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Abstract

Streaming applications come from various application fields such as physics, and many
can be represented as a series-parallel dependence graph. We aim at minimizing the energy
consumption of such applications when executed on a hierarchical platform, by proposing
novel mapping strategies. Dynamic voltage and frequency scaling (DVFS) is used to reduce
the energy consumption, and we ensure a reliable execution by either executing a task at
maximum speed, or by triplicating it. In this paper, we propose a structure rule to partition
the series-parallel applications, and we prove that the optimization problem is NP-complete.
We are able to derive a dynamic-programming algorithm for the special case of linear chains,
which provides an interesting heuristic and a building block for designing heuristics for the
general case. The heuristics performance is compared to a baseline solution, where each task
is executed at maximum speed. Simulations demonstrate that significant energy savings can
be obtained.

1 Introduction

Streaming data is continuously generated from applications in high energy physics, astronomy [1]
and other scientific or industrial domains [2]. With the improvement of detector resolution, it
is anticipated that the data volume will dramatically increase. For instance, the advanced light-
source facility could generate 1.9 PB data each year and at a rate of 20 GB/sec in the near
future [3]. Processing these data in real-time and then feedback key information to decision-
making is critically useful, even if it demands intensive computing power. The use of large-scale
hierarchical platforms can help parallelize the processing of this streaming data and process it in
real time. This may also help reduce the overall energy consumption resulting from the intensive
computing properties, for instance by using Dynamic Voltage and Frequency Scaling (DVFS): by
dynamically tuning processor frequencies and voltages, DVFS enables task completions with a
lower energy consumption.

Although DVFS techniques can save overall energy, they inevitably result in an increased arrival
rate of transient faults [4,5]. This is because modern processors used by streaming applications are
based on CMOS technology. Typically, a CMOS processor consists of billions of transistors, where
one or more transistors form one logic bit holding binary values of either 0 or 1. Due to physical
phenomena such as high energy cosmic particles or rays, the content of some logic bit can be
flipped by mistake, resulting in the notorious soft errors. Although checkpointing with rollback-
recovery can mitigate soft error effects, frequent utilization of such fault-tolerance mechanism
is time-consuming. The unpredictable occurrences of soft errors may result in severe temporal
violations. We consider in this study a reliability target not equal to 100%, but instead a small
percentage of failures is acceptable, so that tasks running at maximum speed have a sufficient
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reliability. We also observe that triplicating tasks and performing a majority voting leads to a
suitable reliability. This avoids overwhelming energy-consuming on applications that do not need
an error-free level of reliability.

This results in a multi-objective optimization problem: mapping streaming applications onto
a hierarchical computing platforms with the aim of saving energy, while meeting performance
and reliability constraints. Scientific workflows are often represented as Directed Acyclic Graphs
(DAGs), which model the computation needs of tasks and dependencies among tasks [6]. Most of
the workflows corresponding to streaming applications exhibit a regular structure, such as linear
chains, trees, fork-join graphs, or general series-parallel graphs. For instance, most of the StreamIt
benchmarks [7] are series-parallel graphs. Hence, we focus on series-parallel applications. The
platform on which we aim at executing such applications is a two-level platform, where several
blocks, each with several cores, are available. Due to space limitation, further related work is
discussed in the companion research report [?].

This paper makes the following major contributions: (1) We propose a formal reliability and
energy-aware model for multi-objective optimization of allocation and scheduling of streaming
tasks on a hierarchical platform, and prove that the optimization problem is NP-hard; (2) We de-
sign a dynamic programming approach for simple linear chains of streaming tasks, based on which
allocation and scheduling heuristics for the general case can be built; (3) Extensive simulations
on real applications show that our heuristics can achieve energy savings without degradation of
performance and reliability, as compared to running all tasks at the maximum speed.

The rest of this paper is organized as follows. Section 2 formalizes both application and
platform models and defines the MinEnergy optimization problem. Section 3 presents a dynamic
programming-based solution for MinEnergy when dealing with linear chain applications, and
Section 4 proposes heuristics for general series-parallel graphs. Section 5 evaluates the proposed
algorithms. Finally, Section 6 concludes the paper and provides directions for future work.

2 Model

2.1 Applications

The application that is to be scheduled is a streaming application: it operates on a collection of
data sets that are executed in a pipelined fashion. The period of the application, which is the
inverse of the throughput, corresponds to the time interval between the arrival of two consecutive
data sets. We assume that the period of the application (or the throughput) is given by the
application and must be enforced. This target period is denoted by Pt.

