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Abstract
Serverless computing is becoming more and more attrac-
tive for cloud solution architects and developers. This new
computing paradigm relies on Function-as-a-Service (FaaS)
platforms that enable deploying functions without being
concerned with the underlying infrastructure. An impor-
tant challenge in designing FaaS platforms is ensuring the
availability of deployed functions. Existing FaaS platforms
address this challenge principally through retrying function
executions. In this paper, we propose and implement an al-
ternative fault-tolerance approach based on active-standby
failover. Results from an experimental evaluation show that
our approach increases availability and performance com-
pared to the retry-based approach.

CCSConcepts: •Computer systems organization→Avail-
ability.
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1 Introduction
Serverless computing is a new computing paradigm for de-
veloping distributed cloud-based systems. This paradigm is
principally supported by Function-as-a-Service (FaaS) plat-
forms, which allow developers to write and deploy functions
without being concerned with provisioning, configuring, and
managing servers. Developers can thus concentrate on the
logic and business value of their applications while the cloud
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provider takes full responsibility for managing the underly-
ing infrastructure.
One of the main challenges for FaaS providers is ensur-

ing high availability for the deployed functions. Indeed, high
availability and built-in fault tolerance are touted as main fea-
tures of commercial FaaS platforms(e.g.,[2]). All current FaaS
platforms support a basic form of fault-tolerance through
retrying function executions. Our work is the first to propose
applying an alternative fault-tolerance mechanism in FaaS,
namely active-standby failover. Specifically, this paper makes
two contributions. First, it describes a High-Availability (HA)
approach for FaaS based on active standby [7] and its imple-
mentation in an open-source FaaS platform, namely Fission.
Second, it provides a detailed comparison of this approach
with the retry-based approach using experiments on the
Grid’5000 testbed [11].
The paper is organized as follows. Section 2 reviews re-

lated work on fault-tolerance mechanisms in FaaS environ-
ments. Section 3 describes the retry mechanism used in ex-
isting FaaS environments. Section 4 presents our failover
solution. Section 5 describes our experimental setup and Sec-
tion 6 analyses the results of our evaluation. We conclude
and discuss future work in Section 7.

2 Background
The main mechanism for supporting fault tolerance in cur-
rent FaaS platforms is retrying invocations. The major com-
mercial platforms, AWS Lambda [3, 4], Google Cloud Func-
tions [10] and Microsoft Azure Functions [8], automatically
retry invocations after failures or timeouts. Open-source
platforms also apply the retry mechanism. For instance,
OpenFaaS retries asynchronous invocations based on a time-
out [16]. Fission retries function invocations using a router
component [9]. Azure Functions includes support for de-
ploying functions in different regions in an active-active or
active-passive pattern, which provides protection against dis-
aster scenarios [5]. [18] proposes inserting a layer between
commodity FaaS platforms and key-value stores to ensure
atomic visibility of storage updates. The proposed model
also relies on the retry mechanism and adds support for read
atomic isolation.
In this paper, we propose applying the active-standby

high availability (HA) mechanism [6] in FaaS platforms and
compare it to the typical retry mechanism and, in particular,
its implementation in Fission.
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Figure 1. Overview of the Retry mechanism in Fission

