
1

Comparative Assessment of Process Mining for
Supporting IoT Predictive Security

Adrien Hemmer, Mohamed Abderrahim, Rémi Badonnel, Jérôme François and Isabelle Chrisment
Inria Nancy Grand Est - Loria, University of Lorraine
Campus Scientifique, 54600 Villers-les-Nancy, France

{adrien.hemmer, mohamed.abderrahim, remi.badonnel, jerome.francois, isabelle.chrisment}@inria.fr

Abstract—The growth of the Internet-of-Things (IoT) has
been characterized by the large-scale deployment of sensors
and connected objects. These ones are integrated with other
Internet resources in order to elaborate more complex systems
and applications. Security management is a major challenge for
these systems due to their complexity, their heterogeneity and the
limited resources of their devices. In this paper we evaluate the
exploitability and performance of a process mining approach for
detecting misbehaviors in such systems. We describe the consid-
ered architecture and detail its operation, from the generation
of behavioral models to the detection of potential attacks. We
formalize several alternative commonly-used detection methods,
including elliptic envelope, support-vector machine, local outlier
factor, and isolation forest techniques. After presenting a proof-
of-concept prototype, we quantify comparatively the benefits and
limits of our process mining solution combined with data pre-
processing, through extensive experiments based on different
industrial datasets.

Index Terms—Security Management, Internet-of-Things, Pro-
cess Mining, Data Mining, Machine Learning.

I. INTRODUCTION

THE Internet-of-Things (IoT) has grown in importance and
maturity in a large variety of domains, such as domestic

applications with smart home networks [1], and industrial
infrastructures with the development of industry 4.0 [2]. The
complexity of systems and infrastructures involving IoT de-
vices is often under-estimated [3], and induces new challenges
from a security management perspective [4]. The weaknesses
of IoT-based systems have an impact that goes beyond the
Internet-of-Things, and influence other systems that are not
composed of such devices. In particular, even if a system does
not implement IoT devices, it can be vulnerable to attacks
based on infected ones. A typical example can be given with
the case of botnets built from compromised IoT devices and
serving as a support for distributed denial-of-service attacks
(DDoS) [5]. Typically, the Mirai botnet responsible for the
series of DDoS attacks against the DynDNS service was
composed of such vulnerable IoT devices and caused the
unavailability of several major Internet platforms and services
during several hours [6]. More recently in 2019, massive
botnet attacks exploited more than 400,000 connected devices
against online streaming applications [7].

The major risks in IoT-based systems come from the devices
themselves that may be affected by naïve weaknesses due to
their poor and limited implementations [4][6]. The exploitation
of one single weak IoT device can be used to take control

over a whole network [8]. Traditional security mechanisms,
such as intrusion detection systems (IDS), firewalls and an-
tiviruses, are often inadequate with the constrained resources
(CPU, memory, battery) of IoT devices [9]. In addition, these
solutions are often specific to given categories of devices and
protocols [10], and may fail to address security attacks that
occur in complex and heterogeneous environments.

In this paper, we evaluate the exploitability and performance
of a process mining approach for detecting misbehaviors
in IoT networks. This is an extended version of our work
published in [11] where we overview this approach and its
architecture, with the generation of behavioral models and the
detection of potential attacks. We complement these efforts,
with the formalization of four other categories of commonly-
used detection methods, including elliptic envelope, support-
vector machine, local outlier factor, and isolation forest tech-
niques. We show their integration into the considered predic-
tive security architecture. We quantify the benefits and limits of
our process mining method in comparison to these alternative
techniques, considering three different industrial datasets in the
area of connected cars, industry 4.0 and robot networks. In par-
ticular, we show the advantages of combining process mining
with data pre-processing, in order to prevent an explosion of
states, while keeping high detection performance. The solution
is implemented based on a proof-of-concept prototype using
the ProM library [12]. It exploits application data generated by
IoT devices and is compatible with heterogeneous platforms
and protocols. The collection of data is performed passively,
and does not introduce additional network and processing
overloads at the device level. The objective is clearly to
minimize false positive alerts and provide further contextual
background to security analysts, while taking advantage of
system heterogeneity [13].

The main contributions of this paper include: (1) the design
of a predictive security approach for detecting attacks and mis-
behaviors in IoT-based systems by combining process mining
and data pre-processing, (2) the formalization and integration
of other commonly-used detection techniques, including ellip-
tic envelope, support-vector machine, local outlier factor, and
isolation forest techniques, (3) the development of an opera-
tional proof-of-concept prototype exploited for three different
industrial datasets such as connected cars, industry 4.0, robot
networks and (4) a multi-criteria comparative analysis of the
solution performance based on extensive experiments.

The remainder of the paper is organized as follows.

2

Fig. 1. Architecture of our predictive security approach for supporting IoT infrastructures

Section II describes existing work related to IoT security and
highlight their limitations. Section III describes and formalizes
our predictive security approach based on process mining and
data pre-processing for detecting attacks and misbehaviors in
IoT environments, as well as the integration of several alter-
native commonly-used detection methods. Section IV details
the implementation prototype, together with extensive series
of experiments for evaluating comparatively the benefits and
limits of our solution based on multiple criteria. Section V
gives conclusions and points out future research work.

II. RELATED WORK

Systems and applications based on IoT devices appear to be
highly vulnerable to security attacks due to several factors [5].
The complexity of these systems relying on heterogeneous
IoT protocols and platforms make security management tasks
difficult to implement. In addition, the nature of IoT devices
that are characterized by limited resources makes them an at-
tractive target. In that context, they are often affected by naïve
weaknesses such as default credentials, poor maintenance and
misconfigurations [4], [6], [8].

Solutions have already been largely proposed in the liter-
ature to address security issues induced by the Internet-of-
Things. Amongst them, [14] describes a set of recommended
designs with respect to the architectural building of IoT-based
systems. These designs take into account different security,
performance and scalability criteria. The security mechanisms
that are considered for them depend also on the nature of
attacks. External attacks often aim at acquiring the same rights
than the ones of authorized internal users. In order to avoid
these attacks, the system typically relies on authentication
methods based on cryptographic techniques [15]. Internal
attacks may be more difficult to counter, and require behavioral
patterns to be built, in order to detect deviations that character-
ize potential security attacks afterwards. There are also works,
like in [16], which have proposed an approach to predict
the next steps of an attack. It is done by connecting attack
graphs, made by experts, and IDS alerts. Thus they detect the
current step of the attack and can predict what the next one
will be. Applying such method on IoT devices could be a
challenge due to their constraints resources. While solutions
such as [14] do not introduce a specific method to process
and detect misbehaviors, we propose to formalize the different
steps of a process mining approach for supporting IoT security

in different application domains. Some efforts such as [17]
have focused on protecting IoT systems implementing specific
routing protocols, in particular the RPL protocol for low-power
and lossy networks. Our solution aims at coping with the
heterogeneity of IoT protocols and frameworks through the
analysis of application data coming from various sources.

Some approaches, such as decision tree learning have been
used in order to help detecting misuse in computer network
in [18]. It is one of the most intuitive and popular machine
learning methods for classification. This method relies on
recursively partitioning the data points according to their
features values, until a stopping condition is reached. A major
limitation of the decision tree method is it builds models that
are often overfitting. In other words, the learned model tightly
fits the training data. Consequently, slightly inaccurate training
data can dramatically infect the model. To overcome this
limitation, the random forest method [19] has been proposed.
It consists in relying on many decision trees instead of a single
one. Each tree is built based on different samples of data as
well as different subsets of features. The decision is taken
based on a majority vote or a scoring function, which returns
an abnormality degree for each observation.