We consider applications represented as a series-parallel graph G = (V, E), or SPG. Nodes of
the graph correspond to different application tasks, and are denoted by Ti, with 1 ≤ i ≤ n, where
n = |V| is the size of the graph. For each precedence constraint in the application, say from task
Ti to task Tj , we have an edge Li,j ∈ E , and we say that Tj is a successor of Ti, j ∈ Succ(i). For
1 ≤ i ≤ n, wi is the computation requirement of task Ti, and for each Li,j ∈ E , with 1 ≤ i, j ≤ n,
δi,j is the volume of communication to be sent from Ti to Tj before Tj can start its computation.

An SPG is built from a sequence of compositions (parallel or series) of smaller-size SPGs. The
smallest SPG consists of two nodes connected by an edge. The first node is the source of the SPG
while the second is its sink. When composing two SPGs in series, we merge the sink of the first
SPG with the source of the second SPG. For a parallel composition, the two sources are merged,
as well as the two sinks. The source is also called a fork node, and the sink a join node.

Data sets arrive at a prescribed rate Pt, i.e., a new data set enters the system every Pt time
units, and we must therefore be able to process at a throughput of at least 1

Pt
. We will further

discuss how to compute this processing rate in Section 2.6.
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2.2 Platforms

The computing platform targeted in this work has c× p homogeneous cores. Each core can run at
a different speed, with a corresponding error rate and power consumption. We focus on the most
widely used speed model, the discrete model, where cores have a discrete number of predefined
speeds, which correspond to different voltages at which the core can be operating. Switching is
not allowed during the execution of given tasks. The set of speeds is {smin = s1, s2, ..., sk = smax}.

The cores are organized by a hierarchical communication system. It consists in c blocks, each
of them containing p computing cores that are tightly coupled by a low-latency interconnect fabric.
To have a system with hundreds of cores, blocks are connected by the next level network, which
contains the route-tables and network parity checking logic. Computation and communication can
hence process concurrently. The bandwidth between two cores in the same block and in different
blocks are denoted respectively as β1 and β2. Communication among cores in the same block is
cheaper than that among different blocks [19], i.e., β1 >> β2.

2.3 Graph partitioning and structure rule

In order to achieve load balance and to save communication, the application is partitioned into
several connected parts. Tasks in a part are then allocated to the same core (and a core processes
tasks from a single part), hence there is no communication cost to pay between tasks in the same
part.

For the ease of the communication pattern, since we consider series-parallel graphs (SPGs), we
aim at keeping the SPG structure when creating parts, hence the structure rule.

Definition 1 (Structure rule). A partition of the SPG follows the structure rule if and only if each
part consists either of (i) a single task, (ii) a subgraph that is itself an SPG, or (iii) several tasks
or SP subgraphs that share the same predecessor and successor (that is, a parallel composition of
SP subgraphs).

If we consider a simple linear chain with three tasks T1, T2, T3, that is, a series composition of
these tasks, to be mapped on two cores, this rule does not allow T1 and T3 to be mapped on the
same core, while T2 is on another core. Rather, we can either keep the three tasks on one core, or
have two consecutive tasks on a core and the third task on another core. For such linear chains,
this is similar to interval mappings [20].

The rule for parallel compositions is slightly more intricate: consider for instance a simple
fork-join with source Tfork and sink Tjoin and inner tasks T1, . . . , Tk, as depicted on Fig. 1. Then,
either all tasks of this fork-join are in a same part, or Tfork and Tjoin must both be in different
parts, and none of inner tasks T1, . . . , Tk can be in one of these two parts. However, several of
them can be grouped in the same part, as they share the same predecessor Tfork and the same
successor Tjoin . For instance, T1 and T3 can be in the same part, while all other tasks T2, T4, . . . Tk
can be in another part, as depicted in Fig. 1.

Tfork Tjoin

T1

T2

T3

T4
...

Tk

Figure 1: Fork-join graph and a partition following the structure rule.

A parallel composition of more complex subgraphs is depicted in Figure 2 between tasks T1
and T15. In the proposed partition, two subgraphs of the parallel composition are grouped together
(green partition), which is allowed as they share the same predecessor T1 and successor T15. The
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other subgraph of this parallel composition is split into two parts. One of them, including T2 and
T3, is made of two tasks sharing the same predecessor and successor, while the other one is a SP
subgraph. Note that by construction, each part of a partition following the structure rule has
either a single source vertex and sink vertex (in the cases (i) and (ii) of the definition), or it has
a single predecessor and a single successor (case (iii)).