3 The Used FaaS Framework
To implement our approach, we selected a popular open
source framework, namely Fission, due to its ease of deploy-
ment and flexibility. Fission uses the typical, retry-based
approach that we intend to compare with our approach. We
assume that functions are idempotent in both approaches.
In the next subsections we describe the architecture and the
fault-tolerance mechanism used in Fission.
3.1 Fission Architecture
Fission [9] is based on Kubernetes’ core abstractions, such
as deployments, pods and services. Deployments are declar-
ative objects that describe a deployed application. Pods are
collections of application containers running in the same ex-
ecution environment. Services are collections of policies for
accessing specific pods with load balancing, naming and dis-
covery [13]. Fission has two main components: an Executor
and a Router. The Executor creates and controls the lifecycle
of function pods. There are two types of Executors: Pool-
Manager and NewDeploy. PoolManager maintains a pool of
generic warm containers to reduce the cold start time [19] of
functions. This executor type does not support auto-scaling.
NewDeploy is based on creating Kubernetes deployments,
services and a Horizontal Pod Autoscaler, which enables au-
toscaling function pods. The Router routes a function call to
the corresponding function pod and retries in case of failures.
Figure 1 illustrates the architecture of Fission and its retry
mechanism to tolerate faults.
3.2 Existing Retry Mechanism in Fission
The retry mechanism used in Fission works as follows (see
Figure 2). First, the Router receives a function call and checks
whether a function service record exists in its cache. If it
doesn’t, it asks the Executor to get a new service for the
function. Once the new record is returned, the Router for-
wards the request to the function pod. If the request fails,
the Router retries to forward the request to the function
service up to a configurable maximum number of retries
with an exponential back-off before giving up [1]. If all the
retries fail or if the received response is a network dial error,
Fission assumes that the pod doesn’t exist anymore. Thus,

Router Executor
function call

function address exists in cache ?
Opt

get new service for function
 function servicecreate

add service address to cache

forward request

 function service

response

[function service doesn’t exist in cache]

Alt [failure] && [retries < maxRetries]

[(failure) & (retries ≥ maxRetries)] OR [network dial error]
remove service cache entry

[other]deliver
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2

Ref Go to  1

Ref Go to  2

retries++

Figure 2. Fault tolerance protocol with the Retry mechanism

the Router removes the service cache entry and requests
the Executor to get a new service for the function. Then, it
retries to forward the request to the new function service
and so on.
4 Proposed Active-Standby Approach
In this section, we present the Active-Standby approach we
propose and its implementation in Fission.
4.1 Active-Standby for FaaS
The Active-Standby solution consists in creating two func-
tion instances. The first instance acts as the active instance
and serves all requests during normal usage. The second
instance is passive or on standby. The active and the standby
instances are connected by a heartbeat mechanism that con-
tinually checks their connectivity and status. If the heartbeat
of one instance isn’t received within a configured amount of
time, an action is triggered depending on the instance’s type.
In case of an unreachable passive instance, another passive
instance is created. In case of an unreachable active instance,
the standby instance is activated to serve incoming requests
and another passive instance is created.
4.2 Implementation in Fission
The implementation of our approach in Fission required us to
use specific components from both Fission and Kubernetes.
First, we use the NewDeploy executor type because this one
supports creating replicas of function pods. Second, we use
the Kubernetes Readiness Probe [15] to specify the state of
pods. For instance, the active pod is marked in ready state
and is therefore ready to receive and serve traffic. The passive
pod is in standby and is marked in not-ready state, so no
traffic is forwarded to it. Third, instead of using the Router to
get the function address, we use the Kubernetes DNS server
"CoreDNS" to get the IP address of the active pod. Finally, in
case of failures the pods are recreated and the NewDeploy
Executor ensures that the two replicas of the function are
running.
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Figure 3. Overview of the Active-Standby mechanism in
Fission
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Figure 4. Fault tolerance protocol with the Active-Standby
mechanism

The implemented Active-Standby mechanism in Fission
works as follows (see Figure 4). The Kubernetes CoreDNS
receives the function call and returns the IP address of the
active pod. The user forwards her request directly to the
active pod. In parallel, both active and standby pods send
and receive regular heartbeats to and from each other for
health checks. The heartbeats are configured using Kuber-
netes Readiness probes. The probes are performed each 1
second (the minimum configurable value). When the active
pod is running, the passive pod fails the readiness probe and
stays running in a not-ready state. If the active pod fails,
the passive pod succeeds the readiness probe and becomes
active. Then, another pod is created to replace the passive
pod. The same action happens if the passive pod crashes for
any reason.
5 Experimental Setup
This section describes the experimental setup for evaluat-
ing the effectiveness of our active-standby approach and
comparing it with the retry mechanism used in Fission.