By design, the decision tree method expects to match new
data with the ones, that have been used in the model building,
sharing the most similarities. Indeed, decision tree and random
forest are supervised machine learning methods. However, in
our research, we focus on non-supervised detection. To cope
with this challenge, we will consider in particular one-class
random forest (OCRF), an extension of random forest, which
has been proposed for this purpose in [20]. In this paper, the
authors have proposed a method relying on decision tree and
inspired by random forest that aim to work for unsupervised
anomaly detection and have compared it to several well known
algorithms, such as isolation forest [21] and support-vector
machine techniques. It appears than one-class random forest
is the algorithm that shows the best performance in their
work and this is why we will mainly use this algorithm as
a comparator.

Statistical and analytical methods have already been spec-
ified to characterize IoT data and infer potential attacks. For
instance, the authors of [22] consider the statistical distribution
of the electromagnetic signals generated by IoT devices. In
addition, the authors of [23] exploit several machine learning
methods applied to datasets generated by smart cities. In the

3

same manner, the authors of [24] identify botnet behaviors
from a public NetFlow dataset issued from IoT-based systems.
First, they standardize the collected data that are then clustered
into two distinct clusters. The cluster containing the highest
number of data points is considered as the one characterizing
normal behaviors, whereas the one with the smallest number
of points is considered as the one characterizing misbehaviors.
While this approach contributes to a certain extent to automa-
tion, it does not provide significant contextual information to
support security analyst experts. In particular, each data point
is considered individually, independently from previous states.
More elaborated techniques such as Hidden Markov Model
(HMM) and neural networks, with long short term memory
(LSTM) have been experimented in [25] and [26], respectively.
However, the complexity of obtained results makes them
difficult to be exploited by security analysts when managing
alerts. We rather consider process mining methods in order to
generate petri net models that permit to further interpret the
different states and behaviors of an IoT-based system.

Process mining (PM) methods have shown their benefits in
different areas [27], and are detailed and compared to other
data mining techniques in [12]. Typically, they are exploited
to detect abnormal sequences of events from specific logs,
that may characterize system failures and attack attempts [28].
They are typically used with pre-processing techniques such as
clustering and normalization [29]. They may also be combined
with machine learning (ML) techniques. In particular, the
authors of [30] propose an approach that uses PM techniques
to extract the most frequent patterns of an observed industrial
system, while ML techniques permit to allocate resources in an
optimized manner based on this analysis. A use case dedicated
to healthcare with data sensors has also been described in [31],
but focusing on detecting anomalies with respect to patients
that may reveal diseases. Our purpose is to exploit process
mining for supporting the security of IoT-based systems, that
are typically distributed, heterogeneous and limited in terms
of resources.

III. PREDICTIVE SECURITY APPROACH

We will now describe our process mining approach for
supporting IoT predictive security. After giving an overview
of the system and components of our solution, we will detail
the two main phases respectively related to the building
of behavioral models, and to the detection of misbehaviors
and potential attacks. The solution is compatible with het-
erogeneous protocols and platforms that may compose such
elaborated systems. Finally, we will characterize the machine
learning algorithms that will serve as comparison against our
solution.

A. Overview of the system

The system supporting our process mining approach is
depicted in Figure 1. It corresponds to a pipeline composed
of three main building blocks: a data pre-processing block in
front of two other blocks. There are a model building block
and a misbehavior detection block for the process mining and
the machine learning methods. This pipeline takes as inputs

raw data, that may correspond to both training datasets that
are used by the model building block, or runtime monitoring
datasets that are used for detection purposes based on the
behavioral models built from the previous block.

During the model building phase (blue arrows on Figure 1),
the data preprocessing block transforms the raw data into
refined ones, which are interpretable by the model building
block. These refined data are then used by process mining
algorithms to generate behavioral models or by machine
learning algorithms to build classification models. The behav-
ioral models are formally expressed as petri nets representing
discrete event models of the observed system.

During the detection phase (red arrows on Figure 1), the
raw data correspond to monitoring data at runtime. They are
also transformed by the data pre-processing block. The refined
data are then compared by the misbehavior detection block
based on the behavioral models, in order to detect potential
attacks. The whole pipeline supports different categories of
data. While process mining algorithms usually expect event
logs, we consider more heterogeneous data inputs following
the description below. The considered dataset corresponds to
a trace T composed of a set of n records Ri, such as given
by Equation 1.

T = {R1, . . . , Rn} (1)

Each record Ri of the trace contains m elements Eij , as
depicted in Equation 2, while each element Eij consists itself
in an attribute/value pair, as given in Equation 3. We can also
notice that the different attributes of records Ri are the same
in a given trace T , as shown in Equation 4.

∀i ∈ [[1;n]], Ri = {Ei1, . . . , Eim} (2)
∀i ∈ [[1;n]],∀j ∈ [[1;m]], Eij = {attributij : valueij} (3)
Let j ∈ [[1;m]],∀i, k ∈ [[1;n]], attributij = attributkj (4)

In the following of the paper, we will describe the two main
phases of our security process mining approach, corresponding
to the model building and the misbehavior detection. We
will also detail the methods exploited during the data pre-
processing, and the considered evaluation metric to quantify
misbehaviors in such IoT-based systems.

B. Building of behavioral models

The model building phase consists in generating behavioral
models from the raw data of the analyzed system. We have
decided to elaborate a solution capable to cope with the
heterogeneity of protocols and platforms in an IoT-based
system. The phase starts with a data pre-processing block,
which transforms the raw data to be interpretable by the
process mining algorithms used by the model building block.

Data pre-processing block: the data pre-processing block
is composed of three sub-blocks, corresponding to data nor-
malization, data clustering and data splitting. It permits to
infer the different states of the observed system. A state can
be represented by a tuple of features (F1, F2, F3,...), where
two tuples have to be strictly equal to correspond to the
same state. However, this approach is inadequate to handle
non-categorical and non-boolean features. As a consequence,

4

continuous numerical data are processed by a data normal-
ization and clustering sub-blocks in order to be aggregated
into clusters, while the other data (boolean and categorical
ones) can directly be used to generate refined datasets. In
that context, the continuous numerical data are stored into
a dedicated list, noted Lcontinuous, while the other data not
requiring preliminary treatments are stored into the list noted
Lcontinuous.

During the data normalization sub-block, the architecture
integrates and re-scales the different features, so that they can
be properly compared in the following steps. The data col-
lected from the IoT-based systems represent several features,
that are exploited for supporting predictive security. These
features may typically be projected into a metric space to
quantify the distances amongst data points. However, such
quantification is not adequate, when the data are not properly
scaled or normalized. By considering the dataset defined by
Equation 1, we introduce the Equation 5 formalizing on
which data the normalization is applied, while the Equation 6
specifies the outputs of this data normalization sub-block,
which in turn serve as inputs for the clustering sub-block. In
that context, the element noted ENij stands for the element Eij
associated to its normalized value.

