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Abstract

We prove the almost sure convergence of Oja-type processes to eigenvectors of the expectation B of a random matrix
while relaxing the i.i.d. assumption on the observed random matrices (B,,) and assuming either (B,) converges to B or
(E[B,|T,]) converges to B where T, is the sigma-field generated by the events before time n. As an application of this
generalization, the online PCA of a random vector Z can be performed when there is a data stream of i.i.d. observations
of Z, even when both the metric M used and the expectation of Z are unknown and estimated online. Moreover, in
order to update the stochastic approximation process at each step, we are no longer bound to using only a mini-batch
of observations of Z, but all previous observations up to the current step can be used without having to store them. This
is useful not only when dealing with streaming data but also with Big Data as one can process the latter sequentially as
a data stream. In addition the general framework of this process, unlike other algorithms in the literature, also covers
the case of factorial methods related to PCA.
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1. Introduction

Streaming data are data that arrive continuously such as process control data, web data, telecommunication data,
medical data, financial data, etc. In this setting, recursive stochastic algorithms can be used to estimate online, among
others, parameters of a regression function (for example, see [12] and references therein) or centers of clusters in un-
supervised classification [8] or principal components in a principal component analysis (PCA) (for example, see [13l],
p. 343). More precisely, each arriving observation vector is used to update the estimate sequence until it converges
to the quantity of interest. When using such processes, it is not necessary to store the data and, due to the relative
simplicity of the computation involved, much more data can be taken into account during the same duration of time
than with non sequential methods. Moreover, this type of method uses less memory space than a batch method [1]]. In
this article, we propose a general framework of stochastic approximation processes and subsequently apply the latter
to the case of streaming PCA. This general framework is sufficiently flexible to cover the case of streaming normed
PCA and other related methods while allowing the stochastic algorithm to absorb a greater amount of data at each step
or even all of the previously observed data up to the current step without any additional memory storage. This can be
extremely efficient for dealing with large data streams.
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Let us define some notations. Let AT denote the transpose of a matrix A. Let Q be a positive definite symmetric
(p, p) matrix called metric, (.,.) and ||.|| be respectively the inner product and the norm in R? induced by Q: (x,y) =
x"Qy, x" denoting the transpose of the column vector x. For vectors in R”, Q-orthogonal and Q-normed respectively
mean orthogonal and normed with respect to the metric Q. Recall that a (p, p) matrix A is Q-symmetric if (QA)" = QA;
then A has p real eigenvalues and there exists a Q-orthonormal basis of R” consisting of eigenvectors of A. The norm
of a matrix A is the spectral norm denoted ||A||. The abbreviation a.s. stands for almost surely.

Numerous articles have been devoted to the problem of estimating eigenvectors and corresponding eigenvalues in
decreasing order of the expectation B of a random symmetric (p, p) matrix, using an i.i.d. sample of the latter. These
include, among others, the algorithms of Benzécri [2], Krasulina [16], Oja [19], Karhunen and Oja [15], Oja and
Karhunen [20], Brandiere [3H5]], Brandiére and Duflo [6] and Duflo [13]] in the case of PCA. We consider here the
commonly used normed process of Oja [[L5} 20] (X,,), whose rate of convergence is studied in [[L], recursively defined
by:

I +a,By) X,

Xl’l T ——
T+ anBy) Xl

(D

the random matrices B, being mutually independent and a.s. bounded, E[B,] = B, a, > 0, X, ;> | ay = 0, X0 aﬁ < 00,
1

A commonly used choice of a, is ;z, 3 < @ < 1 (for example, see [12]). This process converges a.s.to a normed
eigenvector of B corresponding to its largest eigenvalue.

Consider the application presented in Section 3 to PCA of a random vector Z with unknown expectation E [Z] and
covariance matrix C = E [(Z -EZ])(Z-E [Z])T]. Suppose there is a data stream (Z;,i > 1) of i.i.d. observations of Z
and that the metric M used to define the distance between two observations of Z is unknown, for example the diagonal
matrix of the inverses of variances of the components of Z in normed PCA. To estimate the principal components, we
must estimate eigenvectors of the M~!'-symmetric matrix B = MC (or of the symmetric matrix M 1CM3, see Section
3). We can estimate online E [Z] and M respectively at step n by Z._1, the empirical mean of (Z;,i <n — 1), and M,,_,
depending on (Z;,i < n — 1), and define B, = M,,_; (Z,l - Z,,l) (Zn - ZH)T. It is clear that the random matrices B,
do not satisfy the assumptions of Oja. In fact, these assumptions would be verified if the expectations and variances
of the components of Z were known a priori in the case of normed PCA or other characteristics in other types of
PCA. This is the case for example if we have at our disposal a massive data vectors set with computed characteristics
and we randomly draw a data vector from this data set at each step ([13]], p. 343). Here we suppose that data arrive
continuously and are drawn from an unknown distribution. The convergence of the process in such a case is not
proven.

The general convergence results are presented in Section 2, the application to streaming PCA and related methods
in Section 3, the conclusion in Section 4, and the proofs of all theorems in Section 5.

Let Q be a metric in R?, B a Q-symmetric matrix and, for n > 1, T,, the o-field generated by the events before time
n; X1, By,..., B, are T,-measurable. We prove the almost sure convergence of the process of Oja assuming that the
conditional expectation of B, with respect to o-field T, converges almost surely to B as n goes to infinity (Subsection
2.1, Theorem 1, first part). This allows proving the convergence of the process in the case of streaming PCA when
a mini-batch of observations of Z is taken into account at each step (Subsection 3.1). A method of Duflo ([13], p.
343) is used in the proof (Section 5), but with more general assumptions. The proof of the convergence of processes
(X;l) ,iel{l,...,r},r < p, of the same type, obtained by a Gram-Schmidt orthonormalization with respect to Q, to
unit eigenvectors of B corresponding to the r largest eigenvalues in decreasing order (Subsection 2.2, Corollary 2, first
part), not given in [[13], is established in Section 5.

Moreover, we prove the almost sure convergence of the process of Oja, with an entirely different method, in the
non-classical case where B,, converges almost surely to B (Subsection 2.1, Theorem 1, second part and Subsection 2.2,
Corollary 2, second part; proofs in Section 5). This applies to PCA of a random vector Z while allowing the process to
be updated at each step by using all previous observations (Z;) up to the current step without the need to store the latter
(Subsection 3.2). Hence, we define a type of processes different from the classical processes that used a mini-batch
of observations at each step. The conducted experiments (see the Appendix), show that these processes are generally
faster than the classical processes.

Finally, the scope of these processes is further widened to other factorial methods such as multiple factor analysis
[21] or generalized canonical correlation analysis [[10]] (Subsection 3.3).



2. Theorem of almost sure convergence

2.1. Estimation of an eigenvector corresponding to the largest eigenvalue

We make the assumptions given below:

(Hla) B is Q-symmetric; let Ay, A, ..., 4,, denote its eigenvalues in decreasing order and for i € {1,...,p}, V; a
Q- normed eigenvector of B corresponding to 4;;

(H1b) The largest eigenvalue A, of B is simple;

(H2a) There exists a positive number b such that sup,||B,|| < b a.s.;

(H2b) B, is not T,-measurable, Y.7° a,E [||E[B,|T,] — Bll] < co; (H2b") .7 aullB, — Bl| < o0 a.s.;

(H2c) For all n, I + a,B, is invertible;

(H3) a, >0, ¥ a,= 00, 37 a2 < oo;

(H4) X, is a random variable independent of the sequence (B,,);

(H4’) X, is an absolutely continuous random variable with respect to the Lebesgue measure and independent of
the sequence (B,,).
Assumption H2b is obviously verified in the classical case E[B,|T,] = B a.s. According to a classical lemma, given
that ;7" a,= oo, H2b implies that there exists a subsequence of (E[B,|T,,]) converging a.s. to B. Likewise, H2b’ implies
that there exists a subsequence of (B,) converging a.s.to B. H2c is verified in particular when the eigenvalues of B,
are non-negative. Assumption H3 is classical for Robbins-Monro type processes [[12]. Note that in the second part of
the theorem, since w € Q is fixed throughout the proof, a, can be a positive random variable.

Let U, = (X,, BX,,) and W,, = (X,,, B, X,,).

Theorem 1. (i) Suppose assumptions Hla,b, H2a,b, H3, H4 hold. Then, U, converges a.s.to one of the eigenval-
ues of B; on E; = (UU,, — i, X, converges a.s.to Vj or =V, 3= a, (/lj - U,,) and Y, a, (/lj - W,,) converge
a.s. Moreover, if liminf E [(Ban, Vi )2 ITn] > 0a.s.on U’jzzEj, then P(E;) = 1;

(ii) Suppose assumptions Hla,b, H2b’,c, H3, H4’ hold. Then X, converges a.s.to Vi or =V}, Y. a, (41 — U,) and
27 an |1 — Wy converge a.s.

