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Variance reduction for Markov chains with application to MCMC

D. Belomestny �, L. Iosipoi y E. Moulines z, A. Naumov x, and S. Samsonov {

Abstract

In this paper we propose a novel variance reduction approach for additive functionals of
Markov chains based on minimization of an estimate for the asymptotic variance of these
functionals over suitable classes of control variates. A distinctive feature of the proposed
approach is its ability to signi�cantly reduce the overall �nite sample variance. This feature
is theoretically demonstrated by means of a deep non asymptotic analysis of a variance
reduced functional as well as by a thorough simulation study. In particular we apply our
method to various MCMC Bayesian estimation problems where it favourably compares to
the existing variance reduction approaches.

1 Introduction
Variance reduction methods play nowadays a prominent role as a complexity reduction tool in
simulation based numerical algorithms like Monte Carlo (MC) or Markov Chain Monte Carlo
(MCMC). Introduction to many of variance reduction techniques can be found in Robert and
Casella [32], Rubinstein and Kroese [36], Gobet [18], and Glasserman [17]. While variance
reduction techniques for MC algorithms are well studied, MCMC algorithms are still waiting
for e�cient variance reduction methods. Recently one witnessed a revival of interest in this
area with numerous applications to Bayesian statistics, see for example Dellaportas and Kon-
toyiannis [9], Mira et al. [26], Brosse et al. [7], and references therein. The main di�culty in
constructing e�cient variance reduction methods for MCMC lies in the dependence between
the successive values of the underlying Markov chain which can signi�cantly increase the
overall variance and needs to be accounted for.

Suppose that we wish to compute �(f) def= E�
�
f(X)

�
, where X is a random vector with a

distribution � on X � Rd and f : X! R with f 2 L2(�). Let (Xk)k�0 be a time homogeneous
Markov chain with values in X. Denote by P its Markov kernel and de�ne for any bounded
measurable function f

Pf(x) =
Z

X
P (x; dy)f(y) ; x 2 X:

Assume that P has the unique invariant distribution �, that is,
R

X �(dx)P (x; dy) = �(dy).
Under appropriate conditions, the Markov kernel P may be shown to converge to the sta-
tionary distribution �, that is, for any x 2 X,

lim
n!1

kPn(x; �)� �kTV = 0;
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where k�� �kTV = supA2X j�(A)� �(A)j and X is the Borel �-�eld associated to X. More
importantly, under rather weak assumptions, the ergodic averages

�n(f) def= n�1
n�1X

k=0

f(Xk)

satisfy, for any initial distribution, a central limit theorem (CLT) of the form

p
n
�
�n(f)� �(f)

�
= n�1=2

n�1X

k=0

�
f(Xk)� �(f)

� D�! N
�
0; V1(f)

�

with the asymptotic variance V1(f) given by

V1(f) def= lim
n!1

nE�
�
f�n(f)� �(f)g2

�
= E�

� ~f2�+ 2
1X

k=1

E�
� ~fP k ~f

�
; (1)

where ~f = f � �(f). This motivates to use ergodic averages �n(f) as a natural estimate for
�(f). For a broader discussion of the Markov chain CLT and conditions under which CLT
holds, see Jones [23], Roberts and Rosenthal [33], and Douc et al. [12].

One important and widely used class of variance reduction methods for Markov chains is
the method of control variates which is based on subtraction of a zero-mean random variable
(control variate) from �n(f). There are several methods to construct such control variates.
If r log � is known, one can use popular zero-variance control variates based on the Stein’s
identity, see Assaraf and Ca�arel [2] and Mira et al. [26]. A non-parametric extension of such
control variates is suggested in Oates et al. [29] and Oates et al. [28]. Control variates can be
also obtained using the Poisson equation. Namely, it was observed by Henderson [21] that
the function Ug

def= g�Pg has zero mean with respect to �, provided that �(jgj) <1. Then
the choice g = f̂ with f̂ satisfying the so-called Poisson equation f̂(x)�P f̂(x) = ~f(x) leads
to f�Uf̂ = f� f̂+P f̂ = �(f) hence yielding a zero-variance control variate for the empirical
mean under �: Although the Poisson equation involves the quantity of interest �(f) and can
not be solved explicitly in most cases, the above idea still can be used to construct some
approximations for the zero-variance control variate f̂(x)� P f̂(x). For example, Henderson
[21] proposed to compute approximations to the solution of the Poisson equation for speci�c
Markov chains with particular emphasis on models arising in stochastic network theory.
In Dellaportas and Kontoyiannis [9] and Brosse et al. [7] regression-type control variates
are developed and studied for reversible Markov chains. It is assumed in Dellaportas and
Kontoyiannis [9] that the one-step conditional expectations can be computed analytically for
a set of basis functions. The authors in Brosse et al. [7] proposed another approach tailored
to di�usion setting which does require the computation of integrals of basis functions and
only involves the application of the underlying di�erential generator.

There is a fundamental issue related to the control variates method. Since one usually
needs to consider a large class of control variates, one has to choose a criterion to select the
\best" control variate from this class. In the literature, such a choice is often based on the
least squares criterion or on the sample variance, see, for example, Mira et al. [26], Oates
et al. [29], South et al. [37]. Note that such criteria can not properly take into account the
correlation structure of the underlying Markov chain and hence can only reduce the �rst
term in (1).

In this paper, we propose a novel variance reduction method for Markov chains based
on the empirical spectral variance minimization. The proposed method can be viewed as a
generalization of the approach in Belomestny et al. [5, 4] to Markov chains. In a nutshell,
given a class of control variates G, that is, functions g 2 G with �(g) = 0 we consider the
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estimator

�n(f � bgn) def= n�1
n�1X

k=0

ff(Xk)� bgn(Xk)g

with bgn
def= argming2G Vn(f � g), where Vn(f) stands for an estimator of the asymptotic

variance V1(f) de�ned in (1). This generalization turns out to be challenging for at least two
reasons. First, there is no simple way to estimate the asymptotic variance V1(f) for Markov
chains. Due to inherent serial correlation, estimating V1(f) requires speci�c techniques such
as spectral and batch means methods; see Flegal and Jones [15] for a survey on variance
estimators and their statistical properties. Second, a nonasymptotic analysis of the estimate
bgn is highly nontrivial and requires careful treatment. We perform this analysis for a rather
general class of geometrically ergodic Markov chains including the well known Unadjusted
Langevin Algorithm (ULA), Metropolis-Adjusted Langevin Algorithm (MALA) and Random
Walk Metropolis (RWM). In particular, we show that under some restrictions on G, the rate
of the excess for the asymptotic variance can be controlled with high probability as follows:

V1(f � bgn)� inf
g2G

V1(f � g) = O
�
n��

�

for some � 2 [1=2; 1): Let us stress that our results are rather generic and can cover various
types of control variates. Apart from a comprehensive theoretical analysis we conduct an
extensive simulation study including Bayesian inference via MCMC for logistic regression,
Gaussian mixtures and Bayesian inference of ODE models. We show that for various MCMC
algorithms our approach leads to a further signi�cant variance reduction as compared to the
least-squares-type criteria.

The paper is organised as follows. In Section 2 we introduce a general empirical variance
minimisation procedure for Markov chains and analyse its properties. In Section 3 we apply
our theoretical results to a widely used ULA and MALA. In Section 4 we conduct a thorough
numerical study of the proposed approach. Finally all proofs are collected in Section 5 and
Appendix A.

Notations Let k � k denote the standard Euclidean norm. We say that f : Rd ! R is
L�Lipschitz function if jf(x)� f(x0)j � Lkx� x0k for any x; x0 2 Rd.

For any probability measure � on (X;X ), we denote by P� the unique probability under
which (Xn)n>0 is a Markov chain with Markov kernel P and initial distribution �. We denote
by E� the expectation under the distribution P�. For � a probability measure on (X;X ) and
A 2 X , we denote by �P (A) =

R
�(dx)P (x;A); for h : X ! R+ a measurable function, we

denote by Ph(x) =
R
P (x;dy)h(y). Given two Markov kernels P and Q on X � X , where

X is the Borel �-�eld on X, we de�ne PQ(x;A) =
RR

P (x;dy)Q(y;A). We also de�ne Pn
inductively by Pn = PPn�1. Let W : X! [1;1) be a measurable function. The W -norm of
a function h : X ! R is de�ned as khkW = supx2Xfjh(x)j=W (x)g. For any two probability
measures � and � on (X;X ) satisfying �(W ) < 1 and �(W ) < 1, the W -norm of �� � is
de�ned as k�� �kW = supkfkW�1 j�(f)� �(f)j.

We also use the 2-Wasserstein distance and the Kullback-Leibler divergence in our anal-
ysis. The 2-Wasserstein distance between probability measures � and � is denoted by
W2(�; �) def= inf�

�R
X�X kx � yk2 d�(x; y)

�1=2, where the in�mum is taken over all proba-
bility measures � on the product space X � X with marginal distributions � and �. The
Kullback-Leibler divergence for � and � is de�ned as KL(�k�) = E�

�
log(d�=d�)

�
if � � �

and KL(�k�) = 1 otherwise. We say that the probability measure � satis�es the trans-
portation cost-information inequality T2(�) if there is a constant � > 0 such that for any
probability measure �

W2(�; �) �
p

2�KL(�k�): (2)
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For a real-valued function h on X � Rd and a �-�nite measure � on (X;X ) we write khkLp(�) =
(
R

X jh(x)jp�(dx))1=p with 1 � p <1. The set of all functions h with khkLp(�) <1 is denoted
by Lp(�) = Lp(X; �).

Finally, the Sobolev space is de�ned as W s;p(X) = fu 2 Lp(�) : D� u 2 Lp(�); 8j�j 6 sg,
where � is the Lebesgue measure, � = (�1; : : : ; �d) is a multi-index with j�j = �1 + : : : +
�d, and D� stands for di�erential operator of the form D� = @j�j=@x�1

1 : : : @x�dd . Here all
derivatives are understood in the weak sense. The weighted Sobolev space W s;p(X; hxi�) for
a polynomial weighting function hxi� = (1 + kxk2)�=2, � 2 R, is de�ned by

W s;p(X; hxi�) =
�
u : u � hxi� 2W s;p(X)

	
: (3)

The Sobolev norm is de�ned as kukW s;p(X;hxi�) =
P
j�j�s



D��uhxi�
�



Lp(�). We say that
U � W s;p(X; hxi�) is norm-bounded if there exists c > 0, such that kukW s;p(X;hxi�) � c for
any u 2 U .

In what follows, we use the symbol . for inequality up to an absolute constant.

