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Abstract 
In the growing field of conformable electronics, among the various approaches so far,             
tattoo technology has emerged. Here temporary tattoo paper is adopted as           
unconventional substrate to build up transferable body compliant devices, which          
establish a stable and long-lasting interface with the skin. Tattoo-based devices have            
shown their capabilities in multiple fields, with main application in human health            
biomonitoring. Such approach is advancing the state-of-the-art, overcoming some limits          
of existing technologies, as in the case of skin-contact electrodes and sweat analysis.             
Temporary tattoo has also been adopted in other fields as in organic electronics, within              
the development of organic solar cells and transferable edible transistors. Multiple and            
complementary fabrication approaches on temporary tattoos have been demonstrated,         
spanning from traditional vacuum-based deposition methods to various printing         
technologies. In this review, together with reporting and discussing the main fabrication            
methods and applications of tattoo technology, we describe the main features of the             
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tattoo substrate. New insights on its material composition and properties are given,            
discussing the pros and cons in comparison with other approaches adopted in            
conformable electronics. Together with providing a comprehensive and up to date           
review of advancements in tattoo technology, this review aims to contribute to ain a              
better understanding of the capabilities offered by such low cost and versatile            
substrate. This can help in opening up new research for emerging applications, like in              
the relevant field of sustainable electronics. 
 
1. Introduction 
Recent advancements in materials science and nanotechnology have led to novel           

approaches toward electronic devices, especially as regards their integration and          

interface with the human body. Driven also by the increasing demand for wearables and              

novel biodiagnostic tools, devices have become progressively thinner and softer, with a            

corresponding shift of attention from the so-called flexible electronics to the new            

paradigm of epidermal or tattoo electronics. Indeed, as advanced interfacing with the            

human body is considered, multiple requirements and new challenges come into play.            

These are not always and not optimally addressable by flexible electronics. Among            

others, biocompatibility, safe operation on body and unperceivability to the user are the             

main ones. 

The emerging area of epidermal electronics ​(1) ​refers to conformable devices which are             

able to withstand bending to extremely small radii and stretching without impairment of             

their integrity and functionality. In this way they can adapt to micrometric topography             

features and adhere seamlessly to the target surface (as the human body). Such             

performances are obtained thanks to novel materials, fabrication and transfer strategies,           

reduced thickness and innovative designs. Crucial in this respect is the capability to             

embed the necessary functions (sensing, elaboration, powering, among others) into thin           

film materials with minimal or even no mechanical support by a substrate (to minimize              
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stiffness and weight). Materials are intrinsically endowed with proper means of           

adhesion to target surfaces, as in the case of physical adhesion to skin by Van der                

Waals forces. In such a way a device can be transferred and can conformally adhere to                

complex-shaped surfaces, such as the human skin or other biological tissues.           

Nonetheless, extending the concept of conformable electronics into other scenarios,          

other biological or non-biological target surfaces are considered for some selected           

emerging applications, such as structural health monitoring and crops monitoring.​(2,3) 

A large number of conformable electronics applications has been so far envisioned and             

proposed. Among others, wearable electronics ​(4) and various bio-electronics         

applications.​(1) The latter include both conformable implantable devices and surface          

(skin-mounted) ones with multiple purposes: from monitoring of physical and          

biochemical parameters for personalized healthcare, to localized and controlled         

drug-delivery and human-machine interface.​(5–11) Efforts in these directions comprise         

very different approaches in terms of materials and fabrication strategies. They include            

embedding of rigid, silicon-based micromachined components in stretchable elastomers         

films,​(1,12) as well as organic electronics approaches. Here, organic conductors and           

semiconductors are deposited (sometimes printed) onto thin or ultrathin polymeric films           

for developing various active and passive components, including solar cells, organic           

light emitting diodes (OLEDs), organic field effect transistors (OFETs),​(13) as well as            

various bioelectronic devices.​(14,15) Progresses in wearable sensing on the skin (or           

“lab on skin”) have been summarized in some recent critical reviews.​(16–19)  

In the quest for optimal substrates and transfer strategies for conformable electronics,            

some research groups took in consideration an “unusual” substrate: a water slide decal             
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transfer paper, better known as temporary tattoo (TT) paper. Decal transfer paper is             

indeed a printable material enabling to gently but firmly transfer a drawing onto skin or               

other surfaces, mainly for decorative purposes. TT paper has been in use for decades              

as a gadget or toy for kids, or also as a tool for make-up and special FX in movies. The                    

transfer on skin is very easy: by soaking with water the back part of decal paper and                 

pressing against skin for some seconds the drawing simply detaches from a support             

paper sheet and adheres to the skin.  

