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SOTT: GREEDY APPROXIMATION OF A TENSOR AS A SUM OF
TENSOR TRAINS

VIRGINIE EHRLACHER∗, MARIA FUENTE RUIZ† , AND DAMIANO LOMBARDI ‡

Abstract. In the present work, a method is proposed in order to compute an approximation
of a given tensor as a sum of Tensor Trains (TTs), where the order of the variates and the values
of the ranks can vary from one term to the other in an adaptive way. The numerical scheme is
based on a greedy algorithm and an adaptation of the TT-SVD method. The proposed approach
can also be used in order to compute an approximation of a tensor in a Canonical Polyadic format
(CP), as an alternative to standard algorithms like Alternating Linear Squares (ALS) or Alternating
Singular Value Decomposition (ASVD) methods. Some numerical experiments are proposed, in
which the proposed method is compared to ALS and ASVD methods for the construction of a CP
approximation of a given tensor and performs particularly well for high-order tensors. The interest
of approximating a tensor as a sum of Tensor Trains is illustrated in several numerical test cases.

Key words. Tensor methods, Canonical Polyadic, Tensor Train.

AMS subject classifications. 65F99, 65D15

1. Introduction. Machine learning and data mining algorithms are becoming
increasingly important in analyzing large volume, multi-relational and multi-modal
datasets, which are often conveniently represented as multiway arrays or tensors [5,
19, 20].

The main challenge in dealing with such data is the so called curse of dimension-
ality, that refers to the need of using a number of degrees of freedom exponentially
increasing with the dimension [23]. This problem can be alleviated by using various
tensor formats, achieved by low-rank tensor approximations, for the compression of
the full tensor as described for instance in [18, 4, 7, 11]. The definition of these dif-
ferent tensor formats relies on the well-known separation of variables principle. We
refer the reader to [13] and [16] for extensive reviews on tensor theory and extended
analysis of tensor decompositions and their numerous applications.

Among the different existing tensor formats, two of them are of specific impor-
tance with respect to applications, namely the Canonical Polyadic (CP) and Tensor
Train (TT) format. The main advantage of these decompositions is the low memory
cost needed to store them. In the case of the CP format, this cost only scales linearly
with the order of the tensor, whereas the memory cost for the storage of a full tensor
scales exponentially with its order. However, the problem of finding a best approxima-
tion of a tensor in CP format may be ill-posed [6] and leads to numerical instabilities.
The most classical algorithm in order to compute an approximation of a tensor in the
CP format is the so-called Alternating Least Square (ALS) method, which sometimes
may be quite slow to converge [2] especially for high-order tensors. Some alternative
methods [32, 26] have been proposed in order to obtain more efficient algorithms.

The Tensor Train format is probably one of the most used tensor formats in real-
istic applications [3, 34, 27], due to a good trade off between optimality and numerical
stability. The TT format combines two advantages to take into consideration: on the
one hand, it is stable from an algorithmic point of view; on the other, it is compu-
tationally affordable provided that the TT ranks of the tensors remain reasonably
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small. The computation of the approximation of a tensor in the TT format is usually
done via the so-called TT-SVD algorithm. One of the drawback of the TT-format is
that it requires a priori the choice of a particular order in the variables of the tensor,
and the quality of the resulting approximation computed by a TT-SVD algorithm
strongly depends on this particular choice. Even if the number of entries could be
larger than in CP, the main advantage of the TT format is its ability to provide sta-
ble quasi-optimal rank reduction, obtained, for instance, by truncated singular value
decompositions.

In the literature, hybrid formats combining CP with other methods have been
proposed in [25], and described in [12]. Also, CP has been combined with TT in [21],
where its was highlighted that the combination of both methods yields interesting
improvements. Fast algorithms for the rank truncation in the canonical input tensors
with large CP-ranks and large mode size, have been introduced and analyzed in [17].
Some other optimization-based algorithms could be seen in [29].

The main contribution of the present work is a numerical scheme that constructs
an approximation of a tensor as a sum of TTs, called the Sum of Tensor Trains
(SoTT) scheme, where the order of the variables and the values of the ranks can
vary from one term to another and can be adaptively chosen by an algorithm which
combines the TT-SVD algorithm together with a greedy procedure (see [30]). The
interest of such a procedure is two-fold: (i) it enables to select in an adaptive way the
order of the variables in each term so as to obtain favorable compressing rates with
respect to pure TT approximations with an a priori prescriber order of variables; (ii)
when the values of the ranks of the terms computed are fixed to be equal to one,
the procedure provides a new scheme for the computation of a CP approximation of
a given tensor, which appears to be more efficient than ALS for high-order tensors.
This work is also motivated by applications in quantum chemistry, where approximate
ground state electronic wave functions are computed within the so-called DMRG
using tensor networks. However, computing pair, triplet or quadruplet densities,
and more generally multivariable correlations, for general tensor networks may be
quite intricate, whereas it remains quite simple to carry out when the electronic wave
function is computed as a sum of TTs. We observe numerically that this algorithm
performs well in practice in the sense that it provides a more accurate approximation
of a given tensor, at fixed memory storage cost, than a TT-SVD algorithm, in average,
when the order of the variables in the TT decomposition is chosen randomly.

We also observed that a particular version of the SoTT algorithm, named CP-TT,
which consists in adding pure rank-1 tensor-product at each iteration of the scheme,
can be used in order to compute a CP approximation of a given tensor. Such a scheme
gives interesting results in comparison with other rank-1 update methods such as ALS
for instance, especially when the order of the tensor is high.

The article is structured as follows: some preliminaries about tensors are recalles
in Section 2. The SoTT algorithm is presented and discussed in Section 3. The CP-
TT version of SoTT is discussed in Section 4 and compared with other numerical
methods used for the construction of CP decompositions. Numerical experiments and
results illustrating the efficiency of the approach are given in Section 5.

2. Preliminaries. The aim of this section is to recall some preliminaries before
introducing the SoTT algorithm. We begin by introducing some notation together
with the well-known Singular Value Decomposition in Section 2.1. We then recall
some basic facts about the Canonical Polyadic (CP) and Tensor Train (TT) format
in Section 2.2. The classical TT-SVD algorithm is then recalled in Section 2.3.
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2.1. Notation and Singular Value Decomposition (SVD). We begin by
introducing here some notation which will be used in the sequel. For any p ∈ N∗,
and any family (D1, · · · , Dp) such that for all 1 ≤ i ≤ p, Ωi is an open bounded
subset of Rpi for some pi ∈ N∗, we call a tensor (with a slight language abuse) any
real-valued function F ∈ L2(D1 × · · · × Dp). Denoting by D := D1 × · · · × Dp, we
denote 〈·, ·〉D the scalar product of L2(D) and by ‖ · ‖D the associated norm so that
for all U, V ∈ L2(D),

〈U, V 〉D :=

∫
D

UV and ‖U‖D :=

(∫
D

U2

)1/2

.

