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Abstract—Since several decades, fault tolerance has become
a major research �eld, due to transistor shrinking and core
number increasing in System-on-Chip (SoC). Especially, faults
occurring at the Network-on-Chips (NoCs) of those systems
have a signi�cant impact, since NoCs are the key component of
on-chip communication. Several fault tolerant approaches have
been proposed, which are, however, limited against multiple
permanent faults. To reduce the impact of these faults on the
data communications, we propose a bit-shuf�ing method for
fault tolerant NoCs. The proposed approach exploits, at run-
time, the position of the permanent faults and changes the order
of bits inside a �it. Our bit-shuf�ing method reduces as much as
possible the fault impact, by transferring the faults from Most
Signi�cant Bits (MSBs) towards Least Signi�cant Bits (LSBs).
With this technique, we show that, in presence of multiple
permanent faults, the Mean Square Error (MSE) on the payload
transmission is reduce from1017 to 105 under three permanent
fault for 32-bit unsigned integers. This technique also ensures
the correct transmission of headers under multiple permanent
faults.

Index Terms—Network-on-Chip, Fault Mitigation, Approxi-
mate Computing, Bit-Shuf�ing

I. I NTRODUCTION

Due to increasing chip density, platforms are developed
with large number of processing elements, i.e. cores, on a
single System-on-Chip (SoC). However, conventional commu-
nication means, such as buses and point-to-point links, cannot
ensure ef�cient communication on these multicore and many-
core platforms. To address this gap, Network-on-Chip (NoC)
appeared as a scalable solution to manage communications
between a large number of cores [1].

Meanwhile, the technology scaling and the transistor density
increase enabled voltage reduction. As a result, the intrinsic
failure rate of electronics, due to gate oxide breakdown,
is increased [2]. Moreover, as the transistor size reaches
10 nm and below [3], the engraving thinness causes more and
more hardware defects, due to manufacturing process, creating
permanent faults that affect the reliability of devices [4].
During system operation, electromigration and time-dependent
dielectric breakdown become additional sources of permanent

faults on devices [5]. In this technology era, interconnects and
routers of NoC became more sensitive to permanent faults [6],
affecting their functionality.

Fault tolerance techniques are commonly applied on the
NoC [7] to deal with permanent faults. They are usually based
on i) mitigation through routing algorithms [8], ii) recon�g-
uration [7], iii) correction through circuit replication [4] and
iv) information redundancy [9]. Although the aforementioned
approaches are ef�cient for single permanent fault, they are
less adequate for multiple permanent faults. They introduce
high costs, in terms of latency, area and power consumption,
while their mitigation capabilities are limited, as discussed in
Section II.

To ef�ciently deal with multiple permanent faults, we pro-
pose a bit-shuf�ing hardware technique with low area and
performance overhead. The proposed technique focuses on
reducing the impact of faults, instead of fully mitigating them.
It ensures the protection of Most Signi�cant Bits (MSBs) of
the data, by transferring the impact of the permanent faults to
the Least Signi�cant Bits (LSBs), instead of the MSBs. This is
achieved by dividing a �it into several blocks of bits, named
Sub-Flits (SFs), and by exchanging (shuf�ing) the position
of the SFs, at run-time. Following the proposed approach,
spatial redundancy is not required, thus the area overhead is
reduced, while faulty routers are not excluded, removing the
negative impact in terms of performance. Moreover, the pro-
posed technique can reduce the impact of multiple permanent
faults, according to the accuracy needed by the application
executed on the NoC based architecture. As a result, it is
especially suitable for several application domains, such as
image processing, data mining, machine learning, information
gathering, etc., where approximate data are tolerated, both for
computations and for communications [10].

The rest of this paper is organized as follows. Section II
presents the related work on fault tolerant NoC. The proposed
bit-shuf�ing technique is presented in Section III. Section IV
presents the experimental results. Finally, we conclude this
study and we present our future work in Section V.



II. RELATED WORK

Fault tolerant techniques for NoCs can be grouped into four
main categories, described in the following paragraphs.

Routing algorithms are used to avoid faulty paths or faulty
regions in NoCs [8]. For instance, only the remaining healthy
resources of NoCs are used during transmission [11]. These
algorithms are generally table-based [11], including rules to
avoid congestion and deadlock during packet transmissions.
Therefore, as the NoC size increases, the hardware cost
drastically increases. Using routing algorithms is ef�cient, as
long as the number of faults is limited. Otherwise, the latency
may become higher than the acceptable limit, and thus, some
Intellectual Properties (IPs) become unreachable. Therefore,
this solution is less suitable for large NoCs and multiple faults.