TT paper is extremely cheap, mass produced and readily available in large formats.             

Because of its facile manipulation, storage and broad processability, it is easy to             

envision its scaling-up adoption in device fabrication without the use of demanding            

facilities. Besides being a skin-contact benign material, TT has also a low environmental             

footprint, the latter being a main advantage in the forthcoming era of ubiquitous and              

ideally transient electronics.​(20,21) 

Our group has been working on the development of polymeric conformable substrates            

for many years. Ultrathin free-standing nanofilms of conjugated polymers were studied           

(22,23) with various applications in sensing and actuation.​(24,25) In the next few years             

we introduced TT paper as an unconventional substrate for the development of            

conformable electronics for skin-contact purposes.​(26)  

Aims of this paper are to introduce the challenges and opportunities offered by a TT               

paper as a suitable substrate for conformable electronics and to review the main             

strategies which enabled its adoption in the field. The composition, structure and            

properties of decal transfer paper will be described in Section 2, highlighting how these              

features are relevant for developing a skin-mountable and conformable device. In           
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Section 3 materials processing methodologies implemented so far on tattoo paper will            

be reviewed. Section 4 will then review examples of recent literature for several classes              

of electronic components on TT paper, as used into various application domains.            

Section 5 summarizes future prospects and emerging fields of applications of TT            

devices, even beyond skin or the human body. 

 

2. Temporary Tattoo Paper: structure and features 
TT paper is a type of water slide decal. Decals (short from “decalcomania”) were first               

invented in late 1700 and have been in use in transfer printing since more than a                

century for decorative purposes, mainly for pottery ornament on mass scale. This            

technique allows to transfer a thin printed pattern to another surface upon contact.             

Usually heat or water is applied for enabling the transfer. In a water slide decal the                

“transfer” (printed pattern/image to be transferred) is deposited during production onto a            

water soluble sacrificial layer (e.g. dextrose, starch, polyvinyl alcohol (PVA), among           

others), which, in turn, is supported on top of a water resistant paper backing. Adhesive               

layers can be added on top or in between the layered structure to create stronger               

bonding to surfaces or even to increase durability and resistance to wear and abrasion.  



 

Figure 1. The TT paper (a): water slide decal sheet A – schematics of layers in types                 
TT1 and TT2; adhesive sheet B to be laminated on top of A. (b): scanning electron                
microscope (SEM) image of a cross section milled by focused ion beam (FIB) of an               
organic thin film transistor on TT1 paper. The various layers of the substrate (EC,              
starch/dextrin, paper) as well as the Ag electrodes, the EC dielectric and organic             
semiconductor are evidenced (reproduced from ​(27) , with permission by Wiley). (c):            
colorized SEM micrograph (45° tilted view) of a tattoo (from TT1) transferred onto a              
silicone replica of human skin (reproduced from ​(28)​, with permission by Wiley). 
 

