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Abstract

Handling long and complex temporal information is an
important challenge for action detection tasks. This chal-
lenge is further aggravated by densely distributed actions
in untrimmed videos. Previous action detection methods fail
in selecting the key temporal information in long videos. To
this end, we introduce the Dilated Attention Layer (DAL).
Compared to previous temporal convolution layer, DAL al-
locates attentional weights to local frames in the kernel,
which enables it to learn better local representation across
time. Furthermore, we introduce Pyramid Dilated Attention
Network (PDAN) which is built upon DAL. With the help
of multiple DALs with different dilation rates, PDAN can
model short-term and long-term temporal relations simulta-
neously by focusing on local segments at the level of low and
high temporal receptive fields. This property enables PDAN
to handle complex temporal relations between different ac-
tion instances in long untrimmed videos. To corroborate
the effectiveness and robustness of our method, we evaluate
it on three densely annotated, multi-label datasets: Mul-
tiTHUMOS, Charades and Toyota Smarthome Untrimmed
(TSU) dataset. PDAN is able to outperform previous state-
of-the-art methods on all these datasets.

”Time abides long enough for those who make use of it.”

Leonardo da Vinci

1. Introduction

Videos contain spatial and temporal information: they
are composed of images in XY space stacked along the
temporal dimension T . Action detection, often known as
temporal action localization, is an important computer vi-
sion problem whose target task is to find precise tempo-
ral boundaries of actions occurring in an untrimmed video.
Previous methods that use 3D XY T convolutional fil-
ters [4, 10, 32] have obtained a great success in action
classification task for clipped videos. These filters learn
spatio-temporal representations within a short period of
time. But what about learning representations for videos
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Figure 1. Challenges: (i) Multi-tasking: Actions can be performed
concurrently (e.g. Watching TV while eating snack). (ii) Short-
term and Long-term temporal duration: In the same untrimmed
video, we may have related short action (e.g. falling down) and
long action (e.g. pole vault). Different instances of the same action
class can be short or long (e.g. Running) corresponding to high
intra-class temporal variance.

with complex temporal relations? Extra layers such as Non-
Local [35] and Timeception [16] have been proposed in re-
cent years to improve the ability to model long temporal
relationships. When placed on top of 3D Convolution Neu-
ral Networks (CNNs), these layers are capable of taking up
to 1024 frames as input. However, this is not sufficient for
learning representations of long untrimmed videos lasting
several minutes.

To better understand the task, let us first understand the
scenarios and challenges in action detection. In daily life,
human actions are continuous and can be very dense. Every
minute is filled with potential actions to be detected and la-
beled. There are 2 main challenges while handling densely
annotated datasets (Fig. 1): (i) humans are great at multi-
tasking, they can drink while reading books or take a phone
call while putting something on the shelf ; and (ii) the du-
ration of actions can have a large variance. This holds true



even for actions that are closely related (e.g., pole vault can
last 1 minute, while its sub-action falling down only few
seconds), and for instances of the same action class (e.g.,
running can last several minutes in a marathon, or a few
seconds in a volleyball game).

Thus, to sum up, the challenges for action detection in
long untrimmed videos include - (i) managing concurrent
actions occurring at the same time, and (ii) modeling both
long-term and short-term temporal duration in the video. In
the next section, we discuss how the state-of-the-art (SOTA)
algorithms attempted to address these challenges.

Most studies on action detection focus on videos with
sparse and well-separated instances of actions [1, 17, 20,
39]. For instance, action detection algorithms on popular
datasets like THUMOS [17] and ActivityNet [1] generally
learn representations for single actions in a video. These
actions may have only few instances in the same video. The
learned representations from these videos mainly aim at dis-
criminating the targeted actions from the background. On
the other hand, algorithms targeted to daily living datasets
like PKU-MMD [20] and DAHLIA [33] process input
videos using a set of sliding windows. The videos in these
datasets consist of several actions performed one after the
other with a pause in between and no temporal relations
among them. To perform well on this type of data, learn-
ing representations for small time windows is sufficient. In-
stead, we are interested in detecting actions occurring in the
same video and pertaining complex temporal relationships
among them. The videos in datasets like Charades [29] and
MultiTHUMOS [38] possess such characteristics. How-
ever, algorithms designed for these datasets still struggle
to model the complex temporal relationships among the
densely distributed action instances [24, 25]. This gener-
ally results in a low detection accuracy.

