M. Ahn, H. Cho, S. Ahn, and S. C. Jun, User?s Self-Prediction of Performance in Motor Imagery Brain?Computer Interface, Frontiers in Human Neuroscience, vol.12, p.59, 2018.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.

B. Blankertz, G. Dornhege, M. Krauledat, K. Müller, and G. Curio, The non-invasive Berlin Brain?Computer Interface: Fast acquisition of effective performance in untrained subjects, NeuroImage, vol.37, issue.2, pp.539-550, 2007.

B. Blankertz, F. Losch, M. Krauledat, G. Dornhege, G. Curio et al., The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects, IEEE Transactions on Biomedical Engineering, vol.55, issue.10, pp.2452-2462, 2008.

B. Blankertz, K. R. Muller, D. J. Krusienski, G. Schalk, J. R. Wolpaw et al., The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, issue.2, pp.153-159, 2006.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. Muller, Optimizing Spatial filters for Robust EEG Single-Trial Analysis, IEEE Signal Processing Magazine, vol.25, issue.1, pp.41-56, 2008.

K. Cassady, A. You, A. Doud, and B. He, The impact of mind-body awareness training on the early learning of a brain-computer interface, TECHNOLOGY, vol.02, issue.03, pp.254-260, 2014.

E. Combrisson and K. Jerbi, Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy, Journal of Neuroscience Methods, vol.250, pp.126-136, 2015.

D. Devlaminck, W. Waegeman, B. Wyns, G. Otte, and P. Santens, On the role of cost-sensitive learning in multi-class brain-computer interfaces, Biomedizinische Technik/Biomedical Engineering, vol.55, issue.3, pp.163-172, 2010.

F. Di-rienzo, C. Collet, N. Hoyek, and A. Guillot, Selective Effect of Physical Fatigue on Motor Imagery Accuracy, PLoS ONE, vol.7, issue.10, p.e47207, 2012.

T. Dickhaus, C. Sannelli, K. Müller, G. Curio, and B. Blankertz, Predicting BCI performance to study BCI illiteracy, BMC Neuroscience, vol.10, issue.Suppl 1, p.P84, 2009.

M. Grangeon, A. Guillot, and C. Collet, Postural Control During Visual and Kinesthetic Motor Imagery, Applied Psychophysiology and Biofeedback, vol.36, issue.1, pp.47-56, 2011.

C. Guger, H. Ramoser, and G. Pfurtscheller, Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI), IEEE Transactions on Rehabilitation Engineering, vol.8, issue.4, pp.447-456, 2000.

A. Guillot, C. Collet, V. A. Nguyen, F. Malouin, C. Richards et al., Brain activity during visual versus kinesthetic imagery: An fMRI study, Human Brain Mapping, vol.30, issue.7, pp.2157-2172, 2009.

D. J. Hand and R. J. Till, A simple generalisation of the area under the roc curve for multiple class classification problems, Machine Learning, vol.45, issue.2, pp.171-186, 2001.

R. Hari and R. Salmelin, Human cortical oscillations: a neuromagnetic view through the skull, Trends in Neurosciences, vol.20, issue.1, pp.44-49, 1997.

S. Hétu, M. Grégoire, A. Saimpont, M. Coll, F. Eugène et al., The neural network of motor imagery: An ALE meta-analysis, Neuroscience & Biobehavioral Reviews, vol.37, issue.5, pp.930-949, 2013.

L. Jäncke, K. Lutz, and S. Koeneke, Converging evidence of ERD/ERS and BOLD responses in motor control research, Progress in Brain Research, vol.159, pp.261-271, 2006.

H. H. Jasper, CORTICAL EXCITATORY STATE AND VARIABILITY IN HUMAN BRAIN RHYTHMS, Science, vol.83, issue.2150, pp.259-260, 1936.

M. Jeannerod, Mental imagery in the motor context, Neuropsychologia, vol.33, issue.11, pp.1419-1432, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00655242

C. Jeunet, S. Debener, F. Lotte, J. Mattout, R. Scherer et al., Mind the Traps! Design Guidelines for Rigorous BCI Experiments, Brain?Computer Interfaces Handbook, pp.613-634, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01620186

C. Jeunet, E. Jahanpour, and F. Lotte, Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study, Journal of Neural Engineering, vol.13, issue.3, p.036024, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302154

Z. J. Koles, M. S. Lazar, and S. Z. Zhou, Spatial patterns underlying population differences in the background EEG, Brain Topography, vol.2, issue.4, pp.275-284, 1990.

K. Lafleur, K. Cassady, A. Doud, K. Shades, E. Rogin et al., Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain?computer interface, Journal of Neural Engineering, vol.10, issue.4, p.046003, 2013.

C. Lindig-leon and L. Bougrain, Comparison of sensorimotor rhythms in EEG signals during simple and combined motor imageries over the contra and ipsilateral hemispheres, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3953-3956, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01160982

C. Lindig-leon and L. Bougrain, A Multi-label Classification Method for Detection of Combined Motor Imageries, 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp.3128-3133, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01180399

C. Lindig-leon, L. Bougrain, and S. Rimbert, Alpha rebound improves on-line detection of the end of motor imageries, 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01092284

F. Lotte, On the need for alternative feedback training approaches for BCI, Berlin Brain-Computer Interface Workshop, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00834391

F. Lotte, A Tutorial on EEG Signal-processing Techniques for Mental-state Recognition in Brain?Computer Interfaces, Guide to Brain-Computer Music Interfacing, pp.133-161, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01055103

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain?computer interfaces, Journal of Neural Engineering, vol.4, issue.2, pp.R1-R13, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01846433

S. G. Mason, J. Kronegg, J. Huggins, M. Fatourechi, and A. Schloegl, Evaluating the Performance of Self-Paced BCI Technology, 2006.

