 . URL: http://www.sciencedirect.com/science/
article/pii/0012365X78900110 .

[47] P. Kathiravelu et al. “Moving Bits with a Fleet of Shared Virtual Routers”. In:2018 IFIP
Networking Conference (IFIP Networking) and Workshops. 2018, pp. 1–9.

[48] S. Knight et al. “The Internet Topology Zoo”. In:Selected Areas in Communications, IEEE
Journal on29.9 (Oct. 2011), pp. 1765–1775.ISSN: 0733-8716.DOI: 10.1109/JSAC.2011.
111002.

[49] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. “Decentralized Stochastic Optimiza-
tion and Gossip Algorithms with Compressed Communication”. In:Proceedings of the 36th
International Conference on Machine Learning (ICML). Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach,
California, USA: PMLR, June 2019, pp. 3478–3487.URL: http://proceedings.mlr.
press/v97/koloskova19a.html .

[50] Anastasia Koloskova et al.A Uni�ed Theory of Decentralized SGD with Changing Topology
and Local Updates. 2020. arXiv:2003.10422 [cs.LG] .

[51] Jakub Kone�cný, Brendan McMahan, and Daniel Ramage. “Federated Optimiza-
tion:Distributed Optimization Beyond the Datacenter”. In:8th NIPS Workshop on Opti-
mization for Machine Learning (OPT15). 2015. arXiv:1511.03575 [cs.LG] .

[52] Jakub Konecný et al. “Federated Optimization: Distributed Machine Learning for On-Device
Intelligence”. In:CoRRabs/1610.02527 (2016). arXiv:1610.02527. URL: http://arxiv.
org/abs/1610.02527 .

[53] Anusha Lalitha et al. “Peer-to-peer Federated Learning on Graphs”. In:CoRRabs/1901.11173
(2019). arXiv:1901.11173. URL: http://arxiv.org/abs/1901.11173 .

[54] Jean-Yves Le Boudec and Patrick Thiran.Network Calculus: A Theory of Deterministic Queu-
ing Systems for the Internet. Berlin, Heidelberg: Springer-Verlag, 2001.ISBN: 354042184X.

[55] Songze Li et al. “Near-Optimal Straggler Mitigation for Distributed Gradient Methods”. In:
Proc. of the 7th Intl. Workshop ParLearning. May 2018.

[56] Tian Li et al. “Federated Learning: Challenges, Methods, and Future Directions”. In:IEEE
Signal Processing Magazine37.3 (2020), pp. 50–60.

[57] Tian Li et al. “Federated Optimization in Heterogeneous Networks”. In:Proceedings of the
3rd MLSys Conference(2020).

[58] Xiang Li et al. “Communication-Ef�cient Local Decentralized SGD Methods.” In:arXiv:
Machine Learning(2019).

[59] Athanassios Liakopoulos et al. “Providing and verifying advanced IP services in hierarchical
DiffServ networks-the case of GEANT”. In:International Journal of Communication Systems
17.4 (2004), pp. 321–336.DOI: 10.1002/dac.645 . eprint:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/dac.645 .

13

[60] Xiangru Lian et al. “Asynchronous Decentralized Parallel Stochastic Gradient Descent”. In:
Proceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy
and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan,
Stockholm Sweden: PMLR, July 2018, pp. 3043–3052.

[61] Xiangru Lian et al. “Can Decentralized Algorithms Outperform Centralized Algorithms? A
Case Study for Decentralized Parallel Stochastic Gradient Descent”. In:Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017,
pp. 5330–5340.

[62] Lin Xiao and S. Boyd. “Fast linear iterations for distributed averaging”. In:42nd IEEE
International Conference on Decision and Control (IEEE Cat. No.03CH37475). Vol. 5. Dec.
2003, 4997–5002 Vol.5.DOI: 10.1109/CDC.2003.1272421.

[63] J. Lin. “Divergence measures based on the Shannon entropy”. In:IEEE Transactions on
Information Theory37.1 (1991), pp. 145–151.

[64] Tao Lin et al. “Don't Use Large Mini-batches, Use Local SGD”. In:International Confer-
ence on Learning Representations. 2020.URL: https://openreview.net/forum?id=
B1eyO1BFPr.

[65] S. Liu and B. Li. “Stem�ow: Software-De�ned Inter-Datacenter Overlay as a Service”. In:
IEEE Journal on Selected Areas in Communications35.11 (2017), pp. 2563–2573.

[66] Qinyi Luo et al. “Hop: Heterogeneity-Aware Decentralized Training”. In:Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS '19(2019), pp. 893–907.DOI: 10.1145/
3297858.3304009. URL: http://dx.doi.org/10.1145/3297858.3304009 .

[67] Machine learning ledger orchestration for drug discovery (MELLODY). EU research
project. 2019.URL: https://www.imi.europa.eu/projects- results/project-
factsheets/melloddy .

[68] Ratul Mahajan et al. “Inferring Link Weights using End-to-End Measurements”. In:Workshop
on Internet measurment (IMW). Aug. 2002.

[69] Mammogram Assessment with NVIDIA Clara Federated Learning. EU research project.
2020.URL: https://blogs.nvidia.com/blog/2020/04/15/federated-learning-
mammogram-assessment/.

[70] Sébastien Marcel and Yann Rodriguez. “Torchvision the Machine-Vision Package of Torch”.
In: Proceedings of the 18th ACM International Conference on Multimedia. MM '10. Firenze,
Italy: Association for Computing Machinery, 2010, pp. 1485–1488.ISBN: 9781605589336.
DOI: 10 . 1145 / 1873951 . 1874254. URL: https : / / doi . org / 10 . 1145 / 1873951 .
1874254.

[71] L. Massoulie et al. “Randomized Decentralized Broadcasting Algorithms”. In:Proceedings
of the IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Commu-
nications. USA: IEEE Computer Society, 2007, pp. 1073–1081.ISBN: 1424410479.DOI:
10.1109/INFCOM.2007.129. URL: https://doi.org/10.1109/INFCOM.2007.129 .

[72] Brendan McMahan et al. “Communication-Ef�cient Learning of Deep Networks from Decen-
tralized Data”. In:Proceedings of the 20th International Conference on Arti�cial Intelligence
and Statistics, AISTATS 2017,ed. by Aarti Singh and Xiaojin (Jerry) Zhu. Vol. 54. Proceedings
of Machine Learning Research. PMLR, 2017, pp. 1273–1282.

[73] Jérôme Monnot, Vangelis Th. Paschos, and Sophie Toulouse. “Approximation algorithms
for the traveling salesman problem”. In:Mathematical Models of Operations Research56
(2002), pp. 387–405.URL: https://hal.archives-ouvertes.fr/hal-00003997 .

[74] Musketeer. URL: http://musketeer.eu/project/ .
[75] A. Nedić, A. Olshevsky, and M. G. Rabbat. “Network Topology and Communication-

Computation Tradeoffs in Decentralized Optimization”. In:Proceedings of the IEEE106.5
(May 2018), pp. 953–976.ISSN: 1558-2256.DOI: 10.1109/JPROC.2018.2817461.

[76] Angelia Nedic, Alex Olshevsky, and Wei Shi. “Achieving Geometric Convergence for
Distributed Optimization Over Time-Varying Graphs”. In:SIAM J. Optimization27.4 (2017),
pp. 2597–2633.

[77] Angelia Nedíc and Asuman E. Ozdaglar. “Distributed Subgradient Methods for Multi-Agent
Optimization”. In:IEEE Trans. Automat. Contr.54.1 (2009), pp. 48–61.

14

[78] G. Neglia et al. “The Role of Network Topology for Distributed Machine Learning”. In:IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications. Apr. 2019, pp. 2350–
2358.DOI: 10.1109/INFOCOM.2019.8737602.

[79] Giovanni Neglia et al. “Decentralized gradient methods: does topology matter?” In:AISTATS
2020 - 23rd International Conference on Arti�cial Intelligence and Statistics. Palermo, Italy,
June 2020.URL: https://hal.inria.fr/hal-02430485 .

[80] Valeria Nikolaenko et al. “Privacy-preserving ridge regression on hundreds of millions of
records”. In:2013 IEEE Symposium on Security and Privacy. IEEE. 2013, pp. 334–348.

[81] Alex Olshevsky, Ioannis Ch. Paschalidis, and Shi Pu.Asymptotic Network Independence in
Distributed Optimization for Machine Learning. 2019. arXiv:1906.12345 [math.OC] .

[82] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global Vectors for
Word Representation.” In:EMNLP. Vol. 14. 2014, pp. 1532–1543.

[83] Valerio Persico et al. “On the performance of the wide-area networks interconnecting public-
cloud datacenters around the globe”. In:Computer Networks112 (2017), pp. 67–83.ISSN:
1389-1286.DOI: https://doi.org/10.1016/j.comnet.2016.10.013 . URL: http:
//www.sciencedirect.com/science/article/pii/S138912861630353X .

[84] R. Prasad et al. “Bandwidth estimation: metrics, measurement techniques, and tools”. In:
IEEE Network17.6 (2003), pp. 27–35.

