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Abstract
Background: Thanks to recent developments in genomic sequencing technologies, the number of protein
sequences in public databases is growing enormously. To enrich and exploit this immensely valuable data, it is
essential to annotate these sequences with functional properties such as Enzyme Commission (EC) numbers, for
example. The January 2019 release of the Uniprot Knowledge base (UniprotKB) contains around 140 million protein
sequences. However, only about half of a million of these (UniprotKB/SwissProt) have been reviewed and functionally
annotated by expert curators using data extracted from the literature and computational analyses. To reduce the gap
between the annotated and unannotated protein sequences, it is essential to develop accurate automatic protein
function annotation techniques.

Results: In this work, we present GrAPFI (Graph-based Automatic Protein Function Inference) for automatically
annotating proteins with EC number functional descriptors from a protein domain similarity graph. We validated the
performance of GrAPFI using six reference proteomes in UniprotKB/SwissProt, namely Human, Mouse, Rat, Yeast, E.
Coli and Arabidopsis thaliana. We also compared GrAPFI with existing EC prediction approaches such as ECPred,
DEEPre, and SVMProt. This shows that GrAPFI achieves better accuracy and comparable or better coverage with
respect to these earlier approaches.

Conclusions: GrAPFI is a novel protein function annotation tool that performs automatic inference on a network of
proteins that are related according to their domain composition. Our evaluation of GrAPFI shows that it gives better
performance than other state of the art methods. GrAPFI is available at https://gitlab.inria.fr/bsarker/bmc_grapfi.git as
a stand alone tool written in Python.

Keywords: Protein function annotation, Protein network, EC annotation, Label propagation, Domain similarity graph,
GrAPFI, K-nearest neighbor

Background
Proteins are long sequences of amino acids that form
the basis of life and plays vital role in all living organ-
ism through out the entire life-cycle. Proteins perform
various functions in our body that needs to be under-
stood to understand life, disease processes and guiding
drug discovery efforts to combat the diseases. Due to
the tremendous advancement in amino-acid sequenc-
ing technologies, it is now possible to sequence bulk
amount of proteins in a rapid and affordable manner.
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Therefore, the number of protein sequences accumulat-
ing in public databases is rising at an unprecedented
rate. This huge quantity of data calls for further exploita-
tion and enrichment and it presents many challenges
for biologists as well as computer scientists in annotat-
ing the functional properties of protein sequences. The
UniProt knowledge base (UniProtKB) [1] is one of the
most comprehensible protein databases as well as the
largest public sequence database currently. It is divided
into two main components: (i) the UniProtKB/Swiss-Prot
database which contains protein sequences with reliable
functional annotation of the protein sequences that has
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been reviewed by expert bio-curators, and (ii) the UniPro-
tKB/TrEMBL database that stores unannotated and unre-
viewed sequences. Thus, for all proteins in UniProtKB, we
have the primary amino acid sequence as well as some
further information such as InterPro domain definitions
which may have been identified from families of similar
sequences or 3D protein structures.
The UniProt curators annotate UniProtKB/TrEMBL

sequences using two complementary systems. The first,
called UniRule, uses a large list of “if-then” rules. These
rules have been generated manually, which is both a labo-
rious and time consuming process. The rules in UniRule
are generally very reliable but their coverage is low [2]. The
second system is called Statistical Automatic Annotation
System (SAAS), and was developed to support the labour-
intensive UniRule system [3]. Automatic annotation rules
are generated in SAAS using the annotations of the Swis-
sProt sequences and a decision tree algorithm [4]. Other
approaches exist for automatic protein function annota-
tion. In particular, a number of techniques for predicting
Enzyme Commission (EC) numbers that exploit protein
structural similarities have been discussed in [5–7]. Many
approaches based on sequence similarity have also been
discussed in [8–11]. Several machine learning methods
have also been studied extensively in [7, 12–20].
Recently, the notion of network science [21] has

attracted great attention across many scientific communi-
ties. Network science has become a multidisciplinary area
of research due to its ability to describe complex systems.
It has found applications in many real-world scenarios
from banking and the internet to modeling the human
brain. Several approaches for annotating protein function
have used network science and neighborhood based tech-
niques to extract functional information from protein-
protein interaction (PPI) networks and Gene Ontology
terms [22–26]. A particular feature of biological networks
is that they often require specialist biological knowledge
to fully understand and exploit the network.
The following methods are widely used for predicting

Enzyme Commission (EC) numbers using a variety of
approaches based on machine learning, sequence encod-
ing, functional domain similarity, and structural similarity.
A deep learning based approach called DEEPre [17] pre-
dicts EC numbers putting together multiple tools and
techniques including PSI-Blast [27], HMMER [28], Con-
volutional and Recurrent Neural Networks, and sequence
encoding using position specific scoring matrix (PSSM) to
perform dimensionality uniformization, feature selection,
and classification model training. In recent years, deep
learning has been applied in many computational biology
and healthcare prediction tasks and achieved state-of-the-
art performance. However, deep learning approaches can
suffer from interpretability issues which is necessary in
medical research and clinical decision-making [29].