To this end, we propose a Dilated Attention Layer
(DAL). The main novelty of this architecture is how the
attention weights are allocated to local frames at multi-
temporal scales. Standard temporal convolution layer (i.e.
Conv1D) allocates same importance to local frames in the
kernel. This property prevents the temporal convolutional
kernels from selecting the key information. This is a limita-
tion especially when large temporal receptive fields are re-
quired for modeling long untrimmed videos. To overcome
this limitation, we build a novel attention mechanism to ex-
plore the local context inside the kernel. The kernel ulti-
mately processes the entire video, but at each time step, the
input are only those frames comprised in the kernel size.
DAL explores the relations between the center frame and
the neighbouring frames in the kernel (called local context).
This local attention mechanism enables the proposed frame-
work to learn representations for short actions. Addition-
ally, by introducing dilation in the aforementioned tempo-
ral attentional operations, we build a Pyramid Dilated At-

tention Network (PDAN) which consists of a hierarchy of
DALs. These DALs are configured with different dilation
rates to increase exponentially the size of the filter receptive
field. This hierarchical structure allows PDAN to allocate
attention weights to different temporal resolutions using the
different DAL layers. This structure design is instrumental
for the action detection of densely annotated videos.

To summarize, our contribution in this paper is in three
folds: (i) We introduce DAL, which improves the quality
of the local feature representation across time. (ii) We de-
sign PDAN, which can effectively learn the dependencies
between action instances by applying DAL at different tem-
poral scales. (iii) We extensively evaluate our proposed
method on three densely annotated, multi-label datasets:
MultiTHUMOS [38], Charades [29] and Toyota Smarthome
Untrimmed (TSU) dataset, outperforming the state-of-the-
art methods.

2. Related work

In this section, we review how previous studies learn
temporal relations and attention for action detection.

2.1. Modeling temporal relations

Learning video representations for action detection has
been popular over the years [27, 21, 40, 6]. Different from
action classification, action detection needs to predict pre-
cise temporal boundaries from long untrimmed videos. In
order to address the challenges of modeling complex tem-
poral relationships within the actions in long videos, the
current detection methods [19, 24, 25, 9] emphasize the
temporal processing of these videos in an end-to-end man-
ner. Such methods encode the videos by advanced 2D or
3D CNNs [31, 4, 15, 30] as a pre-processing step.

After encoding the video, action detection can be seen
as a sequence-to-sequence problem. Recurrent Neural Net-
works (RNNs) [38, 8, 3] have been popularly used to model
the temporal relation between the action instances. How-
ever, they only implicitly capture relationships between cer-
tain actions with high motion. Furthermore, due to the van-
ishing gradient problem, RNN based models can only cap-
ture a limited amount of temporal information and short-
term dependencies.

Temporal Convolutional Networks (TCNs) are another
group of temporal processing methods. In contrast to RNN
based methods, TCNs can process long videos due to the
kernels sharing weight for all the time steps. The result
is a feature vector preserving the spatio-temporal informa-
tion, along with contextual information from the neighbor-
ing frames. Some recent variants of TCNs for action detec-
tion include Dilated TCN [19] and MS-TCN [9]. Dilated-
TCN [19] increases the temporal reception field by using
dilated convolutions to model long temporal patterns. This
is extended by MS-TCN [9] which stacks multiple Dilated-



TCNs to construct a multi-stage structure, where each stage
refines the prediction of the previous one. However, stan-
dard convolutions allocate the same importance to each lo-
cal feature in the kernel. This property prevents temporal
convolution kernels from selecting the key information ef-
fectively, especially when dealing with dense actions and
having large temporal reception fields.

With the introduction of datasets like MultiTHU-
MOS [38] and Charades [29] having dense labelling
and concurrent actions (i.e. multi-label), more and more
methodological attempts to model complex temporal rela-
tions between action instances have been made.

Ghosh et al. [12] proposed a method based on Graph
Convolutional Network (GCN), namely stacked-STGCN,
which extend STGCN [37] for action detection. Different
from standard STGCN where the nodes of a graph represent
the body joints, in stacked-STGCN, the nodes represent dif-
ferent elements related to the actions such as actors, objects,
etc. Nodes are connected along the spatial and temporal di-
mensions to form the edges of the graph. Such a graph rep-
resentation characterizes better the complex object-based
actions in videos. But the challenge of handling actions over
a long range of time still persists. Consequently, Piergio-
vanni et al. proposed a global representation, namely super-
event [24]. In this model, Cauchy distribution based filters
process the video across time to learn a latent contextual
representation of the actions on particular sub-intervals of
the video. The set of filters are summed by a soft attention
mechanism to form the global super-event features. During
prediction, the local I3D features are used with the super-
event features to better model the global context. Simi-
larly, Piergiovanni et al. [25] introduced Temporal Gaussian
Mixture (TGM) layers. In contrast to standard convolution
layer, TGM computes the filter weights based on Gaussian
distributions, which enables TGM to learn longer temporal
structures with a limited number of parameters. Although
the above methods [24, 25] achieve state-of-the-art results
in modeling complex temporal relations, the non-adaptive
receptive field limits the ability of the models to capture the
dynamics for both short and long patterns. Thus, we pro-
pose PDAN, which can capture simultaneously short and
long range temporal relationships among action instances.
In order to mitigate the limitations of standard temporal
convolutional operations for the task of action detection, we
provide a framework to learn suitable importance for neigh-
boring frames in a video. This framework is based on self-
attention mechanism.