Note that the methods of proofs of the two parts of Theorem 1 provided in Section 5 are entirely different. The
first method is that used by Duflo ([13]], p. 343) but with more general assumptions; the assumption “on U?ZZE s

liminf E [(Ban, Vi )2 IT,,] > 0 a.s.” is used to avoid the traps (X, converges to V;, j # 1) of the stochastic algorithm;
it is verified in the case of PCA of a random vector Z under assumptions H6b and H7b given in Corollary 3.

2.2. Simultaneous estimation of several eigenvectors

Forie{l,...,r},r < p, recursively define the process (X;l) in R? such that:

: — : N T
Yoo =U+aB)X,, T, =Y, — Z<YJI1+I’X£+1>X£+1’ X1 = e

T,
The vector (X,I, 412+ -» X, 1) is obtained by Gram-Schmidt orthonormalization of (Yé 412+ Y1) We make the as-
sumptions given below:
(H1b’) The eigenvalues of B are distinct;
(HS5)Forief{l,...,r}, Xi is a random variable independent of the sequence (B),);
(H5%) Fori € {1,...,r}, X] is an absolutely continuous random variable with respect to the Lebesgue measure and

independent of the sequence (B,,).
Corollary 2. '
(1) Suppose assumptions Hla,b’, H2a,b, H3, H5 hold. Then, fori € {1,...,r}, X, converges a.s. to one of the eigen-
vectors of B; moreover, if on Uj.’:m {le — iVj}, liminf E [(B,ZX,’;, Vi>2 ITn] > 0 a.s., then X! converges a.s. to V; or
Vi, X an |- <Xfl, BXf,> and ¥ a,(A;— (Xfl, B,1X£l> ) converge a.s.;

(i1) Suppose assumptions Hla,b’, H2b’,c, H3, H5  hold. Then, for i € {1,...,r}, X}, converges a.s.to V; or =V,
X5 an |- (X, BX})| and X5 a, |- (X, B,X})

The proofs of the two parts of Corollary 2 are provided in Section 5.

converge a.s.




3. Application to streaming PCA and related methods

In this section, we apply the theoretical results given in Section 2 to the estimation of the principal components of
a streaming PCA. Classical convergence results exist for the process (1) or for processes of the same type. In these
processes, a mini-batch of data is used at each step and it is assumed that the random matrices B, are independent.
However, in practice, the metric M used to define a distance between two observations is a priori unknown and must
be estimated at each step using the available data. As a result, the matrices B, are no longer independent. Corollary 3
in Subsection 3.1 deals with this issue and thus broadens the scope of these processes. In Subsection 3.2, we define a
type of processes that can be updated at each step with all previously observed data without the need for their storage.
The conducted experiments show that this type of processes performs better than the former.

PCA is essential for data compression and feature extraction and has applications in various fields, such as data
mining, engineering [23]], face recognition [9]], astronomy [7], text analytics [L1 [17], etc. Batch PCA is unfeasible
with massive datasets or data streams although online PCA algorithms which provide very fast updates can be used in
this context [9]. Let Z', ..., Z” be the components of a random vector Z and C its covariance matrix. Define a metric
M in R? and consider the following problem: for ! € {1,...,r},r < p, determine at step / a linear combination of all
the centered components of Z, U; = clT (Z - E[Z)), named I principal component, uncorrelated with Uy, ..., U
and of maximum variance under the constraint ¢; M ~I¢;=1. Itis proven that ¢; is an eigenvector of the matrix B = MC
corresponding to its /" largest eigenvalue A;. For [ € {1,...,r}, a M-normed direction vector u; of the I* principal
axis is defined as M~!¢;; the vectors u; are M-orthonormal and are eigenvectors of the matrix CM corresponding
respectively to the same eigenvalues A;. A particular case is normed PCA, where M is the diagonal matrix of the
inverses of variances of the p components of Z; this is equivalent to using standardized data, i.e. observations of
M? (Z — E[Z]), and the identity metric, hence the same importance is given to each component of Z. However, in
the case of streaming data, the expectation and the variance of the components of Z are unknown. An application of
this work is to recursively estimate the ¢; or the u; in this setting using a stochastic approximation process. Another
example where the expectation of Z and the metric used are unknown in the context of streaming data is generalized
canonical correlation analysis (gCCA) [10} [18]], which can be interpreted as a PCA where each pre-defined group of
components of Z has the same importance (see Section 5).

In order to reduce computing time and to avoid possible numerical explosions, we propose herein:

(a) to estimate the eigenvectors a; of the symmetric (p, p) matrix B = M SCM: (thus the Gram-Schmidt orthonor-
malization is made with respect to Q = I) and then, using an estimation of M 3 or M‘%, to deduce estimations of the
eigenvectors ¢; of MC or of the eigenvectors u; of CM, since c; = M %az and u; = M_%Cl[; note that if M is the diagonal
matrix of the inverses of variances of the p components of Z, B is the correlation matrix of Z;

(b) to replace Z by Z¢ = Z - ¢, £ being an estimation of E[Z] computed in a preliminary phase with a small number
of observations e.g. 1000, in order to reduce possible high values of certain components of Z and to possibly avoid a
numerical explosion; then, B = M (E [Z°(Z¢) 7] - E[Z°1E[Z°]T) M*;

(c) to use, instead of a mini-batch of observations of Z at step n, all observations up to this step without having to
store them; thus information contained in previous data is used at each step; another algorithm with the same goal is
History PCA [24].

Let (Zi1,..., Zimys -+ Znts- - > Zum,, - . .) be an i.i.d. sample of Z. The variables Z,;, j € {1,...,m,}, are observed
at time n. Let Z,_, be the mean of the sample (Zy1,...,Zy-1m, ,) of Z and M,_, a T,-measurable estimation of M
obtained from this sample. Let Z;, = Z,; — £ and Z;,l =7, - &

Given (B,), we recursively define the processes (X,’Z) ,iefl,...,r}, by:

, o . ‘ C , T!

1

le1+1 = (I+aan)X:1’ TrlH—l = YllH—] - Z<Y2+1,X2+1>Xi+l, Xil+1 = ”T}tH— ”
n+l

Jj<i
As mentioned in (a), the Gram-Schmidt orthonormalization is made with respect to the metric 1.
3.1. Use of a data mini-batch at each step
1 1 m X N1t € — T 1 .- .
Let B, = M;_, (m— PIPERAY (ZZJ) -Z, (Zn—l) )M;_ - Then the conditional expectation

C

1 o — —c 1
EB, T =M. (E[z@)|-Z . (Z,)") M.,
is different from B but converges a.s. to B under assumptions H6a and H7b given below:

4



H3’) a,> 0,27 a, =0, 3.7 a” <00, YPa? < oo
(H6a) ||Z|| is a.s. bounded;

(H6b) There is no affine or quadratic relationship between the components of Z;
l

<das.;

(H7a) There exists a positive number d such that sup, ||,
1

1
(HTb) M2 — M as.;
(H7¢) >.¥ a,E H

1
| < e

Corollary 3. Suppose assumptions HIb’, H3’, H5, H6a,b and H7a,b,c hold. Then, fori € {1,...,r}, X,’1 converges
a.s.to Vior =V, 3.7 | an |Ai— (Xﬁl)’ BX'| and iy dn (/li— (X;l), BnXﬁl) converge a.s.

The proof is provided in Section 5.

3.2. Use of all observations up to the current step
1 — 1
Let B,=M (ﬁ Y 2 Z (z;j) T-Z, (z,j) T)M,f. Then the conditional expectation E[B,|T,] is different

from B, but B, converges a.s. to B under assumptions H7b and Héc below:
(H6¢) Z has 4" order moments;

1 1
H7d) 37 an HMn2 - MEH < oo a.s.

Corollary 4. Suppose assumptions HIb’, H3’, H5’, H6c, H7b,d hold. Then, fori e {l,...,r}, Xﬁl converges a.s. to V;

or =V, >7 ay |A4i— <Xﬁl, BX,’1> and 3.7 a, |Ai— <X;l, BnXﬁl> converge a.s.