T1

T10 T11 T12

T13 T14

T2

T3

T4

T8

T7

T6T5

T9

T15 T16

Figure 2: SPG partition following the structure rule.

Notations. The set of task indices that are mapped onto a core v is denoted by Cv, and all
these tasks are executing at the same speed S(v). Indices of tasks that are mapped on a block d of
cores is denoted as set `d, and it is the union of the Cv’s for all cores v in block d, i.e., `d = ∪v∈dCv.

The sets Sourcev (resp. Sinkv) represent the indices of the source vertices (resp. sink vertices)
mapped on core v. There is only one source and one sink, except for parallel SPGs mapped in
a same part. Also, we define the set PredC v (resp. SuccC v), which contains the core indices
on which there are tasks that send outputs to tasks Ti, with i ∈ Sourcev (resp. receive inputs
from tasks Ti with i ∈ Sinkv). By construction, either there is only one source and one sink
(|Sourcev| = |Sinkv| = 1), or there is only one predecessor and successor task.

2.4 Soft-errors and triplication

High performance computing platforms are subject to failures, and in particular transient errors
caused by radiation. In our framework, we can choose the execution speed of a core. However,
a very small decrease of speed leads to an exponential increase of failure rate [4, 5]. Indeed,
radiation-induced transient failures follow a Poisson distribution, and the fault rate is given by:

λ(s) = λ0e
d smax−s

smax−smin ,

where s ∈ [smin, smax] denotes the running speed, d is a constant that indicates the sensitivity to
DVFS, and λ0 is the average failure rate at speed smax. λ0 is usually very small, of the order of
10−5 per hour [21]. Therefore, we can assume that the application is reliable enough when running
at speed smax, and that there is no need of re-execution [22].

To save energy while having a reliable execution, we also propose a triplication of tasks: three
copies of the same task (or group of tasks) are run simultaneously, and a majority voting determines
the correct results. Such a scheme may fail only if two copies (among the three) fail simultaneously.
For example, on the processor used for the simulation (see Section 5), and when considering that
the failure rate at maximum speed is λ0 = 10−5 faults per hour, the failure rate at minimum speed
is 5.46×10−4 per hour. Then, the probability for at least two copies failing is: 3×(5.46×10−4)2 =
8.94× 10−7 failures per hour, which is much smaller than the probability at maximum speed. We
continue this example below to show that in some cases, triplication succeeds to reduce the energy
consumption.

Therefore, after a partition of tasks is done (following the structure rule), in order to have a
reliable execution, either we execute a whole part on a core at maximum speed without triplication
(denoted by mi = 1 for any task Ti in the part), or we triplicate the whole part on three different
cores (denoted by mi = 3 for any task Ti in the part). In this later case, the execution speed
S(v) used by the three cores is set to the minimum speed such that S(v)Pt ≥

∑
i∈Cv

wi, so as
to minimize the energy cost while respecting period bound. We further enforce that these three
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cores must be in the same block, since they need to communicate, in particular to do the majority
voting and decide which result is correct. Note that if a part is triplicated, the majority voting
occurs only for the last task of the part.

2.5 Energy

We follow a classical energy model, whose power estimation error in a case study is at most 9.4%
on average, see for instance [11]. The energy consumption of executing a data item through all
tasks is composed of static part and dynamic part: E = Es+Ed. The static component represents
the idle leakage current consumption, which is modeled as Es = Is×Vs×Pt× ca, where Is and Vs
denote the leakage current and the minimum possible voltage of a core, and ca denotes the actual
number of cores used, since we assume that other cores can be switched off. Since a data item
arrives every Pt time units, the static energy is consumed during a time Pt for each task, on each
of the ca cores.