2.2. Self-attention mechanism

Attention mechanisms focus on the salient part of a
scene relative to a target task. The self-attention mecha-
nism was proposed by Transformer Networks [34] for nat-
ural language processing. It enforces a network to estab-

lish one-to-one relations to understand the dependencies be-
tween their local representations. Employing self-attention
mechanisms has gained popularity for different downstream
tasks: Ramachandran et al. [26] proposed “fully attentional
network”, which achieves competitive prediction results on
image classification tasks. This model replaces the stan-
dard 2D convolution layer with local attention layer in
ResNet [15]. This layer learns the representation based
on the relative position of the spatial features in the ker-
nel. Similar to [34], Girdhar et al. [14] proposed the Ac-
tion Transformer model for the task of action detection.
This model inherits the transformer-style architecture to
modulate features with attention weights from the spatio-
temporal context within a video. This attention mechanism
emphasizes the region-of-interest (e.g. actors’ hands, faces),
which are often crucial to recognize an action. However,
Action Transformer is embedded in I3D [4] as the base
network, which restricts its input size to only short video
clips (i.e. 64 frames). Our target is to detect both long
and short actions in a long video, far beyond 64 frames.
Thus, we need a better attention mechanism that is dedi-
cated to model temporal relations. Wang et al. [35] designed
a Non-Local (NL) layer that achieves SOTA performance
in action recognition task. This block leverages the self-
attention mechanism to learn an attention map representing
the spatial-temporal one-to-one dependencies of the 3D fea-
tures. Extending NL layer, Cao et al. [2] introduced Global
Context (GC) layer, which has same performance as the NL
layer but with fewer parameters. While adapting NL layer
and GC layer for action detection task, the receptive field of
the layer is always the full video. The fixed global recep-
tive field introduces more noise of the irrelevant actions in
the attention map, thus can not provide effective attention
information especially for the videos that concurrently have
both multiple long and short actions. In this paper, we in-
troduce DAL, a novel temporal filter based on self-attention
mechanism. To the best of our knowledge, it is the first time
that an attention mechanism is applied to varying reception
fields to enhance the temporal modeling of actions with dif-
ferent temporal length. We further compared NL layer and
DAL in Sec. 3.2.2.

3. Pyramid Dilated Attention Network (PDAN)
In this section, we introduce Pyramid Dilated Attention

Network (PDAN), an end-to-end model for action detec-
tion. The main contribution of this architecture is how to al-
locate attention weights to all the frames at multi-temporal
scales. We firstly define a Dilated Attention Layer (DAL),
which is a temporal filter across time. DAL can extract bet-
ter feature representation from the neighbouring frames us-
ing an attention mechanism within the kernels. By stack-
ing DALs with different dilation rates, we design a Pyra-
mid Dilated Attention Network (PDAN). This structure en-
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Figure 2. Overview of the Pyramid Dilated Attention Network
(PDAN). In this figure, we present the structure of PDAN for one
single stream. Note that RGB and Flow stream have same struc-
ture inside PDAN. Two streams are connected by late fusion op-
eration before classification. DAL indicates the dilated attention
layer, in which, KS is the kernel size, D is the dilation rate.

ables us to apply DAL on multiple temporal resolutions and
therefore to effectively detect both long and short actions.
Our primary novelty lies in the attention mechanism. In
Sec. 3.2.2, we discuss how is it different from the state-of-
the-art attention mechanisms, especially Non-Local layer.
An overview of the proposed PDAN is shown in Fig. 2. The
basic building block in PDAN is a DAL followed by a ReLU
activation and a bottleneck with residual connection. Note
that in this work, bottleneck indicates 1D convolution that
processes across time and kernel size is 1. PDAN operates
with both RGB as well as Flow modalities depending upon
their availability. In the following sub-sections, we describe
our model in detail.