The proof is provided in Section 5. '

Let M be the diagonal matrix of the inverses of variances of Z l,...,ZP. Letfor j€{l,...,p}, Vi be the empirical
variance of the sample (Z1 e Z,{ m,) Of ZJ and M,, the diagonal matrix of order p whose element (j, j) is the inverse
of K V’ = )1 m;. Under H6c, H7b holds. Moreover, it is established in ([12], Lemma 5) that H7d holds under
Héc and H3’

3.3. Widening to related methods

The calculation of Mn%_1 is straightforward when M,,_; as M are diagonal matrices. This is often the case in PCA
and related methods such as normed PCA, Multiple Correspondence Analysis (MCA) [[14] for categorical variables,
Factor Analysis of Mixed Data (FAMD) [21]] for continuous or categorical variables, and Multiple Factor Analysis
(MFA) [21]] for groups of continuous or categorical variables. However, in generalized Canonical Correlation Analysis
(gCCA) [10], the metric M is block diagonal (see Section 5). We can define B, in four different ways,

my
B, = M,_ 1[ Zz;] zc -7 I(Zj_l)r],Bn:Mn - ZZZ Za (z‘) (2)

Zml i=1 j=
i=1

and achieve the orthogonalization in processes (X,’;) with respect to M, in the first case or M, in the second case to
estimate directly the eigenvectors c; of the M- symmetric matrix B = MC, or

{m Zz;j (z,) -7, l(Z;_I)T]Mn i ZZ z,(z,)" | M, 3)
n J= Zml i=1 j=1
i=1

and achieve the orthogonalization in processes (Xﬁl) with respect to M,,_; in the third case or M,, in the fourth case to

estimate directly the eigenvectors u; of the M-symmetric matrix B = CM, M,l% being replaced by M, and M 2 by M
in assumptions H7a,b,c,d. This requires an extension of Theorem 1 and Corollary 2, the metric Q (M ~Lor M) being
replaced at step n by an estimated 7,,-measurable metric Q, such that 0, converges a.s.to Qand ) >, a, 10, — Ol < o0
a.s. This will be treated in a forthcoming article.



4. Conclusion

In this article, we have provided almost sure convergence theorems of an Oja-type stochastic approximation pro-
cess to eigenvectors of a Q-symmetric matrix B corresponding to eigenvalues in decreasing order. These theorems
apply to cases where there is a sequence (B,) such that E[B,|T,] or B, converges a.s.to B. This extends previous
results where random matrices B, are assumed to be i.i.d. and E[B,|T,] = B.

We subsequently applied these results to the online estimation of principal components in streaming PCA. By the
streaming nature of the data, the expectation, the variance of the variables (or other characteristics if necessary) and
the metric are generally unknown and need to be estimated online along with the principal components. Classical
results of convergence do not apply to this case.

Moreover, we have defined a type of processes which are updated at each step by all of the previously observed
data without necessitating their storage in memory. Classical algorithms only use a data mini-batch at each step.

In addition, these results can be applied to other factorial methods such as online gCCA.

Experiments have been conducted to compare processes of the second type (A: using all observations up to the
current step) to processes of the first type (B: using a mini-batch of observations) on simulated or real datasets. Results
regarding computing time are provided in the Appendix. It appears that processes A are generally faster than processes
B. Such behavior is not surprising since, intuitively, a greater quantity of data at each step enables the algorithm to
converge faster.

5. Proofs

Generalized Canonical Correlation Analysis. Suppose the set of components of a random vector Z in R” is parti-
tioned in g sets of real random variables {Zkl, .. ,Zk’"k} ,kef{l,...,q}. Let Z* be the random vector in R™ whose
components are Z¥, j € {1,...,m;}. Assume there is no affine relationship between the components of Z. Let C*
and C be the covariance matrices of Z* and Z, respectively. Consider the following problem: for le{1,...,7},r < p,
determine at step / a linear combination of all the centered components of Z, U; = GIT (Z — E[Z]), named I'"" general
component, of variance 1 and uncorrelated with U, ..., U;_1, and, for k € {1,..., g}, a linear combination of variance

1 of the centered components of Z*, Vf = (n;‘)T (Z" -E [Z"]), named /" canonical component of the k”* set of vari-

ables, which maximize ZZ:] o’ (Ul, V[k), p denoting the linear correlation coefficient. Let M be the unknown block

_ T
diagonal matrix of order p whose k" diagonal block is (Ck) ' Let 6 = ((0})T e, (Qf)T) e R™ kefl,....q)

It is proven that 6; is a C-normed eigenvector of the M~'-symmetric matrix B = MC corresponding to its /" largest
eigenvalue and that for k € {1,..., g}, there exists a/'l‘ € R such that r];‘ = wf‘@f. Note that 6, is collinear with the I
principal component of PCA of Z with the metric M. The objective is then to perform online PCA of Z using at step
n a consistent estimator M,, of M.

Proof of Theorem 1, first part. Its plan follows that of ([13]], Section 9.4.2, p. 343) in the case of PCA with E[B,|T,] =
Bas.Let X) = (X, V;). After establishing that there exists K> > 0 and 3, such that a.s.

Xpr1 = U +a, (B, — W,I) + anﬁn)Xny ”ﬁn” < Kaay,

we prove that U, converges a.s., then that if the limit of U, is different from an eigenvalue A;, X! converges a.s. to 0.
Since ||X,|| = 1, this cannot be true for every j, therefore the limit of U, is one of the eigenvalues of B, 4;, and X,
converges to V; or =V; on E; = {U, — A;}. We then prove that ), a,(4; — U,) and )", a,(1; — W,) converge on
E;. Applying a lemma of Duflo ([13]], p. 342) to the sequence (X,ll) on E;, we prove that, if liminf E[(B,X,, V)2
|T,] >0, P(E;) =0fori > 1. Therefore, X,, converges a.s.to V.

Let us state two lemmas of Duflo ([13]], p. 16, 342) used in this proof.

Lemma 5. Let (M,,) be a square-integrable martingale adapted to a filtration (T,) and ((M),) its increasing process
defined recursively by:

(M) = M7, (M), = (M), + E[(Mys1 — M)|T, ] = (M), + EIMZ,|T,,] — M.

Let (M), = lim(M),. If E [{M).,] < oo, then (M) converges a.s. and in mean square fo a finite random variable.



In the following lemma, Duflo provides a tool which can be used to prove that given a sufficiently exciting noise (¢,),
the traps of recursive algorithms of the type defined in assumption (i) below can be avoided.

Lemma 6. Let (y,) be a sequence of positive numbers such that 2| y> < co. Let (Z,) and (6,) be two sequences of
random variables adapted to a filtration (T,), and (€,) a noise adapted to (T,).

Assume on a set I':

() for every integer n, Z,+1 = Z,(1 + 6,,) + Vn€ns1s

(i1) (Z,) is bounded;

(iii) 3,82 < o0, 8, > O for n sufficiently large, and there exists a sequence of positive numbers (b,) such that
Y by =c0and Y, | (b, — 6,) converges;

(iv) for an a > 2, E[|€,+11°|T,] = O(1) and liminf E[€>, ,|T,] > 0 a.s.

Then, PI') = 0.

Note that, since sup, ||B,|| < b a.s.(H2a) and a, converges to 0 (H3), I + a, B, is invertible from a certain rank N,
and if Xy is different from O, ||( + a,By) Xyl| # O, thus X,, is defined for all n > N and ||X,|| = 1. We have
UL < NIBIIWall < |IBull < b as. Let K;,i = 1,2,3,4,5 be adequately chosen real numbers. Under H2a, since
(I + a,By) Xull> = 1 +2a,W, + aﬁ ||Ban||2, we have almost surely:

1 1
TT+aB) X = 1-a,W, - 561,21 1B, Xl + @y el < K2,
1
Xn+l = (1 + aan) (1 - aan - Eaﬁ ”Ban”2 + a’n) Xn = (I +a, (Bn - Wnl) + anﬁn)Xm
1 2 1 2 2 -1
B = -a,W,B, - ian 1B Xull" I — Eaan |1B.Xoll” + a, anl + a,B,, |6l £ Kaay,
Xpp1t = U+a,B-U)+a,)X,, T, =B, —B)—(X,,,(B, — B) X;,) I +,an IT,ll < K3.

Step 1: convergence of U,,.

U1 = <(I +a, (B -U,0+ anrn) X,, BU+a, (B - Un]) + anrn)Xn>
= Un + 261,, <(B - Unl) Xn s BXn> + 2an <Fan 5 BXn> + a;%r]n,
Mn = <(B - Unl) Xn s B(B - Unl) Xn> +2 <ran s B(B - Unl) Xn> + <ran s BFan> s |77n| < K4 a.s.

Let y, = 2a, {E [T, |T,] X, BX,,) + @2E [, |T,,]. Since [|X,|| = 1:
(B=-U,DX,, BX,) =BX,|* = U = ||BX, — U, X,|I* > 0.

Then, E[Up1|T,] 2 Uy + pp and E[Ups1 — 20 i 1Tn] 2 Uy — Z;’:_ll u; as., thus U, — Z;’:‘]l 4 is a submartingale.
Since ||8,]| < Kza, and |n,| < Ky:

A

IE, T, < 20E By |Tal = Bl + ||E[Ba IT]||:
kal < 4ay|lE[B, |T,] = Bl + 2a, ||E [B, |T,]|| + Kaay, < 4a, ||E (B, |T,] - Bl + Ksaj, a.s.

By H2b (372, anE [|IE [By |T,] — Bl|] < o) and H3, we have: sup, E [iz;‘;ll ,u,” < oo. By Doob’s lemma, the sub-
martingale U, — Zl’fz‘ll M; converges a.s. to an integrable random variable. Since Z;’z‘]l u; converges, U, converges a.s.