[85] R. C. Prim. “Shortest Connection Networks And Some Generalizations”. In:Bell System
Technical Journal36.6 (1957), pp. 1389–1401.DOI: 10 .1002 / j . 1538- 7305 .1957 .
tb01515.x .

[86] Shi Pu, Alex Olshevsky, and Ioannis Ch. Paschalidis. “Asymptotic Network Independence
in Distributed Stochastic Optimization for Machine Learning: Examining Distributed and
Centralized Stochastic Gradient Descent”. In:IEEE Signal Process. Mag.37.3 (2020),
pp. 114–122.

[87] S. Sundhar Ram, Angelia Nedic, and Venugopal V. Veeravalli. “A new class of distributed
optimization algorithms: application to regression of distributed data”. In:Optimization
Methods and Software27.1 (2012), pp. 71–88.DOI: 10.1080/10556788.2010.511669 .
URL: https://doi.org/10.1080/10556788.2010.511669 .

[88] Felix Sattler et al. “Robust and communication-ef�cient federated learning from non-iid
data”. In:IEEE transactions on neural networks and learning systems(2019).

[89] Kevin Scaman et al. “Optimal algorithms for non-smooth distributed optimization in net-
works”. In: Advances in Neural Information Processing Systems. 2018, pp. 2740–2749.

[90] Kevin Seaman et al. “Optimal algorithms for smooth and strongly convex distributed opti-
mization in networks”. In:Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 3027–3036.

[91] Wei Shi et al. “EXTRA: An Exact First-Order Algorithm for Decentralized Consensus
Optimization”. In:SIAM J. Optimization25.2 (2015), pp. 944–966.

[92] Reza Shokri et al. “Membership inference attacks against machine learning models”. In:2017
IEEE Symposium on Security and Privacy (SP). IEEE. 2017, pp. 3–18.

[93] Santiago Silva et al. “Federated learning in distributed medical databases: Meta-analysis
of large-scale subcortical brain data”. In:2019 IEEE 16th International Symposium on
Biomedical Imaging (ISBI 2019). IEEE. 2019, pp. 270–274.

[94] Neil Spring et al. “Measuring ISP Topologies with Rocketfuel”. In:IEEE/ACM Trans. Netw.
12.1 (Feb. 2004), pp. 2–16.ISSN: 1063-6692.DOI: 10.1109/TNET.2003.822655. URL:
https://doi.org/10.1109/TNET.2003.822655 .

[95] Hanlin Tang et al. “D 2: Decentralized Training over Decentralized Data”. In:Proceedings of
the 35th International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan, Stockholm
Sweden: PMLR, July 2018, pp. 4848–4856.URL: http://proceedings.mlr.press/
v80/tang18a.html .

[96] The AWS Cloud in North America. URL: https://aws.amazon.com/about-aws/global-
infrastructure/?nc1=h_ls .

[97] N. H. Tran et al. “Federated Learning over Wireless Networks: Optimization Model Design
and Analysis”. In:IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.
2019, pp. 1387–1395.

15

[98] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. “Consensus-based distributed optimization:
Practical issues and applications in large-scale machine learning”. In:2012 50th Annual
Allerton Conference on Communication, Control, and Computing (Allerton). Oct. 2012,
pp. 1543–1550.DOI: 10.1109/Allerton.2012.6483403 .

[99] G. Van Horn et al. “The iNaturalist Species Classi�cation and Detection Dataset”. In:2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018, pp. 8769–8778.

[100] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. “Decentralized Collaborative
Learning of Personalized Models over Networks”. In:AISTATS. 2017.

[101] Hongyi Wang et al. “Atomo: Communication-ef�cient learning via atomic sparsi�cation”. In:
Advances in Neural Information Processing Systems. 2018, pp. 9850–9861.

[102] Jianyu Wang and Gauri Joshi. “Adaptive communication strategies to achieve the best error-
runtime trade-off in local-update SGD”. In:MLSys(2019).

[103] Jianyu Wang and Gauri Joshi. “Cooperative SGD: A uni�ed Framework for the Design and
Analysis of Communication-Ef�cient SGD Algorithms”. In:ICML Workshop(2019).

[104] Jianyu Wang et al. “MATCHA: Speeding Up Decentralized SGD via Matching Decomposi-
tion Sampling”. In:NIPS Workshop(2019).

[105] Jianyu Wang et al.SlowMo: Improving Communication-Ef�cient Distributed SGD with Slow
Momentum. 2019. arXiv:1910.00643 [cs.LG] .

[106] Shiqiang Wang et al. “Adaptive Federated Learning in Resource Constrained Edge Computing
Systems”. In:IEEE J. Sel. Areas Commun.37.6 (2019), pp. 1205–1221.DOI: 10.1109/
JSAC.2019.2904348. URL: https://doi.org/10.1109/JSAC.2019.2904348 .

[107] WeBank. URL: https : / / finance . yahoo . com / news / webank - swiss - signed -
cooperation-mou-112300218.html;https://fate.fedai.org/ .

[108] Blake Woodworth et al.Is Local SGD Better than Minibatch SGD?2020. arXiv:2002.07839
[cs.LG] .

[109] Jinshan Zeng Yin and Wotao. “Extrapush for Convex Smooth Decentralized Optimization
Over Directed Networks”. In:Journal of Computational Mathematics35.4 (June 2017),
pp. 383–396.ISSN: 1991-7139.

[110] K. Yuan et al. “Exact Diffusion for Distributed Optimization and Learning—Part I: Algorithm
Development”. In:IEEE Transactions on Signal Processing67.3 (2019), pp. 708–723.

[111] Hantian Zhang et al. “ZipML: Training Linear Models with End-to-End Low Precision,
and a Little Bit of Deep Learning”. In:Proceedings of the 34th International Conference
on Machine Learning. Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017,
pp. 4035–4043.

16

A Graph Theory

We now list concepts of graph theory which will be used later on.

� Predecessor, successor, neighbour: If in a graph(i; j) 2 E, theni is called a predecessor
of j , j is called a successor ofi andj , resp.i is called a neighbour ofi , resp.j . The set of
predecessors ofj is indicated by� (j) (or N +

j), the set of all successors ofi is denoted� (i)
(or N �

i) and the set of neighbours ofi is denotedN i . Note that in the case of undirected
graphs,N i = � (i) = � (i).

� Path, circuit: A path is a sequence of nodes(i 1; : : : ; i p); p > 1, such thati j 2 � (i j +1); j =
1; : : : ; p � 1. An elementary path is a path where no node appears more then once.
When the initial node and the �nal node coincide, we call the path a circuit. A circuit
C = (i 1; : : : ; i p = i 1) is an elementary circuit if the path(i 1; : : : ; i p� 1) is elementary, an
elementary circuit is sometimes referred to as a cycle. If a cycle spans all vertices of the
graph it is called aHamiltonian cycle. The length of circuitC = (i 1; : : : ; i p) is the number
of the arcs of which it is composed, i.e.,jCj = p, and its weight is the sum of the weights of
its arcs, i.e,d(C) =

P p� 1
k=1 d(i k ; i k+1).

� Subgraph, spanning subgraph:Given a graphG = (V; E), a graphG0 = (V0; E0) is said
to be a subgraph ofG if V0 � V andE � E 0. G0 is said to be a spanning subgraph ifV0 = V.

� Strongly connected graph:A digraph is said to bestrongly connectedor strongif for any
two different nodesi andj in V there exists a path fromi to j .

� Optimal tour : In a Hamiltonian graph (i.e., a graph having a Hamiltonian cycle) a Hamil-
tonian cycle with minimum weight is called anoptimal tour. Finding the optimal tour in
a complete graph is a well known problem and is referred to as the Traveling Salesman
Problem (TSP), see for example [4].

� Tree, acyclic graph, and Minimum Spanning Tree (MST): A tree, or equivalently a
connected acyclic undirected graph, is an undirected graph in which any two vertices are
connected by exactly one path. An acyclic graphT is said to be a spanning tree of an
undirected graphGif T is a connected spanning subgraph ofG. T is said to be an MST of
G if it has minimal weight (the weight of a tree is the sum of the weights of all its edges)
among all spanning trees ofG.

� Cut, cut-set, and cut property: A cut is a partition of the vertices of a graph into two
disjoint subsets. For a cutc, the cut-set is the set of edges connecting two nodes from the
two disjoint subsets. In a tree, deleting an edge, induces a partition of the set of vertices. For
any cutc of the graph, if the weight of an edgee in the cut-set ofc is strictly smaller than
the weights of all other edges of the cut-set ofc, then this edge belongs to all MSTs of the
graph.

17

B On STAR and MATCHA (+) Cycle Times

For a graphG, let degree(i; G) denote the degree nodei in G and max(degree(G)) denote the
maximum degree of the nodes inG. We show that, withN silos, the RING is up to2N times faster
than the STAR and approximatelyCb � max(degree(Gu)) times faster then MATCHA(+) for slow
homogeneous access links as shown also in Fig. 3a.