∀i ∈ [[1;n]],∀j ∈ [[1;m]], Innorm = (E1j , . . . , Enj)\A (5)
where A = {Eij | attributij ∈ Lcontinuous}

Outnorm = (EN1j , . . . , ENnj)\B (6)
where B = {ENij | attributij ∈ Lcontinuous}

The normalization parameters are stored into the pre-
processing characteristics database, so that they can be ex-
ploited during the detection phase. This enables maintaining
the consistency of normalization parameters during these two
main phases.

During the clustering sub-block, the refined data are first
aggregated into clusters that serve to define the system states.
Clustering techniques are commonly used in the area of data
mining. In our context, they permit to reduce the number of
states that characterize the IoT-based system. Each tuple of
continuous numerical elements specified in Equation 6 will be
associated to a single cluster identifier, noted Cli, as given by
Equation 7. The properties of clusters, such as the barycenters
and the maximal distance between normalized data and these
barycenters inside a given cluster, are stored and exploited
during the detection phase.

∀i ∈ [[1;n]],∀j ∈ [[1;m]], Outcl = (Ei1, . . . , Eim, Cli)\C(7)
where C = {Eij | attributij ∈ Lcontinuous}

The tuples, called Outclustering, described by Equation 7, per-
mit to define the different states of the system. Let us consider
that the system states are identified by a state identifier, noted
Sp with p ≤ n. When two tuples are stricly characterized by
the same values, then they are describing the same state, and
are therefore identified by the same state identifier Sp. As a
consequence, the records Ri of the trace T can be reduced to
two elements: a timestamp and a state identifier, as depicted
by Equation 8.

Ri = {timestamp : ti, state : Sp} (8)

During the splitting sub-block, the records of the trace are
split into k data subsets that are noted Pl and correspond to
different time intervals of the same duration. This splitting
mechanism aims at reducing the complexity of behavioral
models, by preventing a too high characterization that may
prevent a proper detection of misbehaviors and attacks.

∀a, b ∈ [[1;n− 1]] with a ≥ b and l ∈ [[1; k]],

Pl =

Ra
... with tb-ta ≤ I

but tb+1-ta > I
Rb

(9)

Process mining block: the process mining algorithms gen-
erate behavioral models from the different subsets that are
defined in Equation 9. These models are then exploited during
the detection phase to identify deviations. In particular, when
none of the models built from the subsets is close to the
monitoring data collected at runtime, the IoT-based system will
be considered as misbehaving. Amongst processing mining
techniques, we have decided to focus on the inductive mining
algorithm, which is capable of efficiently support the building
of behavioral models that perfectly match event logs. This
algorithm, described in [32], is organized into three main steps.
First, it establishes a directly-follow graph, which is a graph
summarizing the occurrence of events in the event logs, corre-
sponding in our case to the refined data. It then infers a process
tree from this graph. To do so, the algorithm looks for the most
adequate operators (exclusive choice, loop, parallelisation) in
order to cut the directly-follow graph. Finally, the algorithm
infers from the obtained process tree, a petri net characterizing
the behavior of the IoT-based system. Therefore, each subset,
defined by Equation 9, leads to a petri net, noted M l.

C. Detection of misbehaviors

We will now describe the second phase corresponding
to the detection of misbehaviors. The approach consists in
analysing monitoring data at runtime, and comparing them to
the behavioral models built for the IoT-based system. We will
first introduce the metric considered to quantify the deviation
from these models, and then detail the detection mechanism.

Deviation quantification: it is important to quantify the
deviation (or alignment) of the refined data with the behavioral
models obtained from the model building phase. This is
required to detect potential misbehaviors, but also to evaluate
the performance of the generated models. Let us consider
a behavioral model and a refined dataset to be evaluated.
First of all, the model and the dataset have to be aligned
using a dedicated method. This alignment method can be
described as follows. For each event from the dataset, when
the same movement (i.e. changing to one state to another
one) can be performed on both the behavioral model and the
considered log, then this event is considered as synchronized.
A movement cost is equal to 0, when the model and its log are
synchronized, otherwise it is equal to 1. The alignment cost
is obtained by summing the different movement costs.

In that context, we consider the fitness metric detailed
in Equation 10, to evaluate whether the considered model,

5

noted M, can replay a given trace or log, noted T, in an
accurate manner. The closer this metric is to 1, the more the
model is capable to replay the given log.

FitnessM (T) = 1− Cost(M,T)

Move(T) + Len(T)×Move(M)
(10)

In this equation, Cost(M,T) stands for the optimal alignment
cost between M and T, while Move(T) corresponds to the
total cost of desynchronized movements on the log. Move(M)
corresponds to the same total cost for the model, while Len(T)
indicates the number of states in the log. The denominator
of the formula represents the maximum possible value of the
total alignment cost, when there is not a single synchronized
movement between the log T and the model M in the optimal
alignment.

Detection mechanism: the misbehavior detection is pre-
ceded by a data pre-processing. It consists in generating and
formatting sub-logs corresponding to records composed of
timestamps and state identifiers. The same normalization pa-
rameters are applied, and the clustering sub-block is restricted
to a binding mechanism, during which continuous numerical
data are associated to the closest existing cluster, as long as
the distance between the cluster and the data point does not
exceed the maximal distance found during the model building
phase. This enables the mapping of the new monitoring data
to the previously obtained clusters. The dataset is then split
into smaller subsets corresponding to time intervals of the
same duration, as previously described. These subsets are then
replayed with the behavioral models generated for the IoT-
based system. The objective is to find for each subset the
corresponding behavioral model, i.e. the model for which the
fitness is higher. The closer the fitness is to 1, the more the
behavioral model is capable to replay the given subset.

To better formalize the detection mechanism, let us consider
l data subsets Pi, coming from monitoring data at runtime, and
m behavioral models Mi generated during the model building
phase. The approach consists in finding the model that best fits
each data subset Pi, i.e. the model characterizing the highest
fitness, as given by Equation 11. When a data subset does
not fit any behavioral model, then the IoT-based system is
considered as misbehaving.

∀i ∈ [[1;n]], F itnessi = maxj∈[[1;m]] FitnessMj (Pi)(11)

At this stage, we first associate each data subset to the
closest behavioral model with the corresponding fitness, this
corresponding to the RESi tuples defined by Equation 12.

∀i ∈ [[1;n]],∃j ∈ [[1;m]], RESi = (Pi,Mj , F itnessi)(12)

Once these evaluation results RESi are available, we define
a set of q different fitness thresholds FTr. These thresholds
have been considered during our experiments. They permit to
distribute the results RESi into two distinct sets NORMALr
and ABNORMALr, defined by Equations 13 and 14. The

presence of one single tuple RESi is enough to characterize
a misbehaving IoT-based system.

∀i ∈ [[1;n]],∀r ∈ [[1, q]],

NORMALr = {RESi | fitnessi > FTr}, (13)
ABNORMALr = {RESi | fitnessi ≤ FTr} (14)

The detection mechanism is compatible with the heterogeneity
of protocols and platforms that can compose such systems,
and therefore, can support cross-protocol and cross-platform
attacks targeting these systems.