EzyPred [19] is a k-nearest neighbor based method that
adopts a top-down approach for predicting main class and
sub-class of EC number. EzyPred works based on protein
sequences only to perform the annotation task. It starts
by predicting whether or not an input protein sequence
is an enzyme. Then, EzyPred proceeds by predicting
its main EC class and subclass. EzyPred uses pseudo
amino acid composition [30] and functional encoding
by exploiting functional and evolutionary information
of proteins. Based on two features, EzyPred proposes a
modified K-nearest neighbor classifier called OET-KNN
(Optimized Evidence-Theoretic K-Nearest Neighbour).
Although EzyPred performs well in terms of accuracy, it
predicts only the first two digits of a four-digit EC number.
Thus, its predictions are not very specific.
A machine learning based approach called SVM-Prot

that uses support vector machine (SVM) for classification
is proposed in [31–33]. And in 2016 [13], the performance
of SVMProt is improved by adding two more classifiers:
1) K-Nearest Neighbor (KNN) and 2) Probabilistic Neural
Networks (PNN). This approach uses important physico-
chemical properties such as molecular weight, polarity,
hydrophobicity, surface tension, charge, normalized van
derWaals volume, polarizability, secondary structure, sol-
vent accessibility, solubility, and the numbers of hydrogen
bond donors and acceptors in side chain atoms to trans-
form protein sequences into numerical feature represen-
tations.
A structure-based protein function annotation

approach called COFACTOR is described in [6, 34]. The
updated version of COFACTOR [35] combines infor-
mation about protein structure and sequence homologs
along with Protein-Protein Interaction (PPI) networks to
form a hybrid model for jointly predicting GO terms, EC
numbers, and ligand-binding .
EFICAz [9, 36, 37] presents a method for Enzyme Func-

tion Inference by Combined Approach. EFICAz combines
predictions from four different methods using (i) recog-
nition of functionally discriminating residues (FDRs) in
enzyme families obtained by the authors’ “CHIEFc” proce-
dure (Conservation-controlled HMM Iterative procedure
for Enzyme Family classification), (ii) pairwise sequence
comparison using a family-specific sequence identity
threshold, (iii) recognition of FDRs in Multiple Pfam
enzyme families, and (iv) recognition of multiple Prosite
patterns of high specificity.
In ECPred [38], the authors describe a hierarchical pre-

diction model. The model starts by predicting if a query
sequence is an enzyme or non-enzyme. Once the query
sequence is found to be an enzyme, ECPred predicts the
main class to which the query sequence belongs. In the
similar fashion, it follows the hierarchy of the EC num-
bering system to find the sub-class, sub-sub-class and
sub-sub-sub-class. ECPred learns independent classifiers
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for 858 EC classes including 6 main classes, 55 subclass
classes, 163 sub-subclass classes and 634 sub-sub-sub
classes. The independent predictors that make up ECPred
are SPMap, BLAST-kNN and Pepstats-SVM which are
based on sub-sequences, sequence similarities, and the
physico-chemical features of amino acids, respectively.
In this paper, we give a complete description of our

novel graph based annotation approach(GrAPFI) [39], and
we present an extended experimental analysis using test
data from six popular reference proteomes from UniPro-
tKB/SwissProt. GrAPFI builds network of proteins using
domain and family information and performs neighbor-
hood based label propagation for function annotation.
Although, similar to EZYPred [19] and SVM-Prot-KNN

[13], GrAPFI is a neighborhood based classification tech-
nique, it uses different features and different inference
mechanism that explores the network. GrAPFI uses Inter-
Pro signatures as domain information and label propaga-
tion over a weighted undirected graph built on proteins
using their domain composition. Unlike COFACTOR
[35], GrAPFI explores the functional domain architectures
extracted from protein sequence instead of protein sec-
ondary structure and direct sequence homology. COFAC-
TOR includes network information using PPI whereas
GrAPFI builds network using jaccard similarity index
between the domain composition of proteins. In con-
trast to ECPred and DEEPre [17] which are deep learning
based method and learns class specific models for dif-
ferent classes, GrAPFI performs label propagation over
weighted protein network to select the best EC annota-
tion. ECPred learns 858 independent classifiers where as
for GrAPFI, once the protein network is build, it’s ready
for the inference of EC number using domain composition
of the query protein.
We compare the performance of GrAPFI with the

recently published ECPred approach. Along with ECPred,
we also present the accuracy for DEEPre and SVMProt
as representative examples of other state of the art EC
number prediction approaches. Our analysis shows that
GrAPFI gives better annotation performance than these
earlier approaches.