2 Main results

2.1 Empirical spectral variance minimisation (ESVM)
In this paper, we propose a novel approach to choose a control variate from the set G referred
to as the Empirical Spectral Variance Minimisation (ESVM). To shorten notation, let us
denote by H = H(G) a class of functions h(x) = f(x)� g(x), with g 2 G. The main idea of
the ESVM approach is to select a control variate which minimizes a �nite sample estimate
for the asymptotic variance V1(h). There are several estimates for V1(h) available in the
literature, see Flegal and Jones [15]. For the sake of clarity we consider only the spectral
variance estimator which provides the most generic way to estimate V1(h). It is de�ned
as follows. Let P be a Markov kernel admitting a unique invariant probability � and set
~h def= h��(h) (assuming �(jhj) <1). For s 2 Z+, de�ne the stationary lag s autocovariance
�(h)
� (s) def= E�

�~h(Xs)~h(X0)
�

and the lag s sample autocovariance via

�̂(h)
n (s) def= n�1

n�s�1X

k=0

fh(Xk)� �n(h)gfh(Xk+s)� �n(h)g; (4)

where �n(h) def= n�1Pn�1
j=0 h(Xj). The spectral variance estimator is based on truncation

and weighting of the sample autocovariance function,

Vn(h) def=
bn�1X

s=�(bn�1)

wn(s)�̂(h)
n (jsj) ; (5)

where wn is the lag window and bn is the truncation point. The truncation point is a
sequence of integers and the lag window is a kernel of the form wn(s) = w(s=bn), where
w is a symmetric non-negative function supported on [�1; 1] which ful�ls jw(s)j � 1 for
s 2 [�1; 1] and w(s) = 1 for s 2 [�1=2; 1=2]. Other possible choices of the lag window wn
can be considered, see Flegal and Jones [15]. In the ESVM approach we choose a control
variate by minimizing the spectral variance

bh def= argmin
h2H

Vn(h): (6)
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As the class H can be too large making the resulting optimization problem (6) computation-
ally intractable, we consider a smaller class. Given " > 0, let H" � H consist of centres of
the minimal "-covering net of H with respect to the L2(�) distance. Further set

bh"
def= argmin

h2H"
Vn(h): (7)

In what follows, we assume that H is a norm-bounded set in L2(�). Hence the set H" is
�nite. The estimates of the form (7) are referred to as skeleton or sieve estimates in the
statistical literature (see, for example, Wong and Shen [39], Devroye et al. [10], and van de
Geer [38]).

2.2 Theoretical analysis
In this section, we analyze the proposed ESVM procedure in terms of the excess of the
asymptotic variance. Namely, we provide non-asymptotic bounds of the form:

V1(bh")� inf
h2H

V1(h) = O
�
n��

�
; 1=2 < � < 1; (8)

holding with high probability.
Before we proceed to theoretical results, let us de�ne a quantity which is used to choose a

radius " of the covering net H" over which bh" is computed. Given any " > 0, let HL2(�)(H; ")
be a metric entropy of H in L2(�), that is, HL2(�)(H; ")

def= log jH"j, where jH"j is cardinality
of H" (which is assumed to be �nite). De�ne by 
L2(�)(H; n) a so-called �xed point


L2(�)(H; n) def= inff� > 0 : HL2(�)(H; �) � n�2g: (9)

Note that a number � > 0 satisfying HL2(�)(H; �) � n�2 is �nite because of monotonicity
of the metric entropy and the mapping � ! n�2 in �. The quantity 
L2(�)(H; n) is used to
control the cardinality of H": Indeed by choosing " � 
L2(�)(H; n) we get jH"j � en"

2
. It is

easily seen from the above de�nition that the �xed point is a decreasing function in n. Let
us discuss a typical behaviour of 
L2(�)(H; n) as n!1 when H is a subset of the weighted
Sobolev space W s;p(X; hxi�), see (3) for de�nition. The following result can be derived from
Nickl and P�otscher [27].

Proposition 1 Let H be a (non-empty) norm-bounded subset of W s;p(Rd; hxi�), where 1 <
p <1, � 2 R, and s�d=p > 0. Let also for some � > 0, khxi���kL2(�) <1. Then it holds


L2(�)(H; n) .

(
n�

1
2+d=s for � > s� d=p;

n�
1

2+(�=d+1=p)�1 for � < s� d=p:

Now let us turn to assumptions needed for (8) to hold. Our �rst assumption is the geometric
ergodicity of the Markov chain (Xk)k�0. Let W : X! [1;1) be a measurable function.

(GE) The Markov kernel P admits a unique invariant probability measure � such that
�(W ) <1 and there exist & > 0; 0 < � < 1 such that for all x 2 X and n 2 N;

kPn(x; �)� �kW � &W (x)�n:

(BR) There exist a non-empty set S � X and real numbers u > 1; J > 0 and l > 0 such
that

sup
x2S

Ex[u��] � J and sup
x2S

W (x) � l; (10)

where � is the return time to the set S.
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Remark 2 Let us introduce drift and small set conditions.

(DS) The Markov kernel P is irreducible, aperiodic and
� there exist measurable function W : X ! [1;1), � 2 [0; 1), b < 1, and l < 1

such that �+ 2b=(1 + l) < 1 and

PW � �W + b1fW�lg: (11)

� there exist m; " > 0 such that for all x; x0 2 fW � lg, k�xPm��x0PkTV � 2(1�").

It follows from Douc et al. [12, Theorem 19.5.1]) that (DS) implies (GE) and by Douc et al.
[12, Proposition 14.1.2]) (DS) implies (BR). Explicit expressions for the constants & and �
may be found in Douc et al. [12, Theorem 19.4.1]). Note also that (GE) implies that P is
positive, aperiodic and condition (DS) is satis�ed for some small set S and some function
W0 verifying W � W0 � &0W and constants &0 < 1, b0 < 1, �0 2 [0; 1). Hence (GE)
implies (BR) for some constants u > 1 and J > 0 (see Douc et al. [12, Theorem 15.2.4].

We also need a Gaussian concentration for Vn(h), which requires an additional assumption
on the class H. It is important to note that Vn(h) is a quadratic form of (h(Xj))n�1

j=0 . As
a result, without much surprise, concentration results for the quadratic forms of Markov
Chains shall play a key role in our analysis. We shall consider below two situations. While
the �rst situation corresponds to bounded functions h; the second one deals with Lipschitz
continuous functions h: In the second case we additionally assume a contraction in L2-
Wasserstein distance. Thus we assume either
(B) Bounded case: There existB > 0 such that suph2H jhj1 � B with jhj1 = supx2X jh(x)j

or

(L) Lipschitz case: Functions h 2 H are L-Lipschitz.

together with

(CW) The Markov kernel P (x; �) belongs to T2(�) for any x 2 X and some � > 0.
Moreover, there exists 0 < r < 1, such that W2(P (x; �); P (y; �)) � rkx � yk for any
x; y 2 X.

The rate of convergence for the variance excess is given in the following theorem.

Theorem 3 Assume (GE) and either (L)+(CW) or (B)+(BR). Set bn = 2(log(1=�))�1 log(n)
and take " = 
L2(�)(H; n). Then for any � 2 (0; 1); there is n0 = n0(�) > 0 such that for any
n � n0 and x0 2 X0 with Px0 �probability at least 1� �; it holds

V1(bh")� inf
h2H

V1(h) . C1 log(n)
L2(�)(H; n) + C2
log(n) log(1=�)

p
n

;

where . stands for inequality up to an absolute constant,

C1 =
K2

log(1=�)
C2 =

&1=2(�(W ) +W (x0))
(1� �)1=2 log(1=�)

�
K2 + sup

h2H
khk2W 1=2

�
;

X0 = X, K2 =
p
�L2=(1 � r) under (L)+(CW) and X0 = S, K2 = �B2 under (B)+(BR),

with
� =

&l
1� �

�
1

log u
+

J&l
1� �

�
:

In view of Proposition 1, Theorem 3 may be summarized by saying that the excess
variance V1(bh")� infh2H V1(h) is bounded with high probability by a multiple of n�1=2+�

for some � > 0 depending on the capacity of the class H. In statistical literature, such
rates are referred to as slow rates of convergence. These rates can be improved by imposing
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additional conditions on H. To this end let consider the case when H contains a constant
function. Since �(h) = �(f) for all h 2 H; this constant must be equal to �(f), and hence
infh2H Vn(h) = 0. In this case, we obtain tighter bounds.

Theorem 4 Assume (GE), (L), and (CW). Assume also that H contains a constant func-
tion h�(x) � const. Fix the size of the lag window bn = 2(log(1=�))�1 log(n) and take
" = 
L2(�)(H; n). Then for any � 2 (0; 1); there is n0 = n0(�) > 0 such that for all n � n0
and x0 2 X it holds with Px0 �probability at least 1� �;

V1(bh") . C1 log(n)
2
L2(�)(H; n) + C2

log(n) log(1=�)
n

; (12)

where

C1 =
�L2

(1� r)2 log(1=�)
and C2 =

�L2

(1� r)2 log(1=�)
+
&(�(W ) +W (x0))
(1� �)1=2 log(1=�)

sup
h2H
khk2W 1=2 :

In view of Proposition 1, Theorem 4 asserts that under an additional assumption that H
contains a constant function, the excess variance V1(bh")� infh2H V1(h) can be bounded by
a multiple of n�1+� for some � > 0 depending on H.

3 Application to Markov Chain Monte Carlo
In this section we consider the application of the ESVM approach to MCMC-type algorithms.
The main goal of MCMC algorithms is to estimate expectations with respect to a probability
measure � on Rd, d � 1, with a density � of the form �(x) = e�U(x)=

R
Rd e�U(y)dy with

respect to the Lebesgue measure, where U is a nonnegative potential. Let x� be such that
rU(x�) = 0 and without loss of generality we assume x� = 0. Consider the following
conditions on the potential U .

(LD1) The function U is continuously di�erentiable on Rd with Lipschitz continuous gra-
dient: there exists LU > 0 such that for all x; y 2 Rd,

krU(x)�rU(y)k � LU kx� yk :

(LD2) U is strongly convex: there exists a constant mU > 0, such that for all x; y 2 Rd
it holds that

U(y) � U(x) + hrU(x); y � xi+ mU kx� yk2=2 :

(LD3) There exist K1 � 0 and ~mU > 0 such that for any x 2 Rd with kxk > K1 and any
y 2 Rd,



D2 U(x)y; y

�
� ~mU kyk

2. Moreover, there exists MU � 0 such that for any
x 2 Rd,



D3 U(x)


 � MU .

Unadjusted Langevin Algorithm The Langevin stochastic di�erential equation as-
sociated with � is de�ned by

dYt = �rU(Yt)dt+
p

2dBt ; (13)

where (Bt)t�0 is the standard d-dimensional Brownian motion. Under mild technical condi-
tions, the Langevin di�usion admits � as its unique invariant distribution. We consider the
sampling method based on the Euler-Maruyama discretization of (13). This scheme referred
to as unadjusted Langevin algorithm (ULA), de�nes the discrete-time Markov chain (Xk)k�0
given by

Xk+1 = Xk � 
rU(Xk) +
p

2
Zk+1 ; (14)

7



where (Zk)k�1 is an i.i.d. sequence of d-dimensional standard Gaussian random variables
and 
 > 0 is a step size; see Roberts and Tweedie [34]. We denote by PULA


 the Markov
kernel associated to the chain (14). It is known that under (LD1) and (LD2) or (LD3),
PULA

 has a stationary distribution �
 which is close to � (in a sense that one can bound the

distance between �
 and �, e.g., in total variation and Wasserstein distances, see Dalalyan
[8], Durmus and Moulines [14]).