TT paper is a decal specifically designed for transfer on skin and it is available on the                 

market since decades in different formats and compositions. DIY TT kits are composed             

of two parts: A) water slide decal sheet, B) adhesive sheet (​figure 1​a). DIY TT can be                 

customized by printing an image, typically with laser or inkjet printers, on top of part A.                
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The adhesive sheet (part B) is usually composed of acrylate glue, which can be safely               

used in skin-contact applications. This adhesive layer is laminated on top of the decal              

sheet (part A), right after the image printing. As regards the composition and structure of               

the decal sheet A, different structures are available by various producers. In our             

experience with testing TT papers from several suppliers, we have identified at least two              

main representative structures,​1 schematized in figure 1a. In a first type (TT1) a thin film               

of ethylcellulose (EC) is acting as the transferable film. Transfer on the skin is possible               

by dissolution of the intermediate sacrificial layer, composed of starch/dextrin. This           

layered structure is well visible in the cross section reported in figure 1b, where TT1 is                

used as a substrate for the fabrication of an OFET for edible electronics.​(27) In the               

second type (TT2) the transferable film is composed of a polyurethane/allyl resin            

composite plus a topmost (PVA) layer; the role of the latter is to improve wettability and                

quality of printing. PVA, being readily soluble in water, is also used as an intermediate               

sacrificial layer. 

Despite the availability of these products in commerce, little or no information has been              

available in literature about their structure (i.e. thickness, surface morphology) and           

properties (elastic modulus, permeability to moisture, to name a few). The reason            

probably being the fact that TT paper represented so far a toy or a DIY tool. Just                 

recently it attracted the attention of scientific/technological investigation for application in           

electronics and wearables. Moreover, even in several cases of scientific publications           

describing tattoo devices, the proper TT structure is often overlooked. TT paper is just              

used as a means for transferring a device. However, an insight in the aforementioned              

1 ​A market available product having TT1 structure is, for example, the Tattoo 2.1 by The                
Magic Touch, UK, while the TT2 structure is proper of tattoo decal DIY kit supplied by                
Silhouette America, Inc, US. 
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features is mandatory to assess the suitability of this unusual substrate for transferable             

conformable devices.  

In ​table 1 the thickness and the roughness of the representative TT1 and TT2 papers               

are reported and compared with those of a medical-grade polyurethane adhesive           

(MPU). The latter is a conformal adhesive adopted in wound dressing and in some              

skin-conformable devices.​(29,30) 

Thickness and roughness are key aspects in selecting a proper substrate for            

conformable electronics. A thin (nm-µm range) substrate allows for the best           

conformability to skin and unperceivability (figure 1c).​(31) Roughness of a substrate can            

play a major role in establishing its suitability to thin film devices patterning. Indeed a               

smooth surface is mandatory in case of thin film deposition, in order to avoid              

non-uniform coverage, pinholes and defects.  
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Figure 2. Structure and features of the transfer film from TT paper, (a-c): AFM              
topography imaging of the film released by TT1 (a), TT2 before (b) and TT2 after water                
treatment, TT2* (c). Height step profiles of different decal TT papers supported onto             
Si-wafers as evidenced in stylus profilometry (d). Estimate by AFM of thickness (e) and              
roughness (f) of TT1 and their variation with thermal treatment. (a-d:adapted from ​(32)             
with permission from TU Graz; e,f adapted from Supporting Info of ​(26) with permission              
from Wiley). 

 

A comparison of AFM topography imaging of the two substrates permits to highlight the              

difference among them (​figure 2​a-c). Not only the range of features differ but also their               

distribution and uniformity. 
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Table 1. Thickness t and roughness Ra of transfer film from TT1, TT2, TT2* and MPU.                
TT2*: film released from TT2 after washing with DI water and removal of topmost PVA               
layer. Thickness as measured by stylus profilometry, roughness as estimated by stylus            
profilometry and AFM imaging.​(32)​ Values are given as average ± standard deviation. 

 
A first remarkable difference among the two types of TT paper is the thickness of the                

transferred film, namely the layer which is detached from the paper support when             

soaked with water. As visible in table 1, the film released by TT1 is the thinnest, having                 

sub-micrometric thickness. TT2 releases a bilayer film of around 4.5 µm overall            

thickness, with around 1.5 µm PU/allyl resin and around 3 µm of PVA. A comparison of                

TT1 and TT2 thickness is provided in figure 2d. A similarly striking difference is              

encountered for roughness (arithmetic average roughness Ra, as estimated at two           

different length scales by profilometry and AFM imaging, table 1), with the TT1 paper              