For a single execution of task Ti running at speed s(i), the dynamic component Ei
d is related

to the operating frequency and voltage, Ei
d = Cs3(i) × wi

s(i) = Cwis
2(i), in which C denotes the

switching capacitance. The supply voltage is scaled in almost linear fashion with the processing
frequency [12]. After taking triplication into consideration, the energy cost of the whole application
on one data item is therefore:

E = IsVsPtca + C
∑

1≤i≤n

miwis
2(i),

where mi = 3 if Ti is triplicated, otherwise mi = 1. Following up with the previous example,
we show that triplicating a task may cost less energy than running it at the maximum speed.
We use the values used in Section 5: smin and smax are 1.2 Ghz and 4 Ghz respectively, static
power is 2W, C = 1. Assume that the task’s weight is 1.2 and the period is 1 second. The energy
needed for triplicating it at smin is 3∗ (2 + 1.2∗1.22) = 11.184W , while running it at smax requires
2 + 1.2 ∗ 42 = 21.2W .

The energy cost of the communication is not negligible in our model. Within a block, com-
munication among processor cores is realized through a remote memory access. Communication
between two cores of different blocks is realized by routers on NoC. For a simple transfer of data
on edge Li,j , the energy cost can be represented by Ec(Li,j) = αi,jδi,j , where αi,j is the energy
cost for a unit of data sending. αi,j depends on where tasks are located: if task Ti and Tj are
allocated onto the same core, then αi,j = 0; αi,j = α1 > 0 if tasks are allocated onto two cores of
the same block; otherwise αi,j = α2, and α1 < α2, see [23] for details.

Also, we must consider the influence of triplication. Given Lij ∈ E such that αi,j 6= 0, i.e.,
Ti and Tj are mapped on different cores, the energy cost also depends on whether Ti and Tj are
triplicated or not. First, if Ti is triplicated, it does a majority voting before the communication
occurs: two outputs from two different cores need to be sent to a core in the same block, hence
the energy cost is (mi − 1)α1δi,j (hence this cost is null if mi = 1). Next, the communication
between Ti and Tj must be done one or three times, depending whether Tj is triplicated or not,
with a cost mjαi,jδi,j .

In total, the energy cost of the whole application on one data set is:

E = IsVsPtca + C
∑

1≤i≤n
miwis

2(i)

+
∑

Li,j∈E|αi,j 6=0

((mi − 1)α1δi,j +mjαi,jδi,j).

2.6 Timing definition and constraints

The actual time spent by tasks mapped on core v is:
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T (v) = max
(∑

i∈Cv
wi

S(v)
+ (mi − 1)

∑
j∈Sinkv

∑
k∈Succ(j)

δj,k

β1
,

max
u∈SuccCv

∑
j∈Sinkv,k∈Sourceu

δj,k

βv,u
,

max
u∈PredCv

∑
j∈Sinku,k∈Sourcev

δj,k

βu,v

)
,

where βu,v = βv,u since communication channels are symmetrical, βu,v = β1 if u and v are on the
same block, otherwise βu,v = β2. If tasks in Cv are triplicated, then mi = 3, otherwise mi = 1.

The first term in the maximum is the execution time plus the time required for majority
voting if tasks are triplicated. Indeed, in this case, two copies of all outputs from task Tj , with
j ∈ Sinkv, need to be sent to a core in the same block, since they are sent to the same place. The
communication is sequentially executed to avoid potential contention, thus the time needed is two
times (mi − 1 = 2 in this case) a single transfer. The second and third terms are the time needed
to send and receive datasets.

To execute a data item through all stages of G, the time taken is therefore T (G) = max1≤v≤cp T (v).
In order for the mapping to be valid, this has to be less than or equal to the target period, i.e.,
T (G) ≤ Pt.

2.7 Optimization problem and complexity
The objective is to minimize the expected energy consumption per dataset of the whole work-

flow, while ensuring a reliable execution of the application. Hence, each task should either be
executed at maximum speed, or triplicated. The goal is hence to decide which tasks to group in a
same part, which parts to triplicate, at which frequency to operate each part, and on which core
a part should be executed. More formally, the problem is defined as follows:
(MinEnergy) Given a series-parallel graph composed of n tasks, a computing platform composed
of c blocks, each equipped with p homogeneous processor cores that can be operated with a speed
within set S, an intra-block (resp. inter-block) communication bandwidth β1 (resp. β2, with β1 >>
β2), and a target period Pt, the goal is to partition the graph and decide, for each part, whether
to triplicate it or not, at which speed to operate it, on which core to operate it, so that the total
expected energy consumption is minimized, under the constraint that the actual period T (G) should
not exceed the period bound Pt (to ensure required performance), and that each task is either
executed at maximum speed or triplicated (to ensure reliable execution).