Proposition 5 1. Assume (LD1), (LD2). Then for any 0 < 
 < 2=(mU + LU ), PULA



satis�es (GE) with the invariant distribution �
 and W (x) = kxk2. Moreover, PULA



ful�ls (CW) with
� = 2
 and r =

p
1� 
 kU ;

where kU
def= 2 mU LU =(mU + LU ).

2. Assume (LD1), (LD3). Then for any 0 < 
 < ~mU=(4 L2
U ), PULA


 satis�es (GE), (BR)
with the invariant distribution �
 , W (x) = kxk2, and S =

�
x 2 Rd : kxk � R

	
with

su�ciently large radius R > 0.

Proof: 1. For the proof of (GE) see Durmus and Moulines [13, Proposition 2] and Dur-
mus and Moulines [14, Theorem 12] and remark 2. To prove (CW) we observe that
PULA

 (x; �) = N (x � 
rU(x); 2
 Id). Hence, for all 
 > 0, we get using Bakry et al.

[3, Theorem 9.2.1], PULA

 (x; �) 2 T2(2
), that is PULA


 (x; �) ful�ls (2). Assuming that
(LD1) and (LD2) hold, we may show using Durmus and Moulines [13, Proposition 3]
that for any 0 < 
 � 2=(mU + LU )) and any x; y 2 X, W2(PULA


 (x; �); PULA

 (y; �)) �p

1� 
 kU d(x; y).
2. See Brosse et al. [7, Lemma 19 and Proposition 16].
�

Metropolis Adjusted Langevin Algorithm (MALA) Here we consider a popu-
lar modi�cation of ULA called Metropolis Adjusted Langevin Algorithm (MALA). At each
iteration, a new candidate Yk+1 is proposed according to

Yk+1 = Xk � 
rU(Xk) +
p

2
Zk+1 ; (15)

where (Zk)k�1 is an i.i.d. sequence of d-dimensional standard Gaussian random vectors and

 > 0 is a step size. This proposal is accepted with probability �(Xk; Yk+1), where

�(x; y) def= min

 

1;
�(y)q
(y; x)
�(x)q
(x; y)

!

;

where q
(x; y) = (4�
)�d=2 exp(�ky � x + 
rU(x)k2=(4
)). We denote by PMALA

 the

Markov kernel associated to the MALA chain.

Proposition 6 Assume (LD1), (LD3). Then there exists 
 > 0 such that for any 
 2
[0; 
], PMALA


 satis�es (GE), (BR) with the invariant distribution �, W (x) = kxk2, and
S =

�
x 2 Rd : kxk � R

	
with su�ciently large radius R > 0.

Proof: See Brosse et al. [7, Proposition 21 and 23]. �

Random Walk Metropolis (RWM) At each iteration, a new candidate Yk+1 is
proposed according to

Yk+1 = Xk +
p

Zk+1; (16)
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where (Zk)k�1 is an i.i.d. sequence of d-dimensional standard Gaussian random vectors and

 > 0. This proposal is accepted with probability �(Xk; Yk+1), where

�(x; y) = min
�
�(y)=�(x); 1

�

We denote by PRWM

 the Markov kernel associated to the RWM chain. Assumption (GE) is

discussed in Roberts and Tweedie [35] and Jarner and Hansen [22] under various conditions.
In particular the following result for super-exponential densities holds.

Proposition 7 Assume (LD1), (LD3). Then PRWM

 satis�es (GE), (BR) with the invariant

distribution �, W (x) = c��1=2(x) for some c > 0, and S =
�
x 2 Rd : kxk � R

	
with

su�ciently large radius R > 0.

Proof: See Jarner and Hansen [22, Theorem 4.2]. �

4 Numerical study
In this section we study numerical performance of the ESVM method for simulated and real-
world data. Python implementation is available at https://github.com/svsamsonov/esvm.

Following Assaraf and Ca�arel [2], Mira et al. [26], Oates et al. [30], we choose G to be a
class of Stein control variates of the form

g� = �h�;rUi+ div(�); (17)

where � : � ! Rd with � � Rd, div(�) is the divergence of �, and U is the potential
associated with �, that is, �(x) / e�U(x), see Section 3. Under (LD1) and (LD2), for
continuously di�erentiable functions �, �(g�) = 0, see Oates et al. [30, Lemma 1]. This
suggests to consider a class H = fh = f � g� : g� 2 Gg. Our standard choice will be �(x) =
b or �(x) = Ax + b, where A 2 Rd�d is a matrix and b 2 Rd is a vector. They will be
referred to as the �rst- and second-order control variates respectively. It is worth noting that
polynomial-based control variates are not exhaustive and one can use other control variates.
For instance, in the Gaussian mixture model considered below, polynomial-based control
variates do not �t structure of the problem, so a class of radial basis functions will be used.

In the ESVM method, we choose the trapezoidal non-negative kernel w supported on
[�1; 1] :

w(s) =

8
><

>:

2s+ 2; �1 � s < �1=2;
1; �1=2 � s � 1=2;
�2s+ 2; 1=2 < s � 1:

(18)

Our experiments with other kernels, for instance, w(s) = 1
2 + 1

2 cos�s did not reveal any
sensitivity of ESVM to a particular kernel choice. In fact, even the simplest kernel w(s) =
1fjsj� 1

2g
showed results comparable with ones for w(s) given in (18). Another parameter of

ESVM to be chosen is the lag-window size bn. In practice, it is not convenient to choose
bn according to Theorem 3 and Theorem 4, since it involves parameters of the Markov
chain which are not usually available. Therefore, we choose bn by analyzing the sample
autocorrelation function (ACF) of the Markov chain, see discussion below. Moreover, our
experiments show that ESVM is not much sensitive to particular choice of bn. For a wide
range of possible values our procedure shows reasonably good performance.

Numerical study is organized as follows. First we use ULA, MALA, or RWM algorithm
to sample a training trajectory of the size n = nburn + ntrain. We consider the �rst nburn
observations as a burn-in period, and exclude them from subsequent computations. Then we
compute optimal parameters ÂESVM, b̂ESVM which minimise the spectral variance Vn(h) with
n = ntrain and obtain the resulting control variate ĥESVM. For comparison purposes, we also

9
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compute parameters ÂEVM, b̂EVM based on minimisation of the empirical variance V 0n(h) =
(n � 1)�1Pn�1

k=0fh(Xk) � �n(h)g2 with n = ntrain and obtain the corresponding control
variate ĥEVM. Variance reduction using ĥEVM will be referred to as the EVM algorithm,
see Belomestny et al. [4], Mira et al. [26], and Papamarkou et al. [31]. We use the BFGS
optimisation method to �nd the optimal parameters for both ESVM and EVM algorithms.

To evaluate performance of ESVM and EVM, we use the same MCMC algorithm to sam-
ple Ntest = 100 independent training trajectories of size n = nburn + ntest. Then for each
trajectory we exclude �rst nburn observations and compute three di�erent estimates for �(f):
(i) vanilla estimate (ergodic average of f without variance reduction); (ii) EVM estimate
(ergodic average of ĥEVM); (iii) ESVM estimate (ergodic average of ĥESVM). For each test
trajectory, we de�ne the Variance Reduction Factors (VRF) as the ratios Vn(f)=Vn(ĥESVM)
or Vn(f)=Vn(ĥEVM) with n = ntest. We report the average VRF over Ntest trajectories to-
gether with the corresponding boxplots of ergodic averages. On these boxplots we display the
lower and upper quartiles for each estimation procedure. We will refer to the methods based
on the �rst-order control variates as ESVM-1 and EVM-1, and for the second-order ones as
ESVM-2 and EVM-2, respectively. The values bn, nburn, ntrain, ntest together with param-
eters of MCMC algorithms for each example considered below are presented in Section 6,
Table 6.

Gaussian Mixture Model (GMM) Let � be a mixture of two Gaussian distributions,
that is, � = �N (�;�) + (1 � �)N (��;�) for � 2 [0; 1]. It is straightforward to check that
(LD1) holds. If � and � are such that k��1�k2 � �min(��1), the density � satis�es (LD2).
Otherwise, we have (LD3).

We set � = 1=2, d = 2, � = (0:5; 0:5)>, and consider two instances of the covariance
matrix: � = I and � = �0, where �0 is a randomly initialised symmetric matrix with
�min(�0) � 0:1. The quantities of interest are E�[X1] and E�[X2

1 ].
First let us brie
y discuss how one can choose the lag-window size bn. Let us look at

the sample ACF plot of the �rst coordinate given in Figure 1. One may observe that ACF
decreases fast enough for any MCMC algorithm, and it seems reasonable to set bn = 50
or close to it. Moreover, we analyse performance of ESVM for di�erent choices of bn by
running the ULA algorithm to estimate E�[X1] and letting bn to run over the values from 1
to 5000. The corresponding VRFs are given also in Figure 1. Here, to compute the spectral
variance over test trajectories, we use �xed btest

n = n1=3
test, no matter which value of bn was

used during the training. Note that even for bn = 1 on train (that is, taking into account
only the �rst-order autocovariance) ESVM outperforms EVM, and for values bn 2 [10; 1000]
we observe the optimal performance of ESVM.

Numerical results for estimating E�[X1] are presented in Table 1. The corresponding
boxplots for E�[X1] are given in Figure 2, and for E�[X2

1 ] are given in Section 6, Figure 6
and Figure 7. For the sake of convenience, all the estimates are centred by their analytically
computed expectations. Note that ESVM outperforms EVM in both cases � = I and � = �0
and for all samplers used.

Gaussian Mixture with isolated modes Let us now consider the Gaussian mixture
model with di�erent means and covariates, � = �N (�1; �1)+(1��)N (��2; �2) with � 2 [0; 1].
For simplicity, we let d = 1. We are interested in the case when j�1 � �2j � maxf�1; �2g.
When sampling from � using ULA, MALA, or RWM, the corresponding Markov chain tends
to \stuck" at the modes of density �, which leads to slow convergence. We are going to
compare the results obtained using ESVM and EVM with the ones from Mijatovi�c and
Vogrinc [25] based on a discretized Poisson equation. For comparison purposes, we will
reproduce experiments from the aforementioned paper, see Section 5.2.1, and refer to the
reported variance reduction factors.
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Figure 1: GMM with � = �0. Left: Sample autocorrelation function for X1. Right: average
variance reduction factors for di�erent choices of bn.

Table 1: Variance Reduction Factors in GMM with � = I (top) and � = �0 (bottom).