L. P. Mcavinue and I. H. Robertson, Measuring motor imagery ability: A review, European Journal of Cognitive Psychology, vol.20, issue.2, pp.232-251, 2008.

J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter et al., Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks, Scientific Reports, vol.6, issue.1, p.38565, 2016.

G. Müller-putz, R. Scherer, C. Brunner, R. Leeb, and G. Pfurtscheller, Better than random? A closer look on BCI results, Int. J. Bioelektromagn, vol.10, pp.52-55, 2008.

G. R. Müller-putz, A. Schwarz, J. Pereira, and P. Ofner, From classic motor imagery to complex movement intention decoding, Progress in Brain Research, vol.228, pp.39-70, 2016.

C. Neuper and G. Pfurtscheller, Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates, International Journal of Psychophysiology, vol.43, issue.1, pp.41-58, 2001.

C. Neuper, R. Scherer, S. Wriessnegger, and G. Pfurtscheller, Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain?computer interface, Clinical Neurophysiology, vol.120, issue.2, pp.239-247, 2009.

G. Pfurtscheller, Functional brain imaging based on ERD/ERS, Vision Research, vol.41, issue.10-11, pp.1257-1260, 2001.

G. Pfurtscheller, Induced Oscillations in the Alpha Band: Functional Meaning, Epilepsia, vol.44, issue.s12, pp.2-8, 2003.

G. Pfurtscheller and A. Aranibar, Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement, Electroencephalography and Clinical Neurophysiology, vol.46, issue.2, pp.138-146, 1979.

G. Pfurtscheller and F. H. Lopes-da-silva, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clinical Neurophysiology, vol.110, issue.11, pp.1842-1857, 1999.

G. Pfurtscheller and C. Neuper, Motor imagery activates primary sensorimotor area in humans, Neuroscience Letters, vol.239, issue.2-3, pp.65-68, 1997.

G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication, Proceedings of the IEEE, vol.89, issue.7, pp.1123-1134, 2001.

G. Pfurtscheller, C. Neuper, and J. Kalcher, 40-Hz oscillations during motor behavior in man, Neuroscience Letters, vol.164, issue.1-2, pp.179-182, 1993.

H. Ramoser, J. Muller-gerking, and G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Transactions on Rehabilitation Engineering, vol.8, issue.4, pp.441-446, 2000.

Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby et al., OpenViBE: An Open-Source Software Platform to Design, Test, and Use Brain?Computer Interfaces in Real and Virtual Environments, Presence: Teleoperators and Virtual Environments, vol.19, issue.1, pp.35-53, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477153

S. Rimbert, M. Zaepffel, P. Riff, P. Adam, and L. Bougrain, Hypnotic State Modulates Sensorimotor Beta Rhythms During Real Movement and Motor Imagery, Frontiers in Psychology, vol.10, p.2341, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02325588

A. S. Royer, A. J. Doud, M. L. Rose, and . Bin-he, EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.18, issue.6, pp.581-589, 2010.

P. Suffczynski, J. Pjin, G. Pfurtscheller, F. Lopes-da, and S. , Eventrelated dynamics of alpha band rhythms: a neuronal network model of focal ERD/surround ERS, " in Event-Related Desynchronization, Handbook of Electroencephalography and Clinical Neurophysiology, vol.6, pp.67-85, 1999.

U. Talukdar, S. M. Hazarika, and J. Q. Gan, Motor imagery and mental fatigue: inter-relationship and EEG based estimation, Journal of Computational Neuroscience, vol.46, issue.1, pp.55-76, 2018.

M. C. Thompson, Critiquing the Concept of BCI Illiteracy, Science and Engineering Ethics, vol.25, issue.4, pp.1217-1233, 2018.

A. Tyson, K. Spencer, K. Christian, L. Brian, S. Ying et al., Decoding motor imagery from the posterior parietal cortex of a tetraplegic human, Science, vol.348, pp.906-910, 2015.

C. Vidaurre and B. Blankertz, Towards a Cure for BCI Illiteracy, Brain Topography, vol.23, issue.2, pp.194-198, 2009.

B. Wodlinger, J. E. Downey, E. C. Tyler-kabara, A. B. Schwartz, M. L. Boninger et al., Ten-dimensional anthropomorphic arm control in a human brain?machine interface: difficulties, solutions, and limitations, Journal of Neural Engineering, vol.12, issue.1, p.016011, 2014.

J. R. Wolpaw and E. Winter-wolpaw, Brain?Computer Interfaces: Something New under the Sun, Brain?Computer InterfacesPrinciples and Practice, pp.3-12, 2012.

J. R. Wolpaw and D. J. Mcfarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans, Proceedings of the National Academy of Sciences, vol.101, issue.51, pp.17849-17854, 2004.

. World-medical-association-(wma), Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects, Jahrbuch für Wissenschaft und Ethik, vol.14, issue.1, pp.206-208, 2009.

W. Yi, S. Qiu, H. Qi, L. Zhang, B. Wan et al., EEG feature comparison and classification of simple and compound limb motor imagery, Journal of NeuroEngineering and Rehabilitation, vol.10, issue.1, p.106, 2013.

M. Yin, D. A. Borton, J. Komar, N. Agha, Y. Lu et al., Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior, Neuron, vol.84, issue.6, pp.1170-1182, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01214888