D. Alternative detection methods

Different methods have been proposed for anomaly detec-
tion. In [33], they are classified into four main categories,
namely probabilistic and statistical, linear, proximity-based
and high-dimensional. For each of these categories, we con-
sider one of the most used algorithms. They are respectively:
elliptic envelope [34], one class SVM [35], local outlier
factor [36] and isolation forest [21]. We also consider one
class random forest [20], which has been recently proposed for
anomaly detection. In the following, we show how these meth-
ods can be integrated into the proposed processing pipeline.

a) Elliptic Envelope [34]: The methods belonging to
the probabilistic and statistical category assume that data
follow a known probability distribution whose parameters are
determined during the training phase. In particular, the elliptic
envelope assumes an underlying Gaussian distribution. It fits
a boundary ellipse to the central data points and considers
the outsiders to be anomalous. To estimate the size of the
ellipse, this method uses the FAST-minimum covariance deter-
minant [37]. The latter uses the Mahalanobis distance DM as
a scoring function S that assesses the abnormality of a record
Ri (Ri = {Eij = {attij : valij};∀j ∈ [[1;m]]};∀i ∈ [[1;n]]) :

S(Ri) = DM (Ri) =
√
(vali − µ)T × S−1 × (vali − µ)

(15)
where µ = (µ1, ..., µm)T , µj is the mean
of {val1j , ..., valnj};∀j ∈ [[1;m]], vali =
(vali1, ..., valim)T ;∀i ∈ [[1;n]] and S is the covariance
matrix of (vali)i∈[[1;n]].

b) One Class SVM [35]: Linear methods aim to embed
the maximum of data points in a subspace having a dimension
lower than the features space. The points that do not fit the
embedding are considered anomalous.

One class SVM has been deigned according to this prin-
ciple. Its main feature is adding margins to the embedding
subspace to limit overfitting. To classify a record Ri (i.e.,
a data point), this method relies on the following scoring
function S(Ri):

S(Ri) =

m∑
j=1

αj .K(Ri, valij)− ρ (16)

where (αj)j∈[[1;m]] are the Lagrange multipliers, K is the ker-
nel function that projects records into the embedding subspace

6

and ρ is the margin. Lagrange multipliers are calculated by
optimising:

∀i ∈ [[1;n]],∀j, k ∈ [[1;m]] : min
α

1

2
αj .αk.K(valij , valik)

(17)

such as 0 ≤ αj ≤ 1
νm and

m∑
j=1

αj = 1 where ν is the ratio of

records expected to be anomalous.
c) Local Outlier Factor [36]: Proximity-based methods

consider a data point as anomalous if its proximity (i.e.,
locality) is sparsely populated. The local outlier factor is a
score S of abnormality. It does not only consider the distances
between data points but also the local densities. For a record
Ri, it corresponds to the ratios average of the local reachability
density (lrd) of Ri and that of Ri’s k-nearest neighbours:

S(Ri) = lof(Ri) =
1

k
.

∑
Rj∈knn(Ri)

lrd(Rj)

lrd(Ri)
(18)

where lrd(Ri) = k∑
Rj∈knn(Ri)

reach−dist(Ri,Rj)
, k is a param-

eter, reach-dist(Ri, Rj) = max{k − dist(Rj), d(Ri, Rj)},
k − dist(Rj) is the Euclidean distance of k-neighbors nearst

to Rj , d(Ri, Rj) =

√
m∑
j=1

|Eij − Eij |2, knn(Ri) is the set of

the k nearst records to Ri.
d) Isolation Forest [21]: Identifying anomaly in data

having high dimension is particularly challenging because
irrelevant dimensions may mask anomalies. Isolation forest
is one of the most efficient methods in handling the "curse
of dimensionality". It randomly splits data into subsets having
reduced dimensions and builds a binary tree for each subset.
The tree is obtained by recursively splitting the data subset
based on a randomly selected attribute attij and valij until a
maxium tree height is reached or only one record remains in
the subset or all the remaining records have the same values.
To assess the abnormality of a record Ri, it computes S(Ri),
the average depth of the leaves to which Ri is associated:

S(Ri) = 2−
E(h(Ri))

c(n) (19)

assuming c(n) = 2H(n− 1)− 2(n− 1)/|F |, H(i) is the ith

harmonic number: H(i) =
∑i
k=1

1
k .

e) One Class Random Forest [20]: One class random
forest is an extension of the random forest method. To deal
with the absence of abnormal data during the training phase,
these data is considered to be tightly concentrated around
normal one. More specifically, in each node o of a built tree,
the abnormal data is updated so that its cardinal becomes
proportional to the one of normal data. Let Fo denote a subset
of the trace T in the node o. Thus:

|F ′o| = γ|Fo| (20)

where γ is typically set to 1. To assess data heterogeneity,
the Gini index is used. It is expressed this way in a two-class
classification problem (such as anomaly detection):

iG(o) = 2
|Fo|

|Fo|+ |F ′o|
|F ′o|

|Fo|+ |F ′o|
(21)

where |Fo| (resp. |F ′o|) stands for the number of observations
with label 0 (resp.1) in node o. To decide about anomaly of
a record Ri ∈ F , the scoring function of random forest is
adapted as follows:

log2(S(Ri)) = −(
∑

o∈leaves

1R∈odn + c(|Fo|))/c(|F |), (22)

where do is the depth of node o, c(|F|) = 2H(|F| - 1) - 2(|F| -
1)/|F|, H(k) is the kth harmonic number: H(k) =

∑k
l=1

1
l .

IV. PROTOTYPE AND PERFORMANCE EVALUATION

We have developed a proof-of-concept prototype imple-
menting our solution, and have performed extensive series of
experiments, in order to evaluate and compare the performance
of process mining to alternative commonly-used detection
methods, including elliptic envelope, support-vector machine,
local outlier factor and isolation forest techniques. In particular
we have considered the influence of the time splitting, the
influence of the preprocessing clustering and the detection
performance according to multiple criteria.

A. Experimental setup

The proof-of-concept prototype follows the architecture of
our predictive security approach for IoT infrastructures, and
includes the two main building blocks supporting the process
mining activities. The first block is responsible for building
behavioral models according to different configuration pa-
rameters (such as normalization and clustering). The second
block is responsible for evaluating the misbehavior detection
and its performance. The data pre-processing is developed in
Python 3.6, whereas the ProM library is used for applying
process mining algorithms and for evaluating datasets with
respect to behavioral models. We consider the version 6.8 of
the ProM framework environment which has been developed
under Java 8. The process pipeline is integrated into a docker
container. All the experiments have been performed over a
3.3 Ghz Intel Core i5 4th-generation computer with 16 GB of
RAM memory.

We use Elasticsearch to store the training and evaluation
datasets. This framework consists in an open source search
engine, that is designed to be scalable, distributive and near
real-time. It is widely used in big data environments thanks
to its convenience to the most used architectures, such as
Lambda and Kappa solutions. In order to store the behav-
ioral models and the pipeline configurations, we consider a
MongoDB database, and use Apache Kafka to manage alarms
about anomalies. These alarms may be consumed from Kafka
by a dashboard or by any application able to select and
apply actions and counter-measures in regards to the detected
anomaly.