Recon�guration replaces a faulty element of the NoC by
using spare resources at different levels [12]. As spare re-
sources can be used only once, these techniques have large
overhead in terms of area and power consumption, while they
can tolerate few faults. Other recon�guration approaches use
default-backup paths to avoid data corruptions and packet re-
transmissions [13]. Although default-backup paths have low
area and power consumption, the latency drastically increases
under multiple faults, due to the routing complexity. In the
worst case, several IPs become unreachable.

Circuit replication, called N-Modular Redundancy (N-MR),
replicates N times, fully or partially, the architecture and votes
the replicated outputs. The most popular approach is Triple
Modular Redundancy (TMR) [4], where a module is replicated
three times. To reduce hardware cost, the voter circuit is
excluded from transistor triplication [14] and the circuit parts,
to be triplicated, are isolated [15]. Multiple faults are masked
if they occur in the same module. However, if more than
one module is affected, the voter cannot correct the output.
The overhead in terms of area and power consumption stays
signi�cantly high, e.g., more than three times for TMR.

Information redundancy inserts additional bits inside mes-
sages using Error-Correcting Codes (ECCs). The most com-
monly used coding scheme for NoC is the Hamming code,
which can detect two faulty bits but can correct only one.
Despite the increase of the bus size of the complete NoC,
Hamming code is ef�cient for correcting single faults [9]. To
increase the number of correctable faulty bits, the message
is encoded on two dimensions [16]. However, using ECCs to
correct more than one faulty bit dramatically increases the area
overhead [17]. As a result, the application of ECC approaches
is limited against multiple faults.

Last but not the least, approximate computing approaches
have been proposed in several research �elds, with a similar
idea of transferring the impact of faults towards LSBs, through
bit-shuf�ing. In telecommunication, interleaving methods
manage burst errors by spreading the errors across several
packets. However, they are limited to serial transmissions [18].
In NoCs, data are forwarded through buses and permanent
faults impact every �it that crosses a faulty bus or router.
Since faults always appear in the same positions in each

�it, the application of interleaving methods is limited in this
context. In memory, bit-shuf�ing methods, calledscrambling,
are used to prevent memories from faults and increase their
lifetime [19].

Contrary to the aforementioned approaches, our work ef�-
ciently addresses the mitigation of multiple permanent faults
for data transferred through the NoC, based on a low overhead
hardware mechanism.

III. PROPOSEDBIT-SHUFFLING TECHNIQUE

This section presents the proposed bit-shuf�ing method,
which tackles the impact of multiple permanent faults on the
data traversing the NoC. This is achieved by re-organizing the
data bits to allocate LSBs on faulty locations.

A. Target domain and assumptions

The proposed approach focuses on multiple permanent
faults that are located in i) the interconnection between routers,
and in ii) the buffers and the crossbar within the routers, as
illustrated by the red lightnings in Fig. 1-(a). In the context
of data transferred on NoCs, multiple permanent faults can
appear as several Single Bit Upsets (SBUs) and Multiple Bit
Upsets (MBUs) [20]. While SBUs are composed by several
Single Event Upsets (SEUs), which affects several bits in the
same �it, MBUs are induced by a single SEU which affects
several adjacent bits of the same �it. With nanoscale tech-
nologies and power scaling, devices become more susceptible
to multiple permanent faults [21]. As buffers and crossbar
are the biggest components of a router, they have higher
probability of accumulating faults due to radiation effects,
manufacturing defects or other intrinsic failures. For the same
reasons, interconnections are often impacted by permanent
faults, usually stuck-at or bridge type faults.

This work does not focus on fault detection. We assume
that the positions of the faults are provided by methods such
as Built-In Self-Test (BIST) techniques [12], which diagnose
faults in interconnections and routers using Test Pattern Gen-
erator (TPG) and Output Response Analyzer (ORA) blocks.
In this techniques, TPGs send test packets through the NoC,
while ORAs analyze the received packets to deduce if faults
occurred between these two blocks, providing their positions
and the fault type. As these techniques are largely studied in
the literature, they are not detailed in this paper. Further details
can be found in [22].

