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COMPUTING ISOLATED COEFFICIENTS OF THE j-FUNCTION

FREDRIK JOHANSSON

Abstract. We consider the problem of efficiently computing isolated coeffi-
cients cn in the Fourier series of the elliptic modular function j(τ). We show

that a hybrid numerical-modular method with complexity n1+o(1) is efficient
in practice. As an application, we locate the first few values of cn that are
prime, the first occurring at n = 457871.

1. Introduction

The coefficients cn appearing in the Fourier series of the elliptic modular function
j(τ) =

∑∞
n=−1 cne

2πinτ have many remarkable arithmetical properties. This integer
sequence (A000521 in Sloane’s OEIS [7]) begins

c−1 = 1, c0 = 744, c1 = 196884, c2 = 21493760, . . .

and is perhaps most notorious for its connection with the monster group (a corre-
spondence known as monstrous moonshine [4]).

The numerical growth rate of these coefficients is known: cn has around β
√
n

digits where β = 4π/ log(10) ≈ 5.46. More precisely, explicit lower and upper
bounds for n ≥ 1 are given by [3, Theorem 1.1]

cn =
e4π

√
n

√
2n3/4

(

1− 3

32π
√
n
+ εn

)

, |εn| ≤
0.055

n
.

Our concern in this work will be the exact calculation of cn for large n. Baier
and Köhler [2] survey several strategies, concluding that a formula by Zagier and
Kaneko is the “most efficient method”. However, their analysis only considers
recursive calculation which does not yield the best possible complexity. Using fast
power series arithmetic, applicable to many of the formulas discussed by Baier and
Köhler, it is possible to compute c−1, . . . , cn simultaneously in n1.5+o(1) time (bit
operations), or in n1+o(1) time modulo a fixed number M . These complexities are
essentially optimal since they are quasilinear in the size of the output.

A more challenging problem is to compute an isolated value cn quickly. It is
presently unknown whether an algorithm with quasioptimal n0.5+o(1) time complex-
ity exists, but it is possible to achieve n1+o(1) time and n0.5+o(1) space complexity
using numerical evaluation of an infinite series for cn derived by Petersson [13] and
Rademacher [14], improving on the n1.5+o(1) time and n1+o(1) space needed with
the power series method. Unfortunately, Rademacher, Baier and Köhler and several
authors have dismissed this method as impractical for computations. We analyze
this method below and find that it is useful, but that current error bounds are too
pessimistic to make it practical if we insist on rigorous results.

As a solution to this problem, we propose a rigorous hybrid algorithm that
uses the Petersson-Rademacher series to obtain the high bits of cn together with
a power series calculation or a suitable congruence to obtain the low bits. This
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method requires n1+o(1) time and space, or n0.5+o(1) space for n of special form,
and is highly efficient in practice.

This work was prompted by a MathOverflow post by David Feldman which asked
whether the sequence cn contains prime numbers [5]. We can answer this in the
affirmative: an exhaustive search of n ≤ 2 · 107 finds seven prime values of cn in
this range (Table 2), the first occurring at n = 457871.

2. The power series method

A natural way to compute cn is to expand j(τ) =
∑∞

k=−1 ckq
k as a truncated

formal power series in q and read off the last coefficient. This method obviously
gives all the coefficients up to cn if we so prefer.

There are many ways to express j(τ) in terms of simple functions suitable for
power series computations. The following formula is economical and works in
any characteristic: define the Eisenstein series E4 = 1 + 240

∑∞
n=1 σ3(n)q

n where

σx(n) =
∑

d|n d
x is the divisor function, and denote by φ =

∑

n∈Z
(−1)nqn(3n−1)/2

the Dedekind eta function without leading factor q1/24. Then

(1) j(τ) =
1

q

(

E4

φ8

)3

.

Noting that φ4 = φ3 · φ can be generated cheaply as a sparse product, the cost
of evaluating (1) is essentially 2 multiplications, 2 squarings and 1 inversion of
power series, plus the construction of E4 which can be done in similar time to a
multiplication using the sieve of Eratosthenes (alternatively, E4 can be constructed
from Jacobi theta functions using further multiplications). For a small speedup, we
note that the final multiplication (E4/φ

8)3 = (E4/φ
8)2 · (E4/φ

8) can be replaced
by an linear summation if we only want the last coefficient.

The computations can be done in n1.5+o(1) time using FFT multiplication to-
gether with Newton inversion, since we have power series of length n with coeffi-
cients n0.5+o(1) bits in size. The memory requirement is n1.5+o(1) bits if we work
directly over Z. Computing modulo a b-bit integer M , the complexity for deter-
mining cn mod M reduces to (nb)1+o(1). The memory requirement for computing
the single integer cn can thus be reduced to n1+o(1) if we compute separately mod-
ulo small pairwise coprime integers mk with M = m1, . . . ,mk, cn < M , and then
reconstruct cn using the Chinese remainder theorem.