5.1 Test Environment
We performed our experiments on the Grid’5000 [11] testbed.
We used 5 nodes on the Lyon site to deploy Kubernetes [14]
(version 1.11), Fission AS (Active-Standby) and the original
version of Fission (vanilla version 1.5.0), each node having 2
CPUs Intel Xeon E5-2620 v4, 8 cores/CPU, and 64GBmemory.
We setup 2 additional nodes, one to invoke functions and
another one to inject faults.
5.2 Test Scenarios
We defined two sets of failure scenarios. In the first set, an
application failure is due to a pod failure whereas in the sec-
ond set it is due to a node failure. In the first scenario with
pod failures, we use PowerfulSeal tool [17] to inject faults to
pods. The failure is simulated by killing the function pod at
a random time between 30 s and 60 s from the beginning of
the workload execution. In the second scenario with node
failures, we use a script to crash nodes. The failure is sim-
ulated by killing the node hosting the function instance 30
seconds after the beginning of the workload execution. Each
scenario has been repeated at least 5 times with the deployed
applications in Fission AS and vanilla. The averages of the
measurements are shown in all Figures, Table 1 and Table 2.
5.3 Applications
We used two HTTP-Triggered functions. The first one is Fi-
bonacci, a CPU-intensive function that computes a Fibonacci
sequence. The second one is the Guestbook application, com-
posed of two functions GET and ADD to read and write text
messages, which are stored in a Redis database [12].
5.4 Workload
Theworkload is generatedwith Tsung [20], a high-performance
benchmark framework. In our test, we generated 3000 re-
quests during 5 minutes.
5.5 Metrics
We evaluate our solution using the following metrics:
• Performance: The performance ismeasured using through-
put and response time values. The throughput is the
number of requests served per second, and the re-
sponse time is the time between a user request and the
system response.
• Availability: The availability is measured using the
recovery time, which is the time between the first
reaction to failure and the time when the service is
available again. We also capture the HTTP status code
returned in the response.
• Resource consumption: The resource consumption is
measured as the amount of CPU and memory con-
sumed by nodes during the execution of the workload.

6 Experimental Results and Discussion
We performed three different sets of experiments: (1) Experi-
ments without failures; (2) Experiments with pod failures;
(3) Experiments with node failures.
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(a) Throughput (b) Response Time

Figure 5. Fibonacci without failures

(a) Throughput (b) Response Time

Figure 6. Guestbook application without failures

6.1 Experiments without failures
Figure 5 and Figure 6 present the throughput and average
response time of the Fibonacci and Guestbook applications
deployed with both Fission AS and Fission vanilla without
failures. From Figure 5(a) and Figure 6(a), we can observe
that the throughput for the two functions in both versions
of Fission is quite similar. AS and vanilla are both capable of
processing in average 11 requests per second. Figures 5(b)
and 6(b) show the response times of the two functions in
AS and vanilla. Both functions, Fibonacci and Guestbook,
have a lower response time with Fission AS; the difference is
around 2ms and 16ms respectively. The higher response time
obtained with Fission vanilla is explained by its use of the
Router component to route the request to function instances.
AS performs much better than vanilla in this scenario and
provides fastest response times.
6.2 Experiments with pod failures
Figure 7 and 8 show the throughput, average response times,
and HTTP code response rates of the Fibonacci and Guest-
book applications with Fission AS and vanilla, with pod
failures. From Figures 7(a), 7(b), 8(a) and 8(b) we see that
AS and vanilla react to the failure differently. For instance,
vanilla retries many times the function execution until reach-
ing the maximum number of attempts, then removing the
function instance from the cache and recreating a new one.
This leads to a waste of time and resources as it is essentially
re-executing a request that is likely to fail at the end. All
failed requests return errors, which is represented by codes

503 and 502 in Figure 7(c) and Figure 8(c). However in AS,
just after the failure is detected, the traffic is forwarded to
the standby instance, which explains seeing only successful
responses represented by code 200 in Figure 7(d) and Figure
8(d). The recovery time (RT) is shown in Table 1. We can see
that the RT of Fibonacci and Guestbook functions under AS
is 1.814s and 1.528s, respectively, whereas under vanilla is
2.840s and 3.614s, respectively. These results show that our
approach enables faster recovery than the retry mechanism
used in vanilla.