Results
Data preparation
We have collected 262,564 proteins from the March 2018
release of Uniprot-KB/SwissProt [1] database using the
following rules: (i) each protein must contain at least one
InterPro signature and (ii) must be annotated with at least
one EC annotation. After getting the protein data from
each of the proteins, we have extracted InterPro domain
composition and EC annotations. Then, we built the pro-
tein network as described in “EC annotation performance
analysis” section. Each protein forms its own vertex. we
did not preprocess training data to remove redundancy.

Rather, while performing annotation, it ignores the same
protein if it appears in the neighborhood. For example,
for a query protein q, GrAPFI will collect the neighbors
satisfying a maximum jaccard similarity score. When the
maximum jaccard similarity is set to less than 1.0, GrAPFI
omits the neighbors with exact same domain composition.
The training network covers 25 level-2, 31 level-3

and 408 level-4 EC classes from 41,618 oxidoreductases,
70,530 transferases, 100,027 hydrolases, 14,677 lyases,
25,551 isomerases, and 29,735 ligases which are linked
using 10,866 InterPro signatures.
In the training network, there are 1) 4.3% of the pro-

teins are single-domain proteins i.e. proteins having only
one domain in their domain composition (Fig. 1a, c), 2)
5.7% of the proteins have more than one EC numbers
assined with them (Fig. 1b, c), and 3) Around 15% of the
training nodes have incomplete EC annotations i.e. the EC
numbers assigned with these proteins do not have all four
digits. In the Fig. 1a, we show the distribution of EC num-
bers against domain composition. There are 13713 unique
domain compositions in the training data. In the X-axis
we put the domain compositions and along Y-axis we have
the number of different EC annotations found for each
domain composition sorted in descending order. It is evi-
dent from the figure that few of the domain compositions
contain significantly higher number of EC numbers. For
example, for some domain composition, there are more
than 50 EC numbers found in the training data. We also
show the distribution of domain compositions per EC
number i.e. the different domain compositions found for
each EC annotation shown in Fig. 1b. There are many
cases when a higher number of domain compositions
are mapped to a single EC. For example, in some cases,
it is around 500 distinct domain compositions found
against a single EC number. In essence, these two distribu-
tions reflect the dominance of many-to-many relationship
between domain composition and EC annotation in the
training data.
To valdiate GrAPFI, we used six popular reference

proteomes from Uniprot-KB/SwissProt to as test set.
The reference proteomes are the following: (i) Rat-
tus norvegicus (UP000002494) containing 1,953 proteins,
(ii) Mus musculus (UP000000589) containing 3,682 pro-
teins, (ii) Saccharomyces cerevisiae (UP000002311) con-
taining 1,581 proteins, (iv) Homo sapiens (UP000005640)
containing 3,843 proteins, and (v) Arabidopsis thaliana
(UP000006548) containing 5,352 proteins. (vi) E. Coli
(UP000000625) containing 1465 proteins. For each of the
reference proteomes, we collected the InterPro domains
and EC labels from Uniprot-KB/Swissprot. We kept only
the proteins which have at least one InterPro domain and
are annotated with a single EC number.
To prepare the COFACTOR benchmark dataset, we

used the 318 protein sequences published in [35], and
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Fig. 1 a: Distribution of EC numbers per domain composition, b: Distribution of domain compositions per EC number and c: training set statistics
like a proportion of single-domain proteins, b single-EC proteins and c proteins with incomplete EC number

we ran InterProScan [40] on these sequences to get their
InterPro domain signatures.We only used IntePro domain
signatures for the purpose of EC annotation.