3. The Petersson-Rademacher series

Given any n ≥ 1, the Petersson-Rademacher series for cn is the convergent series
(letting N → ∞)

(2) cn =
2π√
n

N
∑

k=1

S(n,−1, k)

k
I1

(

4π
√
n

k

)

+RN (n)

in which S(a, b; k) denotes a Kloosterman sum, Iν(x) denotes a modified Bessel
function of the first kind, and the remainder term can be shown to satisfy

(3) |RN (n)| ≤ 72π√
n
N3/4 I1

(

4π
√
n

N

)

.

For a proof of the truncation bound as well as a generalization to the correspond-
ing coefficients for the function j(τ)m, see Brisebarre and Philibert [3].
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The Kloosterman sum is the exponential sum

S(a, b; k) =
∑

gcd(x,k)=1

e2πi(ax+by)/k

where the index x ranges over 0 ≤ x < k and y is any solution of xy ≡ 1 mod k.
The Petersson-Rademacher series for cn is analogous to the Hardy-Ramanujan-

Rademacher formula for the integer partition function p(n), which allows computing
p(n) in quasioptimal time n0.5+o(1) [8, 9]. The idea is that adding Θ(n0.5) terms
of the series gives an approximation y with |y − p(n)| < 0.5, yielding the correct
result when rounded to the nearest integer. Although there are Θ(n0.5) terms and
the result has Θ(n0.5) bits, the overall complexity is n0.5+o(1) rather than n1+o(1)

when the algorithm is implemented carefully since the bit sizes of the terms fall off
as a hyperbola after the first term.

By a similar analysis of the Petersson-Rademacher series for cn, one can show
the following:

Theorem 3.1. The integer cn can be computed using n1+o(1) bit operations and

n0.5+o(1) bits of space.

The reason why we do not get an n0.5+o(1) algorithm is that computing the
Kloosterman sum S(a, b; k) ostensibly requires adding O(k) terms. The computa-
tion of S(a, b; k) can be reduced to the computation of the shorter sums S(ai, bi; qi)
for each prime power qi = peii in the factorization of k, and closed formulas are
known when ei ≥ 2 [18], but for prime modulus qi = p no algorithm better than
O(p) summation is currently known (the existence of such an algorithm would im-
mediately lead to a better complexity bound for computing cn). The corresponding
exponential sums in the series for p(n) admit a complete factorization into simple
trigonometric expressions and can therefore be computed rapidly.

3.1. Analysis of the error bound. Although the Petersson-Rademacher series
regrettably does not yield an n0.5+o(1) algorithm with current technology, the prob-
lem with the method is not the asymptotic n1+o(1) complexity (which is quite
serviceable), but the hidden constant factors.

To make calculations explicit, we may combine (3) with the following bounds for
the Bessel function I1(x), accurate when x → ∞ and x → 0 respectively (obtained
from the asymptotic expansion and the Taylor series at x = 0).

Lemma 3.2. For x > 0, I1(x) < ex/
√
2πx.

Lemma 3.3. For 0 < x < 0.1, I1(x) < 0.501x.

A direct calculation using Lemma 3.3 gives, for instance:

Theorem 3.4. If N ≥ max(C0, C1
√
n) where C0 = 6.7 · 1013 and C1 = 40π, then

|RN (n)| ≤ 0.499.

This shows that Θ(n0.5) terms are sufficient to determine cn (as needed in the
proof of Theorem 3.1), noting that bounding the truncation error by 0.499 gives
some wiggle room for floating-point error in the approximation of the sum.

The constant C0 makes the method virtually useless, as we would have to perform
some C2

0 ≈ 1026 operations to compute any cn. The constants C0 and C1 in this the-
orem are not optimal, but C0 cannot be brought below 16 ·(12π)8 ≈ 6.53 ·1013 using
the bound (3) (without a corresponding pessimistic increase of C1). Rademacher,
working with a somewhat worse error bound than (3), similarly concluded:
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“Unfortunately, the convergence of [...] is rather slow, so that we
should need quite a number of terms in order to get an error which
is safely less than 1/2.”