Step 2: convergence of X{;: (X, V). Let F{; = <F X, Vj>. Since B is Q-symmetric, (BX”, Vj> =A ]X,’,

X!, = (U+aB-UD+al) Xy, Vi) =X, +a,((4; - U)X, +T7);

n+l

(X!, )?

n

. . 2 . .
X)? +az ((A; = U)Xy + )+ 2a,(A; = U)(X3)* + 2a,X,T,

. “ . N2 “ . “ .
XD?+ > at (= UpX] +T)) +2 )" ax)T] +2 )" ald; - UpX).
=1 =1 =1
7



Prove the convergence of the three last terms of this decomposition.

; 2
(i) Since ||U,|| < ||Bll and |IT/]| < K3 a.s., 3,70, a7 ((/lj - UpX] + FZ’) converges a.s. by H3.
(i) Let M}, = X! X/ () — E[T|T))).
Sty aX{TY = Sy aX{(T = EICIT) + Sy aX/EIVIT) = SiL, aX]EICIT) + M1, .
Firstly: 3L, a/lX]E[T)|T| < ZiLy allEIITAN < iy a QUELBITI] = Bl + EBITAD.
By H2b (32, a,E [||E [B, |T,] - Bl|] < o) and H3, since ||B,|| < Kza, a.s., 2,2, a;X] E['/|T;] converges a.s.
Secondly: (M})is a square-integrable martingale adapted to the filtration (77,); let (M7),) be its increasing process.
(M7} = (M7), = E[(M,, = My)*|T, ] = azEl(X)*(T; = EIDIT, )T, < Ksa,
Then, applying Lemma 5, since E [(M),] < oo by H3, (M}) converges a.s.to a finite random variable. Thus,
Y2, X converges a.s.
(iii) Let w be fixed belonging to the convergence set of U,. The writing of w will be omitted in the following. Let
L be the limit of U,. If L # A, the sign of A; — U, is constant from a certain rank N depending on w. Using the
decomposition of (Xi +1)2, there exists A > 0 such that:

n

Dald; - Ul (x))? =

=N

n

D@ - Upx)y?

=N

. . - . N2 “ .
X1, 0P = X)P = > (- Upx] +T)) =23 axT| < A,
I=N I=N

Then for L # A;, 352y aild; = Ul (le)2 and Y0 a (/lj - Ul) (X;)2 converge.
It follows from (i), (i) and (iii) that for L # A4;, (X,{)2 converges a.s. Since by (iii), )7, al(le)2 < 00, X,ﬁ converges
a.s.to 0. Since ||X,|| = 1, this cannot be true for every j. Thus the limit of U, is one of the eigenvalues of B, A;.

Step 3: convergence of X,,. On E; = {U, — A;}, for j # i, X,{ converges to 0, therefore (X,’;)2 converges to 1 and
since
Xn+1 - Xn =day ((B - Unl) + Fn)Xm

Xq+1 — X, converges to 0 and the limit of X, is V; or —V; on E; (first assertion of Theorem 1).

Using the decomposition of (Xfl)2 in Step 2, the convergence of (Xfl)2 and of (i) and (ii) yields that )" | a,(; — U,)
converges a.s.on E; (first assertion of Theorem 1). Consider now the decomposition:

D= W) = > an(di = Up) + >~ @y (X, (By = E[BAT,DXa) + > @ (X, (E[B,IT,] = B)X,.)
n=1 n=1 n=1 n=1

Firstly, since }.” | a,E [||IE[B,|T,] — Bll] < oo (H2b), .7 | a, (X,, (E[B,|T,] — B)X,) converges a.s.
Secondly, let M,, = 2111:_11 a;{X;, (B; — E[B||T|])X;); (M,) is a square-integrable martingale adapted to the filtration (7},).
Its increasing process ({(M),) converges: indeed, since sup, ||B,|| < b a.s.,

(M), — (M), E[(My1 — M)IT,] = @2E[(X,., (B, — E[B,|T,1)X,)* |T,]

< @E[|B, - E[B.T,IPIT,] < aZE[IB,I*IT,] < b*a’.

A

Thus by H3 and Lemma 5, (M,) converges a.s. to a finite random variable. Therefore, >, | a,(4; — W,,) converges
a.s.on E; (first assertion of Theorem 1).

Step 4: convergence of X,, to +V;. Suppose i > 1. Recall that, with I',, = (B, — B) — (X,,, (B, — B) X;,) [ + B,:

X0y = (14 a4 = U)X, + ap (0,X0, Vi) = (1+ @, (4 = ) + (4 = U)X, + a (T X, V1)
In the following, apply Lemma 6 to the sequence (X,i) on E; = {X, — Vi},i > 1, withy, = a,, 6, = a,(1; — Uy,),
b, =a, (41 — A;) >0, €41 = (I, Xy, V1). Verify the assumptions (ii), (iii) and (iv) of Lemma 6:
(ii) X! is bounded;
(i) X2, a2 < 00, 3%, a2(A — Uy)? < 00, 322, an(Ay — 4;) = 00, 32 a,(4; — U,) converges a.s.on E;;
(v) E [(TuX, Vi)? T, = LE[(BuXo, Vi)? T,| = E[(T, = By) X, Vi)? [T, ] as.

<(Fn - Bn) Xn, Vl> - <BXn’ V1> - <(Bn - B)Xn,Xn> <Xn7 Vl> + <ﬂan, Vl>
=X, (A1 + (B = B) X, X)) + (B X, V1)

8



Since ||[I,|| < K3 and ||B,]] < K»a,, a.s., there exists a positive number ¢ such that a.s. on E;:
E[((Ty = B) X, VI)? IT] < (X1 + 2E0B,I |T,] < c(X])? +2K2a? — Osince X, — 0OonE;.

n—+oo

Then, if lim inf E[ (B, X,, Vi}? |T.] > 0, liminf E[(T,X,,, V1) 2 |T,] > 0. By Lemma 6, P(E;) =0,i > 1.
Thus P (E1) = 1 (second assertion of Theorem 1). O

Proof of Theorem 1, second part. Recursively define the processes (X,) and ( ) such that

Xpo1 = (I +a,B)X, X = Xy, (4)
— X I+a,B, —~ ~ -~
U = — 200G g — 2 (B,U, - 1,0, U) =
1—1(1+/11a‘) 1+/11an l+/ll a,
1
i=1
Note that —=* X =X,.
[EA] uII [

We prove in the first step that HU ” and Zn | Qn ||l7 H2 (4, — (BX,, X,,)) converge a.s., in the second step that ﬁj =

<Un, V> converges a.s. to U/ and that U’/ = 0 for Jj > 1, in the third step that U U' # 0. The conclusion is then
immediate.

Lemma 7. Suppose (z,,n > 1), (a,,n > 1), (B,,n > 1) and (y,,n > 1) are four sequences of non-negative numbers
such that for alln > 1, 241 < 2, (1 + @) + By = V> Doy @n < 00, 307, By < 00. Then the sequence (z,) converges and
Zzoﬂ Yn < 0.

This is a deterministic form of the Robbins-Siegmund lemma [22]]. Its direct proof is based on the convergence of the
decreasing sequence (u,):

00

-1
_ Zn S Br — vk S
Up = ol - X Z = k-

[TA+a) =TA+a) k=1
=1 =1

Let w be fixed, belonging to C; = {3, aul|B, — Bl| < oo}. The writing of w will be omitted in the following.
Step 1 Since a, — 0 (H3), 1 + 4;a, > 0 from a certain rank N. Suppose N = 1 without loss of generality.

—~ ~ a ~ ~ a, ~
Ul = U +2—2— Un,Bn—/lIUn+—B A
1Tl 10 + 23— (U (Bu = W DU Ty B = DU
= TP +2—"—(T,.(B, - B >+ “2 B, = WD TP - 2—2— (T, (T - B)T,)
- n 1+/11an n» n n ( )2 1 n 1+/llan ns 1 nf-
A1 — B is a non-negative Q-symmetric matrix, with eigenvalues 0, 41 — A,...,4; — 4.

1B, — L IF < 2B, - BIP +2Il4:1 - BII*.

5o
NUntll

IA

2 2
— a a, a,
U1 +2—=—||B, - B +2—B 32+2—
I II( T+ a I Il i )2II I a1 n)z( ,)?

ZW (U, (11 - BYT,).

By assumptions H2b’ and H3, applying Lemma 7 yields:

TP — U, S (O il = BT,) = Y TP s - %) <.
n=1 n=1 n

Since Y, | a, = oo, either Ul — 0 or Yy an( A1 = (X, BX,)) < 0.
n—+oo
Step 2: Let l7,{ = <l~],1, Vj>.