EC annotation performance analysis
To validate the annotation performance of GrAPFI, we
computed the accuracy, Macro-precision, Macro-recall,
and Macro-F1 score at different levels of EC number. For
each query sequence, we picked the top ranked annota-
tion only. The validationmethodwe have used is similar to
leave one out cross validation. For each proteomes, when
annotating a protein, we have removed that protein from
the training set so that a direct mapping is not present.
we also present a 10-fold cross validation for enzyme vs.
non-enzyme classification (Fig. 2a and b). The following
formula (as used in [17, 18]) were used to compute the
evaluation scores:

accuraccy(y, y′) = 1
N

N−1∑

i=0
1(yi = y′

i),

Here, y and y′ are the list of ground truths and predicted
annotations. The accuracy is computed for each level of

EC annotation. As the problem is a multi-class classifica-
tion problem, we computed class-wise Macro-precision,
Macro-recall, and Macro-F1 score as follows:

Macro − precision(y, y′) = 1
|M|

∑

l∈M
precision(yl, y′

l),

Macro − recall(y, y′) = 1
|M|

∑

l∈M
recall(yl, y′

l),

Macro − F1(y, y′) = 1
|M|

∑

l∈M
F1measure(yl, y′

l),

Here, yl is the part of y with the label l and y′
l is the part of

y′ with label l. And M is the set of classes. In general the
precision, recall, and F1-Measure are computed as follows
when two sets A and P are given:

precision = |A ∩ P|
|P| ,

recall = |A ∪ P|
|A| ,

F1 − measure = 2 × precision × recall
precision + recall

.

Here, A is the set of ground truths and P is the set of pre-
dictions. As EC numbers are hierarchical with 4 levels, we
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Fig. 2 The precision, recall, F1, accuracy and coverage score for various minimum Jaccard similarity index for the Enzyme vs. Non-enzyme
classification. a and b show the performance for upper similarity index of 1 and less than 1 respectively

report level-wise precision, recall and F1-measure. Level-
1 denotes main class, level-2 denotes sub-class, level-3
denotes sub-sub-class and level-4 denotes sub-sub-sub
class. We also report coverage which is calculated accord-
ing to Coverage = M/T , where T is the total number of
proteins in the test set and M is the number of proteins
for which at least one EC is predicted. For each query
sequence, we consider the top-most annotation. For eval-
uation purposes, we split the 4-digit EC annotation into
its constituent parts. Then, for level-1 we consider first
digit, for level-2 we take first 2 digits, for level-3 we take
first 3-digits and finally for level-4 we take all four digits
together.
For the validation dataset, GrAPFI was run by setting

different minimum jaccard similarity index ranging from
0.05 to 0.5, and setting an upper limit of the similarity to 1
or less than 1.
Figure 3a to h show the GrAPFI performance for the

reference proteome of A. thaliana for various min. Jac-
card similarity indices. Similarly, Figs. 4, 5, 6, 7 and 8
show the performance of GrAPFI for the reference pro-
teomes of Homo sapiens, S. cerevisiae, Mus musculus,
Rattus norvegicus and E. Coli, respectively. In Fig. 9, we
also show the performance of GrAPFI on COFACTOR
benchmark dataset for various Jaccard domain similarity
index ranging from 0.05 to 0.5, and setting an upper limit
of the similarity to 1 and less than 1.
In these figures, we show the annotation accuracy (Y

axis) against different Jaccard similarity thresholds (X
axis) for the respective proteomes. We have considered

similarity thresholds ranging from 0.05 to 0.5 as the anno-
tation coverage falls significantly after 0.5. For each of the
thresholds, we present the accuracy for EC-1, EC-2, EC-
3 and EC-4 digit prediction shown in green, blue, orange
and black color respectively. Along with accuracy, we also
present the coverage of annotation (red curve). For each
of the figures, we have two parts. The first part shows the
accuracy and the coverage considering only the neighbors
who have a Jaccard similarity of less than 1. The second
part considers the Jaccard similarity of less than 1. It can
be seen from these figures that GrAPFI performs very well
for all of the cases with a good coverage.
To compare GrAPFI with other state of the art methods,

we considered three machine learning based methods,
namely ECPred [38], DEEPre [17], and SVMProt [13]. The
performance is compared based on the COFACTOR [35]
benchmark having 318 sequences. The SVMProt predic-
tion results cover three different conditions: (i) using SVM
only, (ii) using KNN only, and (iii) using SVM, KNN and
PNN combined. Figure 10a shows the performance anal-
ysis for EC level-1 and EC level-2 prediction. The results
presented here are achieved using a lower Jaccard similar-
ity index of 0.3 and upper similarity index of 1.0. A much
lower similarity threshold brings false positives that signif-
icantly reduce the accuracy. Based on the obtained results,
a similarity index of 0.3 achieves a good trade-off between
accuracy and coverage.
Because not all of the methods can make predictions