3.1. Video feature extraction

Similar to most action detection models [19, 24, 25, 38],
our model can process on top of video segment representa-
tions (usually from frame-level or segment-level CNN fea-
tures). In this work, we use spatio-temporal features ex-
tracted from the RGB and Flow I3D networks [4] to en-
code appearance and motion information respectively. To
achieve this, a video is divided into T non-overlapping seg-
ments, each segment consisting of 16 frames. The inputs
to the RGB and Flow deep networks are the color images
and corresponding Flow frames of a segment respectively.
We stack the segment-level features along temporal axis to
form a T×C1 dimensional video representation where each
1 × C1 is the feature shape per segment. This video repre-
sentation denoted as F0 is further input to the RGB or Flow
stream in our architecture. Below, we detail the basic com-
ponent of our proposed PDAN, which is DAL.

3.2. Dilated Attention Layer (DAL)

In this section, we first describe structure of DAL, we
then emphasize our novelty compared to non-local layer.

3.2.1 Structure

Standard temporal convolution layer (STCL) assigns the
same importance to all the input features of the kernel.
However, with multi-scale receptive fields, providing rel-
evant attention weights can benefit modelling of complex
temporal relationships. To this end, we propose DAL with
multiple dilation rates that inherently learns the attention
weights at different temporal scales. Similar to most tempo-
ral filters [25, 24], DAL processes the feature maps across
the temporal domain only to preserve spatial information.
To model complexity, compared to one 3 × 1 kernel in
STCL, DAL has three learnable 1× 1 kernels. Hence, DAL
has a similar number of parameters compared to STCL,
while providing salient attention for the detection task, ow-
ing to its structure design.

As shown in Fig. 3, the input features are processed in
two steps in each kernel of DAL. Take the ith block as an
example: First, the elements (i.e. segment) around a center
element fit at time t ∈ [1, T ] are extracted to form a rep-
resentative vector f

′

it. This feature representation is based
on the kernel size: KS and dilation rate: D at ith block.
Note that: feature fit ∈ R1×C2 , f

′

it ∈ Rks×C2 . Second, the
self-attention scoring system [34] is invoked by projecting
the representative vector f

′

it to a memory embedding (Key:
Ki and Value: Vi) using 2 independent bottleneck convolu-
tions: Ki(f

′

it) = WKi
f

′

it, Vi(f
′

it) = WVi
f

′

it, both WKi
and

WVi
∈ RC2×C2 . Then, fit is projected to the Query Qi us-

ing another bottleneck convolution: Qi(fit) = WQi
fit and

WQi ∈ RC2×C2 . The output of the attentional operation for
the tth time step is generated by a weighted sum of values
Vi, with the attention weights obtained from the product of
the query Qi and keys Ki:

ai(fit) = Vi(f
′
it)[softmax(Qi(fit)Ki(f

′
it))]

T (1)

DAL computes the correlation inside the kernel between the
center element and the KS neighbouring elements. Thus
for each time step t, we have a C2 × 1×KS attention map.
For example, while KS is 3, the local elements are frames
at t, t-D and t+D. Finally, the output of DAL is obtained
by concatenating the outputs for all the time steps t of the
video.

attentioni(Fi) = [ai(fi1)
T, ai(fi2)

T, ..., ai(fiT )
T] (2)

where Fi is the input feature map of DAL for the ith block.
While concatenating the attention map for each t across
time, we have the attention weights of the whole video
C2 × T ×KS. In the following section, we compare DAL
with the Non-local layer to emphasize its novelty.

3.2.2 Comparison with Non-Local layer
Transformer [34] is not directly applicable to action detec-
tion. Its extension to video, Action-Transformer [13] can
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Figure 4. On the left, we visualize the attention map for DAL for
four layers (i ∈[1,4]). On the right, we present a group of frames
at different temporal scales that are associated with a4(f4t) along
with the corresponding attention weights. The circle represent
the frame-level features (i.e. feature in Fi), and the arrow repre-
sents the attention-enhanced connection between the correspond-
ing frames provided by DAL. The bounding box in the attention
map corresponds to the colored arrow at right.