In our experiments, we have considered three main datasets
[38] from different elaborated IoT-based systems, including
connected cars, industry 4.0 and socially-assistive robots.
These datasets were provided by our partners in the European
H2020 SecureIoT project. Table I provides an overview of
them. The first dataset corresponds to a connected cars use

7

TABLE I
EXPERIMENTAL DATASET OVERVIEW

Connected Cars Industry 4.0 Assistive Robots

Data Rate 2 Hz 2 Hz 20 Hz

Model Building
(nb of samples)

3200 9000 12000

Evaluation
(nb of samples)

2400 7000 10000

Anomaly Ratio 20% 30% 10%

case and contains sensor data, such as speeds, steering an-
gles, currently engaged gears, and engine rotation, that are
generated by an industrial driving simulator reproducing the
behavior of drivers. The considered attacks are man-in-the-
middle attacks that may impact on the overall car control. The
second dataset corresponds to the case of industry 4.0, with
sensor data generated by an industrial plastic molding system.
The system supports the production of plastics pieces based
on an injection molding process. The available data gives
information related to the temperatures at several locations in
the system, as well as the pressure inside every relevant pistons
within the process. The considered attacks are intrusions
enabling to send malicious commands to the process, and may
lead to a machine breakdown. The third dataset corresponds
to data generated by socially-assistive robots, that support
autistic children to learn and increase their social skills using
exercises and interactions. The dataset includes physical and
application robot information data, such as its motor positions.
The considered attacks are intrusion attacks over the robot op-
erating systems, that permit again to take control on the robot
behaviors, with potential physical damages. As shown in next
sections, we have evaluated the influence of the time splitting,
the influence of the pre-processing clustering, and the detection
performance according to multiple criteria in comparison to
several commonly-used detection methods, including elliptic
envelope, support-vector machine, local outlier factor, isolation
forest and one class random forest techniques.

B. Influence of the time splitting

In a first series of experiments we wanted to quantify
the influence of time splitting on the performances of our
solution. Time splitting occurs during data pre-processing, and
is characterized by a time interval at which the dataset is split
into smaller subsets over time. The benefits of such splitting
is two-fold. It permits to minimize the complexity of built
behavioral models, and enables a more precise identification
of the data corresponding to a misbehavior or a potential
attack. However, it may also degrade the overall detection
performances. Figure 2 describes the receiver operating char-
acteristic (ROC) curves obtained with the three experimental
datasets, while varying the time interval parameter used for
splitting data. Sub-figures 2 (a), (b), (c) correspond respec-
tively to the connected cars, industry 4.0 and assistive robot
datasets. These curves characterize the detection performances
in terms of false positive rate (x axis) and true positive rate
(y axis). The area under the curve (AUC) permits to quantify
the performance for a given time splitting, with higher AUC
values corresponding to better performances.

TABLE II
BEST EXPERIMENTAL RESULTS FOR EACH DATASET

Connected Cars Industry 4.0 Assistive Robots

BIRCH 0.824 0.5 0.818

K-means 0.979 0 0.848

DBSCAN 0.694 1 0.5

For each of the three datasets, we can observe the most
adequate time splitting (highest AUC value), while varying the
time interval (TS parameter). With the first dataset, we obtain
the best AUC value of 0.923 with a time interval of 10 seconds.
From such an optimal configuration, the detection performance
is dropping when we increase or decrease this TS parameter
with the three scenarios. In particular, when the time interval
is too low, there is a high risk to obtain subsets with only a
few data points, which is not adequate for replaying the traces
on the built behavioral models. In such cases, the process
mining does not bring any additional value in comparison to a
clustering-only method. It actually brings a higher complexity
for the same detection performance. Considering a too high
time interval is also an issue due to the complexity of models.
Besides, the identification of misbehaviors and attacks may be
less efficient during the detection phase. We can also observe
this phenomenon when measuring the processing time during
the model building and detection phases. This processing time
decreases during the model building phase with the highest
TS time intervals, as less models are required to be generated.
During the detection phase, the observed processing time is
the highest with the two extreme cases, corresponding to the
highest TS value and the lowest TS value, while it appears to
be minimal with the best AUC value.

C. Influence of the preprocessing clustering

In these experiments, we focused on assessing the impact of
the preprocessing clustering phase. We have varied the differ-
ent clustering techniques (K-means, BIRCH, DBSCAN [39])
and the normalization techniques (min-max, z-score). We
ensure that the parameters are the same between the building
phase and the corresponding detection phase. Modifying the
parameters of the clustering algorithm has no significant
impact on the processing time, with a model building time of
around 30 seconds, but influences the detection performance.
Table II reports the values of the area under the ROC curves
corresponding to the three datasets, with the best results for
each of the three clustering techniques mentioned before. We
notice than the best experimental results obtained respectively
with the connected car and assistive robot datasets, are found
considering the K-means clustering combined with min-max
normalization, while with the industry 4.0 dataset, the best
result is obtained with DBSCAN clustering combined with
min-max normalization.

Assuming K-means clustering, we varied the k parameter
setting the number of clusters, which so changes the number
of states that are then considered by the process mining.
With DBSCAN, we varied the epsilon (eps) parameter that
specifies the local radius for expanding clusters. Finally, with
BIRCH, we varied the threshold parameter that specifies the

8

Fig. 2. Influence of the time splitting on the detection performance based on ROC curves

radius of the clusters. Increasing the k parameter with K-
means clustering, decreasing the eps parameter with DBSCAN
clustering or decreasing the threshold with BIRCH clustering
permits to improve the characterization of misbehaviors and
attacks with a large set of states. However, we can notice
that considering a high number of states may also degrade
the detection performance. Indeed, this leads to generate too
specific behavioral models that are unable to properly capture
deviations from the learnt model. At the extreme case, each
point of a given dataset could be considered as a unique cluster,
and therefore a unique state. This lack of data clustering prior
to the process mining leads so to an explosion of number of
states and so to low performance. For instance, with the first
dataset, the case with the k parameter set to 2500 induces a
ROC curve close to the diagonal axis, with an Area Under the
Curve of around 0.5, characterizing bad detection results (e.g.
similar to a random decision). These different experiments
argue in favour of our predictive security solution combining
process mining with clustering techniques.

D. Influence of noisy and missing data

In order to evaluate the robustness of our approach, we
have considered the influence of noisy and missing data
on the detection performance. The evaluation datasets have
been modified by either injecting a Gaussian noise, or by
randomly removing a discontinuous portion of the data. We
have considered the pre-processing methods that provided the
best performance for the three industrial datasets. We have
then compared the Matthew Correlation Coefficient (MCC)
between our process mining method and the isolation forest
method. This coefficient is one of the best performance criteria
to describe the confusion matrix. The results given by the
alternative methods described in Section III-D were close in
these experiments. We therefore focus on one of them, the
isolation forest method, to describe the influence of noisy or
missing data on the detection.

Figure 3 describes the detection performance for the process
mining and isolation forest methods, while varying the per-
centage of noise. It appears that the process mining approach
is more sensitive to noisy data than the isolation forest
approach. However, it is still robust for the simulated datasets

Fig. 3. Influence of noisy data on the detection performance based on MCC

(connected cars and industry 4.0) and performs better than
the alternative methods, when the noise is of less than 20%.
Regarding the socially-assistive robot dataset, an immediate
decrease of detection performance has been observed during
the experiments. This decreased performance is mostly due to
the noise generated by the system. Moreover, most of the data
points defining the various clusters are close to each other, this
is why adding noise to the robot dataset can easily change the
cluster of a data point.

Figure 4 shows the performance of the methods with
missing data. Our approach performs better than the alter-
native methods, when the portion of the missing data is
less than 25%. However, for a higher threshold, the perfor-
mance decreases significantly for the connected car dataset
and the socially-assistive robot dataset. On the contrary, the
performance of the industry 4.0 dataset stays stable even
with 50% of missing data. It is mostly due to the anomaly
ratio, that is higher for the industry 4.0 dataset, as shown
in Table I, and the duration of the anomalies that are more
important for this specific dataset. However, its performance
decreases as well when using a higher missing data ratio.
These experiments show that our process mining approach can
partially address the issues induced by noisy and missing data:
the normalization and clustering phases that are performed
prior to the process mining permit to reduce the influence of
the noise, while the data rate can be adjusted to minimize the
impact of missing data.