for all four EC levels, we compared GrAPFI only with
ECPred and DEEPre for 4-digit EC numbers as shown
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Fig. 3 The accuracy and coverage for various minimum Jaccard similarity index for the A. thaliana reference proteome. a to d and e to h show the
performance for upper similarity index of 1 and less than 1 respectively

in Fig. 10b. In Fig. 10c, we show the annotation cover-
age of the methods considered here. It shows that ECPred
has superior coverage compared to other methods. The
reason GrAPFI fails to achieve highest coverage is due
to the fact that it is a neighborhood based annotation

method. GrAPFI performs label propagation by filtering
out weakly linked neighbors determined by a minimum
similarity threshold. Due to this filtering action, for few
cases, GrAPFI fails to suggest any appropriate annota-
tion for query proteins. This reduces the total annotation

Fig. 4 The accuracy and coverage for various minimum Jaccard similarity index for the Homo Sapiens reference proteome. a to d and e to h show
the performance for upper similarity index of 1 and less than 1 respectively
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Fig. 5 The accuracy and coverage for various minimum Jaccard similarity index for the S. Cerevisiae reference proteome. a to d and e to h show the
performance for upper similarity index of 1 and less than 1 respectively

coverage. However, on the other hand, GrAPFI increases
the accuracy by considering strongly linked neighbors. As
shown in Fig. 10b and c, GrAPFI has better accuracy com-
pared to ECPred and DEEPre, but it gives slightly less
coverage than ECPred.

Enzyme vs. non-enzyme classification
GrAPFI can be used in Enzyme vs. Non-enzyme classifica-
tion task in a similar fashion as described in above section.
However, the training graph must include non-enzyme
proteins. To experiment with enzyme vs. non-enzyme

Fig. 6 The accuracy and coverage for various minimum Jaccard similarity index for theMusMusculus reference proteome. a to d and e to h show
the performance for upper similarity index of 1 and less than 1 respectively
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Fig. 7 The accuracy and coverage for various minimum Jaccard similarity index for the Rattus Norvegicus reference proteome. a to d and e to h
show the performance for upper similarity index of 1 and less than 1 respectively

Fig. 8 The accuracy and coverage for various minimum Jaccard similarity index for the E.Coli reference proteome. a to c and d to f show the
performance for upper similarity index of 1 and less than 1 respectively
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Fig. 9 The accuracy and coverage for various minimum Jaccard similarity index for the COFACTOR benchmark proteins. a and b show the
performance for upper similarity index of 1 and less than 1 respectively

classification, To evaluate the method, we have used a
well defined dataset of enzyme and non-enzyme proteins
curated from UniprotKB [1]. This dataset is called “NEW”
and was constructed as described in [17]:

1. The SWISS-PROT (released on September 7, 2016)
database was separated into enzymes and
non-enzymes based on their annotation.

2. To guarantee uniqueness and correctness, enzyme
sequences with more than one set of EC numbers or
incomplete EC number annotation were excluded.

3. To avoid fragment data, enzyme sequences
annotated with ’fragment’ or with less than 50 amino

acids were excluded. Enzyme sequences with more
than 5000 amino acids were also excluded.

4. Redundancy bias is removed using CD-HIT [41] with
40% similarity threshold to sift the raw dataset,
resulting in 22,168 low-homology enzyme sequences.

5. To construct the non-enzyme part, 22,168
non-enzyme protein sequences were randomly
collected from the SWISS-PROT (released on
September 7, 2016) non-enzyme part, which were
also subject to the above (ii–iv) steps. Thus the
original dataset contains 22,168 enzymes and an
equal number of non-enzymes.

Fig. 10 Part a shows a performance comparison of GrAPFI with SVMProt (SVM, KNN, and Mixed), DEEPre, and ECPred for 2-digit EC number
predictions. Part b shows the accuracy comparison of GrAPFI with DEEPre and ECPred for all 4 level of EC prediction. Part c shows the coverage of
the considered methods
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The dataset contains the protein sequences along with
their respective EC annotations. We have run Inter-
ProScan5 [40] to identify the domains contained in the
sequences. Later, with the domain information, we have
built the training graph. This graph contains 40040 pro-
teins with 54% enzymes and 46% non-enzymes connected
based on their domain composition.
To evaluate the annotation performance, we present 10-

fold cross validation on the training graph and average
macro-precision, macro-recall, macro-F1 scores are com-
puted for various jaccard similarity indices. The result
shows performance of enzyme vs. non-enzyme classifica-
tion only. The experimental outcomes are shown in Fig. 2a
and b.
It is evident from the experimental outcome that

GrAPFI can distinguish enzyme and non-enzyme proteins
with a a good score in all evaluation metrics. However, the
coverage goes down as we move towards higher similarity
thresholds. One of the things to be noted that considering
exact similarity match does not change the performance
significantly as can be seen in Fig. 2b.