only process short video clips (i.e. 64 frames) and its atten-
tion mechanism is not designed to model temporal relations.
Non-Local (NL) [35] has a similar structure to that of the at-
tention head in Transformer, and is used in action detection
task. Hence, we only compare DAL with the NL layer. The
1-dimensional NL layer’s receptive field corresponds to the
full video. These filters learn an attention map of dimension
T ×T reflecting the one-to-one dependency for every frame
in the full video. On the other hand, DAL’s receptive field at
each time step t covers only the neighbouring frames in the
kernel. The kernel ultimately processes the entire video, but
at each time step t, the input are only those frames included
in the kernel (of size KS) (see Fig. 3). Thus, DAL learns an
attention map of dimension T ×KS, i.e. it explores the re-
lations between the center frame and its KS neighbouring
frames in the kernel. Moreover, by stacking multiple layers
with different dilation rates, the receptive field is expanded
gradually in higher layers to model longer actions. Con-
sequently, both the DAL and NL layers explore the whole
content of the video. Real-world untrimmed videos [38]
have long duration, large temporal variance, and concurrent
actions. While processing such videos, the fixed global re-
ceptive field of the NL layer implies that information linked
to irrelevant actions happening potentially far away from
the current frame will introduce noise to the representation
of the current frame. In contrast, DAL reformulates the at-

tention mechanism for detecting long and short actions in
a sparse and hierarchical manner. This design enables the
attention mechanism at each layer to focus on actions of
different temporal lengths, thus providing better context in-
formation and filtering irrelevant information from the dis-
tant actions. Our ablation study confirm the effectiveness
of DAL. In Fig 4, we give an example where DAL assigns
different attention weights for local frames at every time
step and at multi-temporal scales. The efficiency and effec-
tiveness of NL layer and DAL is discussed in Sec. 4.3.3.
In the following section, we describe how we use DALs at
multiple-temporal scales.

3.3. Pyramid structure of temporal layers

Applying self-attention at multi-temporal scale is an es-
sential ingredient for modeling complex temporal relations.
PDAN is based on a pyramid of DALs with same kernel
size and different dilation rates. The pyramid increases ex-
ponentially the size of the receptive field of the model. This
structure allows the network to model short and long action
patterns by focusing on the local frames in the kernel at the
level of low and high temporal receptive fields.

As shown in Fig. 2, the input feature F0 ∈ RT×C1 is
firstly fed to a bottleneck layer to lightweight the model by
reducing the channel size from C1 to C2. Then, N blocks
are stacked, each block i is a cascade of a DAL with ReLU
activation, bottleneck convolution and a residual link. This
structure allows the receptive field to increase exponentially
while keeping the same temporal length T as the input. In
our experiment, we set the kernel size (KS) to 3 for all
blocks, dilation and padding rate to 2i−1, thus the reception
field is up to 2i+1 for the ith block. The set of operations
in each block can be formulated as:

Fi+1 = Fi +Wi ∗ReLU(attentioni(Fi)) (3)

where Fi indicates the input feature map of the ith block. In
the attention layer attentioni the dilation rate varies with
i. Wi ∈ RC2×C2 indicates the weights of the bottlenecki.
Finally, we compute per-frame binary classification score
for each class (i.e. prediction logits). Therefore, the N th

block is followed by a bottleneck convolution with sigmoid
activation:

P = sigmoid(WBN+1FN+1) (4)

where P ∈ RT×C3 is the prediction logits and WBN+1
∈

RC3×C2 , C3 corresponds to the number of action classes.
To learn the parameters, we optimize the multi-label binary
cross-entropy loss [23].

4. Experiment
The goal of these experiments is to verify that our pro-

posed method can effectively model complex temporal re-
lations. First, we perform an ablation study to validate
the design choice of our model. Second, we compare our



Table 1. Frame-based mAP (%) to show the effectiveness of the
components in PDAN. The X indicates that we use this component
in all the PDAN blocks. PDAN (DAL) is our proposed PDAN.

Dilation Residual DAL in block Charades TSUlink 1 2 3 4 5
Simple(STCL) × × × × × × × 17.8 15.0
Simple(DAL) × × X X X X X 18.9 16.1

Dilation (STCL) X × × × × × × 21.8 24.0
Dilation (DAL) X × X X X X X 23.2 26.1
Residua (STCL) × X × × × × × 21.8 24.3
Residua (DAL) × X X X X X X 23.5 26.5
PDAN (STCL) X X × × × × × 24.1 29.0
PDAN(Low) X X X X × × × 25.3 30.1
PDAN(High) X X × × × X X 25.4 30.1
PDAN (DAL) X X X X X X X 26.5 32.7

model with the current SOTA models on 3 densely anno-
tated datasets to prove its effectiveness.
4.1. Evaluation datasets

We evaluate our PDAN on three challenging datasets:
MultiTHUMOS[38], Charades[29] and an Toyota
Smarthome Untrimmed (TSU) [5] dataset. All these
three datasets are densely annotated with concurrent ac-
tions, allowing us to validate the effectiveness of PDAN in
handling complex temporal relations. For all these datasets,
we follow the original MultiTHUMOS and Charades
evaluation settings for the action detection task, which is
measuring the mean average precision (mAP) by predicting
actions for each frame (frame-based mAP) of test videos.
Note that TSU is a novel densely annotated action dataset.
Different from Charades, TSU has much longer actions and
still with complex temporal relations.
4.2. Implementation details