For any u(1) ∈ L2(D1), · · · , u(p) ∈ L2(Dp), we denote u(1) ⊗ · · · ⊗ u(p) ∈ L2(D)
the pure tensor product function defined by

u(1) ⊗ · · · ⊗ u(p) :

{
D = D1 × · · · ×Dp → R

(x1, · · · , xp) 7→ u(1)(x1) · · ·u(d)(xp).

Moreover, we make use of the following abuse of notation. For any nonempty
subset I ⊂ {1, · · · , p} such that Ic = {1, · · · , p}\I is non-empty, and any F ∈ L2(D1×
· · ·Dp), we still denote F the function F̃ ∈ L2 (("i∈I Di)× ("j∈Ic Dj)) defined by

F̃ :

{
("i∈I Di)× ("j∈Ic Dj) → R

((xi)i∈I , (xj)j∈Ic) 7→ F (x1, · · · , xp).

For any domain D = Dx × Dy, where Dx and Dy are open subdomains of Rdx
and Rdy for some dx, dy ∈ N∗ respectively, and any W ∈ L2(D), it holds that there
exists an orthonormal basis (Uk)k∈N∗ of L2(Dx), an orthonormal basis (Vk)k∈N∗ of
L2(Dy) and a non-increasing sequence (σk)k∈N∗ of non-negative real numbers which
converges to 0 as k goes to ∞, such that

(2.1) W =
∑
k∈N∗

σkUk ⊗ Vk.

A decomposition of W under the form (2.1) is called a Singular Value Decomposition
(SVD) (or Proper Orthogonal Decomposition) of W according to the separation of
variables (Dx, Dy). The sequence (σk)k∈N∗ is known to be unique and is called the
sequence of singular values of W associated to the separation of variables (Dx, Dy) of
the set D. The orthonormal basis (Uk)k∈N∗ (respectively (Vk)k∈N∗) may not be unique
but is called a sequence of left (respectively right) singular vectors of W associated
to this partitioning.

Assuming that Nx := #Dx < +∞ and Ny := #Dy < +∞, the complexity of the
computation of the POD decomposition (2.1) scales like

(2.2) O
(
max(Nx,Ny) min(Nx,Ny)2

)
.

2.2. Canonical Polyadic (CP) and Tensor Train (TT) formats. Let d ∈
N∗, for all 1 ≤ i ≤ d. Ωi are open subsets of Rdi for some di ∈ N∗, Ω := Ω1×· · ·×Ωd.
Let F ∈ L2(Ω1 × · · · × Ωd), where Ωj ⊂ Rpj for some pj ∈ N∗ for 1 ≤ j ≤ d.

The function F is said to belong to the Canonical Polyadic (CP) format [14,
18, 8] with rank r ∈ N∗ if it reads as:

F (x1, x2, ..., xd) =

r∑
i=1

u
(1)
i (x1)u

(2)
i (x2) · · ·u(d)

i (xd),
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for some functions u
(j)
i ∈ L2(Ωj) for 1 ≤ i ≤ r and 1 ≤ j ≤ d.

The function F is said to belong to the Tensor Train (TT) format with ranks
r1, . . . , rd−1 ∈ N∗ [22] if and only if

F (x1, x2, ..., xd) =

r1∑
i1=1

...

rd−1∑
id−1=1

u
(1)
i1

(x1)u
(2)
i1,i2

(x2)u
(3)
i2,i3

(x3) · · ·u(d−1)
id−2,id−1

(xd−1)u
(d)
id−1

(xd)

with u
(j)
ij−1,ij

∈ L2(Ωj) for 1 ≤ ij−1 ≤ rj−1 and 1 ≤ ij ≤ rj for all 1 ≤ j ≤ d (with

r0 = rd = 1).

The main advantage of these decompositions is the low memory cost needed to
store them. Indeed, if N degrees of freedom are used per variable, the storage cost
of a general function F ∈ L2(Ω1 × · · · × Ωd) is O

(
N d
)
. On the other hand, the

storage cost of a CP tensor with rank r reduces to O(dN r), which scales linearly in
the tensor order d and size N . However, the problem of finding a best approximation
of a tensor in CP format may be ill-posed [6] and leads to numerical instabilities.
The most classical algorithm in order to compute an approximation of a tensor in the
CP format is the so-called Alternating Least Square (ALS) method, which sometimes
may be quite slow to converge [2] especially for high-order tensors. Some alternative
methods [32, 26] have been proposed in order to obtain more efficient algorithms.

2.3. TT-SVD algorithm. Let now W ∈ L2(Ω). We recall in Algorithm 2.1
the well-known TT-SVD algorithm for computing an approximation of the tensor W
with prescribed accuracy ε > 0 in a TT format.

3. The Sum of Tensor Trains (SoTT) algorithm. The aim of this section is
to present the Sum of Tensor Trains (SoTT) algorithm we propose in order to greedily
construct an approximation of a given tensor as a sum of Tensor Trains (TTs), where
the order of the variates and the values of the ranks can be different from one term
to another. The algorithm is presented in Section 3.1 and in a more detailed way
in Algorithm 3.1. It is proved to converge exponentially fast in finite dimension in
Section 3.2. Lastly, a discussion about the complexity of the method is given in
Section 3.3.

3.1. Presentation of the SoTT algorithm. In the rest of the article, we
denote Sd the set of permutations of the set {1, · · · , d}.

The aim of the SoTT algorithm is to compute, after n iterations, an approxi-
mation of the tensor W as a sum of n TTs. At iteration n, the SoTT computes an
approximation of W under the form

W̃n−1 +Rn1 (xτn(1))R
n
2 (xτn(2)) · · ·Rnd (xτn(d)),

where W̃n−1 is the approximation obtained after n − 1 iterations of the algorithm,
where τn ∈ Sd is a well-chosen permutation of the variables, and for all 1 ≤ j ≤ d,

Rnj ∈ L2
(

Ωτn(j),RK
n
j−1×K

n
j

)
, where Kn

0 = 1 and Kn
d . The aim of the nth itera-

tion is to choose the permutation τn and the values of the ranks (Kn
j )1≤j≤d−1 in an

appropriate way, which follows a greedy procedure.
The idea behind the SoTT procedure is the following: the order of the variables

is chosen so that it enables to obtain an interesting trade-off between accuracy and
memory storage. For instance, τn(1) is chosen as follows. Let us denote by Wn−1 :=
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Procedure 2.1 TT-SVD algorithm

1: Input: ε > 0, W ∈ L2(Ω)

2: Output: K1, · · · , Kd−1 ∈ N∗ TT-ranks, R1 ∈ L2
(

Ω1,R1×K1
)

, Rd ∈ L2
(

Ωd,RKd−1×1
)

and for all

i = 2, · · · , d− 1, Ri ∈ L2
(

Ωi,RKi−1×Ki
)

so that the Tensor Train W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) := R1(x1)R2(x2) · · ·Rd(xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ‖W − W̃‖2
L2(Ω)

≤ ε2.