Discussions
Here, we explore new ways of connecting proteins. The
proteins are connected based on domains that are poten-
tially linked to the protein functions. This eventually
means that GrAPFI is biologically meaningful approach.
One of the major advantages of using GrAPFI to anno-
tate proteins is that it produces explainable high quality
annotations with a relatively simple annotation pipeline.
The potential is evident from the experimental results.
Although GrAPFI performs well, there are few drawbacks
of using GrAPFI. For example, GrAPFI works on domain
composition that can be achieved using another tool.
GrAPFI can not be used with proteins without domain
information. And also for the proteins with single domain,
in most cases, GrAPFI fails to find appropriate annota-
tion. The reason for this failure is that for a single domain
protein, it is highly unlikely that there will be any high
quality neighbors that can share annotations that eventu-
ally left the protein without any labels or wrong one. In any
case, if GrAPFI fails to find an annotation, it is possible to
identify the reason behind the failure and it restricts itself
from predicting any annotation. This attitude reduces
the false positives. However, from the experiment, it is
evident that GrAPFI performs with high annotation cov-
erage. Unlike other hierarchical classification models like
ECPred [38] and DEEPre [17], GrAPFI does not learn
model for every class. Instead, it builts a giant network of
proteins and apply label propagation for each query pro-
teins. The described approach could easily be distributed
in order to handle large protein databases. The method is
scalable for larger dataset using big data processing frame-
works like Hadoop/Spark. We therefore aim to extent

GrAPFI to use a distributed processing framework for the
large scale annotation of the entire UniProtKB/TrEMBL
database. Moreover, there is still scope of improvement
specially for level-3 and level-4 predictions. As a future
plan, we envision to improve the method for more pre-
cise predictions and also to apply the similar approach
for protein function annotation using Gene Ontology
Terms.

Conclusion
In this paper, We have extended and validated GrAPFI
[39], a novel network based approach for automatic pro-
tein function annotation using the domain composition of
the proteins. Pairs of proteins in the network are linked
based on their jaccard similarity coefficient using InterPro
domain composition.
Our neighborhood based label propagation algorithm

was applied to the network in order to propagate anno-
tations from reviewed proteins to non-reviewed query
proteins. This approach was validated using six popular
reference proteomes from UniProtKB/SwissProt. We also
compared GrAPFI results with those of ECPred, DEEPre,
and SVMProt as examples of state of the art EC pre-
diction approaches using the COFACTOR dataset. This
comparison shows that GrAPFI achieves better accuracy
and comparable or better coverage with respect to these
earlier approaches.

Methods
GrAPFI combines the notion of protein domain similar-
ity with a graph neighborhood inference technique for
automatic EC number annotation. More specifically, the
functional annotations of reviewed proteins in SwissProt
are used to predict those of non-reviewed proteins in
TrEMBL using label propagation on a complex network
representation of protein sequence data. The GrAPFI
algorithm first constructs an undirected weighted graph
of the proteins using the domain composition of the
reviewed proteins. Then, given an non-reviewed protein, a
label propagation algorithm is applied to the protein graph
in order to infer appropriate annotations.

Notation
In this section, we first present some definitions and
notations used in the paper.
Graph:A graph is a collection of objects denoted asG =

(V ,E), where V is a set of vertices/nodes and E ⊆ V × V
is a set of edges.
Weighted Graph: A weighted graph is a graph which is

represented as a three tuple G = (V ,E,W ) where:

• V is a set of nodes,
• E ⊆ V × V is a set of edges,
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• W is a weight matrix where each cellWuv represents
a numerical weight of the edge (u, v) ⊆ E.

Labeled Graph: A labeled graph is a graph which is
represented as a four tuple G = (V ,E, L, I) where:

• V is a set of nodes,
• E ⊆ V × V is a set of edges,
• L is a set of labels,
• I : V ∪ E −→ L is a labeling function.