UJ

n+l

y raBig\ v 1 giaBia,B,-B)T
i» 7T 5 Un| = s T . ay ay (b, — n
J 1+ A4, J 1+ A4,

B 1+/lja,,~j a,

1+ A4, " 1+ A4,

(Vj»(B, - B)U,).
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(a) For j > 1, since a, — 0and 4; — 4; > 0, there exists @, = O (a,) > 0 such that for n sufficiently large:

n—+oo
—~ 1+Ada, |~ a ~ _ a —_
J ST T n J n
< — Ui+ —=— B, - BI||U,|| < (1 = @) |UI| + —=— 1B, - BII||U.||.
1= T3 Aa, 5 ara, 1B Bl < @ - e 15~ Bilo]
By H2b’ and since ||U H converges, applying Lemma 7 yields: Uf Yl Uy U,ﬁ < 0o,
Since )77 a, = 0, U/ =0.
(b) For j = 1, by H2b’ and since ||l7,,|| — \/ﬁwhenn — oo:
ay ~ - a ~
U} = U+ ———(Vi,(B,~BU,)=U+ — (V1,(Bi - B)U;
nl 1+/1]n<1( )Un) = Uj ;Hmi(l( ) Ui)
— U1+Z > (Vi.(B; - B)Uy).

Now:

n
I+aB; — I+aB I+ a;B;
U Vi, VioSU, =U", S =
LT+ ‘> < LT A > 105U l_[1+/11a,

Since 51 is absolutely continuous, if V{ QS # 0, Pr(V{ oS l71 =0] S) = 0, then Pr(l71 = O) = 0. Prove that V] OS # 0.

Step 3. Denote C; = {171 * O}. Suppose w € C; N C,.
Under H2b’ and since a, — 0, there exists N such that ), y a,l|B, — Bl| <In2 and all eigenvalues of I + a;B are
positive for i > N, then || + a;B|| = 1 + 4,a; and

U, = <V1, Un+l> <V1,

I+aiB, I+aB V/OR l—ll+al =1+ a;B;
1 l+/11a, 1+/llal

vios = viol |

1=N1 + A1a; i1 1+ /lla

Under H2¢, VIOS # 0 © VIOR # 0. Let C,, = %’:}” and (W,,n > N) be the process (ﬁnn > N) with Wy = V.
By Step 2, since Wy = Vi, fori e (N +1,...,n}:

n al n
Wii = (VW) =1+ ) = (Vi (B = B)W) > 1= 3 CiIWil:
i=N 16: i=N
i~1
I + ai-1 Biill I + ai-1 Bl + ai-1 ||1Bi-1 — Bl| l
Wil £ ——|[Wiqll £ Wisill= (1 + Ci) [IWiyll £ 1+C).
IWill T+ ha, Wil 1+l IWicill = (0 + Cie) Wil L_N[( )

Since X2y Cy < In2, it follows that W', > 1= 32, G Iy (1+C) = 1= [Ty (1+C)— 1) > 2 - eZin € > 0.
By Step 2, W,l converges to (V1, RV1) = V] ORV; which is therefore strictly positive, thus V] OR # 0.

Step 4: conclusion. It follows that (U ) converges to U'V; # 0, therefore ”lz 1= X, converges to £V, and by the
conclusion of Step 1, >, a, (4; — (X,,, BX,)) < co. Moreover, by H2b’:

Z;.,ozl Ay |/ll - <Xn»Ban>| = Z;o:] ay |/11 - <Xna (Bn - B) Xn> - <Xn’ BXn>|

< Z;O:l ay (/ll - (Xna BXn)) + Z‘:,C):] an”Bn - B” < 00.

This concludes the proof. O
Remark. Step 1 can be replaced by: [|U,.1]| < HI:TZ:H “U ” < (1 + “’;'LB)“WI:H) ”Un“ .Under H2b’, “U ” converges a.s.

Assumption > a; 2 < o0 is not used and can be replaced by a, — 0 when n —> oo, but in this case the convergence
of Y7 a, (1 —(BX,,X,)) and )" | a, |A; — (B,X,, X,)| is not proven.

Proof of Corollary 2, first part. Let us first recall some concepts of exterior algebra used in the proof. Let (ey, ..., ep)
be a basis of R”. For r < p, let "AR?” be the exterior power of order r of R”, generated by the C), exterior products
e, Nepy Ao~ Nej,ip <ip <---<i.€{l,...,p}

(a) Let Q be a metric in R”. Define the inner product (., .) in "AR? induced by the metric Q such that:

(i Ao A, A Ae)y = Y (=1 eq, i) X - X (€3, €ott),

oeG,
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G, being the set of permutations o of {ky, ..., k,} and s(o) the number of inversions of o~. The associated norm is also
denoted ||.||. Note that if xi, ..., x, are Q-orthogonal, ||x; A--- A x|l = [T, llxill, and if (ey, . . ., e,) is a Q-orthonormal
basis of R, then the set of the C}, exterior products e;, A --- A¢;, is an orthonormal basis of "AR?.

(b) Let U be an endomorphism in R”. Define for j € {1, ..., r} the endomorphism /U in "AR? such that:

U@ A AXy)

Z XU A AUX Ao AUX A A X
I<ii<iz<...<ij<r
P
l,rlU(xl/\-~-/\x,):Zx1/\-~-/\Ux,-/\--~/\x,;
i=1
r,""Uxi A Ax)=Uxi AUxp A+~ AUx,.

for j

for j

(c) The following properties hold:

(i) Suppose U has p real eigenvalues A,...,4, and, for j € {1,..., p}, let V; be an eigenvector corresponding to
A;. Then the C[’, vectors Vi, A+~ AV, 1 <i} <--- <i, < p, are eigenvectors of riU; for j = 1, the corresponding
eigenvalues are 4;, + - - + /li, and for j = r, the products 4;, - - - /11',; thus if U is invertible, so is "' U;

(i) If U is Q-symmetric, /U is symmetric with respect to the metric induced by Q in "AR?;

i) "I+ U) = I+ Z;:l niy;

(iv) There exists c(r) > 0 such that, for every endomorphism U in R” and for 1 < j < r, ||[7U|| < c(MI|U|V.

Outline of the proof. Applying the first assertion of Theorem 1, we prove in the first step that for i € {1,...,7},
X, = X! A--- A X! converges a.s.to an eigenvector £V A--- A V;, of 'B. In the second step, we prove by re-
currence on i that X! converges a.s.to +V;, by proving first that there exists j > i — 1 such that ‘X, converges
a.s.to £V A+ AViy AV, thus X converges a.s.to =V, and then, applying the second assertion of Theorem 1,

that V; = £V;. In the third step, we prove that ;" | a, [4;— <BX;,X£L> and Y77 | a,(A;— <Banl,Xfl>) converge a.s.
Step 1. Fori e {1,...,r}, iF follows from the orthogonality of T, ... JTithat [T, A~ AT 11 =TTi, IT, .
Let X,e1 = X!, A AX and D, = "B,+ X, al ' B, Then:
iX.,, = Ty A AT, _ Yo A AY I +a,B,) X,
N _ .
T L A ATl A AT T ) K]

(1 va,"B,+ 3 ] fiBn) X,

) = _ (1+a D)) X,

i - i\ iy
om0 5 k) e 22)
=2

Since ||V B,|| < c()|IB, |/, assumptions H2a (sup, ||B,|| < b a.s.) and H3 yield that there exists b; > 0 such that for all
n, ||D’ || < b;. Moreover, since U +— 1U is a linear application, assumptions H2a,b (3, | a,E [||IE[B,|T,] — Bll] < o)
and H3 yield that:

E[S allEWDLIT, - "B = E| 5, a||E['B, " B+ 5 al B, IT,]
<E[%, ai(I"EIB, - BIT, Il + Xiy a E[niann I7,0)]
< c()E [z 1an (IE BT 1 = Blll + Ty iy ENBAIV IT,1)] < oo

i1 Bis symmetric with respect to the metric induced by Q in ‘AR? and by H1b’ its largest eigenvalue is simple. Applying
the first assertion of Theorem 1 yields that almost surely:

X, converges to a normed eigenvector = V; A--- AV, of B,

00 00

Zan (A + 2, = ("BIX,. X)) < oo,Zan (A, + -+ 5, = (D} X X)) < o0

n=1 n=1

Moreover, by H2a and H3, 3 | an( i+, - (1B, an,an>) <o
11



Step 2. Suppose that for k € {1,...,i — 1}, whenn — oo,X’,j — +Vj, which is verified for k = 1 by Theorem 1, and
prove that X! — +V,.

(a) Prove that there exists j > i — 1 such that X! — V.

X, — +V; A --- A V;; suppose that there exists k € {1,...,i— 1} such that, for [ € {1,...,i}, V; # £V} ; since
Xﬁ — Vi, (Xﬁ, Vi) — Oforle{l,...,i}and (X,ILA X -AXf,, Vi,A---AV;) — 0, a contradiction. Therefore for all
ke ({l,...,i— 1}, there exists j; such that V; = £V} and there exists j such that X, — £ViA---AVi_; A V.