E�[X1] E�[X2
1 ]

Method ULA MALA RWM ULA MALA RWM

ESVM 9:1 6:1 8:2 609:2 319:6 531:2
EVM 4:5 3:6 5:3 607:8 316:3 528:7

E�[X1] E�[X2
1 ]

Method ULA MALA RWM ULA MALA RWM

ESVM 24:6 7:9 22:2 15:2 9:4 15:3
EVM 16:5 7:5 14:3 9:2 5:0 9:3

Figure 2: Estimation of E�[X1] in GMM with � = I (top row) and � = �0 (bottom row).
In each row boxplots are given for ULA, MALA, and RWM, respectively.

Our aim is to estimate �(f) with f(x) = x3. We �x � = 0:4, �1 = �3, �2 = 4, �1 = 1,
�2 = 0:5, and use RWM with step size 
 = 1:0 as a generating procedure. Results for the
second-order control variates (our standard choice) are reported in Table 2, showing that this
class of functions � does not allow us to achieve comparable to Mijatovi�c and Vogrinc [25]
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variance reduction factors. Let us consider instead the following set of radial basis functions

�(x) =
rX

k=1

ak(x� bk) exp
�
�

(x� bk)2

2

�
; (19)

where ak, bk 2 R, k = 1; : : : ; r. The ESVM algorithm with control variates determined by
�(x) from (19) will be referred to as the ESVM-r algorithm. Results for ESVM-r are also
given in Table 2 showing comparable results with the Poisson-based approach from Mijatovi�c
and Vogrinc [25] (it is referred to as the Poisson-CV) and even outperforming it for large
enough train sample size ntrain and number of basis functions r.

Table 2: Variance Reduction Factors in GMM with isolated modes.

ntrain EVM-2 ESVM-2 Poisson-CV ESVM-r, r = 4 ESVM-r, r = 10 ESVM-r, r = 20

104 1:03 1:04 up to 8900 95:8 6457:2 265382:8
105 1:92 1:20 up to 13200 98:8 7176:5 378249:0

Banana-shape density The \Banana-shape" distribution, proposed by Haario et al.
[19], can be obtained from a d-dimensional Gaussian vector with zero mean and covariance
diag(p; 1; : : : ; 1) by applying transformation

’b(x) : Rd ! Rd; ’(x) = (x1; x2 + bx2
1 � pb; x3; : : : ; xd);

where p > 0 and b > 0 are parameters; here b controls the curvature of density’s level sets.
The potential U is given by

U(x1; : : : ; xd) = x2
1=2p+ (x2 + bx2

1 � pb)
2 +

Xd

k=3
x2
k=2:

As can be easily seen, the assumption (H3) holds. As to the assumption (H1), it is ful�lled
only locally. The quantity of interest is E�[X2]. In our simulations, we set p = 100, b = 0:1
and consider d = 2 and d = 8. VRFs are reported in Table 3. Boxplots for d = 8 are shown
in Figure 3. In this problem, ESVM signi�cantly outperforms EVM both for d = 2 and
d = 8. Because of the curvature of the level sets, the step sizes in all considered methods
should be chosen small enough, leading to highly correlated samples. This explains a poor
performance of the EVM method in this context.

Table 3: Estimation of E�[X2] for the banana-shaped density in d = 2 and d = 8.

d = 2 d = 8

Method ULA MALA RWM ULA MALA RWM

ESVM 4:7 2:7 42:4 5:3 6:5 18:5
EVM 1:4 1:3 1:5 1:4 4:6 1:7

Logistic and probit regression Let Y = (Y1; : : : ;Yn) 2 f0; 1gn be a vector of binary
response variables, x 2 Rd be a vector of regression coe�cients, and Z 2 RN�d be a design
matrix. The log-likelihood and likelihood of i-th point for the logistic and probit regression
are given by

‘log(Yijx;Zi) = YiZ>i x� ln(1 + eZ>i x); plog(Yijx;Zi) = exp(‘log(Yijx;Zi));

‘pro(Yijx;Zi) = Yi ln(�(Z>i x)) + (1� Yi) ln(�(�Z>i x)); ppro(Yijx;Zi) = exp(‘pro(Yijx;Zi));
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Figure 3: Estimation of E�[X2] for the banana-shape density in d = 8. Boxplots are given
for ULA, MALA, and RWM respectively.

where Z>i is the i-th row of Z for i 2 f1; : : : ; Ng. We complete the Bayesian model by
considering the Zellner g-prior for the regression parameter x, that is, Nd(0; g(Z>Z)�1).
De�ning ~x = (Z>Z)1=2x and ~Zi = (Z>Z)�1=2Zi, the scalar product is preserved, that is
hx;Zii = h~x; ~Zii and, under the Zellner g-prior, ~x � Nd(0; gId). In the sequel, we apply the
algorithms in the transformed parameter space with normalized covariates and put g = 100.

The unnormalized posterior probability distributions �log and �pro for the logistic and
probit regression models are de�ned for all ~x 2 Rd by

�log(~xjY;Z) / exp(�Ulog(~x)) with Ulog(~x) = �
XN

i=1
‘log(Yij~x;Zi) + (2�2)�1 k~xk2 ;

�pro(~xjY;Z) / exp(�Upro(~x)) with Upro(~x) = �
XN

i=1
‘pro(Yij~x;Zi) + (2�2)�1 k~xk2 :

It is straightforward to check that Ulog; Upro satisfy (LD1) and (LD2).
We analyze the performance of ESVM algorithm on two datasets from the UCI repository.

The �rst dataset, Pima1, contains N = 768 observations in dimension d = 9. The second
one, EEG2, has dimension d = 15, and for our experiments we take randomly selected subset
of size 5000 (to speed up sampling procedure). We split each dataset into a training part
T train
N = [(yi;Zi)]Ni=1 and a test part T test

K = [(y0i;Z0i)]Ki=1 by randomly picking K test points
from the data. Then we use ULA, MALA, and RWM algorithms to sample from �log(~xjY;Z)
and �pro(~xjY;Z) respectively.

Given the sample (~xk)n�1
k=0 , we aim at estimating the average likelihood over the test set

T test
K , that is,

Z

Rd
f(~x)�log(~xjY;Z) d~x

�
or
Z

Rd
f(~x)�pro(~xjY;Z) d~x for probit regression

�
;

where the function f is given by

f(~x) = K�1
KX

i=1

plog(y0ijZ
0
i; ~x)

�
or K�1

KX

i=1

ppro(y0ijZ
0
i; ~x) for probit regression

�
:

VRFs are reported for �rst- and second-order control variates. Results for logistic regres-
sion are given in Table 4. Boxplots for the average test likelihood estimation using second-
order control variates are shown in Figure 4. The same quantities for probit regression are
reported in Section 6, see Table 7, Figure 8, and Figure 9.

Note that ESVM also outperforms EVM in this example. It is worth noting that for ULA
and RWM, we show up to 100 times better performance in terms of VRF. For MALA, the
results for EVM and ESVM are similar since the samples are much less positively correlated.

1https://www.kaggle.com/uciml/pima-indians-diabetes-database
2https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
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Figure 4: Estimation of the average test likelihood in logistic regression for the Pima dataset
(top row) and the EEG dataset (bottom row). In each row boxplots are given for ULA,
MALA, and RWM respectively.

Table 4: Average test likelihood estimation in logistic regression.

PIMA dataset EEG dataset

Method ULA MALA RWM ULA MALA RWM

ESVM-1 347:6 535:6 411:7 542:3 996:6 483:5
EVM-1 347:9 542:1 415:5 548:1 1020:2 508:9

ESVM-2 11387:3 28792:8 19503:3 11406:6 44612:5 11324:9
EVM-2 2704:8 4087:3 5044:1 350:3 39985:4 453:3

Van der Pol oscillator equation The setup of this experiment is much similar to the
one reported in South et al. [37]. Here a position px(t) 2 R evolves in time t according to
the second order di�erential equation

d2px
dt2

� x(1� p2
x)

dpx
dt

+ p = 0; (20)

where x 2 R is an unknown parameter indicating the non-linearity and the strength of the
damping. Letting qx = dpx=dt we can formulate the oscillator as the �rst-order system

(
dpx
dt = qx;

dqx
dt = x(1� p2

x)qx + px;

where only the �rst component px is observed. This system was solved numerically using
x? = 1 and starting point px?(0) = 0, qx?(0) = 2. Observations Yi = px?(ti) + "i were
made at successive time instants ti = i, i = 1; : : : ; T , and Gaussian measurement noise "i of
standard deviation � = 0:5 was added. We use a normal prior �0(x) with mean � = 1 and
standard deviation �0 = 0:5. The unnormalized posterior probability distribution is de�ned
for all x > 0 by

�(xjY) / exp(�U(x)) with U(x) = � log �0(x) +
TX

i=1

(Yi � px(ti))2

2�2 :
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Clearly, U satis�es (LD1) and (LD3). To sample from �(xjY) we use the MALA algorithm.
The quantity of interest is the posterior mean

R
R x�(xjY) dx. In this example, we use control

variates up to degree 3. Results are presented in Section 6 | VRFs are summarized in
Table 8 and boxplots for the second-order control variates are given in Figure 10. In this
problem, ESVM slightly outperforms EVM in terms of variance reduction factor.

Lotka-Volterra system The Lotka-Volterra model is a well-known system of ODEs
describing the joint evolution of two interacting biological populations, predators and preys.
Denote the population of preys and predators at moment t by u(t) and v(t) respectively,
then the corresponding model can be written as the following �rst-order system

8
><

>:

du
dt = (�� �v)u;
dv
dt = (�
 + �u)v;
u(0) = u0; v(0) = v0:

(21)

The parameter vector is given by x = (�; �; 
; �), with all components being non-negative
due to the physical meaning of the problem. The system was solved numerically with the
true parameters x? = (0:6; 0:025; 0:8; 0:025) and starting populations u0 = 30:0, v0 = 4:0.
The system is observed at successive time moments ti = i, i = 1; : : : ; T , with the lognormal
measurements Yi � Lognormal(log u(ti); �2), Zi � Lognormal(log v(ti); �2) with � = 0:25.
A weakly informative normal prior �0(x) was used for the model parameters: N (1; 0:5) for
� and 
, N (0:05; 0:05) for � and �. The posterior distribution is given by �(xjY;Z) /
exp(�U(x)), where

U(x) = � log �0(x) +
TX

i=1

�
(log Yi � log u(ti))2 + (log Zi � log v(ti))2

2�2 + log Yi + log Zi
�
:

We use the MALA algorithm to sample from �(xjY;Z). The quantity of interest is the
posterior mean

R
R4 x�(xjY;Z) dx. VRFs are summarized in Table 5 and boxplots for the

second-order control variates are given in Figure 5 and Section 6, Figure 11. For some model
parameters ESVM signi�cantly outperforms EVM in terms of VRF, for others the results
are comparable with slight superiority of ESVM.

Table 5: Estimation of the posterior mean in the Lotka-Volterra model.

Estimated parameter � � � 


ESVM-1 10:5 6:5 6:2 8:3
EVM-1 6:6 4:2 4:9 6:0
ESVM-2 757:6 427:8 277:2 446:6
EVM-2 642:1 286:0 275:0 429:7

5 Proofs

5.1 Proof of Proposition 1
Before we proceed to the proof of Proposition 1, let us refer to a general result from Nickl
and P�otscher [27] which is used below to bound the �xed point of a subset of a weighted
Sobolev space. First we need to introduce some notations.