Directed Graph: A Directed graph G = (V ,E) is a col-
lection of objects where V is a set of vertices/nodes and
E ⊆ V × V is a set of edges with ordered pair of vertices
(u, v) such that (u −→ v) ∈ E.
Undirected Graph: An undirected graph is a collec-

tion of objects denoted as G = (V ,E), where V is a set
of vertices/nodes and E ⊆ V × V is a set of edges with
unordered vertices (u, v) such that if (u −→ v) ∈ E exists
then (v −→ u) ∈ E must exists.
Neighbors: The neighbors of a node u are defined as

N(u) = {v|(u, v) ∈ E}.
Degree: The degree of a node in a graph is the number

of edges which touch it. The degree of a node u in a graph
G is denoted deg(u) = N(u).
Average Degree: The average degree of a graph G =

(V ,E) is a measure of how many edges are in the set E
compared to number of vertices in the set V. The aver-
age degree of a graph G = (V ,E) is defined by Avgdeg =
2|E|/|V |.

Graph construction
We present here a novel way of connecting pro-
tein sequences using their associated InterPro domains.
Domains may be considered as natural building blocks
of proteins. Due to evolution, protein domains may have
gone through changes such as duplication, fusion, recom-
bination to produce proteins with distinct structures and
functions [42]. Here, each node of the graph represents a
protein, while a link between two nodes means that the
proteins exhibit a given level of domain similarity. Thus,
each node u is identified by a set of labels L(u), has a set
of neighbours N(u), and for every neighbour v it has an
associated weight Wu,v. The overall aim is to propagate
labels (i.e. annotations) from nodes having labels to similar
nodes that lack labels.
To illustrate the construction of the protein graph, let us

consider five proteins with symbolic names P1, P2, P3, P4,
and P5. Let us assume that these proteins are composed
of domains D1 = (d1, d2, d3, d4), D2 = (d1, d3, d5),
D3 = (d1, d2, d10), D4 = (d5, d6, d1), and D5 =
(d4, d1, d10, d40, d7, d9, d12, d52, d100), respectively.
Domain composition of a protein is the set of domains

found in a protein sequence and considered irrespective

of order of appearance in the sequence. For example the
domain information in D1 = (d1, d2, d3, d4) can be
used in any other order D1 = (d1, d4, d3, d2). There-
fore, the composition is not strictly linear. The overlapping
of domains are not considered as long as the overlapped
domains has a new domain identification.
It is then evident that proteins P1 and P2 contain two

domains d1 and d3 in common. Therefore, proteins P1
and P2 may be linked and the number of shared domains
may serve as a link weight given by

WP1,P2 = |(d1, d2, d3, d4) ∩ (d1, d3, d5)| = |(d1, d3)| = 2.

In a similar way, proteins P1 and P5 may be
linked with a link weight of |(d1, d2, d3, d4) ∩
(d4, d1, d10, d40, d7, d9, d12, d52, d100)| = |(d1, d4)| =
2. In both cases, the link weight is 2. However, the link
weight computed in this way does not reflect the rel-
ative strength of the relationship among the proteins.
More specifically, in the first case the two proteins have
|(d1, d2, d3, d4) ∪ (d1, d3, d5)| = |(d1, d2, d3, d4, d5)| = 5
different domains, of which two are shared. In
the second case, there are |(d1, d2, d3, d4) ∪
(d4, d1, d10, d40, d7, d9, d12, d52, d100)| = 11 different
domains of which again two are shared. Although two
domains are shared in each case, P1 is intuitively more
aligned with P2 than P5. Therefore, instead of using the
above raw similarity score, we used the Jaccard similarity
index, or Jaccard similarity coefficient, to reflect better
the similarity in composition. This is calculated as |A∩B|

|A∪B| ,
where A and B are the two sets of constituent domains.
Using the Jaccard similarity index, the link weights for P1
and P2 are calculated as

WP1,P2 = |(d1, d2, d3, d4) ∩ (d1, d3, d5)|
|(d1, d2, d3, d4) ∪ (d1, d3, d5)|

= |(d1, d3)|
|(d1, d2, d3, d4, d5)| = 2

5
= 0.4.

Similarly, for P1 and P5, the link weight is calculated as

WP1,P5 = |(d1, d2, d3, d4) ∩ (d4, d1, d10, d40, d7, d9, d12, d52, d100)|
|(d1, d2, d3, d4) ∪ (d4, d1, d10, d40, d7, d9, d12, d52, d100)|

= 2
11

= 0.18.