As the objective of the proposed approach is to reduce
the impact of multiple faults, instead of correcting them, the
targeted domains consist of error resilient applications, i.e.
applications which can tolerate errors until a certain level, such
as image processing and machine learning [10].

B. Bit-shuf�ing principle

We consider classic NoC routing messages ofSmsg bits.
Fig. 2 illustrates the organization of such a message into
packets and �its. A message is decomposed intoNP packets
of Spck payload bits, each packet containsNF �its of Sf lit

data bits and includes a header �it for the control of routing.



Fig. 1: Illustration of the bit-shuf�ing technique through an extended original NoC.

Fig. 2: Message formatting into packets, �its and sub-�its.

Symbol De�nition Symbol De�nition

Smsg Message size NP = Smsg
Spck

Number of packets

Spck Payload size NF =
Spck
S f lit

Number of �its

Sf lit Size of a �it NSF =
S f lit
SSF

Number of sub-�its
SSF Size of a sub-�it

TABLE I: Notation summary.

As depicted in Fig. 2, we further decompose each �it into
NSF Sub-Flits (SF) ofSSF bit size to enable the proposed
bit-shuf�ing technique. Table I summarizes the notation.

The proposed method applies shuf�e and de-shuf�e func-
tions that switch, at run-time, two or more SFs within the same
�it, in order to move the impact of errors on LSBs. Fig. 1
illustrates through an example the principles of our approach.
Let's consider �its crossing a faulty router from north to south,
as shows the purple arrow of Fig. 1-(a). For simpli�cation
reasons, the illustration example considers a single buffer, but

the proposed approach is also applicable with virtual channels.
The example focuses on payload �its, while header �its are
discussed in Section III-D2. As depicted in Fig 1-(b), we
considerSf lit = 8 bits and a SF size equal toSSF = 2 .
Therefore, the number of SFs (NSF ) in a �it is equal to
NSF = 4 (SF0 to SF3). When no faults occur, the shuf�e
and de-shuf�e functions are disabled and each �it crosses the
NoC router without modi�cation.

Let consider now that two permanent faults occur in the
input buffer, affecting the MSBs, i.e., bits7 and 6 of all
incoming �its. The right part of the Fig 1-(b) illustrates the
crossing of packets without the proposed bit-shuf�ing method.
The bits7 and6 of the two payload �its are affected, leading to
errors included in the rangef 0; +64; +128; +192g, depending
on the initial value of the affected bits. The left part of the
Fig 1-(b) illustrates the proposed bit-shuf�ing method. The bit-
shuf�ing technique is enabled in the input ports of the router,
before crossing the faulty path. The SFs are re-organised by
placing the LSBs on the faulty positions, i.e.SF0 and SF3

are swapped inside each �it. As a result, the impact of the
permanent faults in terms of absolute error for the payload
part is reduced to the rangef 0; +1 ; +2 ; +3g according to the
bit values of the LSBs. Before the �it leaves the NoC router,
the SFs are brought back in their initial position, and then, the
�it is sent to the output port.

C. Method implementation

1) Hardware architecture:To implement the proposed ap-
proach, a classic NoC router is extended with extra hardware
blocks: Shuf�e (S) and De-shuf�e (D) blocks. The goal of the
shuf�e block is to re-organize the SFs with the objective of
minimizing the impact of the faults. The goal of the De-shuf�e
block is to bring back the initial order of the SFs. To deal
with the targeted faults, the bit-shuf�ing method is applied i)
between two routers to mitigate errors on the interconnection



bus, and ii) between the input and output ports to mitigate
errors inside the router. To achieve that, the aforementioned
paths integrate S and D hardware blocks, as depicted in Fig. 1-
(a).

The S and D blocks have the same hardware architecture
which is presented in Fig. 3. It is composed ofNSF simple
multiplexers (SSF -to-1) and registers, which contain the con-
�guration of the multiplexers. The only difference between S
and D blocks, is the value of the registers that con�gures the
MUXs. These values are named Sregisters and Dregisters
for a S and D block, respectively. Their values are computed
by the IP core associated to the router. It takes as input the
position of the permanent faults, which is the output of BIST
techniques. The BIST is classic, ef�cient, localization and fault
characterization technique, detailed in [12].