9

Fig. 4. Influence of missing data on the detection performance based on MCC

E. Comparison with alternative detection methods

In a third series of experiments, we compared the detec-
tion performance of process mining to the five previously-
mentioned alternative methods: elliptic envelope, local outlier
factor, support-vector machine, isolation forest and one class
random forest. We evaluated each of them with the three indus-
trial datasets. For the one class random forest, we used the im-
plementation proposed by this method’s authors while for the
other detection methods, we used the implementations avail-
able in the Scikit-learn library [40]. To maximize the detection
performance, we tuned the implementation parameters, and
pre-processed data with min-max and z-score normalizations
when appropriate. In particular, for process mining, the pre-
processing included also testing different clustering (K-means,
BIRCH, DBSCAN) and time splitting techniques. Different
metrics have already been proposed for the evaluation of such
detection methods, but none is sufficient in itself [41]. For
this reason, we considered several of them that are presented
in detail in [41] and [42].

In Figure 5, we plot the Receiver Operating Characteristic
(ROC) curves, which represents the True Positive Rate (TPR)
against the False Positive Rate (FPR) realized by each detec-
tion method at various thresholds. We also plot the Precision
Recall (PR) curves to represent the precision against the recall,
in Figure 6. Using the score functions 15, 16, 18, 19, and 22 as
well as the fitness 10, we select the thresholds that maximize
the TPR and minimizes the FPR on the ROC curves. Then, we
measure the precision, recall, accuracy, ROC’s Area Under the
Curve (ROC AUC), PR’s Area Under the Curve (PR AUC),
F1 score (i.e., the harmonic mean of precision and recall),
Matthews Correlation Coefficient (MCC) (i.e., the correlation
between true and predicted values) and the Log Loss (LL)
(i.e., the uncertainty of the model). The obtained results are
depicted in Figure 7, corresponding to the three experimental
datasets. Since one class random forest, isolation forest and
elliptic envelope are randomized algorithms, we considered
the means of 30 experiments according to the rule of thumb.
We neglected the variances of these methods because they did
not exceed 6% of the mean and were even less than 1% in
most cases. Exceptionally, however, the log loss of the socially
assistive robot analysis with one class random forest varied
significantly with 27% from the mean (this observation will

be discussed in the following paragraphs). Figure 5 shows
that process mining has the best ROC curves for the three
datasets. Indeed, this method curves have the best TPR and
FPR ratios, which are represented by the closest points to the
(1,0) one. In addition, compared to the others, this method
realised AUC ROCs that were at least 12%, 33% and 9%
higher in the connected cars, Industry 4.0 and socially assistive
robots, respectively.

Figure 6 shows that process mining has also the best PR
curves for the three datasets. Indeed, this method realised
PR ROCs that were at least 12%, 33% and 9% higher in
the connected cars, Industry 4.0 and socially assistive robots,
respectively. Figure 7 depicts the performance of the detection
methods in analysing each dataset. In the case of the (a)
connected cars and (b) industry 4.0, process mining out
performs the other detection methods, since it achieved better
values for each metric. However, this was not the case of
the (c) socially assistive robots’ dataset, since the one class
SVM, one class random forest and isolation forest achieved
the best values for accuracy and log loss. As a matter of fact,
this dataset is the most imbalanced: as depicted in Table I,
the misbehavior ratio of this dataset is 10% only, while it
is 20% and 30% for the connected cars and industry 4.0
datasets, respectively. Consequently, this dataset is the most
vulnerable to the accuracy paradox, where detection methods
can achieve high accuracy by over-classifying the data points
as non-anomalous. Obviously, this was the behavior of these
alternative methods because the better are their accuracy and
log loss, the worse is their recall (i.e the portion of anomalous
data points that were identified). Contrary, to the accuracy
and log loss the MCC considers the size of the four entries
of the confusion matrix. Consequently, it is more suitable to
imbalanced datasets. Figure 7 (b) shows that process mining
achieved the highest values of this metric. More specifically,
its values were 47%, 79% and 62% higher than those of
the one class SVM, one class random forest and isolation
forest, respectively. For these reasons, we believe that process
mining is more suitable than those methods to analyze the
socially assistive robots’ dataset. This method is also more
suitable than the elliptic envelope and the local outlier factor.
Even though the latter achieves an interesting recall (just 0.4%
lower than the one of process mining), the remaining values it
achieves are significantly lower than those of process mining.

Thus, our method, based on process mining with cluster-
ing, has the highest performance in all these experimental
scenarios. It is worth mentioning that we found the most
accurate results for this method, when the time splitting is
parameterized in a similar manner (i.e. using the same duration
for the time intervals) during the model building and the
misbehavior detection phases. As it is suggested above, the
data pre-processing is a decisive block and its purpose is
to bring out the different states of a studied system. For
datasets giving application data of evolutive systems that can
be modeled, the results we have obtained support the relevance
of our approach that takes into account the previous states.
Thus, using process mining has given better results than the
other commonly used detection methods. Using the Principal
Component Analysis [43] technique, we could reduce the

10

Fig. 5. Comparison based on ROC curves of process mining to other detection methods

Fig. 6. Comparison based on PR curves of process mining to other detection methods

Fig. 7. Multi-criteria performance comparison of process mining to other detection methods

dimensions of the datasets and visualize them. We noticed
that the anomalous data points are distributed differently. In
the connected cars dataset, they were rather scattered. This ex-
plains why the alternative detection methods performed rather
modestly in this dataset analysis. For the socially assistive
robots, the abnormal data points were rather clustered. For
this reason, the LL of the one class random forest varied
significantly and some alternative detection methods could
achieve high accuracy, recall and low LL. The anomalous
points in the industry 4.0 dataset are tightly concentrated
around normal ones. Since one class random forest makes this

assumption, it was relatively efficient in analyzing this dataset.
Local outlier factor was also as efficient as one class random
forest. This is due to the fact that this algorithm considers
anomalous points locally instead of building a space gathering
only normal points as done by the one class SVM, which
had relatively low performance in this context. The elliptic
envelope had also low performance because it assumes that
anomalous points are far from normal ones. As a matter of
fact, our approach requires more time to process the raw data.
Typically, it requires between 19 and 55 seconds for model
building and evaluation, while isolation forest requires less

11

than one second time for these tasks on average. This time
difference is due to the clustering pre-processing, which is a
requirement for the process mining approach. Since this limit
was not investigated in this work, we envision to study it in
depth in the future. To cope with it, it is possible to rely on
a hybrid solution that uses one of the alternative detection
methods in addition to our approach.