3: Define K0 := 1, D0 = {1} and define W 0 ∈ L2(D0 × Ω) such that W 0(1, ·) = W , I0 := {1, · · · , d},
Ω̂0 := Ω.

4: for j = 1, · · · , d− 1 do

5: Since Dj−1×Ω̂j−1 = (Dj−1 × Ωj)×Ω̂j with Ω̂j = Ωj+1×· · ·×Ωd, compute the SVD decomposition

of W j−1 according to the separation of variables (Dj−1 × Ωj , Ω̂j) so that

W j−1 =
∑
k∈N∗

σj,kUj,k ⊗ Vj,k.

6: Select Kj ∈ N∗ such that Kj = inf

K ∈ N∗,
∑
k≥K

|σj,k|2 ≤
ε2

d− 1

 .

7: Define Dj := {1, · · · , Kj} and define W j ∈ L2
(
Dj × Ω̂j

)
by

W j(kj , yj) = σj,kjVj,kj (yj)

for all (kj , yj) ∈ Dj × Ω̂j .

8: Define Rj ∈ L2
(

Ωj ,RKj−1×Kj
)

as

Rj(xj) =
(
Uj,kj (kj−1, xj)

)
1 ≤ kj−1 ≤ Kj−1

1 ≤ kj ≤ Kj

for all xj ∈ Ωj .
9: end for

10: Define Rd ∈ L2
(

Ωd,RKd−1×1
)

by

Rd(xd) =
(
σd−1,kd−1

Vd−1,kd−1
(xd)

)
1≤kd−1≤Kd−1

.

W − W̃n−1 and let us denote W
n

0 := Wn−1. The POD decomposition of W
n

0 is
computed with respect to all the partitioning of the variables of the form Ω = Ωi ×
("1≤j 6=i≤d Ωj) for all i ∈ {1, · · · , d} = In0 . Denoting by

(
σi,n1,k

)
k∈N∗

the sequence of

singular values associated to the ith partitioning of the variables, for all r ∈ N∗, one
can compute

Lni,1(r) =

r∑
k=1

|σi,n1,k|
2 − βni,1r

where βni,1 is a positive scalar which definition is discussed below. The function Li,1

is defined so that it reads as the sum of two terms: on one hand,
∑r
k=1 |σ

i,n
1,k|2 gives

the `2 norm of the rank-r truncated POD of W
n

0 and increases with r; on the other
hand, βni,1r is a term which reflects the memory need related to the storage of a rank-r

truncated POD of W
n

0 . The maximizer rni,1 ∈ N∗ so that

rni,1 ∈ argmax
r∈N∗

Lni,1(r)
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Procedure 3.1 SoTT algorithm
1: Input: ε > 0, W ∈ L2(Ω)

2: Output: N ∈ N∗, for all 1 ≤ n ≤ N, τn ∈ Sd, Kn1 , · · · , K
n
d−1 ∈ N∗ TT-ranks, Rn1 ∈ L2

(
Ωτn(1), R

1×Kn1
)

,

Rnd ∈ L
2

(
Ωτn(d), R

Knd−1×1
)

and for all i = 2, · · · , d − 1, Rni ∈ L
2
(

Ωτn(i), R
Kni−1×K

n
i
)

so that the sum of

Tensor Trains W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) :=
N∑
n=1

R
n
1 (xτn(1))R

n
2 (xτn(2)) · · ·Rnd (xτn(d)) ∀(x1, · · · , xd) ∈ Ω,

satisfies ‖W − W̃‖2
L2(Ω)

≤ ε2.

3: Set W0 = W , n = 1.

4: while ‖Wn−1‖2
L2(Ω)

> ε do

5: Define Kn0 := 1, Dn0 = {1} and define Wn
0 ∈ L

2(D0 × Ω) such that Wn
0 (1, ·) = Wn−1, In0 := {1, · · · , d}.

6: for j = 1, · · · , d − 1 do

7: For all i ∈ Inj−1, since D
n
j−1 × "

i∈In
j−1

Ωi =
(
D
n
j−1 × Ωi

)
× "
i′∈In

j−1
\{i}

Ω
i′ , compute the SVD decompo-

sition of Wn
j−1 according to the separation of variables (Dnj−1 × Ωi, "

i′∈In
j−1
\{i′} Ω

i′ ) so that

W
n
j−1 =

∑
k∈N∗

σ
i,n
j,k

U
i,n
j,k
⊗ V i,n

j,k
.

8: Select inj ∈ I
n
j−1 and Knj ∈ N∗ so that

(
i
n
j ,K

n
j

)
∈ argmax
i∈In−1,r∈N∗

r∑
k=1

|σi,n
j,k
|2 − βni,jr,

where for all i ∈ Inj−1, βni,j > 0 is chosen according to (3.1).

9: Define τn(j) = inj .

10: Select Knj ∈ N∗ such that K
n
j = min

Knj , inf

K ∈ N∗,
∑
k≥K

∣∣∣∣στn(j),n
j,k

∣∣∣∣2 ≤ ε2

d − 1


 .

11: Define Inj := Inj−1 \ {τ
n(j)} so that #Inj = d − j.

12: Define Dnj :=
{
1, · · · , Knj

}
and define Wn

j ∈ L
2

(
Dnj × "i∈In

j
Ωi

)
by

W
n
j (kj, yτn(j)) = σ

τn(j),n
j,kj

V
τn(j),n
j,kj

(yτn(j))

for all (kj, yτn(j)) ∈ Dnj × "
i∈In

j

Ωi.

13: Define Rnj ∈ L
2

(
Ωτn(j), R

Knj−1×K
n
j

)
as

R
n
j (xτn(j)) =

(
U
τn(j),n
j,kj

(kj−1, xτn(j))

)
1≤kj≤Knj ,1≤kj−1≤Knj−1

for all xτn(j) ∈ Ωτn(j).

14: end for
15: Since #Ind−1 = 1, let ind ∈ {1, · · · , n} such that Ind−1 = {ind }. Define τn(d) = ind .

16: Define Rnd ∈ L
2

(
Ωτn(d), R

Knd−1×1
)

by

R
n
d (xτn(d)) =

(
σ
τn(d−1),n
d−1,kd−1

V
τn(d−1),n
d−1,kd−1

(xτn(d))

)
1≤kd−1≤K

n
d−1

.

17: Compute Wn(x1, · · · , xd) = Wn−1(x1, · · · , xd) − Rn1 (xτn(1))Rn2 (xτn(2)) · · ·Rnd (xτn(d)) for all

(x1, · · · , xd) ∈ Ω.