2) Shuf�e and Deshuf�e registers computation:The com-
putation of the register values applied to the MUXs of the
shuf�e and deshuf�e blocks is done by the sorting algorithm
presented in Algorithm 1. This algorithm is similar to bubble
sort [23]. Its aim is to compute the bit-shuf�ing con�guration
that minimizes the impact of faults in order to con�gure
the registers that control the multiplexers. The algorithm is
executed on the dedicated IP core of the router based on the
BIST results (position of the faults). This algorithm takes as
input a mask of error position, having the same size as the
databus of the considered NoC. Each bit of this error position
mask de�nes the state of the datapath bit-line: a '0' indicates
that the path of the bit is fault-free and a '1' indicates that the
path of the bit is faulty. For sake of clarity, we organize the
error position mask bits inNSF groups ofSSF bits, which are
namedSubMask in Algorithm 1. In this way, eachSubMask
gives the fault impact value of the associated sub�it. For
example, if we consider a16-bit datapath with4-bit sub�its,
where bits6, 7 and 13 are faulty, we have an error position
mask = [0010, 0000, 1100, 0000] that givesSubMask[0] = 0,
SubMask[1] = 12, SubMask[2] = 0, andSubMask[3] = 2.

In lines1� 5 of the Algorithm 1, the variables and registers
are initialized. Each register is set with the value of its position
(S register = [3 ; 2; 1; 0]), hence the data cross the block
without modi�cation.

In lines 7 � 16, a bubble sort algorithm computes the
values of the deshuf�ing register, according to the input
SubMask[NSF ]. For that, the sort algorithm orders the
SubMask values in a decreasing order and applies the
same ordering on the tableD register . For example, if
SubMask[1] is inferior to SubMask[2], the two values are
swapped, and the valuesD register [1] and D register [2]
are also swapped. When the computation is over, the
deshuf�ing register contains the multiplexer con�guration
D register [NSF ] for the architecture presented in Fig. 3. In
this way, the i-th value of the register indicates which input
sub�it is set into the i-th output sub�it.

Finally, as the hardware architectures of a S and D blocks
are similar, the shuf�ing register is simply computed from the
deshuf�ing one, as shown from lines18 to 20.

Fig. 3: Hardware architecture of shuf�e (S) and deshuf�e (D)
blocks.

Input: SubMask[NSF ]
Output: S register [NSF ]; D register [NSF ]

1: // Variable Initializations
2: reset register (S register )
3: reset register (D register )
4: inversion  T RUE
5: // Deshuf�ing Register Computation
6: for (( i = 0 to NSF � 2) && ( inversion )) do
7: inversion  F ALSE
8: for (j = 0 to NSF � 2 � i ) do
9: if (SubMask[j ] < SubMask [j + 1] ) then

10: swap(SubMask[j ]; SubMask[j + 1])
11: swap(D register [j ]; D register [j + 1])
12: inversion  T RUE
13: end if
14: end for
15: end for
16: // Shuf�ing Register Computation
17: for (i = 0 to NSF � 1) do
18: S register [D register [i ]]  i
19: end for
20: return S register [NSF ]; D register [NSF ]
Algorithm 1: Shuf�ing/deshuf�ing registers update

D. Packet organization

To ef�ciently protect the communication with the proposed
method, the following packet organization has to be consid-
ered. However, as packet organization is always included in
common NoC through the Network-interface (NI), which is
the link between an IP core and a router, the proposed method
does not require extra hardware.

1) Data Organization:The implementation of the proposed
method must take into account the data size (Sdata ) and the �it
size (Sf lit ) to organize the �its inside the Network Interfaces
(NIs) of the NoC. For sake of clarity, we de�ne as Most
Signi�cant Sub�it (MSS) the SF including the MSB of the
�it, and Low Signi�cant Sub�it (LSS) the SF including the
LSB of the �it. Considering different data sizes, three cases,
illustrated in Fig. 4, can occur:

a) Sdata = Sf lit , this is the straightforward case, since the
data are placed inside the �its without any reorganization,
as show in Fig. 4a. The LSBs of the data are placed on the
LSSs, and the MSBs of the data are placed on the MSSs.

b) Sdata < S f lit , more than one data is sent in one �it.



(a) Data equal to �it size (b) Data smaller than �it size (c) Data larger than �it size

Fig. 4: Flit organization illustrations32-bit �it for different data sizes.

Hence, the data are interleaved within the �it, as shown
in Fig. 4b: the MSBs of the data are grouped inside the
MSSs, and the LSBs of the data are placed in the LSSs.

c) Sdata > S f lit , a data is sent on several �its. The LSBs
and MSBs of the data are equally distributed on the �its,
as illustrated in Fig. 4c.