Transfer Film Material t, nm Ra​a​, nm Ra​b​, nm 

TT1 EC 608 ± 52 51 ± 26 13 ± 3 

TT2 PU/allyl resin + PVA 4400 ± 400 600 ± 250 44 ± 23 

TT2* PU/allyl resin 1460 ± 520 430 ± 100 190 ± 50 

MPU PU + polyacrylate glue 37300 ± 1600 ​c 1800 ± 600 120 ± 50 

a: roughness estimation on raw profiles obtained by stylus profilometry (scan length 0.7 mm) 
b: roughness estimation as obtained by AFM imaging on 10x10 μm​2 scan operating in tapping               
mode.  
c: overall bilayer thickness, of which: PU ~20 μm, polyacrylate glue ~17 μm. 
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providing the least rough substrate. The obtained values of Ra for TT are considered              

suitable for most skin-contact electronic applications.  

As in any mass manufactured product, differences can be encountered in surface            

features of TT paper, ascribable to slight variations in the production process. Despite             

the TT1 thickness was found to be quite homogeneous across sheets and among             

samples of the same batch (see standard deviation of values in table 1) a remarkable               

change in thickness among various batches was found. As an example, an average             

thickness of around 600 nm was found on a batch, while in other batches an average                

thickness of around 400 nm was reported.​(28) Additionally, the surface topography and            

structure of TT1 was found to vary depending on thermal history, as evidenced by AFM               

imaging (figure 2 e, f).​(26) This was due to known thermal effects related to phase               

changes in partially crystalline/amorphous EC. Despite some irreversible changes in          

film structure were observed, the study permitted to assess the feasibility to process the              

material at temperature up to 180°C, which is relevant for processing required in device              

fabrication. To summarize, both TT papers are considerably thinner and smoother, in            

comparison with the MPU reference. 
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Table 2. Comparison of physical features between four classes of substrates typically            
used in the field of conformable electronics.  

Features Silicones ​a PEN ​(4) 
Parylene C 

(33) 
MPU ​b  

Tattoo 

TT1 

(26,28)  
TT2 ​(34) 

Typ. thickness, 

μm 
100 1 ​(4) 2 ​(33) 30 - 55 0.5 1.5 

Young’s Modulus, 

MPa 
0.025 - 2.5 5000 ​c   2750 ​d 8 - 15 1000 200 

Area density, 

mg cm​-2 
 10 0.14​ c   0.26 ​d 3 0.05 0.15 

Permeability 

coefficient 

 (water vapour), P​0 ​,  

g mm m​-2​ d​-1​atm​-1 

~​1 
0.1–4.2 

(35,36) 
 0.08 ​d 33 - 43 440 ​(37) NA 

WVTR ​e​, 

g m​-2​ h​-1 
∼​ 0.4 4 1.7 25 - 60 NA (very high) 

a: Various silicone grades (i.e. Ecoflex, Soft Silicon Adhesive, PDMS) at various Young’s             
moduli (see range provided in table) are used in EES.​(38) For all other features typical values                
for the most widely used PDMS 10:1 prepolymer curing agent ratio are considered. Values              
taken or calculated from ​(38)​, unless otherwise specified. 
b: Data reported for 2 different market available MPU for skin application: Dellstar EU28 #               
(SWM Int., data from ​www.swmintl.com/​) and Fixomull Transparent (BSN Medical Gmbh, data            
from ​www.bsnmedical.com​ and ​(30)​). 
c: ​Goodfellow Polyethylene Naphtalate (PEN) Film properties​, available at ​www.matweb.com 
d: ​SCS Parylene Properties​, Specialty Coating System available at ​https://scscoatings.com 
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e: Water Vapour Transmission Rate @ T = 37°C for a polymer film at typical thickness                
specified in table (i.e. typical use in skin-contact devices). 