MinEnergy is NP-complete in the strong sense, as we prove in the companion research re-
port [?] through a reduction from 3-partition [24]. The reduction builds a fork-join application
and ensures that no triplication is used, hence each task is run at maximum speed. The platform
has a single block and tasks must be grouped three by three to ensure that the period bound is
respected, given a tight number of cores.

Since the problem is NP-complete, we first address the easier problem of linear chain applica-
tions in Section 3, before designing heuristics for the general case in Section 4.

3 Dynamic programming on a linear chain

If the application is a linear chain, we propose a dynamic programming algorithm to solve
MinEnergy. According to the structure rule, the linear chain needs to be partitioned into
sub-chains, each of them being assigned to one or three distinct cores, depending whether the
sub-chain is triplicated or not. We further consider a contiguous allocation, where all cores from
a same block are assigned to connected sub-chains (forming together a larger chain).

We consider that we have c∗ ≤ c available blocks, where the c∗ − 1 first blocks have p cores
available, and the last block has p∗ ≤ p cores available. We express recursively the minimum
energy cost of scheduling tasks T1 to Ti onto the remaining cores. Either all the tasks form a
single part, or we create a part with tasks Tj+1, . . . , Ti and recursively partition the first j tasks.
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Initially, we call E(n, c, p), which partitions the whole chain with all blocks and all cores avail-

able. The recursion then writes: E(i, c∗, p∗) = min
{

Em(1, i, c∗, p∗), Et(1, i, c
∗, p∗),

min
1≤j<i

{
E(j, c∗, p∗ − 1) + Ec(j, α1, β1, 1) + Em(j + 1, i, c∗, p∗),

E(j, c∗ − 1, p) + Ec(j, α2, β2, 1) + Em(j + 1, i, c∗, p∗),

E(j, c∗, p∗ − 3) + Ec(j, α1, β1, 3) + Et(j + 1, i, c∗, p∗),

E(j, c∗ − 1, p) + Ec(j, α2, β2, 3) + Et(j + 1, i, c∗, p∗)
}}
,

where Em(i, j, c∗, p∗) (resp. Et(i, j, c
∗, p∗)) is the energy cost of executing tasks between Ti and

Tj included, at the maximum speed (resp. triplicating the tasks) if there are c∗ blocks of cores
available, the last one having p∗ cores available. Also, Ec(j, α, β,m) denotes the energy cost of
transferring data of size δj,j+1 if Tj and Tj+1 are in different parts: α and β are the energy costs of
transferring a unit of data and the bandwidth respectively (their values depend on whether tasks
are in a same block or not), and m indicates whether task Tj+1 is triplicated or not (we pay the
communication either three times, or only once).

In the recursive formula E(i, c∗, p∗), we consider all possible situations: either the subchain
T1, . . . , Ti is mapped in a same part, at maximum speed or triplicated (two first lines), or we cut
the chain after Tj . In this case, tasks Tj+1, . . . , Tj are in a same part, triplicated or not, and we
consider whether there are in the same block as Tj or in a different block, hence resulting in four
different cases.

It remains to express Em, Et, and Ec. For Em, we compute the energy cost as described in
Section 2.5:

Em(i, j, c∗, p∗) =


+∞ if

∑
i≤k≤j wk > Ptsmax

or p∗ < 1 or c∗ < 1,

IsVsPt+Cs2max
∑
i≤k≤j wk otherwise.

Note that the energy cost is infinite if the period bound is not respected, or if there is no
available core (c∗ < 1 or p∗ < 1). The expression of Et relies on ss, the minimum speed among
speeds at which the execution time of tasks between Ti and Tj is not larger than Pt (see Section 2.4).
We add the energy cost of the majority voting within the same block (2α1δj,j+1), see Section 2.5.
The period is infinite if there are less than three cores available, or no block left, or if the period
bound cannot be matched:

Et(i, j, c∗, p∗) = 
+∞ if

∑
i≤k≤j wk > Ptsmax

or p∗ < 3 or c∗ < 1,

3(IsVsPt+Cs2s
∑
i≤k≤j wk) + 2α1δj,j+1 otherwise.

Finally, for Ec, the energy is infinite if the communication time is larger than the period,
otherwise it is computed as indicated in Section 2.5:

Ec(j, α, β,m) =

{
+∞ if δj,j+1 > βPt,

mαδj,j+1 otherwise.