With this organization, the MSS always hold the important
data, compared to the LSSs, making ef�cient the bit-shuf�ing
method, even when the datapath is impacted by multiple
permanent faults.

2) Header Protection:Header �its consist of control data,
and these data contain in particular information for the packet
routing. Hence, errors cannot be tolerated in these �its. To
handle that, the proposed approach is extended as follows: For
NoCs using large data buses (i.e. 64 bits), header �its usually
include several unused bits, which are placed on the LSBs.
When faults occur on the MSBs, inducing faulty routing, our
bit-shuf�ing method transfers the faults on the unused SFs,
ensuring a correct control of the �it. However, header �its with
small data buses (i.e. 16 bits) do not usually include enough
unused bits, and another solution must be included to ensure
correct routing. To address this, the header �it is divided into
two �its, which arti�cially inserts unused bits. Hence, half
of the new header �its can be used to tolerate errors, with a
small impact on the NoC latency, i.e. adding only one �it in
a packet.

IV. EXPERIMENTAL RESULTS

In this section, we compare the behavior of the proposed ap-
proach with state-of-the-art approaches. Section IV-A presents
the evaluation of payload and header protections under multi-
ple faults. Then, the proposed approach is validated with two
benchmarks: i) Sobel �lter and ii) k-mean clustering algorithm
in Section IV-B. Finally, Section IV-C presents the hardware
implementation costs.

A. Packet Level Simulations

1) Payload mitigation:We evaluate the robustness of the
proposed method considering random32-bit payload �its,
which contain32-bit unsigned integer data organized into4-
bit sub�its. As we focus on approximate applications, payload
�its can tolerate data approximation up to a certain level.
Therefore, we used the Mean Square Error (MSE) metric to
quantify the impact of faults, considering each possible fault
position on the payload �it. Fig. 5 compares the results of i)

the proposed approach (shuf�ed), with ii) �its protected with
Hamming code and iii) unprotected �its. In this �gure, we can
observe that for one permanent fault, Hamming code is able
to correct the data which means that the MSE is equal to zero
while the shuf�ing method reduces the MSE from1:9 � 1017

to 2:1 � 101. However, when more than one permanent faults
are present, the Hamming code is not able to correct faulty
bits and can even make false correction. In this case, the MSE
obtained with the Hamming code is approximately equal to
the MSE obtained when no protection is used, while the bit-
shuf�ing method drastically reduces the MSE. For example,
when three permanent faults are present, the MSE is reduced
from around6� 1017 (Hamming and unprotected) to2:2� 105

with bit-shuf�ing.
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Fig. 5: Payload �it accuracy.

2) Header Protection:Regarding the protection of header
transmissions, which cannot tolerate any corruption, we an-
alyze the percentage of correct header transmissions (i.e.
no control bits are faulty) in function of the number of
permanent faults, in Fig. 6. We consider different methods
for this evaluation: i) unduplicated and unprotected (U/U), ii)
unduplicated and with Hamming code (U/H), iii) unduplicated
and shuf�ed (U/S), iv) duplicated and unprotected (D/U), v)
duplicated and with Hamming code (D/H), and vi) duplicated
and shuf�ed (D/S) headers.

Fig. 6a presents the percentage of correct transmissions for
a 64-bit header �it that contains32 control bits, i.e. there is
32 unused bits in the header. In this case, header duplication
is unnecessary until5 faults per header, while the Hamming
code ensures the correct header transmission when only one
fault occurs. In Fig. 6b, a32-bit header �it which contains32



control bits is considered, i.e. there is no unused bits in the
header. In this case, header duplication is necessary to achieve
100%of correct header transmissions up to3 faults against0
fault without header duplication. In both cases, the Hamming
code is able to manage only one fault per header. Furthermore,
we observe that applying shuf�ing to the header �it can assign
unused bits on multiple permanent faulty bits (equal to the
number of unused bits in one header). For large databus, the
header duplication is not required to manage fault(s) with the
bit-shuf�ing technique. However, when a small data bus is
used, header duplication is useful, as shown in Fig. 6b.

Notice that, today's NoC are typically based on large bus
i.e. 64 bits. Hence, the duplication of headers is a solution
that requires to be applied only in speci�c conditions, as the
shuf�ing technique is suf�cient by itself.
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(a) 64-bit �it size
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(b) 32-bit �it size.

Fig. 6: Header �it accuracy.