Using the Jaccard similarity index, the final graph is built
in two simple steps. In the first step, the data files that
contain reviewed protein information are parsed to collect
the constituent domains of each protein. If the training
data contains only sequences, InterProScan [40, 43] is
used to find the domains associated with each of the pro-
tein sequences. Then the graph is built using the domain
composition of the proteins.
It is worth mentioning that the order of the domains is

not maintained while computing jaccard similarity index.
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Fig. 11 The annotation workflow used in GrAPFI. The right-hand portion of the workflow depicts the graph construction using reviewed proteins
from the UniprotKB/Swissprot. The left part shows the annotation flow

Fig. 12 Example of EC annotation using label propagation
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Domain composition for each protein contains the set of
unique InterPro signatures found in the sequence.

Enzyme commission numbers
Enzymes are usually labelled following the Enzyme Com-
mission (EC) system [44], the widely used numerical
enzyme classification scheme. The EC System assigns
each enzyme a four digits number. This classification sys-
tem has a hierarchical structure. The first level consists
of the six main enzyme classes: (i) oxidoreductases, (ii)
transferases, (iii) hydrolases, (iv) lyases, (v) isomerases and
(vi) ligases, represented by the first digit. Each main class
node further extends out several subclass nodes, specify-
ing subclasses of the enzymes, represented by the second
digit. Similarly, the third digit indicates the sub-subclass
and the fourth digit denotes the sub-sub-subclasses. Let
us consider as an example a Type II restriction enzyme,
which is annotated as EC 3.1.21.4. The first digit, 3,
denotes that it is a hydrolase. The second digit, 1, indi-
cates that it acts on ester bonds. The third digit, 21,
shows that it is an endodeoxyribonuclease producing 5-
phosphomonoesters. The last digit, 4, specifies that it is a
Type II site-specific deoxyribonuclease.

Label propagation for protein function annotation
After building the graph from the reviewed proteins, the
graph is ready to be used for the function annotation of
new protein sequences. A neighborhood based label prop-
agation algorithm is designed to perform the annotation
task. Given the constituent domains of an input protein
sequence, all of its neighboring proteins and their anno-
tations are retrieved from the graph. Once the neighbors
have been obtained, the weighted frequency of the labels
are computed using the following formula:

f iu =
∑

v∈N(u) Wu,vδ(vi, i)∑
v∈N(u) Wu,v

,

where f iu is the weighted score of the candidate func-
tion i for the query protein u. And δ(vi, i) is 1 if the
function vi of the protein v is same as function i, oth-
erwise, 0. The details of the label propagation algorithm
is described in Algorithm 1. Overall, for a given input
sequence, the annotation algorithm works according to
the flow diagram shown in Fig. 11.
Let us consider a query protein P with a set of domains

D = (d5, d6, d101). Our aim is to annotate this pro-
tein with an EC Number following the label propagation
algorithm, as illustrated in Fig. 12. Based on the domain
similarity, protein P will have connection with proteins P2
and P4 in the running example graph. The dotted lines
show the links from P to P2 and P4 in the graph along with
the associated weights. Therefore, the protein P will have
P2 and P4 as it’s neighbors. After finding the neighbors,

Algorithm 1 Label Propagation in a protein graph
1: Input: A weighted undirected protein graph (“EC

annotation performance analysis” section), G =
(V ,E), Minimum Jaccard Similarity Index, θ , and a
query protein u with domain composition d

2: Output: Weighted EC Annotations
3: procedure LABEL PROPAGATION
4: Annotations ← ∅
5: N ′ ← FilterNeighbors(N(u), θ)

6: ECs ← list of distinct ECs present among the
neighbors N ′

7: for each i ∈ ECs do
8: f iu =

∑
v∈N ′ Wu,vδ(vi,i)∑

v∈N ′ Wu,v

9: Annotations ← Annotations ∪ {f iu}
10: Rank the Annotations
11: Select the top ranked annotations and assign it to

the protein u
12: end Procedure
13:
14: function FilterNeighbors (N(u), θ))
15: N ′ ← ∅
16: for each v ∈ N(u) do
17: ifWu,v >= θ then
18: N ′ ← N ′ ∪ {v}
19: end if
20: end for
21: return N ′

the functional annotations of all the neighbors are prop-
agated along with the corresponding weights. All of the
functional annotations are ranked based on their cumu-
lative weights. The top ranked function is selected as the
best functional annotation for protein P. In this example,
the weighted annotations for P are EC3, EC5, EC6, EC1,
EC2 with cumulative weights of 0.70, 0.50, 0.50, 0.20, and
0.20, respectively. Therefore, the functional annotation for
the protein P is EC3 as it has the highest weight among
the propagated labels. Clearly, it is possible to select more
than one high scoring functional annotations if we wish
to propose more than one candidate annotation. Further-
more, node neighbours could be selected in other ways to
reflect the requirements of the problem at hand.
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