18: n = n + 1
19: end while
20: N = n − 1
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is a value of rank which enables to obtain a reasonable trade-off between the accuracy
of the truncated POD and its memory storage. Then, τn(1) is chosen as the optimum
index i ∈ In0 such that

τn(1) = argmax
i∈In0

Lni,1(rni,1) = argmax
i∈In0

sup
r∈N∗

Lni,1(r),

and gives the index of the first variable in the TT computed at the nth iteration of
the SoTT. A preliminary value of the rank K

n

1 is then chosen so that K
n

1 = rnτn(1),1.
An additional step is used at line 9 for the definition of the final value of the rank

Kn
1 which ensures that if ∑

k≥Kn
1

∣∣∣στn(1),n
1,k

∣∣∣2 ≤ ε2

d− 1
,

then Kn
1 is the lowest possible rank which guarantees that∑

k≥Kn
1

∣∣∣στn(1),n
1,k

∣∣∣2 ≤ ε2

d− 1
.

To select the values τn(2), · · · , τn(d) in order to choose the complete order of the
variables entering the definition of the nth TT, one uses a similar iterative procedure
applied to the d− 1-order tensor W

n

1 which reads as the projection of the tensor W
n

0

onto the Kn
1 first POD modes obtained from the τn(1)th partitioning of variables.

We observe that the choice of the values of βni,j > 0 at Step 8 of the SoTT
algorithm is critical for its efficiency. In practice, in the case where for all 1 ≤ i ≤ d,
#Ωi = Ni < +∞ (i.e. when the tensor is defined on a discrete domain), we make the
following choice:

(3.1) βni,j =
Ni + Πi′∈Inj \{i}Ni′

Πi′∈Inj Ni′

+∞∑
k=1

|σi,nj,k |
2 =
Ni + Πi′∈Inj \{i}Ni′

Πi′∈Inj Ni′
‖Wn

j−1‖2`2 .

Let us point out that the function N 3 r 7→ Lni,j(r) :=
∑r
k=1 |σ

i,n
j,k |2 − βni,jr is

concave. Then, it holds that Lni,j(0) = 0, and there exists at least one rni,j ∈{
0, · · · ,min

(
Ni,Πi′∈Inj \{i}Ni′

)}
so that

rni,j ∈ argmax

r∈
{

0,··· ,min

(
Ni,Πi′∈In

j
\{i}Ni′

)}Lni,j(r),

and
Lni,j(r

n
i,j) ≥ 0.

3.2. Exponential convergence of the SoTT algorithm in finite dimen-
sion. The aim of this section is to prove that the SoTT algorithm converges expo-
nentially fast with the number of iterations in finite dimension.

Proposition 3.1. Let us assume that there exists for all 1 ≤ i ≤ d, a #Ωi < +∞.
Then, there exists 0 < α < 1 such that for all n ∈ N∗,

(3.2) ‖Wn‖2L2(Ω) ≤ α
n‖W‖2L2(Ω),

with

α ≤ 1− 1

N 2(dd/2e!) ,

where N := max1≤i≤d #Ωi.
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We observe in practice that the upper bound on the convergence rate of the SoTT
algorithm given by Proposition 3.1 is very pessimistic. We refer the reader to Section 5
for numerical results which illustrate this fact.

Proof. Let us begin by proving that for all n ∈ N∗,

(3.3) ‖Wn‖2L2 ≤
(

1− 1

N 2(dd/2e!)

)∥∥Wn−1
∥∥2

L2 .

Indeed, for all n ∈ N∗, let us denote

Un(x1, · · · , xd) := Rn1 (xτn(1))R
n
2 (xτn(2)) · · ·Rnd (xτn(d)), ∀(x1, · · · , xd) ∈ Ω1×· · ·×Ωd.

Note that, by construction and definition of the SoTT algorithm,
〈
Wn−1 − Un, Un

〉
L2(Ω)

=

0, so that

(3.4) ‖Wn‖2L2 =
∥∥Wn−1 − Un

∥∥2

L2 =
∥∥Wn−1

∥∥2

L2 − ‖Un‖
2
L2 .

By definition of the algorithm, it holds that for all 1 ≤ j ≤ d− 1,

Kn
j ≤ min

(
NKn

j−1,N d−j) ,
where Kn

0 = 1. Thus, by induction, we obtain that for all 1 ≤ j ≤ d− 1,

Kn
j ≤ min

(
N j ,N d−j) .

As a consequence, for all n ∈ N∗, and all 1 ≤ j ≤ d−1, we obtain that for all i ∈ Inj−1,

#Dn
j−1×Ωi ≤ N min

(
N j−1,N d+1−j) = min

(
N j ,N d+2−j) and # "

i′∈Inj−1\{i}
Ωi′ ≤ N d−j .

Thus, for all i ∈ Inj−1,

(3.5) min

(
#Dn

j−1 × Ωi,# "
i′∈Inj−1\{i}

Ωi′

)
≤ min

(
N j ,N d−j) .

As a consequence, for all i ∈ Inj−1, it holds that

∣∣∣σi,nj,1 ∣∣∣2 ≥
∥∥∥Wn

j−1

∥∥∥2

L2

min (N j ,N d−j)
.

Moreover, denoting by Ŵn
j :=

∑Kn
j

kj=1 σ
τn(j),n
j,kj

U
τn(j),n
j,kj

⊗ V τ
n(j),n

j,kj
, it holds that∥∥∥Wn

j−1 − Ŵn
j

∥∥∥2

L2
(
Dnj−1×"i∈In

j−1
Ωi
) ≤ ∣∣∣σi,nj,1 ∣∣∣2 .

Thus, using the fact that W
n

j−1 − Ŵn
j is orthogonal to Ŵn

j , we obtain that∥∥∥Ŵn
j

∥∥∥2

L2
(
Dnj−1×"i∈In

j−1
Ωi
) =

∥∥∥Wn

j−1

∥∥∥2

L2
(
Dnj−1×"i∈In

j−1
Ωi
) − ∥∥∥Wn

j−1 − Ŵn
j

∥∥∥2

L2
(
Dnj−1×"i∈In

j−1
Ωi
)

≥
∥∥∥Wn

j−1

∥∥∥2

L2
(
Dnj−1×"i∈In

j−1
Ωi
)
(

1− 1

min (N j ,N d−j)

)
.
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Lastly, using the fact that
(
U
τn(j),n
j,kj

)
1≤kj≤Kj

n

is an orthonormal family of L2
(
Ωτn(j)

)
and

(
V
τn(j),n
j,kj

)
1≤kj≤Kj

n

is an orthonormal family of L2
(
"i∈Inj Ωi

)
, it holds that

∥∥∥Ŵn
j

∥∥∥2

L2
(
Dnj−1×"i∈In

j−1
Ωi
) =

∥∥∥Wn

j

∥∥∥2

L2
(
Dnj ×"i∈In

j
Ωi
) =

Kn
j∑

kj=1

∣∣∣στn(j),n
j,kj

∣∣∣2 .
As a consequence, we obtain that for all n ∈ N∗ and for all 1 ≤ j ≤ d− 1,∥∥∥Wn

j

∥∥∥2

L2
(
Dnj ×"i∈In

j
Ωi
) ≥ ∥∥∥Wn

j−1

∥∥∥2

L2
(
Dnj−1×"i∈In

j−1
Ωi
) .