We prove in the companion research report [?] that this dynamic programming algorithm is
optimal for contiguous mappings, since we explore all possible valid solutions in the recursive
formula for E(i, c∗, p∗). However, it may happen that the optimal solution is not contiguous. For
instance, if there are four tasks, two blocks with four cores, and we should triplicate the third and
fourth tasks, then the optimal solution maps tasks 1 and 4 on a block, and tasks 2 and 3 on the
other block. Details can be found in [?].

4 Heuristics for series-parallel graphs

For general series-parallel graphs, we first propose a naive baseline heuristic, MaxS, which will
be used to evaluate the performance of the proposed sophisticated heuristics. Other heuristics
use a two-step approach to map the SPG onto the platform. The first step is to partition the
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graph into many parts, and the second step is to map these parts onto computing resources. We
propose two heuristics that focus on partitioning the graph into many parts, and select the most
energy efficient way of execution, while the baseline heuristic executes all tasks at maximum speed
(GroupCell and BreakFJ-DP). Finally, we describe the mapping heuristic. All pseudo-codes
and additional heuristic variants are available in the companion research report [?].

MaxS – We first outline a baseline heuristic, MaxS, that will serve as a comparison point.
It consists in having each task executed at the maximum speed smax, and then mapping greedily
tasks to cores. A set L stores a depth-first traversal of G. At each step, we pop up the first node
from L and map it onto current core v until total work load on v,

∑
i∈Cv

wi, is larger than Ptsmax.
To respect the structure rule, if the node is a fork, we map the whole fork-join onto the current
core, otherwise if the workload is already too large, we map the fork onto current core, and its
successors onto other cores. We first use all cores of the current block before using cores of the
next block.

GroupCell partitioning heuristic – Heuristic GroupCell partitions the graph in a bottom-
up way. It first breaks all edges, except (i) edges that have a large communication cost that cannot
be done within the period, i.e., δi,j ≥ β1Pt; and (ii) all edges in a parallel composition when one of
the fork’s output edges or join’s input edges is too large. Indeed, according to the structure rule,
edges inside this parallel composition should not be broken. For each resulting part, the most
energy efficient choice between running at maximum speed or triplicating is selected. Parts stored
in vector Vmaxs are those that are supposed to run at the maximum speed, while others that are
supposed to be triplicated are in Vtrip. For two neighbor parts, if they are both in Vmaxs, merging
them will save the communication. We hence merge parts in Vmaxs if they are neighbors and if
the merged part fits within the period bound. In this process, we respect the structure rule, i.e.,
the resulted part should be either an SPG or a combination of parallel branches, see Section 2.3
for details. If the number of processors requested for the whole graph then exceeds the capacity,
we merge parts in Vtrip, starting with the one with largest input edge weight.

BreakFJ-DP partitioning heuristic – This second partitioning heuristic builds upon the
dynamic programming algorithm that was designed for linear chains. It partitions the graph in
a top-down way. First, BreakFJ-DP breaks all input edges of join nodes and output edges of
fork nodes so that resulting parts are either linear chains or single nodes. Dynamic programming
algorithm from Section 3 is then called on each of them with the same number of cores and blocks
given as BreakFJ-DP.

Note that on a linear chain application, BreakFJ-DP is similar than calling the dynamic
programming algorithm on the whole chain, except that mapping the parts to the cores is not
done in the dynamic program but in a second step, using the mapping heuristic.

Mapping heuristic – Once a partition has been returned by GroupCell or BreakFJ-DP,
one still needs to map the parts onto the cores. The mapping heuristic first maps parts that need
to communicate a large amount of data onto a same block, whenever possible. In a second step,
the remaining parts are mapped to the cores following the topology of the graph: a depth-first
traversal of the parts is created, and parts are mapped in this order to the available cores. If
available cores on the current block are not enough for mapping the current part, then starting
using cores from a new block. Some parts may be merged into its predecessor or its parallel part
when there are no available cores.

5 Experimental evaluation of the heuristics

In this section, we evaluate all proposed algorithms through extensive simulations on real applica-
tions. For reproducibility purposes, the code is available at github.com/gouchangjiang/Stream HPC.

5.1 Simulation setup

We use a benchmark proposed in [7] for testing the StreamIt compiler. It collects many applica-
tions from various representative domains, such as video processing, audio processing and signal
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processing. The stream graphs are mostly parametrized, i.e., graphs with different lengths and
shapes can be obtained by varying the parameters. 44 applications are selected, in which 10 of
them are chains, more details can be found in [?].