Since access links are homogeneous, i.e.,CUP(i) = CDN(i) = CUP(j) = CDN(j) = C; 8i; j 2 V ,
and slow access links determine the delays, i.e.,CUP(i) � A(i 0; j 0) ands � Tc(i) + l(i; j) � M

A (i;j) ,
according to (3), we have:

do(i; j) = max
�
jN �

i j; jN +
j j

�
�

M
C

:

Then, the cycle time of the RING can be obtained from (5):

� RING =
P N

i =1 do(i; i + 1)
N

=
M
C � N

N
=

M
C

:

Remember that a cycle is the time interval between two consecutive computations at a given silo. For
the STAR, it corresponds to the time interval between when the central node sends the new aggregate
model to all silos and when it receives all updated local models. Therefore, we have:

� STAR =
M
C

� N +
M
C

� N = 2N �
M
C

:

For MATCHA+ , at each communication round, we select a random subgraphG. Let degree(i; G)
denote the degree of siloi in G. If G is drawn, the duration of the communication round isM=C �
max(degree(G)) . The cycle time is then

� MATCHA+ =
M
C

EG [maxdegree(G)] :

Let j be the silo such thatj 0 has the largest degree inGu . MATCHA+ usesmax(degree(Gu)) + 1
matchings. The edges ofj belong to different matchings. As MATCHA+ activates at any commu-
nication round a fractionCb of all matchings, the average degree of nodej is EG [degree(j; G)] �
Cb � degree(j; Gu) = Cb � max(degree(Gu)) . Then

� MATCHA+ '
M
C

� Cb � max(degree(Gu)) :

18

(a) A 3-node example. (b) Example with arbitrarily different cycle times.

Figure 5: Networks where a directed topology outperforms an undirected one.

C Directed Overlays may be Faster than Undirected Overlays

We provide two examples where the underlay network is undirected and still a directed overlay can
have shorter cycle time than directed overlays. Examples are in Fig. 5, where numbers associated to
links are the corresponding delays (in the two directions).

The network in Fig. 5a has only three nodes,V = f 1; 2; 3g. We havedc(1; 2) = dc(2; 1) = 1 ,
dc(2; 3) = dc(3; 2) = 3 , anddc(1; 3) = dc(3; 1) = 4 . The fastest undirected overlay isG(u)

o =
(V; f (1; 2); (2; 3)g). Consider the directed ringGo = (V; f (1; 2); (2; 3); (3; 1)g). We have:

�
�

G(u)
o

�
= max

�
1 + 1

2
;

3 + 3
2

;
1 + 3 + 1 + 3

4

�
= 3 ; (7)

� (Go) =
1 + 3 + (3 + 1)

3
=

8
3

< 3: (8)

The network in Fig. 5b shows that a directed ring can be arbitrarily faster than an undirected one.
Similarly to above, the fastest undirected overlay isG(u)

o and coincides with the underlay. The
directed overlay is the ring(1 ! 2 ! 3 ! : : : n ! n + 1 ! 1). We have

�
�

G(u)
o

�
= n; (9)

� (Go) =
(n � 1) � 1 + n + (n + (n � 1) � 1)

n + 1
=

4n � 2
n + 1

< 4: (10)

The ratio of the two cycle times can be made arbitrarily large.

19

D Approximation Algorithm for M CT on Node-Capacitated Networks

In this section, we describe Algorithm 1 that provides an approximate solution forMCT when the
network is node-capacitated andGc is complete. Algorithm 1 combines existing approximation
algorithms for� -MBST on a particular undirected graph built fromGc and denoted byG(u)

c (lines 1-3).
Lemma E.5 establishes a connection between the bottleneck of theMBST of G(u)

c and the cycle time
of MCT on Gc when the overlay is required to be undirected. To get an approximated2-MBST on
G(u)

c , we apply the best known3-approximation algorithm from [3, Sect. 3.2.1] (lines 6-8) which
requiresG(u)

c to be Euclidean (Lemma E.6), and take its result as one candidate for our solution
(line 9). The cube of a graphG, denoted byG3, is the super-graph ofGsuch that the edge (u, v) is in
G3 if and only if there is a path betweenu andv in Gwith three or fewer edges. It has been proved
that the cube of a connected graph is Hamiltonian and to �nd a Hamiltonian path in such a cube can
be done in polynomial time [43]. Other� -BSTs built by Algorithm 2 for3 � � � N are considered
as candidates (lines 10-11) and we �nally provide as solution the overlay with the smallest cycle time
(line 13).

Algorithm 1: Approximation algorithm for MCT on node-capacitated networks.

Input : Gc = (V; Ec), uplink capacityCUP(i), end-to-end delayl(i; j), computation timeTc(i)
and model sizeM .

Result: Undirected overlayGo.

1 CreateG(u)
c = (V; E(u)

c) where(i; j) 2 E(u)
c iff (i; j) 2 Ec and(j; i) 2 Ec ;

2 for (i; j) 2 E(u)
c do

3 d(u)
c (i; j) = [s � (Tc(i) + Tc(j)) + l(i; j) + l(j; i) + M

CUP(i) + M
CUP(j)]=2

4 end
5 S ; ; // the set of candidate solutions

/* consider 2- Mbst approximate solution on G(u)
c as one candidate */

6 T a minimum weight spanning tree ofG(u)
c ;

7 T 3 the cube ofT ;
8 H a Hamiltonian path inT 3 ;
9 S fHg ;

/* consider other � -BST for 3 � � � N as candidates */
10 for � 2 f 3; 4; 5; :::; N g do
11 S S[f � -PRIM(G(u)

c)g // � -Prim (G(u)
c) gives a � -BST on G(u)

c
12 end

/* choose the one with the minimum cycle time as output overlay */
13 Go arg minG2 S ~� (G)

Algorithm 2: � -PRIM[2]

1 Function � -Prim (G = (V; E)) :
2 VT := f v0g for somev0 2 V ;
3 ET := fg ;
4 T = (VT ; ET);
5 while jET j < jVj � 1 do
6 Find the smallest weight edge(u; v) such thatu 2 VT , v 62 VT , and

DEGREET (u) < � ;
7 Add v to VT ;
8 Add (u; v) to ET ;
9 end

10 return T ;

20

E Proofs

We use some graph terminology and notation introduced in Appendix A.

E.1 Proof of Proposition 3.1

When we require the overlayGo to be undirected, if we include link(i; j) 2 Gc then we will also
include link(j; i). It is then convenient to consider the undirected graphG(u)

c = (V; E(u)
c), where

(i; j) 2 E(u)
c iff (i; j) 2 Ec and(j; i) 2 Ec, from which we want to extract an undirected strong

subgraphGo with minimal cycle time. We also associate to each edge(i; j) 2 G(u)
c the weight

d(u)
c (i; j) = (dc(i; j) + dc(j; i))=2. Remember thatdc(i; j) is de�ned as follows

dc(i; j) , s � Tc(i) + l(i; j) + M=A(i 0; j 0):

Note that an undirected weighted graph can be also seen as a particular directed graph where for each
link (i; j) in one direction, there exists a link(j; i) with the opposite direction and the same weight.
The concept of cycle time can then immediately be extended to undirected graphs.

Lemma E.1. Consider the undirected weighted graphG(u)
c = (V; E(u)

c), where(i; j) 2 E(u)
c iff

(i; j) 2 Ec and(j; i) 2 Ec. WhenGc is edge-capacitated andGo is required to be undirected, the set
of solutionsMCT includes a spanning tree ofG(u)

c .

Proof. MCT is a discrete optimization problem on a �nite set,9 thus the set of solutions ofMCT is
non-empty. Suppose by contradiction that the set of solutions does not contain any spanning tree of
Gc and considerG�

o to be one of such solutions.

As G�
o is not a spanning tree and it is strongly connected, there exist circuits inG�

o . For any
circuit C = (i 1; i 2; : : : ; i p = i 1) in G�

o , we consider the edgeeC , such thatd(u)
c (eC) =

maxk=1 ;:::;p � 1 d(u)
c (i k ; i k+1). The graphĜ�

o obtained fromG�
o by deletingeC is a connected span-

ning subgraph ofG(u)
c and its cycle time is not greater then the cycle time ofG�

o . We can now proceed
in the same way on̂G�

o until the residual graph has no more circuits and it is then a spanning tree
of G(u)

c with cycle time not greater than the cycle time ofG�
o . This tree is also a solution ofMCT

contradicting the fact that no spanning tree is in the set of solutions.

Lemma E.2. Consider an undirected treeT = (V; E), weighted with a delay functiond(u)
c : V �V 7!

R+ . Its cycle time is� (T) = max f i;j g2E d(u)
c (i; j).

Proof. The cycle time ofT is given by Equation(5). � (T) = max C
w(C)
jC j , where the maximum is

taken over all the elementary circuits ofT . SinceT is acyclic, the only elementary circuits ofT are
of the form(i; j; i) for somef i; j g 2 E. By de�nition j(i; j; i)j = 2 andw((i; j; i)) = d(u)

c (i; j). It

follows that� (T) = max f i;j g2E
d(u)

c (i;j)+ d(u)
c (j;i)

2 = max f i;j g2E d(u)
c (i; j).

Proposition 3.1. Consider an undirected weighted graphG(u)
c = (V; E(u)

c), where(i; j) 2 E(u)
c iff

(i; j) 2 Ec and(j; i) 2 Ec and where(i; j) 2 E(u)
c has weightd(u)

c (i; j) = (do(i; j) + do(j; i))=2.
A minimum weight spanning tree ofG(u)

c is a solution ofMCT whenGc is edge-capacitated andGo is
required to be undirected.