In addition, it can easily be checked that ‖Un‖L2(Ω)2 =
∥∥∥Wn

d−1

∥∥∥2

L2(Dnd−1×Ωτn(d))
.

Thus, by induction over 1 ≤ j ≤ d− 1, we obtain that for all n ∈ N∗,

‖Un‖L2(Ω)2 ≥
∥∥∥Wn

0

∥∥∥2

L2(Ω)

1

Π1≤j≤d−1 min(N j ,N d−j)

=
∥∥Wn−1

∥∥2

L2(Ω)

1

Π1≤j≤d−1 min(N j ,N d−j)

≥
∥∥Wn−1

∥∥2

L2(Ω)

1

N 2(dd/2e!) .

Collecting this estimate with (3.4), we obtain (3.3). Thus, by induction, we easily
obtain the desired result (3.2).

3.3. Complexity estimate of the SoTT algorithm. The aim of this section
is to provide some estimates on the complexity of the computational cost of the SoTT
algorithm. Let us assume here that there exists N ∈ N∗ such that #Ωi ≤ N for all
1 ≤ i ≤ d.

We detail the computational cost of each iteration n ∈ N∗. The computational
cost is concentrated in the computation of the different POD decompositions of the
tensor W

n

j−1 for each 1 ≤ j ≤ d− 1 (l.7 of SoTT algorithm), which can be estimated
using (2.2). We consider two different cases.

3.3.1. Case 1: Unbounded ranks. Let us begin by giving a very pessimistic
bound in the case where no upper bound on the ranks Kn

j is imposed for all 1 ≤ j ≤ d.
From (3.5), it holds that the computational cost of each POD decomposition scales
like

O
(

max
(
N j ,N d−j)min

(
N j ,N d−j)2) .

Thus, the total computational cost of the POD decompositions of one iteration of the
SoTT algorithm is of the order of

O

d−1∑
j=1

(d− j + 1) max
(
N j ,N d−j)min

(
N j ,N d−j)2 ≈ O (d2N 3dd/2e

)
.
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3.3.2. Case 2: Bounded ranks. Now, let us assume that there exists R ∈ N∗
such that R < N and such that for all 1 ≤ j ≤ d− 1, Kn

j ≤ R. Then, for j = 1, the
computational cost of each POD decomposition scales like

N d+1.

Besides, for 2 ≤ j ≤ d− 2, the computational cost of each POD decomposition scales
like

R2N d−j+1.

Lastly, for j = d − 1, there is only one POD decomposition to compute, the cost of
which scales like

RN 3.

Thus, the total cost of the POD decompositions of one SoTT iteration scales like

O

dN d+1 +

d−2∑
j=2

(d− j + 1)R2N d−j+1 +RN 3

 ≈ O (dN d+1 + dR2N d−1 +RN 3
)
.

Remark. The computational cost of the SoTT algorithm is in general larger
than the computational cost of the TT-SVD, as we do not fix a priori the order of
the variables. In the first step of the SoTT iteration, the cost is similar to the one of
the HOSVD method, in which we compute the POD for all the unfoldings. There is,
however, a difference in terms of the memory used. In the practical implementation
of SoTT, we do not need to store in memory the POD decomposition of all the
unfolding, just the best one. In addition, we do not need to store the potentially
dense core tensor. In the case in which we particularize SoTT by fixing the rank (an
example to rank 1 is proposed in the forthcoming section), the computational cost of
the POD can be reduced.

4. CP-TT: fixed-rank SoTT algorithm with rank 1. We make here a focus
on a particular variant of the SoTT algorithm where all the ranks Kn

j are a priori
chosen to be fixed and equal to 1 for all 1 ≤ j ≤ d and all iterations n ∈ N∗.
We refer the reader to [35] for a review on the stability properties of rank-1 tensor
decompositions. As an output, the SoTT algorithm then computes an approximation
of the tensor W in a CP format and we call it hereafter the CP-TT algorithm. More
precisely, for all 1 ≤ j ≤ d and n ∈ N∗ and where Step 8 of the algorithm is replaced
by the following step: select inj ∈ Inj−1 so that

inj ∈ argmax
i∈In−1

|σi,nj,1 |
2

and where Step 10 is not performed.
As an output, after n iterations of the CP-TT algorithm, the method greedily

produces an approximation of the tensor W under the CP format

W ≈
n∑
k=1

Rk1(xτk(1)) · · ·Rkd(xτk(d))

where for all 1 ≤ k ≤ n and all 1 ≤ i ≤ d, Rki ∈ L2(Ωτk(i)).
We make a specific focus on this particular case because we numerically observed

that this algorithm possesses interesting stability and approximation properties in
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comparison to other more classical numerical methods like ALS or ASVD for the
computation of a CP approximation of a tensor, especially when the order of the
tensor d is high. For the sake of comparison, we recall the ALS and ASVD algorithm
in Algorithm 4.1 and Algorithm 4.2 respectively. The convergence properties of the
ALS algorithm have been abundantly studied. We refer the reader for more details
to the following series of works [31, 28, 9, 33, 24]. The ASVD method is proposed
in [10].

Procedure 4.1 ALS algorithm
1: Input: ε > 0, W ∈ L2(Ω)

2: Output: N ∈ N∗, for all 1 ≤ n ≤ N and all 1 ≤ i ≤ d, Rni ∈ L
2 (Ωi) so that the CP tensor W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) :=
N∑
n=1

R
n
1 (x1)R

n
2 (x2) · · ·Rnd (xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ‖W − W̃‖2
L2(Ω)

≤ ε.

3: Set W0 = W , n = 1.

4: while ‖Wn−1‖2
L2(Ω)

> ε do

5: For all 1 ≤ i ≤ d, select randomly R
n,0
i
∈ L2(Ωi) and set η := ε and m = 1.