We base our platform parameters on the characteristics of the Intel Skylake-SP Processor [25]:
the possible core frequencies are {smin = 1.2, 2.1, 2.4, 2.6, 3.0, 3.7 = smax}, and the idle power of
each core is 2.17W. To simulate applications with various communication to computation ratio
(CCR), we choose three values of β1, leading to a CCR (defined as the total time spent on
communications over the total time spent on computations) of 10−4, 10−3, or 10−2, while β2 =
β1/16. α1 and α2 are set as 0.2 and 0.8 respectively. C is set as 1.

For each application, we set the period bound Pt = a+ (b− a)/κ. The value of a is set to the
minimum time spent on a task or a data transfer at speed β1 (a = max(wi/smax,min(δi,j/β1))),
which corresponds to a very tight period bound. On the contrary, b is set to the time needed to
process all tasks on a core at the minimum speed (b =

∑
1≤i≤n wi/smin), corresponding to a very

loose period bound. We set κ to values from 2 to 10, by increments of 2. Note that it may happen
that an application cannot meet the period bound, for instance if an edge between two tasks and
the sum of computation cost of these tasks both cannot fit within Pt: in that case, all heuristics
will fail to produce an appropriate mapping.

Since some heuristics mail fail to produce an acceptable mapping, for each plot described
below, we select a subset of applications on which all considered heuristics succeed to produce a
mapping, and we plot the average result of the heuristics on this common subset.

5.2 Simulation results

Fig. 3 depicts the energy cost as a function of κ, where a larger κ represents a tighter period. The
platform is composed of c = 4 (resp. 2) blocks, each equipped with p = 128 (resp. 8) cores for
general SPGs (resp. linear chains). For linear chains, BreakFJ-DP and DP reduce the energy
by 44% on average compared to MaxS, and around 60% when communications are expensive.
Note that when CCR=10−4, the results only include 3 applications out of 10, since GroupCell
fails on other applications because of shortage of cores. For CCR=10−3 and 10−2, 9 applications
are included. The gains are also very impressive for general SPGs, where both heuristics save
more than 50% of energy in all settings, with BreakFJ-DP being better for tighter periods and
larger CCRs. Note however that the results for CCR=10−2 are computed only on a small subset
of applications, 6 out of 34, since the heuristics failed on the other applications: the period bound
could not be met because of the high communication cost on some edges. For CCR=10−3 and
10−4, 31 and 32 applications are included respectively.

Results are quite similar with fewer cores per blocks, see [?] for detailed results, but the number
of cases where the heuristics cannot find a solution increases, because heuristics may not be able to
avoid the costly communication between blocks. Also, the difference between BreakFJ-DP and
GroupCell can be observed even for smaller CCRs in these cases, with BreakFJ-DP saving
slightly more energy than GroupCell. We also report in [?] detailed numbers of cases when
heuristics fail to produce an appropriate mapping, together with a study about the minimum
number of cores that are required for each heuristic. The execution time of all heuristics can be
found in [?]. Even though BreakFJ-DP leads to the most interesting energy savings, it requires
more cores to run successfully, hence GroupCell may be a better alternative in some cases.

6 Conclusion

We have addressed the problem of mapping streaming SPG applications onto a hierarchical two-
level platform, with the goal of minimizing the energy consumption, while ensuring performance
(a period bound should not be exceeded) and a reliable execution (each task should either be
executed at maximum speed or triplicated). We have formalized the problem and proven its NP-
completeness, and provided practical solutions building upon a dynamic programming algorithm,
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heuristics give the same results).

Figure 3: Energy consumption relative to MaxS as a function of the period bound tightness κ.

which returns the optimal contiguous mapping for a linear chain. Heuristics are proposed for gen-
eral SPGs, and the BreakFJ-DP heuristic that builds upon the DP algorithm provides significant
savings in terms of energy consumption, with more than 61% savings, in particular when the period
bound is not too tight. With tighter period bounds, we still achieve 57% savings. However, this
heuristic may fail with limited number of cores per blocks. In this case, our GroupCell heuristic
is an interesting alternative, with only a slightly greater energy consumption for a reduced number
of cores used.

An interesting open question is whether the proposed dynamic program is an approximation
algorithm: even though it is not optimal in the general case, it works well in practice and it would
be interesting to provide a guarantee on its performance.
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