In PDAN, we set N = 5 blocks, C1 = 1024 and
C2 = 512 (see Fig. 2). For each DAL in the aforemen-
tioned blocks, the kernel and stride size are set to 3 and 1,
respectively. The dilation and padding rates are set to 2(i−1)

for block i ∈ [1, N = 5]. We use Adam optimizer [18] with
an initial learning rate of 0.001, and we scale it by a factor
of 0.3 with a patience of 10 epochs. The network is trained
on a 4-GPU machine for 300 epochs with a mini batch of
32 videos for Charades, 8 videos for MultiTHUMOS and 2
videos for TSU dataset. Depending on the available modal-
ities within the datasets, we use RGB-stream only for TSU
dataset and two-stream structure for Charades and Multi-
THUMOS datasets. Mean pooling of the prediction logits
has been performed to fuse the RGB and Flow streams.

4.3. Ablation studies

In this section, we demonstrate the effectiveness of each
component of our PDAN.

4.3.1 Block components

In Table 1, we first alternatively apply or remove dilation,
residual link and DAL in all the blocks to show the effec-
tiveness of these components (see Fig. 2). We test three
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each layer). On the bottom, we present the corresponding ground
truth and PDAN detection for this video.

configurations: (1) Simple: no residual link and no dila-
tion1 in any PDAN’s block. (2) Dilation: no residual link
but dilation in all the blocks. (3) Residual: no dilation
but residual link in all the blocks. We indicate between
the brackets when DAL or Standard Temporal Convolution
Layer (STCL) is used in the blocks. Note that, DAL and
STCL have the same kernel size and dilation rate.

Results show that for both datasets dilation and
residual link lead to similar improvements (+4.0% on
Charades). When accompanied by the residual link
(i.e. PDAN (STCL)), dilation boosts the action detection
performance by up to 2.3% on TSU w.r.t. dilation only.
Using DAL in all the layers, PDAN outperforms all these
ablation baselines (+1.1%, +2.1%, +2.2% and +3.7% w.r.t.
Simple, Dilation, Residual and PDAN (STCL) on TSU).
These results suggest that DAL is a more effective tem-
poral filter than STCL and that dilation with residual link
help boost DAL’s performance. We then study to which
block, attention should be integrated. We apply attention
mechanism on different blocks to build four ablation base-
lines: PDAN (STCL), PDAN (Low), PDAN (High) and
PDAN (DAL). Low and high indicates that instead of us-
ing STCL, we apply DAL in the first two blocks and last two
blocks, respectively. PDAN (Low) and PDAN (High) corre-
spond to a low (< 5.6 sec.) and high (> 24.8 sec.) receptive
field respectively. Table 1 shows that both baselines can im-
prove the performance (up to 1.3% w.r.t. Residual+Dilation
on Charades). In Fig. 5 (1), we show that PDAN (Low)

1No dilation indicates that all the blocks are set with dilation rate 1.



can better detect short actions, and PDAN (High) can bet-
ter detect the Long actions. PDAN incorporates the at-
tention mechanism on all the blocks and achieves the best
performance for both long and short actions (+2.4% w.r.t.
PDAN (STCL) on Charades dataset).

In Fig. 6, we present the attention map of DAL for 5 lay-
ers (on top), and the corresponding ground truth vs PDAN
detection results (on the bottom). In area (A), with only
long actions (e.g.work at table), only the higher layers allo-
cate high attention weights to the frames in the kernel. This
reflects that the higher layers are more sensitive to long-
term actions. In area (B), with both long and short actions,
both higher and lower layers allocate high attention weights
to the frames in the kernel. In area (C) (at the bottom),
while detecting short actions, DAL allocates high attention
weights at the lower layer, corroborating that the lower layer
is particularly sensitive to short actions.
4.3.2 Number of blocks

Table 2. Ablation study to determine the number of blocks in
PDAN. ”Temp. Field” indicates the length of temporal reception
field (expressed in seconds) for the kernel at the last block.

Num. Blocks Temp. Field Charades TSU
3 15 23.3 29.4
4 31 25.0 30.3
5 63 26.5 32.7
6 127 25.6 30.5

Table 2 reports the performance while using different
numbers of blocks in PDAN. This performance depends on
the size of the temporal receptive field and the average ac-
tion length in the videos. With more blocks, PDAN can
have a larger temporal reception field. Here, 5 block struc-
ture indicates that PDAN’s reception field explores up to 63
segments (i.e. about 1 min), which can satisfy the require-
ments of both datasets. In Fig. 5 (2), we analyse the per-
formance of the number of PDAN blocks for actions with
different duration. 5-blocks structure achieves the best per-
formance for frame-based mAP (up to 2.4% w.r.t. 4 block
structure on TSU). While increasing to 6-blocks improves
the performance for long actions (+0.4%), it deteriorates the
performance for short actions. This can be explained by the
fact that having more layers tends to diminish the impor-
tance of local context.