Let � be a (nonnegative) Borel measure. Given the two functions l; u : X! R in Lp(�),
the bracket [l; u] is the set of all functions in Lp(�) with l � f � u. The Lp(�)-size of the
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Figure 5: Estimation of the posterior mean of � (left �gure) and � (right �gure) in the
Lotka-Volterra model.

bracket [l; u] is de�ned as kl�ukLp(�). The Lp(�)-bracketing number N [ ]
Lp(�)(F; ") of a (non-

empty) set F is the minimal number of brackets of Lp(�)-size less than or equal to " > 0
necessary to cover F . The logarithm of the bracketing number is called the Lp(�)-bracketing
metric entropy H [ ]

Lp(�)(F; ").

Theorem 8 ([27, Corollary 4]) Let 1 < p < 1, � 2 R, and s � d=p > 0. Let F be a
(non-empty) norm-bounded subset of W s;p(Rd; hxi�). Suppose M is a (non-empty) family
of Borel measures on Rd such that the condition sup�2M khxi���kLr(�) <1 holds for some
1 � r � 1 and for some � > 0. Then

sup
�2M

H [ ]
Lr(�)(F; ") .

(
"�d=s for � > s� d=p;
"�(�=d+1=p)�1

for � < s� d=p:

Proof of Proposition 1. We �rst bound the metric entropy of H by the bracketing metric
entropy. If h 2 H is in the 2"-bracket [l; u], l; u 2 H, then it is in the ball of radius " around
(l + u)=2. So,

HL2(�)(H; ") � H
[ ]
L2(�)(H; 2"):

Now our aim is apply Theorem 8 to H which is a norm-bounded subset of W s;p(Rd; hxi�) by
assumption. For M = f�g and r = 2, the condition sup�2M khxi���kLr(�) < 1 also holds
by assumption. Hence,

HL2(�)(H; ") .

(
"�d=s for � > s� d=p;
"�(�=d+1=p)�1

for � < s� d=p:

Now we turn to the bound for the �xed point 
L2(�)(H; n) (see (9)). Consider �rst the case
� > s�d=p. The solution to the inequality "�d=s . n"2 is " & n�

1
2+d=s . Taking "0 � n�

1
2+d=s ,

where � stands for equality up to a constant, yields

HL2(�)(H; "0) . n"2
0; for � > s� d=p:

Since 
L2(�)(H; n) is the in�mum over all such " > 0, it holds 
L2(�)(H; n) . n�
1

2+d=s .

Repeated computations for � < s � d=p give us 
L2(�)(H; n) . n�
1

2+(�=d+1=p)�1 . Combining
these two bounds, we have


L2(�)(H; n) .

(
n�

1
2+d=s for � > s� d=p;

n�
1

2+(�=d+1=p)�1 for � < s� d=p;

which is the desired conclusion. �
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5.2 Spectral variance estimator
We investigate properties of the spectral variance Vn(h) de�ned in (5). Note that Vn(h) can
be represented as a quadratic form Zn(h)>AnZn(h), where Zn(h) = (h(X0); : : : ; h(Xn�1))>
and An is an n � n symmetric matrix. Namely, let In be the identity n � n matrix and
1n = (1; : : : ; 1)> 2 Rn. Given the lag window wn, we denote the weight matrix by Wn =
(wn(j � i))ni;j=1. By rearranging the summations in (5), we have

Vn(h) = n�1
n�1X

k=0

n�1X

j=0

wn(k � j)
�
h(Xk)� �n(h)

��
h(Xj)� �n(h)

�
;

Hence the spectral variance can be represented as

Vn(h) = Zn(h)>AnZn(h) for An =
1
n

�
In�

1
n

1n1>n

�>
Wn

�
In�

1
n

1n1>n

�
: (22)

In the following lemma we provide an upper bound on the operator norm of An.

Lemma 9 If the truncation point bn of the lag window wn satis�es bn � n, then kAnk �
2bn=n.

Proof: Denote P = In�n�11n1>n . Since P is an orthonormal projector, we get

kAnk =
1
n
kPWnPk �

1
n
kWnk:

To bound the operator norm of Wn (which is a Toeplitz matrix), we use the standard
technique based on the discrete-time Fourier transform of the sequence w : [�bn; bn]! [0; 1],
de�ned, for � 2 [��; �) by

ŵn(�) =
bnX

k=�bn

wn(k)e�ik� :

Obviously, jŵn(�)j � 2bn. We have kWnk = supkxk=1 x>Wnx. Moreover, for any unit vector
u = (u1; : : : ; un)> it holds

u>Wnu =
nX

k;j=1

�
1

2�

Z �

��
ei(k�j)�ŵn(�)d�

�
ukuj =

1
2�

Z �

��

����
nX

k=1

eik�uk
����
2

ŵn(�)d� � 2bn:

Hence kWnk � 2bn and kAnk � 2bn=n. The lemma is proved. �

In the next lemma we prove several technical results on expectation of the operator norm of
Zn(h) and Vn(h) which hold under (GE) assumption.

Lemma 10 Under (GE), it holds for any h; h0 2 H

Ex0

h
kZn(h)k2

i
� nkhk2L2(�) +

&W (x0)
1� �

khk2W 1=2 ;

and

Ex0

h
kZn(h)� Zn(h0)k2

i
� nkh� h0k2L2(�) +

&W (x0)
1� �

kh� h0k2W 1=2 :

Moreover, for any h 2 H, this bound implies

Ex0

�
Vn(h)

�
� 2bnkhk2L2(�) +

2khk2W 1=2&W (x0)
1� �

bn
n
:

17



Proof: We �rst observe that

Ex0

h
kZn(h)k2

i
= Ex0

�Xn�1

k=0
h2(Xk)

�
=
Xn�1

k=0
khk2L2(Pk(x0;�)):

Now each summand can be bounded in the following way,

khk2L2(Pk(x0;�)) = khk2L2(�) +
�
khk2L2(Pk(x0;�)) � khk

2
L2(�)

�

� khk2L2(�) +
Z
jh(x)j2jP k(x0; �)� �j(dx)

� khk2L2(�) + khk2W 1=2kP k(x0; �)� �kW :

This inequality and (GE) together imply

Ex0

h
kZn(h)k2

i
� nkhk2L2(�) +

khk2W 1=2&W (x0)
1� �

;

which proves the �rst inequality. Repeated computations for Zn(h)� Zn(h0) yield

Ex0

h
kZn(h)� Zn(h0)k2

i
� nkh� h0k2L2(�) +

&W (x0)
1� �

kh� h0k2W 1=2 :

The �rst statement is proved. To prove the second statement we note that

Ex0

�
Vn(h)

�
= Ex0

h
Zn(h)>AnZn(h)

i
� kAnkEx0

h
kZn(h)k2

i
:

By Lemma 9 we have kAnk � 2bn=n. Substituting this we deduce our claim. �

It is known that the spectral variance Vn(h) is a biased estimate of the asymptotic variance
V1(h). In the following proposition we show how close is the expected value of Vn(h) to
V1(h).

Proposition 11 Assume (GE). Then for any h 2 H and any x0 2 X,

���Ex0

�
Vn(h)

�
� V1(h)

��� �
&1=2�(W )k~hk2W 1=2

1� �1=2

�
9&W (x0)

(1� �)�(W )
bn
n2 +

9bn
n

+ 2�bn=2
�
;

where ~h = h� �(h). Moreover, if n � &W (x0)=((1� �)�(W )) then

���Ex0

�
Vn(h)

�
� V1(h)

��� �
20&1=2�(W )k~hk2W 1=2

1� �1=2

�
bn
n
_ �bn=2

�
;

where a _ b def= maxfa; bg.

Proof: Recall that the asymptotic variance V1(h) may be written as V1(h) =
P
jsj�0 �

(h)
� (jsj)

with �(h)
� (s) = E�

�~h(X0)~h(Xs)
�

and, by de�nition, Vn(h) =
P
jsj<bn wn(s)�̂(h)

n (jsj) , where

the lag s empirical autocovariance coe�cient �̂(h)
n (s) is given in (4). We have

���Ex0

�
Vn(h)

�
� V1(h)

��� � 2
bn�1X

s=0

wn(s)
��Ex0

�
�̂(h)
n (s)

�
� �(h)

� (s)
��

+ 2
bn�1X

s=0

j1� wn(s)jj�(h)
� (s)j+ 2

1X

s=bn

j�(h)
� (s)j : (23)

To bound each summand in this decomposition, we need the following lemma.
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Lemma 12 Assume (GE). Then for any h 2 H, x 2 X , and s 2 Z+,
���Ex
�~h(X0)~h(Xs)

���� � &1=2�s=2W (x)k~hk2W 1=2 ; (24)

and ���(~h)
� (s)

��� &1=2�s=2�(W )k~hk2W 1=2 : (25)

Proof: The proof is straightforward. Since �(~h) = 0, we have
���Ex
�~h(X0)~h(Xs)

���� �
��~h(x)

��
����

Z

X

~h(y)
�
P s(x; �)� �

�
(dy)

����

� k~hk2W 1=2W 1=2(x)
Z

X
W 1=2(y)

��P s(x; �)� �
��(dy) :

By H�older’s inequality,
Z

X
W 1=2(y)

��P s(x; �)� �
��(dy) �

��P s(x;X)� �(X)
��1=2

�Z

X
W (y)

��P s(x; �)� �
��(dy)

�1=2

� kP s(x; �)� �k1=2W :

Combining these bounds and using (GE), we conclude
���Ex
�~h(X0)~h(Xs)

���� � &1=2�s=2W (x)k~hk2W 1=2 ;

and (24) is proved. Integrating this relation with respect to the stationary distribution �,
we obtain the second inequality. The lemma is proved. �

Let us �rst bound the last two summands in the decomposition (23). By de�nition, wn(s) = 1
for all s 2 [�bn=2; bn=2]. From (25) we have the second summand

bn�1X

s=0

j1� wn(s)jj�(h)
� (s)j �

bn�1X

s=dbn=2e

j�(h)
� (s)j � &1=2�(W )k~hk2W 1=2

�bn=2

1� �1=2 : (26)

where dbn=2e is the nearest integer greater than or equal to bn=2. Similar arguments apply
to the last summand in (23),

1X

s=bn

j�(h)
� (s)j � &1=2�(W )k~hk2W 1=2

�bn

1� �1=2 � &
1=2�(W )k~hk2W 1=2

�bn=2

1� �1=2 : (27)

It remains to bound the �rst summand in (23). We note that lag s empirical autocovariance
coe�cient satis�es �̂(h)

n (s) = �̂(~h)
n (s). Moreover, for any s < n, it may be decomposed as

�̂(~h)
n (s) =

P3
i=1An;i(s), where

An;1(s) def=
1
n

n�s�1X

k=0

~h(Xk)~h(Xk+s); An;2(s) def=
�n(~h)
n

(
n�s�1X

k=0

~h(Xk) +
n�1X

k=s

~h(Xk)