B. Application Level Evaluations

1) Experimental Setup:For the rest of the experiments,
we consider data exchanges between a main memory and a
core, located in a distance of 2-hops of a large mesh NoC,
as illustrated in Fig.7. A XY routing algorithm is used to
transmit data through the NoC, with32-bit �it size, composed
of 4-bit SFs. Hence, each �it has 8 SFs. The purple arrow
depicts the routing path from memory to core for the load
operation. The blue arrow is the routing path from the core to
the memory for the store operation. The proposed bit-shuf�ing
method is implemented through the S and D blocks to mitigate

permanent faults inside routers and interconnections. The red
�ashes represent faults on the data path, impacting �its. We
consider: i) one3-bit Multiple Cell Upsets (MCUs) permanent
fault on the loading path (bits27, 28 and29) with stuck-at one
fault model, and ii) two2-bit MCUs permanent faults on the
storing path (bits7, 8 and 24, 25) with stuck-at zero fault
model.

Fig. 7: Localisation of faults on the load and the store paths
for the two benchmarks deployed on a part of large mesh NoC.

2) Sobel Filter: For the �rst experiment, we simulate the
execution of a Sobel �lter, used for edge detection in image
processing. Initial and output images are stored in the memory,
shown at the top of Fig. 7. During load operations,8-bit data
(unsigned integer) transit the NoC through the purple path.
During store operations,64-bit data (double precision) transit
the NoC through the blue path. As the �it size of the NoC is
32 bits, data are organized within �its, as described in Section
III-D1.

To evaluate our approach, the Peak Signal-to-Noise Ratio
(PSNR) is computed based on the fault-free reference. We
compare the results of the Sober �lter with the proposed bit-
shuf�ing approach, the Hamming code approach and without
any fault-tolerant technique. Fig. 8a shows the result obtained
without any fault injection, i.e., the fault-free reference. Fig. 8b
shows the result of the Sobel �lter without any fault-tolerant
technique. We observe that the edges intensities are drastically
reduced, due to the stuck-at zero faults occurring at the store
path. Moreover, stuck-at one faults on the load path induce
anomalies in the original image, which are detected by the
gradient computation of Sobel �lter. Hence, noisy edges (not
present in the fault-free reference) appear. According to these
defects, the PSNR metric is equal to13:07. On the contrary,
when the bit-shuf�ing method is applied, the impact of faults



can be signi�cantly reduced, as shown in Fig. 8c. In this case,
the obtained image is very close to the reference image, despite
the existence of faults. Indeed, our method achieves a PSNR
equal to34:58, which represents a gain of a factor of2:5.
Fig. 8d presents the Sobel result obtained when an Hamming
code is applied. We can observe that the obtained result is
worse than the result without any fault-tolerant method. This
result is due to the fact that Hamming code cannot correct
more than one fault and detect more than two faults in the same
�it. Moreover, when multiple faults occur, false correction can
be done which false the result. In this case, the computation
of the PSNR gives no result considering the divergence of the
result compared to the reference.

3) K-Means Clustering Algorithm:For the second experi-
ment, we simulate the K-means clustering algorithm, typically
used in signal processing and data mining, e.g., image classi�-
cation and voice identi�cation. The algorithm's input is a set of
random data to be clustered, by minimizing the square distance
between centroids and their data, through an iterative process.
Experiments are simulated with a C++ testbench, using32-bit
signed �xed-point data with1 bit for the integer part. We use
20 data sets composed of15 centroids and1000sample data
are generated by centroids. The number of iterations for each
data set is limited to150.

To evaluate the results, the MSE of the centroid positions
and the Clustering Error Rate (CER) are computed. Fig. 9
depicts the results for the �rst data set. The fault-free result
is given in Fig. 9a and it is used as reference for MSE and
CER computation. Fig. 9b depicts the obtained output under
faults, without fault-tolerant method. In this case, the K-mean
algorithm cannot perform clusters, due to the square distance
computation, which is totally distorted by the presence of the
permanent faults on the load and store paths. On the contrary,
the proposed bit-shuf�ing method enables a correct clustering,
which is visually very close to the reference, as shown on
Fig. 9c. To further evaluate our approach, we compare the
MSE and CER considering all20 data sets. The bit-shuf�ing
method, under permanent faults, reduces the mean centroid
positions MSE from1:45� 10� 2 to 7:47� 10� 8 and the CER
from 92:83%to 0:09%, compared to the version without fault-
tolerant method. Fig. 9d displays the results obtained when
Hamming code is used. On this �gure, clusters are not visible,
leading to low quality result, as in the case no fault-tolerant
method is used to protect the data. The evaluation of the
metrics gives us a mean centroid position MSE of1:17� 10� 2

and a CER of91:86%.