How slow is the convergence really? We can run some experiments to get an idea.
Figure 1 compares the actual rate of convergence of the Petersson-Rademacher se-
ries with the bound (3). It turns out that the bound is quite pessimistic, and if
we cut off the summation heuristically, the computation becomes practical. How-
ever, simply stopping when the partial sum seems to be very close to an integer
is dangerous. The erratic nature of the terms (clearly visible in the figure, and
observed in similar contexts by other authors, e.g. [11]) means that the sum can
stabilize within ε of an integer for rather small ε and remain there through many
consecutive terms before suddenly making a large jump. We could probably find a
good empirical fit for the true error, but we prefer a rigorous analysis.
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Figure 1. The actual error RN (n) in the approximation of cn
after summing N terms of the Petersson-Rademacher series (2),
compared with the bound (3). The horizontal line locates 1/2.

This brings us to the question of how (3) can be improved. The ingredients in
the derivation of this bound are [3, Section 5.1]:

• The Weil bound |S(a, b; k)| ≤
√

σ0(k)
√

gcd(a, b, k)
√
k.

• The bound σ0(k) ≤ 9k1/4 for the number of divisors of k.
• Bounding the sum of terms in (2) by a sum of absolute values of the terms.

The bound σ0(k) ≤ 9k1/4 is not optimal. However, this bound is quite reasonable
over the relevant non-asymptotic range of k. If we could estimate σ0(k) by its
average value log(k), and show that the deviations from the average give a negligible
contribution, we would get a constant C0 around 3 · 107, which is much better but
still rather impractical for computations.

It therefore seems that a useful error bound will require a much more involved
analysis of cancellation in sums of Kloosterman sums. This is a well-studied prob-
lem [15], but it appears that all published results stronger than the Weil bound are
asymptotic without explicit constants. We leave it as an open problem to prove
sharp bounds for RN (n).
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4. Hybrid algorithm

To get around the issues discussed in the previous section without sacrificing
rigor, we make the following modification: instead of computing cn directly, we
assume that cn is known modulo some integer M . If we denote by r the unique
residue of cn with 0 ≤ r < M , we have cn = M [(cn−r)/M ]+r. We can now compute
(cn − r)/M using (2), stopping the summation when the bound for |RN (n)| is just
less than M/2 instead of 1/2. If we choose M large enough, the truncation error
is in the exponentially-large domain of the Bessel function (Lemma 3.2) where the
available error bound works well.

For a general index n, we can compute the residue of cn in Z/MZ using the
power series (1). We can either compute a single power series over Z/MZ or choose
a composite modulus, say M = p1p2 · · · pk, and compute the value for each Z/piZ
in order to minimize memory usage. If M is bounded, the memory usage will be
n1+o(1), and the running time will be n1+o(1). This is not as good as the Petersson-
Rademacher series would be if we had an optimal error bound, but it is better than
computing cn using power series alone.

The optimal choice of M will depend on the implementation-dependent rela-
tive speeds of the power series arithmetic and the numerical calculations for the
Petersson-Rademacher series. In our experiments, we have obtained the best per-
formance with M slightly larger than 210 for computing isolated values of cn. We
get relatively uniform performance with M anywhere between 210 and 220 while
the running time increases sharply if M is smaller than 29. If we want to compute a
range of values of cn, it is more efficient to choose a largerM , say word-sizeM ≈ 264

(or bigger, if sufficient memory is available), precomputing the residues c−1, . . . , cn
once before using the Petersson-Rademacher series to determine the high bits for
each coefficient of interest.

4.1. Special indices. When n has special form, we can use known congruences
for cn to determine a residue. For a > 1, we have

c2am ≡ −23a+83a−1σ7(m) (mod 23a+13), m odd
c3am ≡ ∓32a+310a−1σ(m)/m (mod 32a+6), m ≡ ±1 (mod 3)
c5am ≡ −5a+13a−1mσ(m) (mod 5a+2)
c7am ≡ −7a5a−1mσ3(m) (mod 7a+1)

and there are also congruences modulo 11 and 13 [1, 12]. If n is divisible by
sufficiently many small primes, we can thus immediately construct a residue modulo
an M that is large enough (say M > 1000) to use the Petersson-Rademacher series.
In that case, we do not need a power series evaluation, and the entire computation
can be done using n0.5+o(1) memory. Indeed, it is sufficient that n is even, since
this gives the comfortably large M ≥ 65536. If the M obtained from congruences
alone is too small, we can amend it with a power series computation modulo some
larger prime.