Proof. Denote byG� the solution ofMCT whenGc is edge-capacitated andGo is required to be
undirected, and denoteT � an MST ofG(u)

c weighted withd(u)
c , and suppose by contradiction that

� (T �) > � (G�). By Lemma E.2, it follows that there is an edgeeT � of T � such thatd(u)
c (eT �) =

� (T �). Moreover, it follows that8e 2 E(G�), d(u)
c (e) � � (G�) < � (T �) = d(u)

c (eT �). If we
removeeT � from T � , the two components de�ne a cut ofGc. The edge ofG� , sayecut belonging
to the cut-set is such thatd(u)

c (ecut) < d (u)
c (eT �), and this is a contradiction with the cut property

satis�ed by minimum cost spanning trees.
9The set of subgraphs of an undirected graphGc is �nite.

21

E.2 Proof of Proposition 3.2

Proposition 3.2. MCT is NP-hard even whenGc is a complete Euclidean edge-capacitated graph.

Proof. WhenGc is an edge-capacitated graph,dc(i; j) = s� Tc(i)+ l(i; j)+ M
A (i 0;j 0) . Gc is complete

and Euclidean means thatdc(i; j) = dc(j; i), for all (i; j) 2 V � V and thatdc veri�es triangular
inequality, i.e.,dc(i; j) � dc(i; k) + dc(k; j), for everyi; j; k 2 V .

We consider the decision problemMCT-DECISION associated to the particular case ofMCT whenGc
is an Euclidean edge-capacitated graph and we prove that it is NP-complete.

Euclidean Edge-Capacitated Minimal Cycle Time - Decision (MCT-DECISION)
Input: A strong digraphGc =(V; Ec), delays functiondc and a real number� 0
Output: Is there a strong spanning subdigraph ofGc with cycle time at most� 0?

We �rst prove thatMCT-DECISION is NP.10 Several algorithms (e.g., Karp's Algorithm [20]) de-
termines the cycle time of a given graph in a polynomial time. Thus for a proposed solution of
MCT-DECISION, we can compute its cycle time in polynomial time, and we can verify if the graph is
strongly connected using for example depth �rst search. It follows that MCT-DECISION is NP.

To prove thatMCT-DECISION is NP-complete, we show that Hamiltonian Cycle (HC) can be reduced
in a polynomial time to MCT-DECISION, i.e., HC � p MCT-DECISION.

Hamiltonian cycle problem is the following decision problem:

Hamiltonian Cycle (HC)
Input: A connected (undirected) graphD = (V; E).
Output: Is there a Hamiltonian cycle inD?

Given an instance ofHC with an undirected graphD = (V; E), we construct an instance of
MCT-DECISION with a complete digraphGc = (V; V � V), a real number� 0 = N +2

N where
N is the size ofV, and delay functiondc, where for a given arbitrary choice of vertexv0, dc is de�ned
as:

dc(i; j) =

(
1 if ((i; j) 2 E) ^ (j 6= v0) ^ (i 6= v0),
2 if (((i; j) 2 E) ^ ((j = v0) _ (i = v0))) _ (((i; j) =2 E) ^ (j 6= v0) ^ (i 6= v0)) ;
3 if ((i; j) =2 E) ^ ((j = v0) _ (i = v0)) :

The constructed digraphGc is complete and the delays are symmetric and verify triangular inequality.
In fact for three distinct nodesi; j , andk in V, we prove thatdc(i; j) � dc(i; k) + dc(k; j) by
distinguishing three possible cases:

1. If i 6= v0 andj 6= v0, thendc(i; j) � 2, but every delay is at least equal to one and then
2 � dc(i; k) + dc(k; j); it follows thatdc(i; j) � dc(i; k) + dc(k; j).

2. If i = v0, thendc(v0; k) � 2, thusdc(v0; k) + dc(k; j) � 3. It follows thatdc(v0; j) � 3 �
dc(v0; k) + dc(k; j).

3. The case whenj = v0 is analogous to the case wheni = v0.

If D has a Hamiltonian cycle, then the (directed) graph induced by this cycle is a strong spanning
subdigraph ofGc and its cycle time is� HC = 1� (N � 2)+2+2

N = N +2
N � � 0.

If Gc has a strong spanning sub-digraph, sayG� , having a cycle time� � � N +2
N , let C be an

elementary circuit ofG� containingv0 (such a circuit always exists because the graph is strongly
connected). By de�nition of cycle time,dc (C)

jC j � � � = 1 + 2
N . We are going to prove thatC is a

Hamiltonian cycle ofD.

We prove �rst by contradiction thatC contains only the arcs fromE. Suppose by contradiction that
there exists an arc(i; j) =2 E in C, two cases are possible:

10A decision problem is NP if we can verify in a polynomial time that the answer for a given instance is YES.

22

1. If j 6= v0, andi 6= v0 thendc(i; j) = 2 and sincev0 2 C, there exist two nodesv�
0 2 � (v0)

andv+
0 2 � (v0) in C. It follows thatdc(C) � dc(i; j) + d(v+

0 ; v0) + dc(v0; v�
0) + 1 �

(jCj � 3) � 2 + 2 + 2 + jCj � 3 = jCj + 3 . SinceC is an elementary circuit, it follows
thatjCj � N , thus dc (C)

jC j � 1 + 3
N , and this contradictsdc (C)

jC j � 1 + 2
N .

2. If i = v0, let v+
0 be the predecessor ofv0 in C, it follows that dc(C) � dc(v+

0 ; v0) +
d(v0; j) + 1 � (jCj � 2) � 3 + 2 + jCj � 2 = 3 + jCj, thus dc (C)

jC j � 1 + 3
jC j , and using

the same argument as for the �rst case we get a contradiction.

3. The case whenj = v0 is analogous to the case wheni = v0.

It follows that any arc ofC is in E.

We prove next thatC is a Hamiltonian Cycle, i.e.,jCj = N . Sincev0 2 C, there exist two nodes
v+

0 2 � (v0) andv�
0 2 � (v0) in C, it follows thatdc(C) = dc(v�

0 ; v0)+ dc(v0; v+
0)+1 � (jCj � 2) =

2 + 2 + jCj � 2 = 2 + jCj.

Sincedc (C)
jC j � � � = 1 + 2

N , it follows that1 + 2
jC j � 1 + 2

N , thusjCj � N . As C is an elementary
circuit it follows thatjCj = N , i.e.,C is a Hamiltonian cycle. SinceC is a circuit containing only
arcs fromD, it follows thatD has a Hamiltonian cycle.

So we have proved thatD has a Hamiltonian cycle if and only ifGc has strong spanning subdigraph of
cycle time at most� 0 = N +2

N . It follows thatMCT-DECISION is NP-complete, thusMCT is NP-hard
even whenGc is a complete Euclidean edge-capacitated graph.

E.3 Proof of Proposition 3.3

Under the assumption that the connectivity topology is Euclidean (delays are symmetric and verify
triangular inequality), we �rst show that the solution of Travelling Salesman Problem (TSP) [33]
is guaranteed to be within a2N -multiplicative factor of the solution ofMCT (Lemma E.3). As a
result, the Christo�des algorithm [73] which is a 1.5-approximation algorithm forTSP, is a3N -
approximation algorithm for MCT (Prop. 3.3).

Lemma E.3. Consider an Euclidean digraphGc with N nodes and letH � denote its optimal tour.
Thendc (H �)

jH � j � 2N � � � , where� � is the optimal cycle time that can be achieved by a strong spanning
subdigraph ofGc.

Proof. Let G� be a spanning digraph ofGc with optimal cycle time� � .

Let fCi gi =1 ;:::;c be a minimal set of elementary circuits ofG� , so that[c
i =1 Ci = G� and[i 6= j Ci 6= G�

for eachj (as illustrated in Fig. 6a). Consider an auxiliary graphG0 whosec nodes represent the
c circuits and whose links correspond to two circuits sharing a node. LetT be a spanning tree of
G0. Starting from the root ofT , we can de�ne an order of the nodes in each circuit and an order
of the children of each circuit as follows. Given the orientation of the circuit corresponding to the
root, consider the �rst node they share with each child. We order the children according to such
order (solving arbitrarily possible ties). For each child we reorder its nodes starting from the node
they share with the father and following the orientation of the circuit. We consider then the ordered
traversal of the circuits� = (Ci 1 ; Ci 2 ; : : : ; Ci 2c +1 = Ci 1) obtained using DFS onT and visiting the
children according to the order introduced above (as illustrated in Fig. 6b).

From� we can build two closed walksW1 andW2, both spanning all nodes ofG� . The walkW1
is built by considering all circuits in the order they appear in� , and then concatenating their nodes
as follows. The �rst time we visit one circuit we take all nodes in the circuit in their order (but the
last one in each circuit that coincides with the �rst one). When we come back to the circuit, we only
pick the nodes needed to move to the following circuit in� . The walkW2 is built by considering
thec circuits in the order they �rst appear in� , and then again concatenating their nodes (but the
last one in each circuit that coincides with the �rst one). Both sequences of nodes de�ne walks asGc
is Euclidean and then complete. The length ofW2 is jW2j =

P c
i =1 jCi j � N 2, as we can have at

mostN � 1 elementary circuits and each of them has length at mostN . See Figs. 6c and 6d for the
examples ofW1 andW2.