)

;

and An;3(s) def= (1 � s=n)�2
n(~h). Since jwn(s)j � 1 by de�nition, it holds by the triangle

inequality
bn�1X

s=0

wn(s)
��Ex0

�
�̂(~h)
n (s)

�
� �(h)

� (s)
�� �

bn�1X

s=0

��Ex0

�
An;1(s)

�
� �(h)

� (s)
��

+
bn�1X

s=0

��Ex0

�
An;2(s)

���+
bn�1X

s=0

��Ex0

�
An;3(s)

��� : (28)

19



For any s 2 f0; : : : ; n� 1g, by the Markov property, (GE), and (24) we obtain
���Ex0

�~h(Xk)~h(Xk+s)
�
� �(h)

� (s)
��� =

����

Z
Ex
�~h(X0)~h(Xs)

�
(P k(x0; �)� �)(dx)

����

� &1=2�s=2k~hk2W 1=2kP k(x0; �)� �kW � &
3=2�s=2+kW (x0)k~hk2W 1=2 : (29)

Therefore by (25) and (29),

bn�1X

s=0

���Ex0

�
An;1(s)

�
� �(h)

� (s)
��� � n�1

bn�1X

s=0

n�s�1X

k=0

���Ex0

�~h(Xk)~h(Xk+s)
�
� �(h)

� (s)
���+ n�1

bn�1X

s=0

sj�(h)
� (s)j

�
&3=2W (x0)k~hk2W 1=2

n

bn�1X

s=0

n�s�1X

k=0

�s=2+k +
&1=2�(W )k~hk2W 1=2

n

bn�1X

s=0

s�s=2

�
&3=2W (x0)k~hk2W 1=2

n(1� �)(1� �1=2)
+
bn&1=2�(W )k~hk2W 1=2

n(1� �1=2)
:

Note that (29) also yields

Ex0

�
�2
n(~h)

�
� 2n�2

n�1X

k=0

n�k�1X

s=0

��Ex0

�~h(Xk)~h(Xk+s)
���

� 2n�2
n�1X

k=0

n�k�1X

s=0

&3=2�s=2+kW (x0)k~hk2W 1=2 + 2n�2
n�1X

k=0

n�k�1X

s=0

���(h)
� (s)

��

�
2&3=2W (x0)k~hk2W 1=2

n2(1� �)(1� �1=2)
+

2&1=2�(W )k~hk2W 1=2

n(1� �1=2)
: (30)

We now turn to An;2(s). By the Cauchy-Schwarz inequality and similar argument to (30),

��Ex0

�
An;2(s)

��� �
p

2
n

n
Ex0

�
�2
n(~h)

�o1=2
(

Ex0

"�Xn�s�1

k=0
~h(Xk)

�2
#

+ Ex0

"�Xn�1

k=s
~h(Xk)

�2
#)1=2

�
4
p

2&3=2W (x0)k~hk2W 1=2

n2(1� �)(1� �1=2)
+

4
p

2&1=2�(W )k~hk2W 1=2

n(1� �1=2)
:

This gives

bn�1X

s=0

��Ex0

�
An;2(s)

��� �
4
p

2bn&3=2W (x0)k~hk2W 1=2

n2(1� �)(1� �1=2)
+

4
p

2bn&1=2�(W )k~hk2W 1=2

n(1� �1=2)
:

Finally, for An;3(s) it follows from (30) that

bn�1X

s=0

��Ex0

�
An;3(s)

��� �
2bn&3=2W (x0)k~hk2W 1=2

n2(1� �)(1� �1=2)
+

2bn&1=2�(W )k~hk2W 1=2

n(1� �1=2)
:

Substituting these bounds into (28) we obtain

bn�1X

s=0

wn(s)
��Ex0

�
�̂(~h)
n (s)

�
� �(h)

� (s)
�� �

9bn&3=2W (x0)k~hk2W 1=2

n2(1� �)(1� �1=2)
+

9bn&1=2�(W )k~hk2W 1=2

n(1� �1=2)
: (31)

Collecting the estimates (26), (27), (31) and substituting them into (23) we conclude

���Ex0

�
Vn(h)

�
� V1(h)

��� �
&1=2�(W )k~hk2W 1=2

1� �1=2

�
9&W (x0)

(1� �)�(W )
bn
n2 +

9bn
n

+ 2�bn=2
�
;
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which is our claim. If additionally n � &W (x0)=((1� �)�(W )) then

���Ex0

�
Vn(h)

�
� V1(h)

��� �
20&1=2�(W )k~hk2W 1=2

(1� �1=2)

�
bn
n
_ �bn=2

�
;

and the proof is complete. �

5.3 Proof of Theorem 3
For simplicity of notation, without loss of generality, we assume that functions h 2 H are zero-
mean, since, by de�nition, Vn(h) = Vn(h��(h)) and hence h may be replaced by ~h = h��(h)
which also satis�es assumptions imposed on h. Further, we write V n(h) = Ex0

�
Vn(h)

�
and

set
H def= sup

h2H
khkL2(�) and M def= sup

h2H
khkW 1=2 : (32)

Without loss of generality we may assume that M <1 since otherwise the statement of the
theorem is obviously true.

It follows from Proposition 11 that if n � &W (x0)=((1� �)�(W )) then

sup
h2H

��V1(h)� V n(h)
�� . G

�
bn
n
_ �bn=2

�
; where G def=

&1=2M2�(W )
1� �1=2 :

Hence
V1(bh")� inf

h2H
V1(h) � V n(bh")� inf

h2H
V n(h) + 2G

�
bn
n
_ �bn=2

�
: (33)

We are reduced to bounding the di�erence V n(bh") � infh2H V n(h). Let us denote by h� a
function in H minimizing V n(h), that is,

h� def= argmin
h2H

V n(h): (34)

We assume that such a minimizer exists (a simple modi�cation of the proof is possible if h�
is an approximate solution of (34)). Let also h�" 2 H" be the closest point to h� 2 H in
L2(�). By the de�nition of bh", Vn(bh")� Vn(h�") < 0. We have

V n(bh")� V n(h�) � V n(bh")� V n(h�)�
�
Vn(bh")� Vn(h�")

�

= V n(bh")� V n(h�)�
�
Vn(bh")� Vn(h�)

�
+
�
Vn(h�")� Vn(h�)

�

� sup
h2H"

n
V n(h)� Vn(h)

o
+
�
Vn(h�)� V n(h�)

�
+
�
Vn(h�")� Vn(h�)

�
: (35)

It remains to bound each summand in the right hand side of the decomposition (35). To do
this, we need an exponential concentration for Vn(h). Let us remind that we consider two
cases, Lipschitz and bounded functions h 2 H. Depending on the case we consider, it follows
from Theorem 19 (equation (52)) or Theorem 20 that, for a �xed � > 0, for all t < � , and
all h 2 H,

Px0

���Vn(h)� V n(h)
�� > t

�
� 2 exp

�
�

t2n
cK2

� b2n

�
; (36)

where c > 0 is an absolute constant and

K2
�

def=
�L2

(1� r)2

�
H2 +

&M2W (x0)
1� �

+
�
bn

�
or K2

�
def= �2B4
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in the Lipschitz and bounded cases correspondingly. Note that K� does not depend on �
in the bounded case. The value of � > 0 is speci�ed later. For the �rst summand in the
decomposition (35), using the union bound and the concentration inequality (36), we obtain

Px0

�
sup
h2H"

n
V n(h)� Vn(h)

o
> t
�
� jH"j sup

h2H"
Px0

�
V n(h)� Vn(h) > t

�

� 2jH"j sup
h2H"

exp
�
�

nt2

cK2
� b2n

�
:

For any " � 
L2(�)(H; n) it holds jH"j � en"
2
. We can select t =

p
cK� bn

�
"+n�1=2 log1=2(8=�)

�

to obtain

Px0

�
sup
h2H"

n
V n(h)� Vn(h)

o
> t
�
� �=4 : (37)

In the same manner we can bound the second term in the right hand side of the decomposi-
tion (35). For t =

p
cK� bnn�1=2 log1=2(8=�), it holds

Px0

�
Vn(h�)� V n(h�) > t

�
� �=4 : (38)

It remains to estimate the last summand in (35). This term is small since h�" is "-close to h�
in L2(�). We represent this summand in the following way

Vn(h�)� Vn(h�") = Vn(h�)� Vn(h�")�
h
V n(h�)� V n(h�")

i
+
h
V n(h�)� V n(h�")

i
:

Now we have by the union bound and the concentration result (36),

Px0

�
Vn(h�)� Vn(h�")� V n(h�)� V n(h�") > t

�
�
�
2

(39)

for t =
p
cK� bnn�1=2 log1=2(8=�). Furthermore, let us represent Vn(h) as a quadratic form

Zn(h)>AnZn(h) with kAnk � 2bn=n, see Section 5.2 for details. It holds by the Cauchy-
Schwarz inequality

V n(h�)� V n(h�") = Ex0

�
Zn(h�)>AnZn(h�)� Zn(h�")

>AnZn(h�")
�

= Ex0

�
Zn(h�)>An

�
Zn(h�)� Zn(h�")

�
+
�
Zn(h�)� Zn(h�")

�>AnZn(h�")
�

� kAnk
�
Ex0

�
kZn(h�)� Zn(h�")k

2��1=2 � 2 sup
h2H

�
Ex0kZn(h)k2

�1=2 :

Let R2 def= &M2W (x0)(1� �)�1. Then Lemma 10 yields

V n(h�)� V n(h�") � 4bn

 

"+
p

2R
p
n

!�
H +

R
p
n

�
: (40)

Combining the bounds (37), (38), (39), and (40) for all summands and substituting them
into (35), we can assert that for " � 
L2(�)(H; n); with probability at least 1� �,

V n(bh")� V n(h�) .
�
K� +H +

R
p
n

�
bn"+

bnRp
n

�
H +

R
p
n

�
+K�

bnlog1=2( 8
� )

p
n

;

where . stands for inequality up to an absolute constant. Now we can set � to be an upper
bound for the chosen t, namely, � =

p
cK� bn

�
" + n�1=2 log1=2(8=�)

�
. In the bounded case,

K� does not depend on � , but in the Lipschitz case this choice leads to a quadratic equation

K2
� =

�L2

(1� r)2

�
H2 +

R2

n
+K�

p
c
�
"+

log1=2(8=�)
p
n

��
;
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For a large c > 0, this quadratic equation always has a solution which may be written as
K� .

p
�L

1�r

�
H +Rn�1=2 +

�
"+ n�1=2 log1=2(8=�)

��
. Let n � n0, where n0 satis�es

n0 �
&W (x0)

(1� �)�(W )
; n0 �

maxfR2; log(8=�)g
H2 ; and 
L2(�)(H; n0) � H:

Then K� .
p
�HL=(1 � r) (in the Lipschitz case) and H + Rn�1=2 . H. We set " =


L2(�)(H; n) and obtain

V n(bh")� V n(h�) . (K� +H)bn
L2(�)(H; n) + (K� +HR)
bn log(1=�)
p
n

:

Substituting this into (33) and taking bn = 2(log(1=�))�1 log(n), we conslude

V1(bh")� inf
h2H

V1(h) . (log(1=�))�1(K� +H) log(n)
L2(�)(H; n)

+ (log(1=�))�1
�
K� +

&1=2MHW (x0)
(1� �)1=2 +

&1=2M2�(W )
p
n(1� �1=2)

�
log(n) log(1=�)

p
n

;

Note that H . L or H . B in the Lipschitz and bounded cases correspondingly, and
H . H2 . K� in both cases. Taking K2 = K� and simplifying last expression, we get the
desired conclusion.