5. Computations

We have implemented evaluation of cn using direct power series methods as well
as the hybrid algorithm, using Flint [6] for power series and integer operations and
Arb [10] for arbitrary-precision ball arithmetic. The following computations were
performed on a laptop with 16 GB RAM and an Intel i5-4300U CPU.
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Table 1. Time in seconds to compute cn or cn′ where n′ = next
prime after n. PS denotes the power series method using arith-
metic directly in Z. PS2 denotes the power series method using a
multimodular approach (conserving memory). NEW denotes the
hybrid algorithm using a congruence together with the Petersson-
Rademacher series. The entry (mem) indicates that the computa-
tion could not be run on the machine due to insufficient memory.

n Digits in cn PS (cn) PS2 (cn) NEW (cn) n
′ NEW (c

n
′ )

102 53 0.00011 0.00017 0.00033 102 + 1 0.00087

103 171 0.0068 0.015 0.0016 103 + 9 0.0041

104 543 0.33 0.96 0.0054 104 + 7 0.027

105 1722 15 48 0.025 105 + 3 0.22

106 5453 625 2169 0.13 106 + 3 2.5

107 17253 (mem) ≈ 8.2 · 104 0.83 107 + 19 32

108 54569 ≈ 3.2 · 106 6.5 108 + 7 380

109 172575 (mem) 60 109 + 7 (mem)

1010 545743 636

5.1. Large values. As a benchmark (Table 1), we compute cn for various powers
of ten n = 10k as well as cn′ where n′ is the first prime number after 10k. Powers
of ten are numbers of special form (n being divisible by 2k5k), meaning that the
hybrid algorithm can use a congruence, skipping the power series evaluation. The
subsequent prime number n′ is of generic form (worst-case input) for the algorithm,
forcing a power series evaluation to determine a residue.

For comparison purposes, we have implemented two versions of the power series
algorithm to compute cn: the first using arithmetic in Z and the second using
arithmetic modulo many small primes to conserve memory (which turns out to
be roughly three times slower). The first power series implementation is roughly
equivalent to the function j invariant qexp in SageMath [17].

We see that the hybrid algorithm is faster than the power series method already
around n = 103. At n = 106, it is 250 times faster for the generic input (prime n)
and 4800 times faster for the special-form input (power-of-ten n). The n1+o(1)

complexity of the hybrid algorithm is apparent in the running times.1

5.2. Prime values. The plethora of congruences satisfied by cn conspire to rule
out cn being a prime number for small n, but nothing suggests that this pattern
must hold asymptotically. Indeed, while c0, . . . , c70 are all divisible by 2, 3 or 5,
the smallest factor of c71 is 353.

To search for prime values of cn, we used a single power series evaluation to
compute several cn simultaneously modulo the primorial M = 2 ·3 · · · ·47, which fits
in a 64-bit word. We then selected the entries with gcd(cn,M) = 1 and computed
their full values using the hybrid algorithm with cn mod M as precomputed input.
Prime values of cn were then identified using a standard probabilistic primality test
(trial factoring to rule out simple composites followed by the BPSW test).

1Arb does not presently use a quasi-optimal algorithm for the Bessel function I1(x) at high
precision, so if we were to continue the table beyond 1010, the timings would likely get worse.
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Table 2. All prime values of cn with n ≤ 2 · 107.

n Digits in cn cn

457871 3689 3080163651 . . . 2714076699

685031 4513 2912989222 . . . 8765523019

1029071 5532 4025516131 . . . 1099172019

1101431 5723 8315472348 . . . 7940410921

9407831 16734 9603424490 . . . 8550890201

11769911 18718 5971402918 . . . 6331345197

18437999 23429 4474491259 . . . 2242965811

To search up to n = 2·107, the initial power series calculation took three minutes.
Filtering by gcd(cn,M) = 1 left 28971 candidate cn to compute exactly (around 7
hours) and check for primality (around 45 hours).

Table 2 lists the first prime values of cn. At the time of writing, Jeremy Rouse
reports having certified the primality of c457871 using ECPP. The remaining num-
bers are only confirmed as probable primes, but the BPSW test has no known
counterexamples, and we anticipate that ECPP certificates can be generated with
some months of computation.

Although primes seem to appear sparsely in the sequence cn (much more sparsely
than for the partition function p(n), for example), we speculate:

Conjecture 5.1. There are infinitely many n such that cn is prime.

With more memory and a large number of cores, the search could easily be
extended further (at least to n = 109). The method presented here could also be
used to investigate other divisibility properties of the numbers cn.

6. Generalization

The methods discussed here are not specific to the j-function. The Petersson-
Rademacher series can be generalized to any modular function of weight 0 (see
[3, Theorem 5.1]), and similar series can be constructed for the coefficients of a
wide range of modular forms, or viewed combinatorially, for various partition-type
sequences [16]. An interesting problem is to automate the efficient computation of
such coefficients. Obtaining tight truncation bounds for Rademacher-type series
seems difficult at the moment, but with the hybrid numerical-modular approach,
more crude and generally applicable bounds can be used.

7. Source code

The author has made all source code and data behind this paper publicly avail-
able at https://github.com/fredrik-johansson/jfunction
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