V. CONCLUSIONS

Security management is a key challenge for the protection
of elaborated IoT-based systems, that are often characterized
by heterogeneous protocols and platforms, and that integrate
devices with limited resources (memory, CPU, battery). In this
context, we have evaluated the exploitability and performance
of process mining to cope with a large variety of devices
and protocols, for supporting IoT predictive security. After
describing the underlying architecture, we have detailed the
different phases related to this solution, from the building
of behavioral models to the detection of misbehaviors and
potential attacks. We have formalized and integrated into this
architecture four other categories of commonly-used detection
methods, including elliptic envelope, support-vector machine,
local outlier factor and isolation forest techniques, that serve as
a support to our comparative analysis. We have also developed
a proof-of-concept prototype provided as a docker container,
that implements the proposed solution and exploits the ProM
library. We have experimented it with three different industrial
datasets, such as connected cars, industry 4.0, and robot
networks. We have performed extensive sets of experiments
in order to evaluate the performance of our process mining
approach, and compare it to the four other alternative detection
methods, by considering the influence of the time splitting, the
influence of the clustering techniques, and the overall detection
performance according to multiple criteria. Moreover, we have
tested how our approach reacts against noisy or missing data.
These results have been confronted to the ones obtained by
the isolation forest detection method. The experiments have
clearly shown the benefits of combining process mining and
data pre-processing, in particular clustering techniques. The
data pre-processing permits to identify and minimize the states
characterizing the IoT-based system, so that the process mining
is not facing a state explosion. The process mining then
permits to elaborate behavioral models that are compatible
with the heterogeneity of protocols and devices. These be-
havioral models are then exploited to analyze monitoring data
at runtime, and to properly detect misbehaviors and potential
attacks in these environments.

As future work, we are interested in evaluating to what
extent the generated alerts can be exploited to drive the activa-
tion of specific counter-measures in an automated manner. We
would also like to investigate hybrid detection techniques, in
particular in the case of elaborated and advanced persistent
attacks in IoT infrastructures. Finally, we are planning to
consider incremental model building methods, so that the
behavioral models can be enriched at runtime, in order to
further improve the performance of such an IoT predictive
security solution.

ACKNOWLEDGMENT

This work has been partially supported by the SecureIoT
project, funded by the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement
no. 779899; the exploited datasets have been provided by
IDIADA UK, it’s OWL, which has worked with FUJITSU,
and LuxAI.

REFERENCES

[1] M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M. L. M. Kiah, “A
review of smart home applications based on internet of things,” Journal
of Network and Computer Applications, vol. 97, pp. 48–65, 2017.

[2] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE industrial electronics magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[3] K. Delaney and E. Levy, “Connected Futures Cisco Research: IoT Value:
Challenges, Breakthroughs, and Best Practices.” Cisco System Report,
May 2017.

[4] M. Antonakakis, T. April, M. Bailey, M. Bernhard et al., “Understanding
the Mirai Botnet,” in Proceedings of the USENIX Security Symposium,
2017, pp. 1092–1110.

[5] E. Bertino and N. Islam, “Botnets and Internet of Things Security,”
Computer, vol. 50, no. 02, pp. 76–79, Feb 2017.

[6] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and Other Botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[7] Vitaly Simonovich, “Imperva blocks our largest ddos l7/brute force
attack ever (peaking at 292,000 rps),” https://www.imperva.com/blog/
imperva-blocks-our-largest-ddos-l7-brute-force-attack-ever-peaking-
at-292000-rps/, last visited on September 2020.

[8] L. Rouch, J. François, F. Beck, and A. Lahmadi, “A Universal Controller
to Take Over a Z-Wave Network,” in Proceedings of Black Hat Europe,
2017, pp. 1–9.

[9] Z. Zhang, M. C. Y. Cho, C. Wang, C. Hsu et al., “IoT Security:
Ongoing Challenges and Research Opportunities,” in Proceedings of
the 7th International Conference on Service-Oriented Computing and
Applications, Nov 2014, pp. 230–234.

[10] B. Thuraisingham, M. Kantarcioglu, K. Hamlen, L. Khan et al., “A
Data Driven Approach for the Science of Cyber Security: Challenges
and Directions,” in Proceedings of the 17th International Conference on
Information Reuse and Integration, July 2016, pp. 1–10.

[11] A. Hemmer, R. Badonnel, and I. Chrisment, “A Process Mining Ap-
proach for Supporting IoT Predictive Security,” in Proceedings of the
Network Operations and Management Symposium, April 2020.

[12] W. Aalst, van der, Process Mining: Discovery, Conformance and En-
hancement of Business Processes. Germany: Springer, 2011.

[13] J. B. Fraley and J. Cannady, “The Promise of Machine Learning in
Cybersecurity,” in Proceedings of the IEEE SoutheastCon Conference,
March 2017, pp. 1–6.

[14] A. Bassi, M. Bauer, M. Fiedler, T. Kramp et al., Enabling Things to Talk:
Designing IoT Solutions with the IoT Architectural Reference Model.
Springer Publishing Company, Incorporated, 2013.

[15] M. Pahl and L. Donini, “Securing IoT Microservices with Certificates,”
in Proceedings of the IEEE/IFIP Network Operations and Management
Symposium, April 2018, pp. 1–5.

[16] P. Holgado, V. A. Villagrá, and L. Vázquez, “Real-Time Multistep Attack
Prediction Based on Hidden Markov Models,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 1, pp. 134–147, Jan
2020.

[17] A. Mayzaud, R. Badonnel, and I. Chrisment, “A Taxonomy of Attacks
in RPL-based Internet of Things,” International Journal of Network
Security, vol. 18, no. 3, pp. 459–473, May 2016.

[18] O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, “An Intelligent
Intrusion Detection System (IDS) for Anomaly and Misuse Detection
in Computer Networks,” Expert systems with Applications, vol. 29, no. 4,
pp. 713–722, 2005.

[19] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[20] N. Goix, N. Drougard, R. Brault, and M. Chiapino, “One Class Splitting
Criteria for Random Forests,” in Proceedings of the 9th Asian Confer-
ence on Machine Learning, M.-L. Zhang and Y.-K. Noh, Eds., vol. 77.
PMLR, Nov 2017, pp. 343–358.

[21] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation Forest,” in Proceedings
of the 8th IEEE International Conference on Data Mining, Dec 2008,
pp. 413–422.

https://www.imperva.com/blog/imperva-blocks-our-largest-ddos-l7-brute-force-attack-ever-peaking-at-292000-rps/
https://www.imperva.com/blog/imperva-blocks-our-largest-ddos-l7-brute-force-attack-ever-peaking-at-292000-rps/
https://www.imperva.com/blog/imperva-blocks-our-largest-ddos-l7-brute-force-attack-ever-peaking-at-292000-rps/

12

[22] N. Sehatbakhsh, M. Alam, A. Nazari, A. Zajic, and M. Prvulovic,
“Syndrome: Spectral analysis for anomaly detection on medical iot and
embedded devices,” in 2018 IEEE international symposium on hardware
oriented security and trust. IEEE, 2018, pp. 1–8.

[23] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi et al.,
“Machine Learning for Internet of Things Data Analysis: a Survey,”
Digital Communications and Networks, vol. 4, no. 3, pp. 161 – 175,
2018.

[24] D. S. Terzi, R. Terzi, and S. Sagiroglu, “Big Data Analytics for
Network Anomaly Detection from Netflow Data,” in Proceedings of the
International Conference on Computer Science and Engineering, Oct
2017, pp. 592–597.

[25] S. Ramapatruni, S. N. Narayanan, S. Mittal, A. Joshi, and K. Joshi,
“Anomaly detection models for smart home security,” in 2019 IEEE 5th
Intl Conference on Big Data Security on Cloud. IEEE, 2019, pp. 19–24.