6: while η > 1
10
ε do

7: for j = 1, · · · , d do

8: Compute R
n,m
j

∈ L2(Ωj) solution to

R
n,m
j

∈ argmin

Rj∈L2(Ωj)

∥∥∥Wn−1 − R
n,m
1 ⊗ · · · ⊗ Rn,m

j−1
⊗ Rj ⊗ R

n,m−1
j+1

⊗ · · · ⊗ Rn,m−1
d

∥∥∥2
L2(Ω)

9: end for

10: Compute η :=
∥∥∥Rn,m1 ⊗ · · · ⊗ Rn,m

d
− Rn,m−1

1 ⊗ · · · ⊗ Rn,m−1
d

∥∥∥2
L2 . Set m := m + 1.

11: end while

12: Define Rni = R
n,m−1
i

for all 1 ≤ i ≤ d.

13: Compute Wn(x1, · · · , xd) = Wn−1(x1, · · · , xd) − Rn1 (x1)Rn2 (x2) · · ·Rnd (xd) for all (x1, · · · , xd) ∈ Ω.

14: n = n + 1
15: end while
16: N = n − 1

For the presentation of the ASVD algorithm, we need to introduce some additional
notation. We denote J := {{i, j}, 1 ≤ i < j ≤ d} be the set of all possible pairs of
indices between 1 and d. An ordering of the elements of J is chosen so that

J = (Jl)1≤l≤L

where L = |J |.
The closest method to CP-TT we found in the literature is the so called TTr1,

proposed in [1]. In this, we apply the TT-SVD method and we fix the rank to
one, at every stage of the algorithm. By proceeding this way, we compute all the
possible rank-1 terms, and we order them according to the singular values of the
POD decompositions. The orthogonality properties make it possible to truncate the
so obtained CP decomposition in order to fullfil a prescribed accuracy. The main
differences with respect to CP-TT are: first, in CP-TT we do not fix a priori the
order of the variables whereas we fix it in TTr1. Second, in CP-TT we proceed in
a greedy way, by computing one term at a time, whereas in TTr1 we compute all
the terms and then we truncate. The CP-TT has, henceforth, a computational cost
per term which is larger, but needs globally less storage, which seems beneficial to
compress higher order tensors.

5. Numerical Experiments. In this section, several numerical experiments are
proposed. In the first part, we compare several rank-1 update methods (ALS, ASVD,
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Procedure 4.2 ASVD algorithm
1: Input: ε > 0, W ∈ L2(Ω)

2: Output: N ∈ N∗, for all 1 ≤ n ≤ N and all 1 ≤ i ≤ d, Rni ∈ L
2 (Ωi) so that the CP tensor W̃ ∈ L2(Ω) defined by

W̃ (x1, · · · , xd) :=
N∑
n=1

R
n
1 (x1R

n
2 (x2) · · ·Rnd (xd) ∀(x1, · · · , xd) ∈ Ω,

satisfies ‖W − W̃‖2
L2(Ω)

≤ ε.

3: Set W0 = W , n = 1.

4: while ‖Wn−1‖2
L2(Ω)

> ε do

5: For all 1 ≤ i ≤ d, select randomly R
n,0
i
∈ L2(Ωi) and set η := ε and m = 1.

6: while η > 1
10
ε do

7: Set R
n,m
i

= R
n,m−1
i

for all 1 ≤ i ≤ d

8: for l = 1, · · · , L do

9: Let 1 ≤ il < jl ≤ d so that Jl = (il, jl).

10: Compute U
n,m
l

∈ L2(Ωil
× Ωjl

) solution to

U
n,m
l

∈ argmin

Ul∈L2(Ωil
×Ωjl

)

∥∥∥∥∥∥∥Wn−1 − Ul ⊗
⊗

i∈{1,··· ,d}\Jl

R
n,m
i

∥∥∥∥∥∥∥
2

L2(Ω)

.

11: Compute

(
R
n,m
il

, R
n,m
jl

)
∈ L2(Ωil

) × L2(Ωjl
) solution to

(
R
n,m
il

, R
n,m
jl

)
∈ argmin(

Ril
,Rjl

)
∈L2(Ωil

)×L2(Ωjl
)

‖Un,m
l

− Ril ⊗ Rjl‖
2
L2(Ωil

×Ωjl
)
.

12: end for

13: Compute η :=
∥∥∥Rn,m1 ⊗ · · · ⊗ Rn,m

d
− Rn,m−1

1 ⊗ · · · ⊗ Rn,m−1
d

∥∥∥2
L2 .

14: end while
15: Define Rni = R

n,m
i

for all 1 ≤ i ≤ d.

16: Compute Wn(x1, · · · , xd) = Wn−1(x1, · · · , xd) − Rn1 (x1)Rn2 (x2) · · ·Rnd (xd) for all (x1, · · · , xd) ∈ Ω.

17: n = n + 1
18: end while
19: N = n − 1

TTr1 and CP-TT) on random functions belonging to certain classes of regularity.
Then, we illustrate the efficiency of the SoTT algorithm with respect to standard TT-
SVD algorithms on a particular test case which consists in compressing the solution
of a parametric Partial Differential Equation.

5.1. Comparison between CP-TT and other rank-one update methods.
The aim of this section is to compare the efficiency of the CP-TT algorithm for the
computation of approximations of a tensor in a CP format with ALS, ASVD and
TTr1.

Let (x1, . . . , xd) ∈ Ω = [0, 1]d. Let (k1, ..., kd) ∈ Nd be the wave numbers. The
function to be compressed is assumed to be given in a Tucker format :

(5.1) W (x1, . . . , xd) =

l1∑
k1=1

l2∑
k2=1

. . .

ld∑
kd=1

ak1...kd sin(πk1x1)× . . .× sin(πkdxd)

The values of l1, · · · , ld ∈ N∗ and of the coefficients (ak1...kd)1≤k1≤l1,··· ,1≤kd≤ld are
randomly chosen as follows.

First, the values of (li)1≤i≤d are chosen to be a family of independent ran-
dom integers uniformly distributed between 1 and 6. Second, let β > 0. Let
(αk1...kd)1≤k1≤l1,...,1≤kd≤ld be a family of independent random variables uniformly
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distributed in [−1, 1]. For all 1 ≤ k1 ≤ l1, ..., 1 ≤ kd ≤ ld, the value ak1...kd is then
defined as:

ak1...kd =
αk1...kd

(
√
k2

1 + ...+ k2
d)
β
.

For different random samples and different values of the coefficient β, we obtain
different families of functions W given by (5.1). Let us remark that more detailed
rank-r CP approximation of the orthogonal Tucker tensor could be seen in [15], [17].

We are testing how the four methods behave for the compression of 32 different
functions generated by the random procedure described above for values of d ranging
from 4 to 16. Let us point out that ALS and ASVD are both fixed point based
methods, in contrast to CP-TT and TTr1, and the tolerance for the fixed point
procedure has been set as η = 1.0 × 10−4. The maximum number of iterations of
the method itmax = 100. A uniform discretization grid of Ω with 25 degrees of
freedom per direction is used for the discretization of W .