5.4 Proof of Theorem 4
As above, we assume that functions h 2 H are zero-mean and set V n(h) = Ex0

�
Vn(h)

�
. It

follows from Proposition 11 that if n � &W (x0)=((1� �)�(W )) then

sup
h2H

��V1(h)� V n(h)
�� . G

�
bn
n
_ �bn=2

�
; where G def=

&1=2M2�(W )
1� �1=2 ;

where M is de�ned in (32). Hence

V1(bh") � V n(bh") +G
�
bn
n
_ �bn=2

�
: (41)

We are reduced to bounding V n(bh"). Let us denote by h� a constant function in H exising
by assumption. Let also h�" 2 H" be the closest point to h� in H" in L2(�). By the de�nition
of bh", Vn(bh")� Vn(h�") < 0. We have for any c > 0,

V n(bh") � V n(bh")� (1 + c)
�
Vn(bh")� Vn(h�")

�
= V n(bh")� (1 + c)Vn(bh") + (1 + c)Vn(h�")

� sup
h2H"

n
V n(h)� (1 + c)Vn(h)

o
+ (1 + c)Vn(h�"): (42)

We take c = 1 and bound the two summands in the right hand side of (42) separately. To do
this, we need an exponential concentration for Vn(h). It follows from Theorem 19 (equation
(51)) that, for all t > 0 and for all h 2 H,

Px0

���Vn(h)� V n(h)
�� > t

�
� 2 exp

 

�
nt2

cK2 bn
�
V n(h) + t

�

!

; (43)

where c > 0 is some universal constant, K2 = �L2=(1 � r)2, and bn is the size of the lag
window. For the �rst summand in the right hand side of the decomposition (42), using the
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union bound and the concentration inequality (43), we obtain

Px0

�
sup
h2H"

n
V n(h)� 2Vn(h)

o
> t
�
� jH"j sup

h2H"
Px0

�
V n(h)� 2Vn(h) > t

�

� 2jH"j sup
h2H"

exp
�
�
n (t+ Vn(h))

cK2bn

�
� 2jH"j exp

�
�

nt
cK2bn

�
;

where the last inequality holds since Vn(h) � 0. For any " � 
L2(�)(H; n) it holds jH"j � en"
2
.

Hence we can select t = cK2bn
�
"2 + n�1 log(4=�)

�
to obtain

Px0

�
sup
h2H"

n
V n(h)� 2Vn(h)

o
> t
�
� �=2: (44)

The second term in (42) is small since h�" is "-close to h� in L2(�). First we note that

Vn(h�") = Vn(h�")� 2V n(h�") + V n(h�"):

By the union bound and the concentration inequality (43), we have

Px0

�
Vn(h�")� 2V n(h�") > t

�
� 2 exp

�
�
n (t+ Vn(h�"))

cK2bn

�
� 2 exp

�
�

nt
cK2bn

�
: (45)

Hence for t = cK2bnn�1 log(4=�) this probability is bounded by �=2. Furthermore, let
us represent Vn(h) as a quadratic form Zn(h)>AnZn(h) (see Section 5.2 for details). By
assumption, h� is a constant function, and hence AnZn(h�) is the zero vector. Since kAnk �
2bn=n (see Lemma 9), it holds

V n(h�") = Ex0

�
Zn(h�")

>AnZn(h�")
�

= Ex0

�
(Zn(h�")� Zn(h�))>An(Zn(h�")� Zn(h�))

�

�
2bn
n

Ex0

�
kZn(h�")� Zn(h�)k2

�
: (46)

Let R2 def= &M2W (x0)(1� �)�1. Then Lemma 10 yields

V n(h�") � 2bn"2 + 8R2 bn
n
: (47)

Combining the bounds (44), (45) and (47) for all summands and substituting them into (42),
we can assert that for " � 
L2(�)(H; n), with probability at least 1� �, we have

V n(bh") . K2bn"2 + (K2 +R2)
bn log( 4

� )
n

:

Substituting this bound into (41) with " = 
L2(�)(H; n) and bn = 2(log(1=�))�1 log(n) yields

V1(bh") .
K2

log(1=�)
log(n)
2

L2(�)(H; n) +
K2 +R2 +G

log(1=�)
�

log(n) log(1
� )

n

.
�L2

(1� r)2 log(1=�)
log(n)
2

L2(�)(H; n)

+
�

�L2

(1� r)2 log(1=�)
+
&M2(�(W ) +W (x0))

(1� �)1=2 log(1=�)

�
log(n) log(1

� )
n

;

which is the desired conclusion.

6 Tables and Figures
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Table 6: Experimental setup details.

Experiment nburn ntrain ntest 
ULA 
MALA 
RWM bn
GMM, E�[X2], � = I 104 105 105 0:1 1:0 0:5 50
GMM, E�[X2], � = �0 104 105 105 0:1 0:2 0:1 50
GMM, E�[X2

2 ], � = I 104 105 105 0:1 1:0 0:5 50
GMM, E�[X2

2 ], � = �0 104 105 105 0:1 0:1 0:1 50
Banana-shape, d = 2 105 106 106 0:01 0:5 0:5 300
Banana-shape, d = 8 105 106 106 0:01 0:2 0:1 300
Logistic and probit regression, Pima 103 104 104 0:1 0:5 0:5 10
Logistic regression, EEG 103 104 104 0:1 1:0 0:1 10
Probit regression, EEG 103 104 104 0:1 0:5 0:1 10
Van der Pol oscillator 102 103 103 � 10�3 � 10
Lotka-Volterra model 103 104 104 � 5� 10�6 � 10

Table 7: Variance Reduction Factors in probit regression, average test likelihood.

PIMA dataset EEG dataset

Method ULA MALA RWM ULA MALA RWM

ESVM-1 263:2 419:7 251:4 1317:0 1515:0 938:5
EVM-1 270:1 430:1 261:6 1331:6 1572:7 948:1

ESVM-2 26835:7 55373:7 28905:0 45059:2 45964:5 34957:1
EVM-2 6660:7 29710:4 14187:1 29620:4 71095:6 6340:1

Table 8: Variance Reduction Factors for Van der Pol oscillator, posterior mean estimation.

Method 1st order CV 2nd order CV 3rd order CV

ESVM 30:7 49:1 243:2
EVM 33:9 44:1 183:7

Figure 6: Estimation of E�[X2
2 ] in GMM with � = I. Left �gure: boxplot for ULA estimates compared

to the corresponding boxplots for EVM and ESVM estimates. Next three �gures: boxplots for EVM and
ESVM estimates for ULA, MALA, and RWM with second-order control variates being used.
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Figure 7: Estimation of E�[X2
2 ] in GMM with � = �0. Left �gure: boxplot for ULA estimates compared

to the corresponding boxplots for EVM and ESVM estimates. Next three �gures: boxplots for EVM and
ESVM estimates for ULA, MALA, and RWM with second-order control variates being used.

Figure 8: Estimation of the average test likelihood in probit regression for the Pima dataset. Left �gure:
boxplot for ULA estimates compared to the corresponding boxplots for EVM and ESVM estimates. Next
three �gures: boxplots for EVM and ESVM estimates for ULA, MALA, and RWM with second-order
control variates being used.

Figure 9: Estimation of the average test likelihood in probit regression for the EEG dataset. Left �gure:
boxplot for ULA estimates compared to the corresponding boxplots for EVM and ESVM estimates. Next
three �gures: boxplots for EVM and ESVM estimates for ULA, MALA, and RWM with second-order
control variates being used.

Figure 10: Estimating the mean of the posterior distribution in the Van der Pol model. From left to
right: boxplots for vanilla estimates and the corresponding EVM and ESVM estimates with third-order
polynomials being used as control variates, EVM and ESVM comparison for second-order polynomials,
and EVM and ESVM comparison for third-order polynomials.
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Figure 11: Estimating the mean of the posterior distribution in the Lotka-Volterra model. From left to
right: posterior mean for parameters �; �; 
, and �.
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A Appendix

A.1 Concentration of the spectral variance estimator for Lipschitz
functions
The proof of a concentration inequality for Lipschitz functions falls naturally into three
steps. First we show, using a result from Djellout et al. [11], that the joint distribution of
(Xk)n�1

k=0 satis�es T2(�) model. Then we note that T2(�) implies Gaussian concentration
for all Lipschitz functions. And, �nally, this Gaussian concentration property implies a
concentration inequality for quadratic forms from Adamczak [1], which we apply to the
spectral variance estimator. For the sake of completeness we provide all necessary details
below.

Tensorization of T2(�) for Markov chains. Let Pnx0
be the joint distribution of

the Markov chain (Xk)n�1
k=0 with the Markov kernel P under Px0 . Since here we consider

distributions on the product space Xn�1, additional de�nitions are needed. We de�ne the
distance between points xn�1 = (x1; : : : ; xn�1) 2 Xn�1 and yn�1 = (y1; : : : ; yn�1) 2 Xn�1

by

d2(xn�1; yn�1) def=
�n�1X

j=1

kxj � yjk2
�1=2

; (48)

The Lp-Wasserstein distance between probability measures � and � on Xn�1 with respect to
the metric d2 is given by

W d2
p (�; �) def= inf

�

�Z

Xn�1�Xn�1
dp2(x; y) d�(x; y)

�1=p

;

where the in�mum is taken over all probability measures � on the product space Xn�1�Xn�1

with marginal distributions � and �. And �nally, we say that the probability measure � on
Xn�1 satis�es Tp(�) if there is a constant � > 0 such that for any probability measure � on
Xn�1

W d2
p (�; �) �

p
2�KL(�k�):

The following theorem provides su�cient conditions for the measure Pnx0
to satisfy T2(�).

Theorem 13 (Djellout et al. [11, Theorem 2.5]) Assume that there exists � > 0, such
that P (x; �) 2 T2(�) for any x 2 X, and there exists 0 < r < 1, such that for any x; y 2 X,

W2(P (x; �); P (y; �)) � rkx� yk:

Then for any probability measure Q on Xn�1, the product measure Pnx0
satis�es T2(�=(1 �

r)2), i.e.

W d2
2 (Q;Pnx0

) �
1

1� r

q
2�KL(Q kPnx0

):

Gaussian concentration for Lipschitz functions. A probability measure which
satis�es T2(�) inequality is known to satisfy Gaussian concentration inequality for all Lips-
chitz functions. Together with Theorem 13 this implies the following result.