4.3.3 DAL& NL layer

In Table 3, we measure the efficiency of DAL compared
to the Non-Local (NL) layer [35]. While replacing
all the DALs by STCLs in the PDAN block, we obtain
PDAN (STCL) (see Fig. 2). We have tried two different
ways of integrating the NL layer. NL-T1 indicates that we
add one NL layer before the classifier in PDAN (STCL);
NL-T2 indicates that we replace the DAL layer by a STCL
and a NL layer in every PDAN block (see Fig. 2). As men-
tioned in Sec. 3.2, PDAN (STCL) and PDAN have similar
parameters. Besides, DAL outperforms both NL-T1 and

Table 3. Frame-based mAP (%) to show the effectiveness of the
components in PDAN. PDAN (STCL) indicates that we replace
DAL in the PDAN block by the standard temporal convolution
layer. NL-T1 indicates that we add one Non-Local layer before
the PDAN (STCL) classifier. NL-T2 indicates that we add one
NL-layer after every STCL in PDAN (STCL).

#Param (M) FLOPs (GMac) Charades TSU
PDAN (STCL) 5.9 0.59 24.1 29.0

PDAN (STCL)+NL-T1 6.4 0.65 24.6 29.2
PDAN (STCL)+NL-T2 8.5 0.88 23.9 28.5

PDAN (DAL) 5.9 0.62 26.5 32.7

Table 4. Frame-based mAP (%) to show the effectiveness of DAL
integrated in Timeception structure.

#Param FLOPs Charades TSU
I3D+Timeception (STCL) 4.8 M 0.46 G 21.8 27.0
I3D+Timeception (DAL) 4.8 M 0.47 G 23.0 29.3

NL-T2 with large margin (+1.9% and +2.4% w.r.t. NL-T1
and NL-T2 on Charades), while having less parameters and
less operations (i.e. FLOPs). This result reflects that DAL
is more efficient and effective than NL layer for action de-
tection in densely annotated videos.

4.3.4 Timeception + DAL

Finally, we embed DAL in another structure based on tem-
poral convolution [16] to confirm the effectiveness of DAL.
Different from PDAN, Timeception [16] utilizes several
temporal convolutions in parallel with different dilation
rates. This design enables Timeception to explore multi-
temporal scales in one layer. However, Timeception is de-
signed for multi-label action classification, not for action
detection. So, it applies max pooling to aggregate the tem-
poral information and halve the temporal resolution at every
layer. Hence, we remove the max pooling from the origi-
nal Timeception structure to utilize the temporal informa-
tion for the action detection task (i.e. Timeception (STCL)).
Based on this new structure, we replace the standard tem-
poral convolution with our proposed DAL (i.e. Timecep-
tion (DAL)) to demonstrate that DAL can be combined with
other architectures. In Table 4, we report the mAP perfor-
mance of 3-layer Timeception. We find out that Timecep-
tion (DAL) improves the base network performance (up to
+2.3% on TSU w.r.t. Timeception (STCL)), but it under-
performs compared to PDAN.

4.4. Comparison with state-of-the-art methods
The proposed PDAN is compared with previous methods

on the MultiTHUMOS, Charades and TSU datasets in Ta-
ble 5, Table 6 and Table 7. To be noticed, the I3D baseline
(i.e. I3D in the tables) used for comparison is a classifier
on top of the segment-level I3D features. Unlike the other
SOTA, I3D baseline does not have further temporal process-
ing after the video encoding part. Thus, this method cannot
model long temporal information, which is crucial for ac-
tion detection. In contrast, the other action detection base-



Table 5. Performance of the state-of-the-art methods and our ap-
proach on MultiTHUMOS. I3D model is two-stream, using both
RGB and optical flow input. Note: cited papers may not be the
original paper but the one providing this mAP results. *indicates
the results obtained by running the available code.

mAP
Two-stream [38] 27.6
Two-stream+LSTM [38] 28.1
Multi-LSTM [38] 29.6
SSN [40] 30.3
I3D [25] 29.7
I3D + LSTM [25] 29.9
I3D + temporal pyramid [25] 31.2
TAN [7] 33.3
I3D + Dilated-TCN* [19] 43.2
I3D + 3 TGMs [25] 44.3
I3D + MS-TCN* [9] 45.3
I3D + 3 TGMs + Super event [25] 46.4

I3D + PDAN 47.6

Table 6. Per-frame mAP on Charades, evaluated with the Charades
localization setting. Note: cited papers may not be the original
paper but the one providing this mAP results. *indicates the results
obtained by running the available code.