[26] S. Chauhan and L. Vig, “Anomaly Detection in ECG Time Signals
via Deep Long Short-term Memory Networks,” in Proceedings of the
International Conference on Data Science and Advanced Analytics, Oct
2015, pp. 1–7.

[27] W. van der Aalst, A. Bolt Iriondo, and S. van Zelst, RapidProM : Mine
your Processes and not just your Data. Chapman & Hall/CRC Press,
2018.

[28] F. Bezerra, J. Wainer, and W. M. P. Aalst, “Anomaly Detection Using
Process Mining,” vol. 29, 01 2009, pp. 149–161.

[29] M. M. Suarez-Alvarez, D.-T. Pham, M. Y. Prostov, and Y. I. Prostov,
“Statistical approach to normalization of feature vectors and clustering
of mixed datasets,” Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 468, no. 2145, pp. 2630–2651,
2012.

[30] W. Es-Soufi, E. Yahia, and L. Roucoules, “On the use of Process Mining
and Machine Learning to Support Decision Making in Systems Design,”
in Proceedings of the 13th IFIP International Conference on Product
Lifecycle Management, vol. AICT-492. Springer, Jul. 2016, pp. 56–66.

[31] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, “IoT Healthcare
Analytics: The Importance of Anomaly Detection,” in Proceedings of
the 30th International Conference on Advanced Information Networking
and Applications, March 2016, pp. 994–997.

[32] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Scalable
Process Discovery with Guarantees,” in Enterprise, Business-Process
and Information Systems Modeling. Cham: Springer International
Publishing, 2015, pp. 85–101.

[33] C. C. Aggarwal, “Outlier Analysis,” in Data mining. Springer, 2015,
pp. 237–263.

[34] M. Hubert and M. Debruyne, “Minimum Covariance Determinant,”
WIREs Computational Statistics, vol. 2, no. 1, pp. 36–43, 2010.

[35] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the Support of a High-Dimensional Distribu-
tion,” Neural Computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[36] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
Density-Based Local Outliers,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data. Association for
Computing Machinery, 2000, p. 93–104.

[37] P. J. Rousseeuw and K. V. Driessen, “A Fast Algorithm for the Minimum
Covariance Determinant Estimator,” Technometrics, vol. 41, no. 3, pp.
212–223, 1999.

[38] “Iot security related datasets,” https://marketplace.secureiot.eu/
marketplace/dataset/, last visited on November 2020.

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-based
Algorithm for Discovering Clusters a Density-based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise,” in Proceedings
of the Second International Conference on Knowledge Discovery and
Data Mining. AAAI Press, 1996, pp. 226–231.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel et al., “Scikit-learn:
Machine learning in python,” Journal of Machine Learning Research,
vol. 12, no. 85, pp. 2825–2830, 2011.

[41] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An Experimental Com-
parison of Performance Measures for Classification,” Pattern Recogni-
tion Letters, vol. 30, no. 1, pp. 27–38, 2009.

[42] Y. Liu, J. Cheng, C. Yan, X. Wu, and F. Chen, “Research on the
Matthews Correlation Coefficients Metrics of Personalized Recommen-
dation Algorithm Evaluation,” International Journal of Hybrid Informa-
tion Technology, vol. 8, no. 1, pp. 163–172, 2015.

[43] S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,”
Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1, pp.
37–52, 1987, in Proceedings of the Multivariate Statistical Workshop
for Geologists and Geochemists.

Adrien Hemmer received the Master degree in
Computer Science from the University of Quebec,
Chicoutimi, Canada. At the ENSEM engineering
school part of the University of Lorraine, France, he
obtained on engineer degree in digital sciences. He
is now a second year PhD student in the RESIST
research group at Loria-Inria Nancy Grand Est.
This research group goal is to make large-scaled
networked systems more secure and scalable, lever-
aging resource elasticity and system resilience. His
research interests include the design and evaluation

of security solution for Internet-of-Things infrastructures.

Dr. Mohamed Abderrahim received his Ph.D. on
computer science and applications from the Insti-
tut Mines-Telecom Atlantique, France in December
2018. He also obtained a Master degree from the
Ecole Centrale de Lille, France and an engineering
degree from the national school of computer science,
Tunisia, in September 2015. He worked as a research
and development engineer at Orange Labs, France,
and currently occupies the same position at INRIA
Nancy Grand Est, France in the RESIST research
team working on security management.

Dr. Rémi Badonnel is an Associate Professor of
Computer Science at TELECOM Nancy, the Engi-
neering School of Computer Science of the Univer-
sity of Lorraine, France, where he is heading the
Internet Systems and Security specialization. He is a
Permanent Research Staff Member with the RESIST
Team at LORIA - INRIA Nancy Grand Est, France.
Previously, he worked on change management meth-
ods and algorithms for data centers at the IBM T.
J. Watson Research Center, USA, and investigated
autonomous smart systems at the Oslo Metropolitan

University, Norway. His research interests are mainly focused on network and
service management, smart and autonomic environments, security and defense
techniques, orchestration and chaining of services, cloud infrastructures, and
Internet of Things. He has served as TPC co-chair for the IFIP/IEEE IM
symposium in 2015, and for the IFIP/IEEE CNSM conference in 2019. He has
been elected as chair of the IFIP TC6 WG 6.6 dedicated to the management
of networks and distributed systems in 2019.

Dr. François Jérôme obtained a Ms. degree in com-
puter science and received his Ph.D. on robustness
and identification of communicating applications
from the University of Lorraine, France in December
2009. He was then appointed as research associate at
the University of Luxembourg in the SEDAN team
of Prof. Thomas Engel. In March 2014, he started
as research scientist at Inria in the RESIST team
and supports the team leader, Isabelle Chrisment, as
deputy leader. His main research area are focused on
the use of data analytics techniques for security as

well as the definition of SDN-based monitoring probes both at the data and
control planes. In 2019, he received the IEEE Young Professional award in
Network and Service Management. He is in charge of different international
collaborations of the research team with the University of Luxembourg and
the University of Waterloo in Canada. In addition to publications, he started
as associate Editor-in-Chief of Wiley IJNM and as co-chair of NMRG at IRTF
(Internet Research Task Force) in 2019.

Prof. Isabelle Chrisment received the Ph.D. degree
in computer science from the University of Nice-
Sophia Antipolis, France, in 1996 and the Habilita-
tion degree from Henri Poincare University, Nancy,
in 2005. She is a Professor of computer science
with TELECOM Nancy Engineering School, Uni-
versity of Lorraine, France. Since 2014, she has been
the Scientific Team Leader of the RESIST Team
(formerly, MADYNES Team), a joint team between
Inria and University of Lorraine. Her main research
area is related to network monitoring and security,

and especially, within dynamics and large-scale networks.

https://marketplace.secureiot.eu/marketplace/dataset/
https://marketplace.secureiot.eu/marketplace/dataset/

	Introduction
	Related work
	Predictive Security Approach
	Overview of the system
	Building of behavioral models
	Detection of misbehaviors
	Alternative detection methods

	Prototype and Performance Evaluation
	Experimental setup
	Influence of the time splitting
	Influence of the preprocessing clustering
	Influence of noisy and missing data
	Comparison with alternative detection methods

	Conclusions
	References
	Biographies
	Adrien Hemmer
	Dr. Mohamed Abderrahim
	Dr. Rémi Badonnel
	Dr. François Jérôme
	Prof. Isabelle Chrisment