23

(a) Circuits decomposition (b) Nodes ordering

(c) WalkW1 (d) WalkW2

Figure 6: Illustration of building walks used in the proof of Lemma E.3.

We observe thatdc(W1) � 2
P c

i =1 dc(Ci) as the walkW1 passes through each link in each circuitCi
at most twice: it walks through the �rstjCi j � 1 edges ofCi the �rst time it visitsCi , and uses once
more the edges inCi to visit the other circuits and go back to the root. AsW2 is a sublist of the nodes
in W1 and delays satisfy the triangle inequality, it holdsdc(W2) � dc(W1).

Finally, from the walkW2 we can extract a Hamiltonian cycleH that has an even smaller delay. Let
H � be an optimal tour. It follows

� (H �) =
dc(H �)

jH � j
�

dc(H)
jH � j

�
dc(W2)

jH � j
(11)

=
jW2j
jH � j

dc(W2)
jW2j

(12)

�
N 2

N
dc(W1)

P c
i =1 jCi j

(13)

� 2N
P c

i =1 dc(Ci)P c
i =1 jCi j

(14)

� 2N max
i =1 ;:::;c

dc(Ci)
jCi j

= 2N� � : (15)

Proposition 3.3. Christo�des' algorithm [73] is a3N -approximation algorithm forMCT whenGc
is edge-capacitated and Euclidean.

Proof. Christo�des algorithm provides a32 -approximation for the traveling salesman problemTSP

de�ned in [4].11 Given an instance ofMCT let Ĉ denote the output of Christo�des algorithm and
C � denote the optimal tour ofGc. It follows thatdc(Ĉ) � 3

2 dc(C �). Since bothĈ andC � are

11See [73] for the proof.

24

Hamiltonian cycles,jĈj = jC � j. Using Lemma E.3. it follows thatdc (Ĉ)
j Ĉ j

� 2N � 3
2 � � � = 3N � � � .

Thus the graph obtained using only the edges ofĈ is a3N -approximation of theMCT problem when
Gc is edge-capacitated and Euclidean.

Observation E.4. Christo�des' algorithm [73] is a
(N)-approximation algorithm forMCT when
Gc is edge-capacitated and Euclidean.

Proof. Christo�des' algorithm returns a ring as solution. We provide an example of an Euclidean
underlay where any ring has cycle time at leastN=4 times larger than the optimal overlay. We
consider a complete connectivity graphGc = (V; V � V) to which we associate a delay functiondc
verifying

8(i; j) 2 V � V ; dc(i; j) =
�

0 if i; j 2 f 1; : : : ; N g;
1 if i 2 f N + 1 ; : : : ; 2N g or j 2 f N + 1 ; : : : ; 2N g: (16)

Gc is clearly an Euclidean graph.

A Hamiltonian cycleH of Gc needs to use exactly2N different edges and in particularN different
edges with delay1 to connect nodesi 2 f N + 1 ; : : : ; 2N g. Therefore, the total delay of the cycle is
at leastN � 0 + N � 1 = N , and its cycle time� (H) � N

2N = 1
2 .

Consider a directed overlayGo = (V; Eo), with

Eo = f (i; i + 1); i 2 f 1; : : : ; N � 1gg [
[

K 2f N +1 ;:::; 2N g

f (N; K); (K; 1)g: (17)

The set of elementary circuits ofEo is exactly the set

C = f CK = (1 ; : : : ; N; K; 1) : K 2 f N + 1 ; 2N gg:

For any circuitCK 2 C,

� (CK) =
0 � (N � 1) + 2 � 1

N + 1
=

2
N + 1

:

It follows that the minimal cycle time� OPT = 2
N +1 , and� (H) � N +1

4 � OPT for any Hamiltonian cycle
H of Gc.

E.4 Proof of Proposition 3.4

We prove that in a node-capacitated network,MCT is NP-hard even whenGo is required to be
undirected. We start introducing the associated decision problem:

MCT-U-Decision
Input: A strongly connected directed graphGc = (V; Ec), model size M ,

f CUP(i); CDN(j); l (i; j); A(i 0; j 0); Tc(i); 8(i; j) 2 Ecg, and a constant� 0 > 0.
Output: Is there a strong spanning undirected subgraphGo of Gc, such that� (Go) � � 0?

MCT-U-Decision is closely related to thedegree-constrained spanning tree(DCST) de�ned below:

Degree-constrained spanning tree (DCST)
Input: An N -node connected undirected graphG = (V; E); positive integerk � N .
Output: DoesGhave a spanning tree in which no node has degree greater thank?

DCST is a simpler version of� -MBST, where we look for a spanning tree with degree at mostk and
minimum bottleneck.

DCST is NP-complete [27]. For example fork = 2 it can be shown by a reduction from HC.
Proposition 3.4. In node-capacitated networksMCT is NP-hard even when the overlay is required
to be undirected.

25

Proof. Our proof is based on a reduction of DCST to MCT-U-Decision.

Given an instance ofDCST with anN -node connected undirected graphG = (V; E) and a positive
integerk � N , we de�ne an instance ofMCT-U-Decision on a connected graphGc = (Vc; Ec) built
from Gaccording to the following mapping� : For each nodev in V, there are two nodesv(1) and
v(2) in Vc and(v(1) ; v(2)) 2 Ec, and for an arc(vi ; vj) 2 E, there is an arc(v(1)

i ; v(1)
j) in Ec. We

set M
CUP(v (1)) = 1 , M

CUP(v (2)) = k + 1 for all v 2 V , Tc(i) = 0 , CDN (i) = 1 for all i 2 Vc, and
l(i; j) = 0 ; A(i 0; j 0) = 1 for all (i; j) 2 Ec . Finally, we consider� 0 = k + 1 .

Suppose thatG has a spanning treeT = (V; ET) in which no node has degree greater thank,
and denoteTc = �(T) (i.e., we apply the same mapping described above).Tc is a spanning
tree ofGc (it is acyclic and spans all nodes ofGc). All elementary circuits ofTc are either of
the form(v(1)

i ; v(2)
i ; v(1)

i) for somevi 2 V , or of the form(v(1)
i ; v(1)

j ; v(1)
i) for some(vi ; vj) 2

ET . Moreover,� ((v(1)
i ; v(2)

i ; v(1)
i)) = k+1+ degreeT (v i)+1

2 � k + 1 and � ((v(1)
i ; v(1)

j ; v(1)
i)) =

degreeT (v i)+1+ degreeT (v j)+1
2 � k + 1 . It follows that� (Tc) � k + 1 = � 0.

Inversely, suppose thatGc has an MSTTc having a cycle time at most� 0, and letT = � � 1(Tc), where
� � 1(T) is obtained by deleting all the vertices of the formv(2)

i for vi 2 V . T is a spanning tree ofG
(it contains all nodes ofGand is acyclic). We prove by contradiction thatdegree(T) � k. Suppose
that there exists a nodev 2 V such thatjN �

v (T)j > k , it follows that circuitf v(1)
i ; v(2)

i ; v(1)
i g is a

circuit of Tc, and� ((v(1)
i ; v(2)

i ; v(1)
i)) = k+1+ jN �

v (T) j+1
2 > k + 1 . It follows that� (Tc) > k + 1 ,

thusk + 1 < � 0 = k + 1 (contradiction).

Then the answer toDCST is positive if and only if the answer toMCT-U-Decision is positive. In
addition, we have a polynomial reduction algorithm. It follows thatMCT-U-Decision is NP-hard.

E.5 Proof of Proposition 3.5

The bottleneck of a treeT is its maximum edge weight, denoted byB (T). To prove Prop. 3.5, we
start by proving that the bottleneck of theMBST of the undirected graphG(u)

c (considered in lines 1-3
of Algo. 1) is smaller than or equal to the minimal cycle time of the connectivity graphGc.

We consider a node-capacitated case whereCUP(i) � min
�

CDN(j)
N ; A(i 0; j 0)

�
, 8(i; j) 2 Ec. Thus,

according to (3), the overlayGo has weights

do(i; j) = s � Tc(i) + l(i; j) +
M jN �

i j
CUP(i)

; 8(i; j) 2 Ec: (18)

Note that the weights de�ned for the undirected graphG(u)
c = (V; E(u)

c) are

d(u)
c (i; j) =

s � (Tc(i) + Tc(j)) + l(i; j) + l(j; i) + M
CUP(i) + M

CUP(j)

2
; 8(i; j) 2 E(u)

c : (19)

Lemma E.5. Consider the case whereGc is node-capacitated withCUP(i) � min
�

CDN(j)
N ; A(i 0; j 0)

�
,

8(i; j) 2 Ec, and the overlay is required to be undirected. Let� � (Gc) be the cycle time ofMCT onGc

andTMBST (G(u)
c) be theMBST of G(u)

c . The bottleneck ofTMBST (G(u)
c) is smaller than or equal

to � � (Gc), i.e. B (TMBST (G(u)
c)) � � � (Gc).