5.1.1. Results for functions with β = d
2 + 0.1. We begin by presenting here

some numerical tests obtained with functions generated with β = d
2 + 0.1.

We first present numerical experiments comparing CP-TT, TTr1, ALS and ASVD
in cases where d = 4 in Figure 1. Note that the memory required by the TTr1 method
has prevented us from being able to carry out the method for higher values of d.
Hence, for higher values of d, we only compare CP-TT with ALS and ASVD methods
in Figure 2 for d = 12 and d = 16. The mean and standard deviation of the L2 norm
of the difference between the exact function W and its approximation given by any
method is plotted as a function of the rank of the approximation.
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Fig. 1. Case d = 4 and β = d
2

+ 0.1. Left: mean and standard deviation of the L2 norm of
the difference between the exact function W and its approximation given by ALS (red), TTr1 (blue)
and CP-TT (black) as a function of the number of terms. Right: mean and standard deviation of
the L2 norm of the difference between the exact function W and its approximation given by ALS
(red), ASVD (blue) and CP-TT (black) as a function of the number of terms.

Note that in the case d = 4 (Figure 1), ALS outperforms ASVD and CP-TT.
The ALS also outperforms TTr1 for small values of the rank. However, in cases
where d = 12 and d = 16 (Figure 2), CP-TT has a better numerical behavior when
considering the decay of the norm of the residual with respect to the number of terms.
In particular, the compression rate is better on average and the norm decay of the
error with respect to the rank of the approximation is less subject to statistical noise.
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Fig. 2. Case β = d
2

+ 0.1. Mean and standard deviation of the L2 norm of the difference
between the exact function W and its approximation given by ALS (red), ASVD (blue) and CP-TT
(black) as a function of the number of terms. Left: case d = 12. Right: case d = 16.

Table 1 summarizes the numerical results obtained with the CP-TT, ALS and
ASVD methods. In particular, the mean and the standard deviation of the error
(on the 32 random functions) are reported for ranks equal to 25, 50, 75 and tensor
orders d = 4, 6, 8, 10, 12, 14, 16. We see here again that for low-order tensors (here
when d = 4) ALS has better performances, whereas for higher order tensors CP-TT
outperforms the other methods both in terms of mean and standard deviation.

5.1.2. Results for functions with β = d
2 + 1.1. Similar numerical tests have

been obtained here in the case where the value of the parameter β is chosen to be
equal to d

2 + 1.1.
Figure 3 and Figure 4 are the counterparts of Figure 1 and Figure 2 respectively.
The results obtained on H1(Ω) functions are equivalent to the ones shown for

L2(Ω) functions, showing that the decrease in the error norm with the approximation
rank is quite regular in CP-TT and behaves in a quite stable way also for higher order
tensors.

Table 2 is the counterpart of Table 1 for β = d
2 + 1.1.

Conclusions on this second test case are similar to the ones obtained in Sec-
tion 5.1.1. ALS seems to outperform all other rank-1 update methods in the case
where d = 4, whereas CP-TT seems to outperform the other methods for higer values
of d.

5.1.3. Comparison of the norm of the residual with respect to com-
putational time. It is clear that one iteration of CP-TT is in general more costly
in terms of computational time than one ALS iteration. As a consequence, even if
the norm of the residual given by the CP-TT algorithm seems to decrease faster as a
function of the number of terms in the approximation than with any other rank-1 up-
date methods for high values of d, it is legitimate to compare the norm of the residual
given by any method with respect to the computational time needed to compute the
corresponding approximations.

This is the aim of Figure 5, where the norm of the residual is plotted for CP-TT,
ALS and ASVD as a function of the computational time for different values of β
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Mean Std
Dimension (d) Rank (r) ALS CPTT ASVD ALS CPTT ASVD

25 0.2942 0.3826 0.3118 0.0702 0.0850 0.0843
4 50 0.1082 0.2433 0.1257 0.0326 0.0568 0.0664

75 0.0508 0.1681 0.0689 0.0180 0.0408 0.0666
25 0.4479 0.3771 0.4806 0.1099 0.0826 0.1074

6 50 0.2705 0.1982 0.2883 0.0752 0.0485 0.0675
75 0.1232 0.0806 0.1369 0.0325 0.0252 0.0368
25 0.5341 0.3707 0.5532 0.1183 0.0592 0.1238

8 50 0.3060 0.1909 0.3415 0.0722 0.0341 0.0932
75 0.1592 0.0682 0.1807 0.0435 0.0160 0.0625
25 0.5023 0.3598 0.5451 0.0879 0.0643 0.1055

10 50 0.3191 0.1826 0.3797 0.0643 0.0342 0.0774
75 0.1714 0.0655 0.2792 0.0453 0.0162 0.1265
25 0.5170 0.3246 0.5639 0.1117 0.0576 0.1250

12 50 0.3249 0.1623 0.4206 0.0824 0.0286 0.1579
75 0.1543 0.0579 0.3498 0.0369 0.0113 0.2057
25 0.4443 0.2336 0.4783 0.1712 0.1064 0.1585

14 50 0.2407 0.1004 0.3307 0.0937 0.0588 0.1737
75 0.1411 0.0321 0.2230 0.0541 0.0235 0.1821
25 0.5529 0.3160 0.6150 0.1305 0.0818 0.1656

16 50 0.3487 0.1448 0.4424 0.0849 0.0389 0.1942
75 0.1946 0.0616 0.3678 0.0905 0.0289 0.2354

Table 1
Mean and standard deviation of the norm of the residual for 32 random functions in the case

where β = d
2

+ 0.1.
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Fig. 3. Case d = 4 and β = d
2

+ 1.1. Left: mean and standard deviation of the L2 norm of
the difference between the exact function W and its approximation given by ALS (red), TTr1 (blue)
and CP-TT (black) as a function of the number of terms. Right: mean and standard deviation of
the L2 norm of the difference between the exact function W and its approximation given by ALS
(red), ASVD (blue) and CP-TT (black) as a function of the number of terms.

different values of d.
We observe in these tests that, in terms of mean of the decay of the norm of
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Fig. 4. Case β = d
2

+ 1.1. Mean and standard deviation of the L2 norm of the difference
between the exact function W and its approximation given by ALS (red), ASVD (blue) and CP-TT
(black) as a function of the number of terms. Left: case d = 12. Right: case d = 16.

the residual as a function of the computational time, the three methods perform
similarly. However, we observe that CP-TT has a lower stochastic variability than
ALS and ASVD.

5.2. SoTT for the compression of the solution of a parametric reaction
diffusion equation. The aim of this section is to illustrate the numerical behavior
of the SoTT algorithm where the ranks are not fixed a priori but chosen according to
Algorithm 3.1.