Theorem 14 Assume that P satis�es (CW). Then for any L-Lipschitz function � : Xn�1 !
R with respect to the metric d2 from (48), it holds

Px0

����(X0; : : : ; Xn�1)� Ex0

�
�(X0; : : : ; Xn�1)

��� � t
�
� 2 exp

�
�

t2

2�L2=(1� r)2

�
: (49)
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Proof: It follows from Bakry et al. [3, Section 9.2] that T2(�) implies T1(�) with the same
constant � > 0 and with respect to the same metric d2. In its turn T1(C) imply the Gaussian
concentration (49) due to the result of Bobkov and G�otze [6]. It remains to note that Pnx0

satis�es T2(�=(1� r)2) by Theorem 13. �

Gaussian concentration for quadratic forms. Once we have proved the Gaus-
sian concentration for Lipschitz functions, we can obtain the Bernstein-type inequality for
quadratic forms. This idea is due to Adamczak [1], but since we use a modi�ed version of
the inequality, we provide the details for readers convenience.

De�nition 15 (Concentration property) Let Z be a random vector in Rn. We say that
Z has the concentration property with constant K if for every 1-Lipschitz function � : Rn !
R, we have Ej�(X)j <1 and for every t > 0,

P
����(Z)� E

�
�(Z)

��� � t
�
� 2 exp

�
�t2=K2� :

The following theorem shows that the concentration property implies a concentration in-
equality for quadratic forms.

Theorem 16 Let Z be a random vector in Rn. If Z has the concentration property with
constant K, then for any n� n matrix A and every t > 0,

P
���Z>AZ � E

�
Z>AZ

��� > t
�
� 2 exp

�
�

t2

cK2
�
E
�
kAZk2

�
+ tkAk

�
�
;

where c > 0 is a universal constant.

Proof: Without loss of generality one may assume thatA is symmetric and positively semidef-
inite. Let ’(z) def= z>Az, z 2 Rn. De�ne  (z) def= kr’(z)k. Since kr’(z)k � 2kAkkzk, the
function  is (2kAk)-Lipschitz. By the concentration property

P
��� (Z)� E

�
 (Z)

��� � t
�
� 2 exp

�
�

t2

4K2kAk2

�
:

Note that E
�
 (Z)

�
= 2E

�
kAZk

�
and set for t > 0,

Bt
def=
�
z 2 Rn :  (z) � 2E

�
kAZk

�
+
p
tkAk

	
:

It holds
P(Z =2 Bt) � 2 exp

�
�

t
4K2kAk

�
:

De�ne e’(z) def= supy2Bt(hr’(y); z�yi+’(y)). This function is Lipschitz, since for any z; x 2
Bt, je’(z1)� e’(z2)j � supy2Bt kr’(y)kkz1�z2k �Mkz1�z2k with M def= 2E

�
kAZk

�
+
p
tkAk.

Hence, again by the concentration property, for any s > 0,

P
���e’(Z)� E

�
e’(Z)

��� � s
�
� 2 exp

�
�

s2

K2(2E
�
kAZk

�
+
p
tkAk)2

�

� 2 exp
�
�

s2

4K2(E
�
kAZk

�
+
p
tkAk)2

�
:

Moreover, by convexity of ’, we have e’(z) � ’(z) and for z 2 Bt, e’(z) = ’(z). Consider
two random variables Y = ’(Z) and eY = e’(Z). We have proved that Y and eY coincide
on the set Bt of large probability and eY has the concentration property. It follows from
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Lemma 17 (given below) that in this case we have the Gaussian concentration for Y around
median MedY of the form

P
���Z>AZ �Med[Z>AZ]

�� � t
�
� 2 exp

�
�

t2

cK2(E
�
kAZk

�
+
p
tkAk)2

�

� 2 exp
�
�

t2

2cK2(E
�
kAZk2

�
+ tkAk)

�
:

By a standard argument (see, for example, Adamczak [1, Lemma 3.2]), we replace the median
by the mean at the cost of a universal factor. This completes the proof for a new absolute
constant c > 0. �

Lemma 17 Assume that there exist positive constants a; b; t > 0 such that for any s > 0
random variables Y , eY satisfy

P
���eY � EeY

�� � s
�
� 2 exp

�
�s2=(a+ b

p
t)2
�

and P
�
eY 6= Y

�
� 2 exp

�
�t=b

�
. Then for some positive constant c > 0 and all t > 0,

P(jY �MedY j � t) � 2 exp
�
�t2=fc(a+ b

p
t)2g

�
:

Proof: This lemma is proved in Adamczak [1, Lemma 3.2]. We just note that the quantity
�min

�
t2=a2; t=b

�
, which appears in the result of Adamczak [1], is bounded by the quantity

�t2=(a+ b
p
t)2. �

We have arrived at the following concentration result for quadratic forms of Lipschitz
function of a Markov chain. This result is of independent interest.

Corollary 18 Assume that there exists � > 0, such that P (x; �) 2 T2(�) for any x 2 X, and
there exists 0 < r < 1, such that for any x; y 2 X,

W2(P (x; �); P (y; �)) � rkx� yk:

Let also h : X ! R be a L-Lipschitz function. Denote Zn(h) def= (h(X0); : : : ; h(Xn�1))>.
Then for any n� n matrix A and any t > 0,

Px0

���Zn(h)>AZn(h)� Ex0

�
Zn(h)>AZn(h)

��� > t
�

� 2 exp
�
�

t2

cK2
�
Ex0

�
kAZn(h)k2

�
+ tkAk

�
�
; (50)

where c > 0 is some universal constant and K2 = �L2=(1� r)2.

Proof: The statement follows from the fact Zn(h) has the concentration property with
K = 2�L2=(1 � r)2. Indeed, for any 1-Lipschitz function � : Rn ! R and any xn�1 def=
(x1; : : : ; xn�1) 2 Xn�1, yn�1 def= (y1; : : : ; yn�1) 2 Xn�1, it holds

���(h(x0); : : : ; h(xn�1))� �(h(y0); : : : ; h(yn�1))
�� �

� n�1X

j=1

(h(xj)� h(yj))2
�1=2

� Ld(xn�1; yn�1):

Hence the concentration property follows from Theorem 14. Application of Theorem 16 to
Zn(h) �nishes the proof. �
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Gaussian concentration of the spectral variance estimator The main result
of this section is the following.

Theorem 19 Assume that functions h 2 H and the Markov kernel P satisfy (L) and (CW)
with parameters L > 0, � > 0, and 0 < r < 1. Then for all t > 0,

Px0

���Vn(h)� Ex0

�
Vn(h)

��� > t
�
� 2 exp

 

�
nt2

cK2 bn
�
Ex0

�
Vn(h)

�
+ t
�

!

; (51)

where c > 0 is some universal constant, K2 = �L2=(1 � r)2, and bn is the size of the lag
window. Moreover, if additionally (Xk)n�1

k=0 satis�es (GE) with parameters &, �, and function
W , then for all t < � ,

Px0

���Vn(h)� Ex0

�
Vn(h)

��� > t
�
� 2 exp

 

�
nt2

cK2
� b2n

!

; (52)

where

K2
�

def=
�L2

(1� r)2

�
khk2L2(�) +

&W (x0)khk2W 1=2

1� �
+

�
bn

�
:

Proof: The proof is straightforward. We have showed that the spectral variance estimator
can be represented as a quadratic form Vn(h) = Zn(h)>AnZn(h) with kAnk � 2bn=n, see
Section 5.2 and Lemma 9 therein. Now Corollary 18 yields for K2 = �L2=(1 � r)2 and all
t > 0, that

Px0

���Vn(h)� Ex0

�
Vn(h)

��� > t
�
� 2 exp

 

�
t2

cK2
�
Ex0

�
kAnZn(h)k2

�
+ tkAnk

�

!

� 2 exp

 

�
nt2

2cK2bn
�
Ex0

�
Vn(h)

�
+ t
�

!

;

which establishes (51) for a new absolute constant c > 0. To prove the second inequality we
note that by Lemma 9 and Lemma 10,

Ex0

�
Vn(h)

�
� kAnkEx0

�
kZn(h)k2

�
� 2bnkhk2L2(�) +

2&W (x0)khk2W 1=2

1� �
bn
n
:

Hence for any 0 < t < � , we have

Ex0

�
Vn(h)

�
+ t � bn

�
2khk2L2(�) +

2&W (x0)khk2W 1=2

1� �
1
n

+
�
bn

�
:

Substituting this into (51) we deduce

Px0

���Vn(h)� Ex0

�
Vn(h)

��� > t
�
� 2 exp

 

�
nt2

cK2
� b2n

!

for a new absolute constant c > 0 and

K2
�

def=
�L2

(1� r)2

�
khk2L2(�) +

&W (x0)khk2W 1=2

1� �
+

�
bn

�
;

which completes the proof. �
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A.2 Concentration of the spectral variance estimator for bounded
functions
Theorem 20 Assume that P satis�es (GE) and (BR) with parameters &; �; l > 0, function
W , and set S. Assume also that functions h 2 H satisfy (B) with parameter B > 0. Then
for x0 2 S, for all functions h 2 H, and all t > 0,

Px0

���Vn(h)� Ex0

�
Vn(h)

��� > t
�
� 2 exp

 

�
t2n

cK2b2n

!

; (53)

where bn is the size of the lag window, K = �B2, and � is given by

� =
&l

1� �

�
1

log u
+

J&l
1� �

�
: (54)

Proof: The main idea of the proof is to show that the spectral variance satis�es the bounded
di�erence property. First we rewrite the lag s sample autocovariance function as

�̂(h)
n (s) =

1
n

n�s�1X

k=0

�
h(Xk)� �n(h)

��
h(Xk+s)� �n(h)

�

=
1
n

n�s�1X

k=0

h(Xk)h(Xk+s)�
�n(h)
n

n�s�1X

k=s

h(Xk):

Let �̂(h;i)
n (s) and V (i)

n (h) be the sample autocovariance function and the spectral variance
determined on another sample X0; : : : ; Xi�1; X 0i; Xi�1; : : : ; Xn�1, where we have replaced Xi
by X 0i. It holds

���̂(h)
n (s)� �̂(h;i)

n (s)
�� � 2B2 +

2(n� 2s+ n)
n2 B2 �

6B2

n
;

and since jwn(s)j � 1 by de�nition,

��Vn(h)� V (i)
n (h)

�� � 2bn sup
s
jwn(s)j � j�̂(h)

n (s)� �̂(h;i)
n (s)j �

12bnB2

n
:

The bounded di�erences inequality for Markov chains from Douc et al. [12, Theorem 23.3.1])
with explicit constants from Havet et al. [20] yields

Px0

���Vn(h)� Ex0

�
Vn(h)

��� > t
�
� 2 exp

 

�
t2n

144�B4b2n

!

; with � =
&l

1� �

�
1

log u
+

J&l
1� �

�
:

which completes the proof. �
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