Modality mAP
Two-stream [28] RGB + Flow 8.9
Two-stream+LSTM [28] RGB + Flow 9.6
R-C3D [36] RGB 12.7
Asynchronous Temporal Fields [28] RGB + Flow 12.8
I3D [24] RGB 15.6
I3D [24] RGB + Flow 17.2
I3D + 3 temporal conv.layers [25] RGB + Flow 17.5
TAN [7] RGB + Flow 17.6
I3D + WSGN (supervised) [11] RGB 18.7
I3D + Stacked-STGCN [12] RGB 19.1
I3D + Super event [24] RGB + Flow 19.4
I3D + 3 TGMs [25] RGB + Flow 21.5
I3D + 3 TGMs + Super event [25] RGB + Flow 22.3
I3D + Dilated-TCN* [19] RGB + Flow 23.5
I3D + MS-TCN* [9] RGB + Flow 24.2
I3D + PDAN RGB 23.7
I3D + PDAN RGB + Flow 26.5

Table 7. Frame-based mAP on TSU dataset. Note: I3D models are
using only RGB stream.

Parameter FLOPs mAP
I3D [4] - - 13.3
I3D + LSTM [22] - - 15.9
I3D + Super event [24] - - 15.6
I3D + 4 TGMs [25] - - 20.2
I3D + 4 TGMs + Super event [25] 2.1M 0.27 GMac 23.6
I3D + Dilated-TCN [19] 4.5 M 0.46 GMac 25.1
I3D + MS-TCN [9] 13.8 M 1.38 GMac 29.6
I3D + PDAN 5.9 M 0.62 GMac 32.7

lines as [24, 25, 38] focus on the temporal processing. The
improvement over I3D baseline reflects the effectiveness of
modeling temporal information. PDAN consistently outper-
forms the prior methods [38, 12, 24, 7, 25] for action detec-
tion on all the three challenging datasets. For Dilated-TCN,
although it has less parameters, PDAN improves the perfor-
mance with a large margin (up to +7.6% in TSU dataset).
Compared with MS-TCN, PDAN achieves better perfor-
mance (up to +3.1% in TSU) while having fewer parameters
and FLOPs (Table 7).

We then study how our proposed method can tackle com-
plex temporal relations. We perform this comparison with

I3D baseline [4], and TGM + Super event [25]. In Fig. 7,
we first study the performance along the multi-tasking chal-
lenge on Charades dataset and for detecting both long-term
and shot-term temporal duration on TSU dataset with the
appropriate metrics. To study the ability of the different ap-
proaches to handle concurrent actions, we created 3 groups
of actions depending on the number of co-occurring actions
per frame. Sparse: 1-5 concurrent actions, Medium: 6-9
concurrent actions and Dense: more than 10 concurrent ac-
tions. We compute the mAP for these three groups and find
out that PDAN consistently achieves the best performance
(see Fig. 7 (2)). Secondly, we study the performance along
different temporal lengths of the actions. High intra-class
temporal variance indicates the actions where the temporal
variance is larger than 10 seconds. We then separate the
remaining actions into short actions (≤10 sec) and long ac-
tions (> 10 sec). We find out that PDAN outperforms TGM
+ Super event for all these action types reflecting better han-
dling of both short-term and long-term duration. Thanks to
the use of the dilated attention layers with multi-temporal
scales, PDAN can deal with actions of variable length. This
comparison with SOTA methods confirms that PDAN can
better handle complex temporal relations for actions from
densely annotated untrimmed videos.
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Figure 7. Handling 2 challenges related to complex temporal re-
lations on Charades dataset: (1) Multi-tasking, (2) Short and long
temporal duration. We calculate the mAP for each group of actions
for each challenge.

5. Conclusion
In this paper, we tackle the modeling of complex

temporal relations in densely annotated video streams. We
propose a Dilated Attention Layer (DAL) to learn better
feature representation across time. We then introduce
a Pyramid Dilated Attention Network (PDAN) that can
effectively learn the dependencies between action instances
by applying DAL at different temporal levels. We evaluate
our method on 3 densely annotated multi-label datasets:
MultiTHUMOS, Charades and an TSU dataset. Our exper-
iments confirm that PDAN outperforms the state-of-the-art
methods on all the datasets.
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