The only term which has a non-zero limit in the development of <X}l A AXLEVIA AV AV j>, whose limit

is 1 when n —> oo, is (X}, Vi)(X2, V) X - -+ X (Xi™!, Vi1 ) (X1, V;) obtained for o = Id. Since for k € {1,...,i =1},

(X*, Vi) — +1, then <X§1, Vj> —> +1. Therefore, X!, — +V,.

(b) Prove now that V; = +V;. Suppose X}, — £V, # £V..

Let G; be the set of permutations o of {1,...,i} witho =(o (1),...,0 (i)) and s(o) the number of inversions of o.
Prove that liminf E [(Di,(X! A -+ A X)), Vi A+ AVAIT,| > 0,D) = "B+ X/, ai ™ VB,

i
(M"BuX A AXD,VIA-- AV Z(X,ll/\no/\BnXil/\'n/\Xil,Vl/\~~/\V,~)
=1

i
Z Z(—1)5(0)<X,1,, V) X - X (Bp X, Vo) X -+ X (XL Vo),
=1 0€G;

i 2
{Z DX Vo)) -+ (B X, Va<l>>'~<X:;,vg<,->>] ).

il 1 i 2
E[< Bn(xn/\u-/\xn),vm.-./\v,-) |Tn]=E
I1=1 oeG;

Since for k € {1,...,i—1}, X,’; — £V}, the only term with a non-zero limit in the development of this conditional
expectation is (X!, VY x - x (X1, Vi)V E [(Ban,, V;)? ITn] and

. . 2 .
lim infE[(“B,,(X}l A AXD VA A Vi> |Tn] = lim infE[<an;1, V)2 |Tn] > 0.

Moreover, by H2a and lim a, = 0, liminf E

n—0oo

Then liminf £ [(D;(X}l A AXD, VA A V,-)2|T,,] > 0. Applying the second assertion of Theorem 1 yields a.s.:

j=2Gn

i j-lij Ln o ayi R TAY _
o a B,(X, A ANX),ViA---AV;) |T,|=0.

X,ll /\-~/\Xfl — xViA AV, thereforeX,i — +V;,

oo i 00 i

> a (Z/lz - ('BX,’ Xn>] <, > a, [Zal (D}, X, Xn>] <.
n=1 =1 n=1 =1

Then, by H2a and H3,%2, a, (Zi_, 41 = ("B, 'X,,' X,)) < oo,

Step 3. Since X!, ..., X! are orthonormal, (' BX,, X,) = Yi_| Ygec, (=1 (XL X7y x -+ x (BXE, XMy x - x
XLXTDY = SE_ (XL XNy x - x (BXE XEY x o x (X XDy = S (BXK, X%y, Then, since I, A; is the largest
eigenvalue of /! B:

A; - (BX, X

i i-1

[Zal - ("'B'X,’ Xn>] S DYETGRy 1 X,1>);
=1 =1
i i-1

[Z’l’ —('Bix,) Xn)] n Z/ll _(-ligitiy il Xn>)~
=1 =1

Since 52 @ (i, A — ('B'X,.. X,)) < 0 as., then 57, ay |1 — (BX, X;,)
since Y00 | ay (Zf:] A4, - ("B, an,iX,,)) < oo, then 32, a, (/l,- - <B,,Xf,,X,’;>) < coas. O

i - (Bx:, x;)

IA

< oo a.s. Likewise:

Proof of Corollary 2, second part. We prove applying Theorem 1 that ‘X, = X} A --- A X converges a.s. to
12



+V| A -+ AV, then by recurrence on i that X,"l converges a.s.to +V;.

Let w be fixed throughout the proof, belonging to the intersection of the a.s. convergence sets. Its writing will be
omitted. Leti € {1,...,r}. As already seen in the proof of Corollary 2, first part:

(1 +ay D;) iX,

i

i
Di="B,+ ) al''B,.

n+l =

H(I+a,, D) x|
By H2b’ and H3:
ian D - B = ian (B, - B) + Z al” UB,|| < c(i) [Zan 1B, — Bl + Z Zan 1B, ”,] < co.
n=1 n=1 Jj=2 Jj=2 n=1

By H2c, I + a,B,, has no null eigenvalue, then (I + a,B,) has no null eigenvalue and is invertible.

Since B is Q-symmetric with distinct eigenvalues (Hla,b’), ! B is symmetric with respect to the metric induced by Q
in AR? and its largest eigenvalue A; + - - - + A; is simple; V| A --- A V; is a normed eigenvector corresponding to this
eigenvalue. Applying the second part of Theorem 1 yields that:

o

X, — Vi A AV, i a, [i/ll— <ilB X, an>] < 00, Z
n=1 =1

n=1

DI an, n>

< 00,

It implies that 2, a, [, i~ ("B, X1, 'X,.)

<2ai““3n "Xn,"xn> ZZ 2|78, ||<c(z>ZZa 1B, ||f<c<z>zzf IZan (1B, = BIV +IBIV) < co.

Jj=2 j=2 n=1 j=2 n=1

. ; -1
< oo since D), ='B, + Z/ ,a, B, and

(o]

S

n=1

Suppose that, for k € {1,...,i— 1}, Xfl‘ converges to £V, which is verified for k = 1 by Theorem 1, and prove that it
is true for k = i. In the development of <X,% o AXL VA A Vi>, which converges to +1, the only term which

has a non-zero limit is (X,ll, V1> X oo X <Xf[1, Vi_ ><X V> since for k € {1,...,i—1}, <X§, Vk> converges to +1, it
follows that (Xi V‘> converges to +1, thus X! converges to +V;.

Applying the same argument as in the previous proof, Step 3, yields: ;> ; a, |4i— (X’ BX' > < co. By H2b’:
Z -(xi BX Z -(xi BX> Zan|an—B|l<oo.
n=1 n=1 n=1

O
Proof of Corollary 3. We verify the assumptions of the first part of Corollary 2. B is symmetric (H1a), sup, [|B,|| is
a.s. bounded under H6a and H7a; we have almost surely:
1
E[B,|T,]-B= E[an_ ( o ze

ni

(z)T -7 (Z)7 )M21|T] M: ( [Z‘(Z‘ |- EtzeiEzem) M

n
C

=M (E[2° @) |~ Zo (Zo) ) ML, - M (E|202) | - ELZVELZT) M

= (M, - M) (E[ze @) ] - EEzAEZT) M, + M (B[ @) |- BZUEZT) (M - )

-1
1 —=C . —C 1 1 . [=C AT 1
-M? | (Z,., - E1Z))(Z,-,) "M}, - M;_ E[Z(Z,_, —E[Z‘]) M
If Z has 4" order moments and a, > 0,32, ff <oo: Y% a,E [||Z;_l - E[ZC]||] =Y aE [||Z,,_1 - E[Z]||] < oo.
Therefore, under H6a, H7a,c, E[Y,,2 | a, |lE [B, | T,] — Bl|] < o (H2b). By Corollary 2, fork =1,...,r, X* converges
a.s. to one of the eigenvectors of B.

Prove now that lim E[((Xﬁ) TB,Vi)? |T,] > 0 a.s.on the set {Xﬁ — Vj} for j # k. In the remainder of the proof, Xﬁ is
n—oo
denoted X,,. Decompose E[(X, B, Vi)? |T,,] into the sum of three terms:

E[(XTM; l(mn Zmn ZZ (ZC) Z; 1(? ) )M2 k)z | Tn:|
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1 1 ¢ —c 1
:E[(MLZ (XTM; ,z;,)((z;i)TMj_lvk)—(XTMf 7 )((z )™ )) |T} A, +B, +C,,
1 2
A, = E[(mi o (XTMZ ZC)((Z;I)TM;lvk ) |T,,],
B, =-2 (XTME_IZ;_l)((Zj_l)TMj_lvk) Ly E[ XTM? \Z, )((z )TM; 1Vk) | T]
— 2/ _. 1 2
C, —(XTM2 Z_ 1) ((zn_l)TM;_le) .

Note that the two random variables R = VJ.TM 3Z¢and S = VkT M’ Z¢ are uncorrelated:

E[(R - E[R])(S - E[S])] E[V]M*(Z - E[Z)).V; M*(Z - E[Z])]

VIM:E [z-Ez)(z-Ez)7] M2Vj = V] Vi = 0.