 
In ​table 2 some relevant features of materials, commonly used in conformable            

electronics, are compared. Despite a comprehensive and detailed study of all the            

possible substrates for conformable electronics is beyond the scope of this review, table             

2 aims to evidence the challenges and opportunities of a tattoo-based approach, in the              

context of the main approaches reported so far. In particular TT paper is compared with:               

silicones (e.g. PDMS), typically used in epidermal electronics,​(10) PEN and Parylene C,            

chosen in the so-called imperceptible electronics ​(39) and various organic bioelectronics           

applications,​(33)​ and MPU used in some skin-conformable devices.​(29,30) 

TT paper, PEN and Parylene C exhibit a higher (3 to 5 order of magnitude) Young’s                

modulus than PDMS. Indeed TT paper is not an intrinsic soft and stretchable substrate.              

Nevertheless, given its ultralow thickness, it is extremely flexible and thus capable to             

truly adhere as a “second skin”, and  extend together with skin when this is stretched.  

When adhesion on skin is considered further requirements for substrates come into            

play, apart from surface structure and mechanical properties. Researchers just recently           

started to address the previously overlooked problem connected with skin perspiration.           

A relatively thick (tens-hundreds of µm up to around 1 mm, as in many proposed               

epidermal devices) sheet of silicone or of some thermoplastic material represents a tight             

barrier against water vapour transpiration, preventing skin breathability​.​(40) An average          

Transepidermal Water Loss (TEWL) of 4 - 8 g m​-2 h​-1 has been assessed in healthy                

adult subjects,​(41) thus accounting for around 200 - 400 ml/day. An unnatural exchange             

of the transepidermal water can actually impair the long-term or repeated use of             

skin-mounted devices, because of moisture and sweat (containing electrolytes)         

entrapment. This may lead to adverse effects both on end-users and on the device              
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itself. The development of a steady liquid layer can indeed cause skin irritation (e.g.              

redness, itchiness) as well as damage some devices’ components and/or alter its            

functionality, especially in the case of biomonitoring devices. In order to endow            

conformable electronics with skin breathability an important parameter to be considered           

is thus permeability to water vapour, P​0​.​(37) Values of P​0 listed in table 2 permit to                

appreciate how different the vapour exchange is for the various kinds of polymeric             

substrates, with the EC film released by TT1 providing the best permeability and             

PEN/parylene the worst. However, when skin breathability is considered, one should           

take into consideration the actual thickness of the polymer membrane. Thus a relevant             

figure to be considered is the permeability-related Water Vapour Transmission Rate           

(WVTR), given for the adopted films’ thickness. Values of WVTR for the actual polymer              

membranes used in epidermal applications are not often present in literature, thereafter            

when not explicitly reported we calculated them from the P​0 by imposing the typical              

thickness used in application. To assess skin-breathability the WVTR values should be            

compared with free skin normal water exchange with the ambient, quantified by the             

average TEWL. A polymer film acts as a barrier against skin transpiration when WVTR              

< TEWL ~ 5 g m​-2 h​-1 . From values of WVTR reported in table 2 it is possible to assess                     

that only TT and MPU films provide good breathability. PEN and Parylene C substrates,              

despite their very poor permeability but thanks to the adopted reduced thickness, are             

almost at the limit; silicones do not provide sufficient breathability, unless perforation            

and porosity are introduced on purpose, as evidenced in various studies.​(40) Some            

recent improvements in terms of silicone breathability came at the cost of increased             

complexity in fabrication, as the introduction of porosity in the final device assembly.​(38) 
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Stepping apart from skin-mounted conformable sensors, in such applications as          

photovoltaics and optoelectronics the use of polymer substrates impermeable to water           

vapour is mandatory. Ultralow values of WVTR are indeed desired in many thin film              

devices where encapsulation is required to protect the active materials against           

moisture. The integration of such devices onto skin-mounted conformable electronics,          

without impairing skin breathability, is a challenging issue not yet solved, with none of              

the proposed approaches.  