Table 1. Recovery Time with AS and vanilla in pod failures

Fission Vanilla Fission AS
Finonacci Function 2.840s 1.814s

Guestbook application 3.614s 1.528s

6.3 Experiments with node failure
Figure 9 and 10 show the throughput, average response times,
and HTTP code response rates of Fibonacci and Guestbook
applications with Fission AS and vanilla, with node fail-
ures. In Figure 9(a) and Figure 10(a), we notice peaks in
the throughput for both functions in vanilla. This can be ex-
plained as follows. After a node crash, requests are queued,
creating unbalanced traffic. Thus, the waiting time of queued
requests is increased and consequently their response time,
as can be seen in Figures 9(b) and 10(b). However, in Fission
AS the response rate is almost constant as the requests are
just redirected to the standby instance. The recovery time is
shown in Table 2. We can see that RT of Fibonacci and Guest-
book functions under AS is 6.384s and 6.194s, respectively,
whereas under vanilla is 3min7s and 2min39s, respectively.
We clearly see that AS performs better than vanilla in terms
of availability. Another observation is that vanilla tolerates
better short, transient failures than long-lasting ones, such
as node crashes.
6.4 Resource Consumption Analysis
Figure 11 shows resource consumption (CPU, memory) of Fi-
bonacci and Guestbook for AS and vanilla without and with
failures (pod and node failures). We measured the overall
CPU and memory usage of the 5 nodes during the execution
of the workload in the scenarios without and with pod fail-
ures; we took measures of only 4 nodes in the node failure
scenario (we excluded the consumption of the failed node).
We notice that for both functions the cluster uses more CPU
and memory with AS compared to vanilla in the three sce-
narios. For example, when there are no failures, the overhead
of using AS is up to 15% in CPU and 12% in memory con-
sumption. This is explained by the creation of two instances
of each deployed application in Fission AS.
7 Conclusion and Future Work
In this work, we proposed an Active-Standby failover ap-
proach for FaaS platforms. We implemented this approach
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(a) Throughput (b) Response time (c) HTTP code response rate in
vanilla (d)HTTP code response rate in AS

Figure 7. Fibonacci with pod failures

(a) Throughput (b) Response time (c) HTTP code response rate in
vanilla (d)HTTP code response rate in AS

Figure 8. Guestbook application with pod failures

(a) Throughput (b) Response time (c) HTTP code response rate in
vanilla (d)HTTP code response rate in AS

Figure 9. Fibonacci with node failures

(a) Throughput (b) Response time (c) HTTP code response rate in
vanilla (d)HTTP code response rate in AS

Figure 10. Guestbook application with node failures
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(a) CPU consumption of Fibonacci (b) Memory consumption of Fi-
bonacci

(c) CPU consumption of Guest-
book

(d) Memory consumption of
Guestbook

Figure 11. CPU and memory consumption for Fibonacci and Guestbook application in Fission AS and vanilla without and
with failures (pod and node failure)

Table 2. Recovery Time with AS and vanilla in node failures

Fission Vanilla Fission AS
Finonacci Function 3min7s 6.384s

Guestbook application 2min39s 6.194s

in an open source FaaS framework, called Fission, and we
performed experiments to compare our approach to the retry-
based approach implemented in the default (vanilla) version
of Fission. The experiments showed that AS outperforms
vanilla in terms of response time and availability while in-
curring a limited overhead in resource consumption.

In futurework, wewill investigate additional fault-tolerance
techniques applicable in the FaaS context, such as check-
point/restart, logging, or replication. We will implement and
evaluate these techniques using real-life FaaS workloads. Our
longer term goal is to design a smart, fault-tolerant system
for FaaS that uses these techniques to automatically make the
right trade-off among availability, performance and energy
consumption.
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