C. Hardware Implementation Cost

The proposed S and D blocks have been synthesized on
28 nm FDSOI technology through in High Level Synthesis
(HLS) tools of Mentor Graphic by targeting a clock frequency
of 1 GHz. As comparison, we also synthesized an extended
Hamming checker, which is usually used inside NoC routers.
Table II shows the area, power, and slack required for different
�it and SF sizes. We compute slack as the difference between
the critical path and the target clock.

S f lit 16 32 64
SSF 4 8 4 8 16 4 8 16 32

Shuf�ing/De-shuf�ing blocks
Area (µm²) 105:8 77:4 355:0 187:8 147:0 1273:6 596:7 344:2 288:4

Power (mW) 0:103 0:093 0:233 0:205 0:178 0:652 0:435 0:357 0:360
Slack (ns) 0:82 0:81 0:75 0:71 0:72 0:45 0:75 0:72 0:45

Hamming Checker
Area (µm²) 308:9 519:0 1318:0

Power (mW) 0:370 0:663 1:695
Slack (ns) 0:48 0:31 0:15

CONNECT Router [24]
Area (µm²) 21247:8 33441:0 57302:3

Power (mW) 18:522 29:092 50:147
Bit-Shuf�ing overheadI

Area (%) 4:98 3:64 10:61 7:41 4:40 22:23 10:41 6:01 5:03
Power (%) 5:56 5:02 8:01 7:05 6:12 13:00 8:67 7:12% 7:18

Hamming checker overhead
Area (%) 36:84 30:95 33:76

Power (%) 41:35 38:50 44:33

TABLE II: Comparison of hardware implementation.

For 64-bit �its with 8-bit SF, the area of one S or D block is
only 596:66 �m 2 and it consumes0:435mW. We observe that
more area is required for smaller SF, due to the higher number
of multiplexers (a smallerSSF means a higherNSF ). Overall,
if the �it size increases, the area and power for the S and D
blocks also increase, however, they remain small compared to
the Hamming implementation. The Hamming checker requires
more area and power than the proposed technique, e.g., for64-
bits, it requires1; 318:00 �m 2 and consumes1:69 mW, while
it is able to correct only a single error.

Finally, we integrated the proposed method in the state-
of-the-art CONNECT router based on a5-ports router, with
four virtual channels of8-�it depth, and a round-robin arbi-
tration [24]. Table II provides the area and power cost of this
router, considering28 nm FDSOI technology. For64-bits �it,
the router requires57; 302:3 �m 2 area and consumes29 mW.

To apply the proposed bit-shuf�ing method over the CON-
NECT router, we need to include �ve S and �ve D blocks,
one for each port. To compare with Hamming error correction
code, we integrate �ve Hamming checkers in the inputs and
�ve Hamming checkers in the outputs of CONNECT router.
Table II compares the area and power overhead of the proposed
bit-shuf�ing method and the Hamming checker, over the
CONNECT router. From the obtained results, the proposed
method provides a lightweight solution capable of handling
multiple faults. For instance, for64-bit �it with 8-bit SFs,
the area overhead of the proposed approach is only10:41%
and the power overhead8:67%, compared to33:76%area and
44:33% power overhead inserted by the Hamming checkers.

V. CONCLUSION

In this work, a bit-shuf�ing technique for NoC is proposed
to mitigate permanent faults through a re-organization of
the �its which contain data. The proposed approach swaps
sets of bits, called sub�its, transferring faults from MSBs to
LSBs, to maintain the correct value of MSBs. The obtained
results demonstrate the ef�ciency of our technique, even when
multiple MBUs occur, which signi�cantly affect the data. In
addition, it inserts lower area, power and critical path over-
heads than existing state-of-the-art methods, such as Hamming
code. The method also ensures the correct transmission of



(a) Fault-free reference (b) Without bit-shuf�ing (c) With bit-shuf�ing (d) With Hamming code

Fig. 8: Sobel �lter results.
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Fig. 9: K-means clustering results for the �rst data set.

headers for packet forwarding through faulty NoCs, which
keeps the routing algorithm running smoothly.
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