As a last remark, every material layer of a skin-worn device contributes to its overall               

WVTR. Layers of semiconductors or metals act as a tight barrier against water             

transpiration, given their low permeability. Thus any skin-contact device will have a            

lower WVTR than just the substrate. In absence of actual experimental data some             

calculation and modeling for multilayered membranes can provide at least a rough idea             

and directions for future design of skin-breathable devices.​2​ ​(37) 

Overall, the TT paper features reported so far highlight its main features:            

ultra-conformability and imperceptibility on skin. Mostly due to its low thickness, TT has             

the ability to establish an intimate interface with the target surfaces (figure 1b), allowing              

for excellent breathability. Moreover, owing to its layered structure, TT paper is easy to              

handle. Thus it is a convenient substrate to build-up devices. The manipulation of             

ultrathin free-standing films can pose critical challenges, as any researcher working on            

thin-film technology knows. Indeed, they tend to wrap to any surface. This ability is              

actually what is exploited from their structure, but it represents at the same time a               

remarkable drawback in terms of handleability. Taking these two considerations          

together, the most relevant advantage of tattoo paper, in comparison with other            

2 https://www.stevenabbott.co.uk/practical-coatings/permeability.php 
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substrates adopted in biomonitoring applications, is the possibility to easily fabricate           

reliable body-compliant and long-lasting devices. The TTs’ applications, from the more           

explored human biomonitoring to the recent edible electronics, will be reviewed in detail             

in Section 4. 

Other unconventional approaches for transferrable electronics can be found in literature,           

as in the case of water transfer printing (WTP) technology.​(42) Here ultrathin patterns             

can be fabricated on top of a water soluble substrate (i.e. poly(vinyl alcohol) PVA) which               

get dissolved once the film is released in water. The pattern is then transferred on 3D                

surfaces through a dipping process. In comparison with the tattoo approach, here the             

final electronics will have the mechanical features of the sole active material. In WTP              

the incorporation of serpentines allowed to preserve, after the transfer in water, the             

electrically conductive pathways without mechanical failure. On the other hand the           

transferring process in WTP technology is more complex than in tattoo and it requires              

the help of rigid guides. Thereafter a proper large area coverage with up-scaling             

capabilities still needs to be proven. Moreover, differently from TT, WTP requires            

dipping in water of the target object/surface. Another example of unconventional           

transferable electronics exploits transfer printing through isolated gecko setal         

arrays.​(43) The precise release of microdevices onto unconventional substrates, as a           

plant, is here performed exploiting the natural geko on/off adhesion property. As in the              

case of tattoo substrate no glue or high pressure and temperature processes are             

involved, avoiding any damage to the microdevices, substrates or interfaces.​(44) A           

variety of other contact or non-contact transfer printing techniques have been proposed            

and demonstrated for the controllable placement of rigid electronic components onto           
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uneven or unconventional substrates for manufacturing of flexible and stretchable          

devices.​(44,45) ​Another unconventional substrate is silk, adopted passively in         

biointegrated conformal and biodegradable/bioresorbable electronics. Silk can also be         

exploited as active elements for flexible electronics, including transistors and memristive           

devices, as well as conformal biosensors. Silk offers, besides biocompatibility, the           

advantage of a sustainable production, that is extremely demanded in this green era.             

Nevertheless fundamental challenges need to be addressed to enable the development           

of silk-based electronics, as in silk fibroin solution’s processability and in           

microfabrication techniques​(46)​. 

Depending on application other properties of TT might be of interest, such as             

transparency for optoelectronic purposes (solar cells, light detection or communication).          

Whereas TT1, in our experience, showed more or less complete transmittance (>98 %)             

in the wavelength range from 350 nm to 900 nm, TT2 transmittance seems to depend               

on the topmost PVA layer, varying from 40 % to 90 % transmittance. A transparent               

substrate, together with applications in optoelectronics, would allow the use of optically            

unperceivable films being  suitable for applications in commonly visible areas e.g. face. 

A note about drawbacks in using TT substrates has to be made here. Besides not being                

an intrinsic flexible substrate, TT paper shows a limit in processability for device             

fabrication. Its layered structure offers indeed only one face to patterning, which            

prevents the possibility to develop multi-level circuits with via-holes interconnections.          

Such structural limitation asks more effort at the design level both generally for the              

arrangement of the device onto one plane and at the level of the external connection.               