Proof. DenoteT � (Gc) the undirected overlay ofGc with minimal cycle time. We consider the edge

(w; v) = arg max
(i;j)2E (T � (Gc))

d(u)
c (i; j):

By de�nition, B (TMBST (G(u)
c)) = min T 2 ST (G(u)

c) max(i;j)2E (T) d(u)
c (i; j), whereST(G(u)

c) is the

set of spanning trees ofG(u)
c . SinceT � (Gc) 2 ST(G(u)

c), we have:

B (TMBST (G(u)
c)) � d(u)

c (w; v)

26

(19)
=

s � (Tc(w) + Tc(v)) + l(w; v) + l(v; w) + M=CUP(w) + M=CUP(v)
2

�
s � (Tc(w) + Tc(v)) + l(w; v) + l(v; w) + jN �

w jM=CUP(w) + jN �
v jM=CUP(v)

2
(18)
=

do(w; v) + do(v; w)
2

� � � (Gc);

where the second inequality follows fromjN �
w j; jN �

v j � 1, and the last inequality comes from the
de�nition of cycle time.

Lemma E.5 establishes a connection between the bottleneck of theMBST of G(u)
c and the cycle

time of MCT onGc when the overlay is required to be undirected. To get an approximated2-MBST

on G(u)
c , we apply the best known3-approximation algorithm from [3, Sect. 3.2.1] (see lines 6-8

in Algo. 1) which requiresG(u)
c to be Euclidean. So in the following, we show that indeedG(u)

c is
Euclidean.

Lemma E.6. If Gc is Euclidean, thenG(u)
c is Euclidean.

Proof. Remind that the connectivity graphGc is Euclidean on a node-capacitated network, if its
delaysdc(i; j) = s � Tc(i) + l(i; j) are symmetric (dc(i; j) = dc(j; i); 8i; j 2 V) and satisfy the
triangle inequality. From(19) it is easy to check thatd(u)

c (i; j) = d(u)
c (j; i). Consider three nodes

i; j; k 2 V , we have:

d(u)
c (i; j) =

dc(i; j) + dc(j; i) + M=CUP(i) + M=CUP(j)
2

�
dc(i; k) + dc(k; j) + dc(j; k) + dc(k; i) + M=CUP(i) + M=CUP(j)

2

�
dc(i; k) + dc(k; j) + dc(j; k) + dc(k; i) + M=CUP(i) + M=CUP(j) + 2 M=CUP(k)

2
= d(u)

c (i; k) + d(u)
c (k; j);

where the �rst inequality follows from the triangle inequality fordc(i; j) and the second inequality
from CUP(k) � 0.

Proposition 3.5. Algorithm 1 is a6-approximation algorithm forMCT whenGc is node-capacitated

and Euclidean withCUP(i) � min
�

CDN(j)
N ; A(i 0; j 0)

�
, 8(i; j) 2 Ec, and Go is required to be

undirected.

Proof. Algorithm 1 considers, as a candidate solution, an opportune Hamiltonian pathH (line 8) for
which reference [3, Thm. 8] proves that

B (H) � 3 � B (TMBST (G(u)
c)) (20)

asG(u)
c is Euclidean (Lemma E.6). Moreover,

� (H) = max
(i;j)2E (H)

do(i; j) + do(j; i)
2

= max
(i;j)2E (H)

s � Tc(i) + s � Tc(j) + l(i; j) + l(j; i) + M jN �
i j

CUP(i) +
M jN �

j j
CUP(j)

2

� max
(i;j)2E (H)

s � Tc(i) + s � Tc(j) + l(i; j) + l(j; i) + 2 M
CUP(i) + 2 M

CUP(j)

2

� max
(i;j)2E (H)

s � Tc(i) + s � Tc(j) + l(i; j) + l(j; i) +
M

CUP(i)
+

M
CUP(j)

= 2 max
(i;j)2E (H)

d(u)
c (i; j)

27

= 2B (H); (21)

where the �rst inequality follows from nodes in a path having degree at most 2. Combining(20),
(21), and Lemma E.5, it follows that� (H) � 6 � � � (Gc).

E.6 Proof of Proposition 3.6

Proposition 3.6. Christo�des' algorithm is a3N -approximation algorithm forMCT whenGc is
node-capacitated and Euclidean.

Proof. Let G0
c be a weighted graph with the same topology asGc with weightsd0(i; j) = s � Tc(i) +

l(i; j) + M
min(CUP(i) ;C DN(j) ;A (i 0;j 0)) . DenoteĈ the output of Christo�des' algorithm when used onG0

c,

and denoteC � the optimal tour ofG0
c. Since Christo�des' algorithm provides a32 -approximation to

TSP, it follows thatd0(Ĉ) � 3
2 d0(C �). As Ĉ andC � are directed rings, it holdsd0(Ĉ) = do(Ĉ) and

d0(C �) = do(C �). Using Lemma E.3 it follows that

� (Ĉ) =
do(Ĉ)

jĈj
=

d0(Ĉ)

jĈj
�

3
2

d0(C �)
jC � j

=
3
2

do(C �)
jC � j

=
3
2

� (C �) � 3N� � :

Thus the graph obtained using only the edges ofĈ is a3N -approximation algorithm forMCT when
Gc is node-capacitated and Euclidean.

28

F Time Simulator

The time simulator reconstructs the wall-clock time. It requires the complete knowledge about the
underlay topology, i.e., the capacities of all physical links and the upload and download capacities for
each silo. For a given overlay topologyGo = (V; Eo), the purpose of the proposed time simulator
(Alg. 3) is to computet(k) = (t i (k))1� i � N , i.e., the time at which each silo starts computing for the
k-th time. The simulator needs to compute the delay required to send a message with a known size
on each physical link of the underlay. This delay is the sum of two terms [59]:

� Latency: it is the time required by the �rst transmitted bit to travel from the source to the
destination. The latency of a link(i; j) essentially depends on the length of the link and the
speed of the light in the link's transmission medium. We have estimated the latency using
the formula proposed in [32]:0:0085� distance(i; j) + 4 , where the distance is expressed
in kilometers and the latency in milliseconds. The latency of a path is the sum of the link
latencies.

� Transmission Delay: it is the time between the reception of the �rst bit of the message and
the reception of the last bit. It depends on the minimum available bandwidth along the path.

We compute it asM= min
�

CUP(i)
jN �

i j
; CDN(j)

jN +
j j

; A(i 0; j 0)
�

.

Finally, the simulator also accounts for the total time spent in computation by each node, that is the
product of the number of local stepss and the time needed to perform one local step (in milliseconds),
i.e.,s � Tc(i).

Algorithm 3: Time Simulator
Input : (l i;j)(i;j)2G o

, (T c
i) i 2V , (CDN(i)) i 2V and(CUP(i)) i 2V

Result: t 2 RN � K

1 for i 2 V do
2 t i (0) = 0 ;
3 end
4 for k 2 f 1; : : : ; K g do

5 t i (k) = max j 2N +
i

0

B
@t j (k � 1) + l(i; j) + M

min

C UP(i)

jN �
i j

; C DN(j)

jN +
j j

;A (i 0;j 0)

!

1

C
A ;

6 t i (k) = t i (k) + s � Tc(i);
7 end

29

(a) Available bandwidth between some pairs of silos
in Géant as computed through our model.

(b) Available bandwidth measurements between Gaia
sites [38, Fig. 2].

Figure 7: Our simulator with 1 Gbps capacity links generates a distribution of available bandwidths
with the same variability observed in real networks.

(a) Underlay (b) Star (c) MST (d) Ring

Figure 8: Géant Network: the underlay (a) and selected overlays computed when core links have 1 Gbps
capacity and access links have 10 Gbps capacity (b-d).

G Experiments Detailed Description

G.1 Networks and Communication model

We considered three real topologies fromRocketfuel engine[94] (Exodus and Ebone) and from
The Internet Topology Zoo[48] (Géant), and two synthetic topologies (AWS North-America and
Gaia) built from AWS data centers [38, 96] (Table 3). For the synthetic topologies, we consider a
full-meshed underlay. We assume all underlays support a shortest path routing with the geographical
distance (or equivalently the latency) as link cost. These topologies have between 11 and 87 nodes
located in the same continent with the exception of Gaia, which spans four continents. The Géant and
Ebone network connect European cities and Exodus network connect American cities. We considered
that each network node is connected to a geographically close silo by a symmetric access link.

Some underlays and examples of overlays are shown in Figures 8, 9, and 10.

G.2 Datasets and Models

We provide full details on datasets and models used in our experiments. We use multiple datasets
spanning a wide range of machine learning tasks (sentiment analysis, language modeling, image
classi�cation, handwritten character recognition), including those used in prior work on federated
learning [72], and in LEAF [14] benchmark, and a cross-silo speci�c dataset based on iNaturalist [99].

iNaturalist dataset. iNaturalist [99] consists of images from over 8,000 different species of plants
and animals. We choose the dataset from iNaturalist 2018 competition which contains 450,000

30

(a) Underlay (b) Star (c) MST (d) Ring

Figure 9:Gaia Network: the underlay (a) and selected overlays computed when core links have 1 Gbps capacity
and access links have 10 Gbps capacity (b-d).