We consider here a fourth-order a tensor obtained by solving numerically a 1D-
1D parametric Fischer-Kolmogorov-Petrovsky-Piskunov (FKPP) equation. Let Ω1 :=
[0, 1] be the space domain, and Ω2 := [0, 0.25] be the time domain. Let α ∈ Ω3 :=
[25, 100] be the reaction coefficient, and β ∈ Ω4 := [0.25, 0.75] be a parameter defining
the initial condition. The equation reads: for all (α, β) ∈ Ω3×Ω4, find uα,β : Ω1×Ω2 3
(x, t) 7→ uα,β(x, t) ∈ R solution to

(5.2)

 ∂tuα,β = ∂2
xuα,β + αuα,β(1− uα,β), ∀(x, t) ∈ Ω1 × Ω2

uα,β(0, t) = uα,β(1, t) = 0, ∀t ∈ Ω2,
uα,β(x, 0) = exp(−200(x− β)2), ∀x ∈ Ω1.

We then define, for all (x1, x2, x3, x4) ∈ Ω1 × Ω2 × Ω3 × Ω4,

W (x1, x2, x3, x4) := ux3,x4
(x1, x2).

Equation 5.2 is discretized and solved by means of a classical centred finite differ-
ence scheme. Examples of the space-time portrait of the solution for different values
of the parameters are shown in Fig.6.

We consider uniform discretization grids of Ω1, Ω2, Ω3 and Ω4 of size N1 = 100,
N2 = 50, N3 = 10 and N4 = 10 respectively.

In Figure 7, the memory of the computed approximation (i.e. the number of
stored double precision numbers) is plotted as a function of the residual norm, for
the TT-SVD approximations corresponding to all the possible 24 choices of permuta-
tions of the variable indices and the SoTT approximation. These approximations are
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Mean Std
Dimension (d) Rank (r) ALS CPTT ASVD ALS CPTT ASVD

25 0.1722 0.2261 0.1759 0.0643 0.2261 0.1759
4 50 0.0572 0.1382 0.0590 0.0220 0.1382 0.0232

75 0.0252 0.0948 0.0262 0.0103 0.0948 0.0110
25 0.3741 0.2938 0.4171 0.1158 0.0942 0.1341

6 50 0.2037 0.1507 0.2281 0.0655 0.0523 0.0791
75 0.0851 0.0579 0.1045 0.0334 0.0233 0.0493
25 0.3676 0.2560 0.3977 0.1361 0.0905 0.1517

8 50 0.2136 0.1229 0.2413 0.0807 0.0451 0.1023
75 0.1046 0.0455 0.1145 0.0437 0.0195 0.0631
25 0.4574 0.3737 0.4753 0.1235 0.1548 0.1817

10 50 0.2613 0.3483 0.3193 0.0809 0.1825 0.1648
75 0.1168 0.3332 0.2352 0.0628 0.2034 0.1865
25 0.4634 0.2505 0.5182 0.1681 0.0842 0.2116

12 50 0.2889 0.1141 0.3922 0.1421 0.0384 0.2170
75 0.1278 0.0382 0.3144 0.0671 0.0126 0.2502
25 0.5943 0.2169 0.4386 0.2043 0.1262 0.2014

14 50 0.2841 0.0779 0.3132 0.1277 0.0686 0.1915
75 0.1422 0.0244 0.2021 0.0814 0.0227 0.2192
25 0.4598 0.2460 0.5543 0.1496 0.0726 0.1603

16 50 0.2861 0.1108 0.3936 0.1268 0.0348 0.2022
75 0.1395 0.0438 0.3181 0.0552 0.0153 0.2477

Table 2
Mean and standard deviation of the norm of the residual for 32 random functions in the case

where β = d
2

+ 1.1.

computed in all cases for several residual tolerances, ranging from 10−2 to 5 · 10−4.
Remark here that the results obtained by the TT-SVD algorithm heavily depend on
the order of the variables chosen. The difference in memory between the best and the
worst TT-SVD is roughly one order of magnitude, for all the tolerances tested.

We observe in this test case that the SoTT method produces a sub-optimal com-
pression with respect to the best TT-SVD compression. However, it performs better
than the average TT-SVD and in general better than the canonical order 1, 2, 3, 4.
The first term computed is a rank-1 update, for the second term the TT ranks are
[5, 5, 4], for the third [7, 7, 5], and in general we observe that the order of the variables
change.

In Figure 8, we compare the performance of SoTT with CP-TT, its particulariza-
tion to rank-1 updates. More precisely, the logarithm of the memory is plotted as a
function of the logarithm of the residual norm, for 5 iterations of SoTT and approxi-
mately 360 iterations of CP-TT. We observe in this test case that the performance of
SoTT is better than the one of CP-TT.

6. Conclusions and perspectives. In the present work, we proposed a method
to compress a given tensor as a sum of Tensor Trains (SoTT). Neither the order of
the variables nor the ranks are fixed a priori. Instead, they are the result of an op-
timization step. A particular instance of this method, consisting in fixing the ranks
equal to one in all the steps of the algorithm, produces a CP approximation of a
given tensor. A proof of convergence is proposed in the general case of the SoTT
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Fig. 5. Left: β = d
2

+ 0.1. Right: β = d
2

+ 1.1. From top to bottom: d = 4, 12, 16. Mean and
standard deviation of the norm of the residual as a function of the accumulated time of computation
for ALS (red), ASVD (blue) and CP-TT (black).

algorithm, which can be extended to the case of the CP-TT algorithm. Several nu-
merical experiments are proposed to illustrate the properties of the methods. First,
we compared the CP-TT to other rank-one update methods (ALS, ASVD, TTr1). Al-
though a single iteration of CP-TT is more expensive in terms of number of operation,
its stability makes it a promising candidate to compress high-dimensional tensors in
CP format. We proposed a test in which we compressed the numerical solution of a
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Fig. 6. Three slices of the full tensor used in Section 5.2. The horizontal axis is the space
coordinate, the vertical axis is the time coordinate, the color represents the solution value, from 0
(black), to 1 (white) for different values of the parameters determining the initial condition and the
reaction coefficient.

Fig. 7. Compression test performed in Section5.2, double logarithmic plot of the memory
as function of the residual norm for the TT-SVD runs (obtained by considering all the possible
permutations of the indices), for several tolerances, and the SoTT approximations.

parametric partial differential equation of reaction-diffusion type. In particular, we
compared SoTT with the TT-SVD obtained by testing all the possible permutations
of the indices. Although SoTT is suboptimal with respect to the best TT-SVD, it is
independent of the order of the variables and its performances are comparable to the
average TT-SVD. In this test, the SoTT method outperforms CP-TT. Both meth-
ods showed preliminary yet encouraging results in view of applications in scientific
computing and compression of high order tensors.
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Fig. 8. Compression test performed in Section5.2, double logarithmic plot of the memory as
function of the residual norm for the SoTT and the CP-TT algorithms.
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