Then, E[VTM%ZC VTM%ZC] = E[V] M3Z]E[V] M3Z¢]. Under H7b, almost surely, when n — oo, we have:
A, = [(XTMZ )( Zci)TMile)(X M: 12;,) ((z;[)TMjlvk) ITn]
= XTMZ —1m 2 Z m" [(VTM’ qu‘)Zf{i (ZZI) ' ((ZZI) TMn%—1V’<) | Tn] Mn%—IX”
— VIMAE|(V] MEZ‘)ZC @) ()™M V)| M3V = E [(V,j M%ZC)2 (V]TM%ZC)Z];
B, — —2E [VJTM%ZC]E [(ZC)T M%Vk] E [(V]TM%ZC) (@7 M%Vk)] = 2E [(VJ.TM%Z”)(VkT M%ZC)]Z;
C,— (E[viMize|E [V,QM%ZC])2 =E [(VITM%ZC)(V,IM%ZC)]Z;
E[(XTB,VO*|T,] = Ay + B, +C, — E [(VJTM%ZC)2 (vy M%z“)z] -E [(VJTM%ZC) (vy M%Z“)]2
= Var[V] M2Z°.V{ M>Z] > 0 a.s. by H6b. O

Proof of Corollary 4. Let us verify the assumptions of the second part of Corollary 2. H2c is verified since the
eigenvalues of B, are non-negative. Prove now that )", a, ||B, — Bl| < oo a.s.

B=M:CM:,C = E[ZZ"] - E[ZIE[Z]";

B, =M%CM$,C,1=W |2 76 (2 )T—Z;(Z;)T=z,lm L S Zi(2) T - Zu(Z)
Co—C = e T, 3, 2 (2 )—E[ZZT]—(Z—E[Z])(,,) ~ E[Z)(Z, - E[Z]);

1 1 1 1
B,-B= Mn CnM,f —M:CM? = (M} — M2)C,M? + M2(C, — CO)M? + M2C(M} — M?).
— T
Under H3” and Héc, Y07 a, ||Z, | Gn Hﬁ Z’"‘ Z,j( ) —E[ZZ7] ' < co.
i=1 """
Therefore, under Héc and H7b,d, )77, a,l|B, — Bl < . O
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Appendix. Numerical results
Experiments
Two types of data:

o Simulated data: Ateach iteration a batch of observations having a multivariate normal distribution are simulated.
o Fixed datasets: At each iteration a random sample of lines is drawn from the dataset.

Algorithms: Two types
e Batch ’B’: a mini-batch of observations is used at each iteration.

o All observations *A’: all observations up to the current iteration are used.
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Algorithms are also specified by batch size. For example, Algorithm *A_50’ is the algorithm using all observations
with a batch size of 50 at each iteration.
For each dataset and each algorithm, we chose either to approximate » = 3 or r = 5 principal components.

Algorithms initialization: The main process is initialized by choosing X [ , X] to be a realization of a standard
multivariate normal distribution.

Stepsize: a, = 2% where n is the iteration index of the algorithm.

Stopping criteria:

¢ A maximum number of iterations N = 500000.

e Fori=1,---,r, the cosine between each X’ and the true principal factor V' is greater or equal 0.99.
Results:

e For each dataset (simulated or fixed) and each algorithm, in the case of convergence, the needed computing time
t (in seconds) and the needed number of iterations n to convergence are reported.

o For each dataset (simulated or fixed), the ranks of the algorithms regarding their needed computing time or their
needed number of iterations before convergence are reported.

e When an algorithm does not converge after N = 500000 iterations, both the needed computing time and number
of iterations to convergence are considered to be ”Inf”.

Simulated data
Z € R? is simulated following multivariate normal law N (u, X) with different p: p = 50, 100, 500 and two choices
of X referred to as Simul and Simu?2, respectively:

e adeterministic choice: X = ATA with

log(2) log(2) --- --- log(2)
log(3) -+ - log(3)

A=
log(p+1)

A with this form was chosen since it has a natural incremental form and the log has been applied to its elements
such that £ will not have big values.

e X positive and definite matrix randomly generated using the make_sparse_spd_matrix method of the sklearn.datasets
package in Python.

The following results were obtained:
Needed computing time before convergence

Simul Simul Simul Simul Simul Simul Simu2 Simu2 Simu2 Simu2 Simu2 Simu2
Algo | p=50 p=50 p=100 p=100 p=500 | p=500 p=50 p=50 p=100 | p=100 | p=500 p=500

r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5
B_1 1.07 1.5 2.59 3.96 352.01 496.72 24.27 Inf 49.93 85.31 5146.88 | 5991.51
B_10 | 0.16 0.31 0.52 0.52 76.83 93.44 3.53 Inf 8.58 13.09 1356.23 | 1550.46
B20 | 0.11 0.22 0.19 0.45 42.58 87.03 243 387.33 6.51 9.03 1107.07 | 1257.54
B30 | 0.05 0.06 0.33 0.5 39.31 79.28 2.02 319.07 10.03 13.06 1100.27 | 1172.56
B_40 | 0.05 0.06 0.34 0.5 25.21 73.27 1.34 261.82 8.75 11.53 993.1 1170.65
B_50 | 0.05 0.05 0.3 0.5 19.81 73.02 1.27 241.09 8.34 11.04 936.33 1150.79
Al 0.11 1.11 0.15 0.83 3.07 25.03 1.64 Inf 5.55 31.85 337.08 1224.85
A_10 | 0.02 0.2 0.02 0.12 1.02 6.06 0.27 207.7 0.94 4.87 79.08 284.03
A20 | 0.02 0.07 0.02 0.08 0.74 4.87 0.16 129.7 0.75 344 67.74 238.63
A_30 | 0.02 0.08 0.02 0.11 0.88 4.65 0.16 106.43 0.94 5.08 61.68 219.58
A 40 | 0.02 0.08 0.03 0.12 1.05 4.46 0.12 93.12 1.06 4.39 55.42 203.94
A50 | 0.0 0.08 0.02 0.12 1.1 1.46 0.12 85.5 0.72 4.08 52.6 199.8
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Needed number of iterations before convergence

Simul Simul Simul Simul Simul Simul Simu2 Simu2 Simu2 Simu2 Simu2 Simu2
Algo | p=50 p=50 p=100 p=100 p=500 | p=500 p=50 p=50 p=100 | p=100 | p=500 p=500
r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5
B 1 2496 2532 4421 5529 21799 31046 57660 Inf 96492 127235 | 358538 | 407489
B_10 | 250 363 557 553 1875 2180 5766 Inf 9650 12729 35854 40750
B20 | 127 217 133 302 575 1251 2883 399044 | 4825 6365 17927 20375
B30 | 60 60 143 185 383 834 1922 261661 | 3217 4239 11952 13583
B 40 | 43 45 77 151 189 599 1157 189616 | 2422 3183 8964 10188
B.50 | 27 36 60 111 122 458 924 154072 | 1930 2546 7172 8150
A1 | 280 1956 222 1131 171 1326 4133 Inf 10542 46623 19313 68970
A10 | 29 210 24 115 24 134 415 270500 | 1106 4667 1934 6903
A20 |15 106 12 58 11 69 208 133996 | 572 2336 969 3455
A30 | 11 72 9 39 9 47 139 91106 390 1559 647 2305
A40 |9 54 7 31 8 36 105 67898 293 1170 487 1731
A50 |8 44 5 25 7 9 92 54637 160 937 390 1386
Algorithms ranking by needed computing time before convergence

Simul Simul Simul Simul Simul Simul Simu2 Simu2 Simu2 Simu2 Simu2 Simu2 mean
Algo | p=50 | p=50 | p=100 | p=100 | p=500 | p=500 |p=S0 | p=50 | p=100 | p=100 | p=500 | p=500 | "

r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5
AS0 | 1.0 7.0 3.0 3.0 5.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 2.25
A20 |50 4.0 2.0 1.0 1.0 4.0 3.0 4.0 2.0 1.0 4.0 4.0 2.92
A30 | 2.0 6.0 4.0 2.0 2.0 3.0 4.0 3.0 3.0 5.0 3.0 3.0 3.33
A40 | 40 5.0 5.0 4.0 4.0 2.0 2.0 2.0 5.0 3.0 2.0 2.0 3.33
A10 | 3.0 8.0 1.0 5.0 3.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 4.42
B.50 | 8.0 1.0 8.0 7.0 7.0 7.0 6.0 6.0 8.0 7.0 7.0 6.0 6.5
B40 | 7.0 2.0 10.0 8.0 8.0 8.0 7.0 7.0 10.0 8.0 8.0 7.0 7.5
B_30 | 6.0 3.0 9.0 9.0 9.0 9.0 9.0 8.0 11.0 9.0 9.0 8.0 8.25
Al 10.0 11.0 6.0 11.0 6.0 6.0 8.0 10.0 6.0 11.0 6.0 9.0 8.33
B_20 | 9.0 9.0 7.0 6.0 10.0 10.0 10.0 9.0 7.0 6.0 10.0 10.0 8.58
B10 | 11.0 10.0 11.0 10.0 11.0 11.0 11.0 10.0 9.0 10.0 11.0 11.0 10.5
B 1 12.0 12.0 12.0 12.0 12.0 12.0 12.0 10.0 12.0 12.0 12.0 12.0 11.83