(a) Underlay (b) Star (c) MST (d) Ring

Figure 10:AWS-North America Network: the underlay (a) and selected overlays computed when core links
have 1 Gbps capacity and access links have 10 Gbps capacity (b-d).

images12 where the geo-locations of these images are provided. Due to a large class imbalance,
iNaturalist species classi�cation is a tough learning task, which requires large computation resources.
In our experiments, we started by using a subset of the original iNaturalist dataset, selecting images
containing the80 most popular species.13 We have also conducted additional experiments on the
full iNaturalist dataset, whose corresponding results are presented in Appendix H.4. We refer to the
complete dataset as Full-iNaturalist.

In order to simulate a realistic cross-silo environment with non-iid local datasets, one can assign the
images to the geographically closest silo obtaining local datasets different in size and in the species
represented. This distribution would lead some silos to have no point. We decided then to assign half
of the images uniformly at random and half to the closest silo. Moreover, since most of the images in
iNaturalist are from North America, for European networks such as Ebone and Géant, we mapped the
European cities westward by reducing their longitude by 90 degrees. Table 4 shows that our method
generates quite unbalanced data distribution (e.g., for Ebone, one silo can have up to 50 times more
images than another one).

To classify iNaturalist images we �netuned a pretrained ResNet-18 on ImageNet [22]. In particular
we used the torchvision [70] implementation of ResNet-18.

LEAF datasets. LEAF [14] is a benchmark framework for learning in federated settings. We used
three LEAF datasets in our experiments on AWS North America network where we took20%of the
samples randomly as our dataset.14 Statistics for the corresponding data distributions are in Table 5.

� FEMNIST (Federated ExtendedMNIST): A 62-class image classi�cation dataset built by
partitioning the data of Extended MNIST based on the writer of the digits/characters. In our
experiments, we associate each silo with a random number of writers following a lognormal
distribution with mean equal to5 and standard deviation equal to1:5.
We train a convolutional neural network, similar to LeNet, with two convolutional layers
followed by a max-pooling layer and two fully connected layers.

12iNaturalist 2018 competition is part of theF GV C5 workshop at CVPR (https://github.com/
visipedia/inat_comp/blob/master/2018/README.md).

13The dataset size is reduced from 120GB to 18GB containing 67,000 images. We subsampled then20%
from this dataset for training.

14Actually, the amount of data we considered is comparable to the federated learning paper [56]: we considered
10 times more data for FEMNIST and the same amount of data for Sentiment140 and Shakespeare.

31

Table 4: Statistics of iNaturalist dataset distribution for different networks.

Network name Silos Samples/silo
Mean Stdev Min Max

Gaia 11 1213 1143 610 3981
AWS North America 22 606 731 113 3216
Géant 40 333 644 152 4261
Exodus 79 168 96 92 576
Ebone 87 153 394 68 3389

Table 5: Statistics of LEAF dataset distribution for AWS North America network (22 silos).

Dataset Samples/silo
Mean Stdev Min Max

Shakespeare 36359 6837 24207 50736
FEMNIST 6847 7473 196 26469
Sentiment140 13101 14273 424 50562

� Shakespeare: A dataset built fromThe Complete Works of William Shakespeare, which
is partitioned by the speaking roles [72]. In our experiment, we associate each silo with a
random number of speaking roles following a lognormal distribution with mean equal to5
and standard deviation equal to1:5.
We consider character-level based language modeling on this dataset. The model takes
as input a sequence of200English characters and predicts the next character. The model
embeds the200characters into a learnable16dimensional embedding space, and uses two
stacked-GRU layers with256hidden units, followed by a densely-connected layer.

� Sentiment140[30]: An automatically generated sentiment analysis dataset that annotates
tweets based on their emoticons. In our experiment, we associate each silo with a random
number of Twitter accounts following a lognormal distribution with mean equal to5 and
standard deviation equal to1:5.
We use a two layer bi-directional LSTM binary classi�er containing256hidden units with
pretrained100dimensional GloVe embedding [82].

G.3 Implementation Details

Machines. The experiments have been run on a CPU/GPU cluster, with different GPUs available
(e.g., Nvidia Tesla V100, GeForce GTX 1080 Ti, and Titan X).

Libraries. All code is implemented in PyTorch Version 1.4.0. We offer two possibilities for running
the code:sequential(using only one GPU) andparallel (using multiple GPUs). In the parallel setting
MPI backend is used for inter-GPU communications.

Hyperparameters. The dataset is randomly split into an80%training set and a20%testing set.
When training on Gaia, AWS North America, and Géant networks, the initial learning rate is set to
0.001 with Adam optimizer. When training on Exodus and Ebone networks, the initial learning rate
is set to0:1 with SGD optimizer. We decay the learning rate based on the inverse square root of the
number of communication rounds. The batch size is set to512for Sentiment140 and Shakespeare
datasets, to128for Femnist dataset and to16 for iNaturalist dataset.

Consensus Matrix. For a given overlayGo = (V; Eo), the consensus matrixA is selected similarly
to the local-degree rule in [62]. The weight on an arc is based on the larger in-degree of its two
incident nodes:

A i;j =
1

1 + max
�
jN �

i j; jN �
j j

� ; 8(i; j) 2 Eo: (22)

32

A i;i = 1 �
X

j 2N �
i

A i;j ; 8i 2 V : (23)

The matrixA so-built is symmetric doubly stochastic. The weights can be determined in a fully-
distributed way: every node just needs to exchange degree information with its neighbours.

MATCHA. We implemented MATCHA as described in [104] but for one difference. In MATCHA,
each matchingi is selected independently with some probabilitypi . With probabilityq =

Q
i (1 � pi),

no matching is selected and then no communication occurs. This is equivalent to perform a random
number of local stepss between two communication rounds. In order to compare fairly the different
approaches and isolate the effect ofs, we �xed s also for MATCHA as follows. Silos perform a given
number of local stepss and then, when a communication should occur, matchings are independently
sampled until at least one of them is selected. In practice, in our experiments, the probabilityq was
close to 0, so that the two approaches are practically undistinguishable. Finally, we observe that
MATCHA computes the matchings coloring an initial topology, but it is not explained how this initial
topology is selected. MATCHA and MATCHA+ operate exactly in the same way but starting from
two different initial topologies: the connectivity graphGc and the underlayGu , respectively. The silos
can easily discover the connectivity graphGc; reconstructing the underlay is much more complicated.
Nevertheless, as MATCHA+ was in general outperforming MATCHA, we showed the results for
MATCHA+ .

33

Table 6: iNaturalist training over different networks.1 Gbps core links capacities,10Gbps access
links capacities. Five local computation steps.

Network name Silos Links Cycle time (ms) Ring's training speed-up
STAR MATCHA (+) MST � -MBST RING vs STAR vs MATCHA(+)

Gaia [38] 11 55 492:4 329:3(329:3) 239:7 239:8 219:7 1:79 1:50(1:50)
AWS NA [96] 22 231 389:8 226:0(226:0) 191:3 191:3 182:9 1:40 1:24(1:24)
Géant [29] 40 61 736:0 553:8(207:4) 202:6 202:6 210:6 3:49 2:63(2:96)
Exodus(us) [68] 79 147 1013:4 695:0(243:8) 246:9 246:9 205:5 3:95 2:25(1:18)
Ebone(eu) [68] 87 161 1003:2 681:6(224:9) 223:2 223:2 196:9 3:04 2:29(1:21)

Table 7: iNaturalist training over different networks.1 Gbps core links capacities,10Gbps access
links capacities. Ten local computation steps.

Network name Silos Links Cycle time (ms) Ring's training speed-up
STAR MATCHA (+) MST � -MBST RING vs STAR vs MATCHA(+)

Gaia [38] 11 55 619:4 456:4(456:4) 366:7 366:7 346:7 1:79 1:32(1:32)
AWS NA [96] 22 231 516:8 353:2(353:2) 318:3 318:3 309:9 0:69 0:47(0:47)
Géant [29] 40 61 609:0 680:8(334:7) 329:6 329:6 337:6 0:90 1:00(1:98)
Exodus(us) [68] 79 147 1140:4 822:0(370:9) 373:9 373:9 332:5 1:52 1:10(1:23)
Ebone(eu) [68] 87 161 1130:2 808:6(352:1) 350:4 350:4 323:9 1:74 1:25(1:09)

H Complete Set of Experiments

H.1 Effect of the number of local steps

Tables 6 and 7 show the effect of 6 different overlays when training ResNet-18 over iNaturalist
in networks with 1 Gbps core links and 10 Gbps access links and local steps equal to 5 and 10,
respectively. For5 local steps, the training time is evaluated as the time to reach a training accuracy
equal to65%, 55%, 60%, 45%, and45%for Gaia, AWS North America, Géant, Exodus, and Ebone,
respectively. For10 local steps, the training time is evaluated as the time to reach a training accuracy
equal to65%, 50%, 50%, 45%, and40%, respectively.

H.2 Full results for training every dataset on AWS North America

In Figure 2, we have shown the training loss w.r.t. communication rounds and wall-clock time
when training four different datasets on AWS North America. Here we provide the complete results
(Figures 11–14) which include training loss, training accuracy, test loss, and test accuracy w.r.t
communication rounds and wall-clock time.