Algorithms ranking by needed number of iterations before convergence

Simul Simul Simul Simul Simul Simul Simu2 Simu2 Simu2 Simu2 Simu2 Simu2 mean
Algo | p=50 | p=50 | p=100 | p=100 | p=500 | p=500 |p=S0 | p=50 | p=100 | p=100 | p=500 | p=500 |

r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5
AS50 |10 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.08
A40 | 2.0 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.17
A30 | 30 6.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.25
A20 | 40 7.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.25
B50 | 50 1.0 6.0 5.0 6.0 6.0 6.0 5.0 6.0 5.0 6.0 6.0 5.25
A10 | 6.0 8.0 5.0 6.0 5.0 5.0 5.0 8.0 5.0 8.0 5.0 5.0 5.92
B40 | 7.0 3.0 7.0 7.0 8.0 7.0 7.0 6.0 7.0 6.0 7.0 7.0 6.58
B_30 | 8.0 5.0 9.0 8.0 9.0 8.0 8.0 7.0 8.0 7.0 8.0 8.0 7.75
B_20 | 9.0 9.0 8.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
Al 11.0 11.0 10.0 11.0 7.0 10.0 10.0 10.0 11.0 11.0 10.0 11.0 10.25
B_10 | 10.0 10.0 11.0 10.0 11.0 11.0 11.0 10.0 10.0 10.0 11.0 10.0 10.42
B_1 12.0 12.0 12.0 12.0 12.0 12.0 12.0 10.0 12.0 12.0 12.0 12.0 11.83
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Fixed datasets
Datasets description
3 datasets were used: Breast_cancer, California_housing and Bio_train, all of which have continuous values:

Dataset Number Nun‘lber Link
of columns of lines
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
Breast.cancer 8 369 | | Wisconsin+%28Diagnostic%29
California_housing 9 20 640 https://www.dcc.fc.up.pt/~Itorgo/Regression/DataSets.html
Bio_train 77 145 751 http://osmot.cs.cornell.edu/kddcup/datasets.html

The following results were obtained :
Needed computing time before convergence

. breast_cancer breast_cancer cal_housing cal_housing bio_train bio_train

Algorithms

r=3 r=5 r=3 r=5 r=3 r=5
B_1 20.13 165.91 Inf Inf 92.77 173.3
B_10 4.94 19.77 Inf 86.69 14.95 30.59
B 20 4.3 13.23 163.83 268.39 10.45 23.99
B_30 2.79 9.57 159.09 45.25 9.19 18.24
B_40 2.01 8.7 139.1 162.02 8.44 16.44
B_50 2.59 7.68 28.14 31.85 13.03 14.56
Al 0.24 1.37 0.48 0.57 2.23 3.22
A_10 0.04 0.19 0.06 0.07 0.31 0.48
A20 0.03 0.11 0.07 0.06 0.28 0.27
A30 0.03 0.09 0.05 0.02 0.17 0.27
A_40 0.02 0.09 0.03 0.03 0.05 0.25
AS0 0.02 0.08 0.02 0.14 0.08 0.23

Needed number of iterations before convergence

. breast_cancer breast_cancer cal_housing cal_housing bio_train bio_train

Algorithms

r=3 r=5 r=3 r=5 r=3 r=5
B_1 49220 317329 Inf Inf 184678 261092
B_10 7046 31734 Inf 148624 18470 26108
B_20 3523 15867 279499 336046 9235 13055
B_30 2349 10581 224031 49529 6156 8704
B_40 1762 7936 168026 168023 4617 6527
B_50 1756 6359 29720 29718 3694 5222
Al 538 2457 1301 1262 4467 4505
A10 55 248 134 130 448 452
A 20 28 126 69 67 225 226
A_30 20 85 49 21 150 151
A 40 15 64 39 43 38 114
A 50 12 53 39 72 31 91
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Algorithms ranking by needed computing time before convergence

. breast_cancer breast_cancer cal_housing cal_housing bio_train bio_train
Algorithms mean rank
r=3 r=5 r=3 r=5 r=3 r=5
A_40 1.0 3.0 2.0 2.0 1.0 2.0 1.83
A50 2.0 1.0 1.0 5.0 2.0 1.0 2.0
A30 3.0 2.0 3.0 1.0 3.0 3.0 2.5
A 20 4.0 4.0 5.0 3.0 4.0 4.0 4.0
A_10 5.0 5.0 4.0 4.0 5.0 5.0 4.67
Al 6.0 6.0 6.0 6.0 6.0 6.0 6.0
B_50 8.0 7.0 7.0 7.0 10.0 7.0 7.67
B_40 7.0 8.0 8.0 10.0 7.0 8.0 8.0
B_30 9.0 9.0 9.0 8.0 8.0 9.0 8.67
B_20 10.0 10.0 10.0 11.0 9.0 10.0 10.0
B_10 11.0 11.0 11.0 9.0 11.0 11.0 10.67
B 12.0 12.0 11.0 12.0 12.0 12.0 11.83
Algorithms ranking by needed number of iterations before convergence
. breast_cancer | breast_cancer | cal housing | cal_housing | bio_train | bio_train
Algorithms mean rank
r=3 r=5 r=3 r=5 r=3 r=5
A 50 1.0 1.0 1.0 4.0 1.0 1.0 1.5
A_40 2.0 2.0 1.0 2.0 2.0 2.0 1.83
A30 3.0 3.0 3.0 1.0 3.0 3.0 2.67
A20 4.0 4.0 4.0 3.0 4.0 4.0 3.83
A_10 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Al 6.0 6.0 6.0 6.0 7.0 6.0 6.17
B_50 7.0 7.0 7.0 7.0 6.0 7.0 6.83
B_40 8.0 8.0 8.0 10.0 8.0 8.0 8.33
B_30 9.0 9.0 9.0 8.0 9.0 9.0 8.83
B_20 10.0 10.0 10.0 11.0 10.0 10.0 10.17
B_10 11.0 11.0 11.0 9.0 11.0 11.0 10.67
B_1 12.0 12.0 11.0 12.0 12.0 12.0 11.83
Recap: Important rankings (computing time)
Simul Simul Simul Simul Simul Simul Simu2 Simu2 Simu2 Simu2 Simu2 Simu2
Algo | p=50 | p=50 | p=100 | p=100 | p=500 | p=500 | p=50 | p=50 | p=100 | p=100 | p=500 | p=500 | "
r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 r=3 r=5 rank
AS0 | 1.0 7.0 3.0 3.0 5.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 2.25
A20 |50 4.0 2.0 1.0 1.0 4.0 3.0 4.0 2.0 1.0 4.0 4.0 2.92
A30 |20 6.0 4.0 2.0 2.0 3.0 4.0 3.0 3.0 5.0 3.0 3.0 3.33
A40 | 40 5.0 5.0 4.0 4.0 2.0 2.0 2.0 5.0 3.0 2.0 2.0 3.33
A10 | 3.0 8.0 1.0 5.0 3.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 4.42
B50 | 8.0 1.0 8.0 7.0 7.0 7.0 6.0 6.0 8.0 7.0 7.0 6.0 6.5
B40 | 7.0 2.0 10.0 8.0 8.0 8.0 7.0 7.0 10.0 8.0 8.0 7.0 7.5
B30 | 6.0 3.0 9.0 9.0 9.0 9.0 9.0 8.0 11.0 9.0 9.0 8.0 8.25
Al 10.0 11.0 6.0 11.0 6.0 6.0 8.0 10.0 6.0 11.0 6.0 9.0 8.33
B20 | 9.0 9.0 7.0 6.0 10.0 10.0 10.0 9.0 7.0 6.0 10.0 10.0 8.58
B_10 | 11.0 10.0 11.0 10.0 11.0 11.0 11.0 10.0 9.0 10.0 11.0 11.0 10.5
B1 12.0 12.0 12.0 12.0 12.0 12.0 12.0 10.0 12.0 12.0 12.0 12.0 11.83
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. breast_cancer breast_cancer cal_housing cal_housing bio_train bio_train
Algorithms mean rank
r=3 r=5 r=3 r=5 r=3 r=5
A_40 1.0 3.0 2.0 2.0 1.0 2.0 1.83
A 50 2.0 1.0 1.0 5.0 2.0 1.0 2.0
A_30 3.0 2.0 3.0 1.0 3.0 3.0 2.5
A20 4.0 4.0 5.0 3.0 4.0 4.0 4.0
A_10 5.0 5.0 4.0 4.0 5.0 5.0 4.67
Al 6.0 6.0 6.0 6.0 6.0 6.0 6.0
B_50 8.0 7.0 7.0 7.0 10.0 7.0 7.67
B_40 7.0 8.0 8.0 10.0 7.0 8.0 8.0
B_30 9.0 9.0 9.0 8.0 8.0 9.0 8.67
B_20 10.0 10.0 10.0 11.0 9.0 10.0 10.0
B_10 11.0 11.0 11.0 9.0 11.0 11.0 10.67
B_1 12.0 12.0 11.0 12.0 12.0 12.0 11.83
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