H.3 Exploring other scenarios

In our experiments, we considered 5 underlays, for which we compared 6 different overlays (e.g., Ta-
ble 3). Moreover, we tested 4 different datasets (e.g., Fig. 2) and 3 different values for the number
of local stepss = 1 ; 5; 10 (e.g., Tables 6 and 7). We were not able to run experiments for all 360
possible combinations. In Figures 15–24, we show some representative additional results. For each
experimental result, four metrics are shown including the train loss, train accuracy, test loss, and
test accuracy w.r.t. communication rounds and wall-clock time. The common observation is that the
RING converges faster than MATCHA+ and STAR in terms of wall-clock time. In some cases, the
test loss and accuracy of the model learned by the RING start becoming worse after some time, with
over�tting being a possible explanation in some cases (see Figs. 15, 17, 20, and 22).

34

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 11:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training Shakespeare on AWS North America underlay.1 Gbps core links capacities,
100Mbps access links capacities,s = 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 12:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training FEMNIST on AWS North America underlay.1 Gbps core links capacities,100Mbps
access links capacities,s = 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 13:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training Sentiment140 on AWS North America underlay.1 Gbps core links capacities,
100Mbps access links capacities,s = 1 .

35

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 14:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training iNaturalist on AWS North America underlay.1 Gbps core links capacities,100Mbps
access links capacities,s = 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 15:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Gaia underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 16:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on AWS North America
underlay.1 Gbps core links capacities,100Mbps access links capacities,s = 1 .

36

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 17:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Géant underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 18:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Exodus underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 1 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 19:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Ebone underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 1 .

37

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 20:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Gaia underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 5 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 21:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on AWS North America
underlay.1 Gbps core links capacities,100Mbps access links capacities,s = 5 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 22:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Géant underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 5 .

38

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 23:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Exodus underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 5 .

(a) Train Loss (b) Train Accuracy (c) Test Loss (d) Test Accuracy

Figure 24:Effect of overlays on the convergence w.r.t. communication rounds (top row) and wall-clock time
(bottom row) when training ResNet-18 image classi�cation model using iNaturalist on Ebone underlay.1 Gbps
core links capacities,100Mbps access links capacities,s = 5 .

H.4 Training on Full-iNaturalist dataset

Full-iNaturalist contains 450,000 images belonging to 8142 classes. The distribution of images across
classes is highly skewed. We randomly split them into an80%training set and a20%testing set,
and �ne-tuned a pretained ResNet-50 on ImageNet from torchvision implementation for species
classi�cation. When training on Gaia, AWS North America, and Géant networks, the initial learning
rate is set to 5e-5 with Adam optimizer. When training on Exodus and Ebone networks, the initial
learning rate is set to0:1 with SGD optimizer. We decay the learning rate by half every epoch.
The batch size is set to96. Because of the larger model size (161:06 Mbits) and larger batch size
(compared with the iNaturalist setting in Table 2), the computation time for one local update of the
model in this case increases to946:7 ms.

Half of the images are assigned uniformly at random, the other half are assigned to the geographically
closest silo. Table 8 shows that our method generates quite unbalanced data distributions (e.g., for
Ebone, one silo can have up to 43 times more images than another one). Moreover, Figure 25 shows
pairwise Jenson-Shannon (JS) divergence [63] for label distributions at different silos under our
method and under a uniformly random repartition. The JS divergence across silos is larger when
the samples are distributed following our method, suggesting that novel data is far from being iid
distributed.

39

Table 8: Statistics of Full-iNaturalist dataset distribution for different networks.

Network name Silos Samples/silo
Mean Stdev Min Max

Gaia 11 37795 29986 19344 112745
AWS North America 22 18897 9915 10502 50727
Géant 40 10393 17535 5102 116498
Exodus 79 5262 3368 2710 18454
Ebone 87 4778 11222 2264 98886

(a) Gaia (b) AWS NA (c) Géant (d) Exodus (e) Ebone

Figure 25:Pairwise Jensen-Shannon divergence across silos labels distributions for Full-iNaturalist dataset on
different networks. The �rst row is for data distributed with our method and the second row is for data distributed
uniformly at random.

Differently from the previous experiments, we did not set the consensus weights using the local
degree rule, but, for a given overlay, we computed the consensus matrixA with the optimal spectral
properties. For undirected topologies, we solved the symmetric fast distributed linear averaging
problem [62, Eq. 17]. This problem is expressed as a semi-de�nite program that is convex and can be
solved ef�ciently. For the RING, the optimal consensus matrix has all the non-zero entries equal to
1=2.

Table 9 shows the effect of 6 different overlays when training ResNet-50 over Full-iNaturalist in
networks with capacities equal to 1 Gbps for core links and access links.15 We can see that RING
always achieves the best throughput in this setting.

H.5 Dependence of model performance on underlays

The models obtained by the experiments in Table 3 have different performance w.r.t. the underlays.
The reason is that we chose to optimize the mean of local functions(1), which leads to different
optimization problems when the number of silos changes. The observed difference in the trained
models' performances is related to the fact that each of them is the result of a different optimization
problem. Instead, when optimizing the weighted sum of local functions with weights equal to the
percentage of the data points held by silos, the model performance does not depend on the underlay.
To con�rm this claim, we trained ResNet-18 on iNaturalist using the weighted average loss on STAR
topology over the �ve underlays considered in the paper. Figure 26 shows that the obtained models
for these �ve underlays have similar performances, reaching a test accuracy between46%and48%.

H.6 Effect of Cb in MATCHA

There is no real con�guration criterion forCb in [104], but [104, Fig. 3] suggests to select the smallest
Cb that has the same spectral norm of vanilla-SGD—but less communication overhead. This criterion
leads to pick for all our topologies, but “AWS North America,” a value ofCb 2 [0:4; 0:6], with no
signi�cant change to the results in Table 3. For “AWS North America” the criterion leads toCb = 0 :2.

15Training time is evaluated as the time to reach a top 5 training accuracy equal to18%for Gaia and to13%
for other networks. The top 5 training accuracy reached by centralized training ResNet-50 after 50 epochs is
about20%.

40

Table 9: Full-iNaturalist training over different networks.1 Gbps core links capacities,1 Gbps access
links capacities. One local computation step (s = 1).

Network name Silos Links Cycle time (ms) Ring's training speed-up
STAR MATCHA (+) MST � -MBST RING vs STAR vs MATCHA(+)

Gaia [38] 11 55 4444 2721 (2721)1498 1363 1156 3:84 12:10 (12:10)
AWS North America [96] 22 231 7785 4384 (4384)1441 1297 1119 6:96 23:50 (23:50)
Géant [29] 40 61 13585 4912 (1894)1944 1464 1196 11:35 4:10 (1:58)
Exodus [68] 79 147 26258 6180 (1825)2078 1481 1194 13:74 2:59 (0:96)
Ebone [68] 87 161 28753 8045 (1933)2448 1481 1178 19:52 5:80 (1:39)

(a) Training loss vs Rounds (b) Test accuracy vs Rounds

Figure 26: The model performance of training iNaturalist on STAR overlays of �ve different underlays:
Gaia, AWS North America, Géant, Exodus and Ebone.

Table 10, �rst row, shows indeed that MATCHA is faster forCb = 0 :2, but still RING is1:08 and
3:29 faster than MATCHA for 10 Gbps and 100 Mbps access links capacities, respectively. The table
shows also that this criterion does not lead necessarily to the fastest training time for MATCHA. An
alternative is to selectCb by running time-consuming training experiments, but in any case we have
always observed RING to outperform MATCHA except on Géant (see Table 3 and Table 10). Note
that MATCHA is supposed to �nd by itself how often to use each link and “achieve a win-win in this
error-runtime trade-off forany arbitrary network topology” [104]. We ran additional experiments
with MATCHA over our topologies (for the RING we considered its undirected version as MATCHA
uses bi-directional communications); however, MATCHA was still slower than RING (last two rows
in Table 10).

Table 10: RING's training speed-up vs MATCHA when training iNaturalist on AWS-North America
network. MATCHA runs on top of underlay, RING, and� -MBST with different values of communi-
cation budgetCb. 1 Gbps core links capacities. The star denotes the results withCb set according to
[104, Fig. 3]. Bold fonts denote the optimal setting forCb.

Access links capacities 10Gbps 100Mbps

Communication budget(Cb) 1:0 0:8 0:6 0:5 0:4 0:2 0:1 1:0 0:8 0:6 0:5 0:4 0:2 0:1

MATCHA over underlay 2:02 1:43 1:57 1:47 1:46 1:08� 1:38 18:85 12:56 12:00 9:94 8:18 3:29� 2:44
MATCHA over � -MBST 1:10� 1:25 1:33 1:12 1:41 1:89 2:28 2:08� 2:26 1:56 1:45 1:31 1:15 1:15
MATCHA over RING 1:00� 1:42 1:40 1:15 1:26 1:35 1:34 1:00� 2:15 1:92 1:47 1:54 1:41 1:28

41

	Introduction
	Problem Formulation