The development of a stable and reliable external connection in conformable electronics            
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is commonly an issue. This aspect is especially challenging when TT is the substrate as               

the interconnection has to exit the tattoo, without causing a signal loss, and it has to                

interface a reader, which is typically thicker (at least in the mm-cm range), on the same                

plane (at the skin interface).  

 

3. Fabrication methods and processing for tattoo-based       
devices 

Key features of skin-conformable and transferable electronics are determined by the           
balance between skin-like mechanical properties of the carrier while maintaining          

sufficient electrical conductivity of functional components.​(47) Thus, it is important to be            

able to design and fabricate such devices using the materials and methods that could              
provide and combine these two factors. Tattoo-based devices have been fabricated with            

multiple methods, each offering different possibilities. There are two principal          
approaches for fabrication: vacuum and non-vacuum (solution based) techniques.         

Vacuum relying methods originate from physical or chemical processes at reduced           

pressure and usually employ materials deposition via gaseous phase. Thin films and            
microstructures produced by vacuum methods can have high crystallinity and          

homogeneity, low surface roughness. The core nature of this family of methods lies in              
interaction on atomic and molecular level which allows for convenient control of the             

thickness of the layers. However limited choice of deposited materials and requirement            

of vacuum (typically high or ultrahigh) vastly increase the cost, scalability and versatility             
of processing. Therefore a vacuum-based approach is often implemented as a           

supplement to non-vacuum based technologies. This method family produces thin films           
from materials in a form of colloidal solutions – inks, sols, gels, pastes or emulsions.               

This approach is easy-scalable and can be performed at ambient conditions. Since the             

key material is dispersed in a solution medium, it is important to carefully choose the               
solvent. Some solvents could negatively affect the transferability of TT. While water is             

usually a safe medium, usage of organic solvents, for instance in the case of EC in TT1                 
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paper, like tetrahydrofuran, chloroform, ethanol, toluene and ethyl acetate should be           
chosen carefully.​(48)  

One of the most common techniques is screen printing, especially for printed            
electronics,​(49,50) sensors,​(51,52) and microfluidics.​(53) In contrast to others        

non-vacuum deposition methods the physics of the process is very simple. It is a cheap               

and scalable process which relies on the transfer of material onto a substrate. Desired              
material in a form of highly viscous ink (500-10000 cP) is delivered through a stretched               

mask with a fine mesh in a moment of contact with a substrate induced by applied                
pressure (​figure 3​a).  
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Figure 3. Fabrication processes on TT. (a): screen printing process (picture reproduced            
from ​(52) with permission from Elsevier). (b): Schematics of the screen printing process             
for electrochemical device fabrication (reproduced from ​(54) with permission by Royal           
Society of Chemistry). (c): schematic view of TT multielectrode array fabrication by            
inkjet printing and sputtering (reproduced from ​(28) with permission by Wiley). (d):            
cut-and-paste fabrication process of “e-tattoo” (reproduced from ​(55) with permission by           
NPJ). 

 

The first example of screen printed tattoo-based device was an electrochemical sensor            

proposed in 2012 by Wang’s group.​(54) Fabrication procedure included subsequent          

printing of working, reference and counter electrodes (figure 3b). Working and counter            

electrodes were usually made of carbon inks, while for the reference electrode Ag/AgCl             

inks were used. Further, a thin insulating layer was added to facilitate the release of the                

tattoo prior to the deposition of printed electrodes.​(56) Screen printing of           

electrochemical devices is attractive owing to the simplicity of the technology and to the              
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ease of customization. Sensitivity and selectivity of the sensors can be adjusted by the              

addition of supplementary electrodes and by working electrode functionalization. Drop          

casting of Nafion​TM and electroplating of bismuth film for trace metal detection,​(57) or             

deposition of Prussian blue for monitoring of ethanol or glucose in sweat have been              

proved.​(58,59) In later works the reference electrode performance was improved by           

using composite mixture of Ag/AgCl ink with carbon fibers or by adding NaCl/KCl             

saturated gel layer, to reinforce mechanical stability and to enhance the           

conductivity.​(60) Another example of screen printed tattoo-based electrochemical        

devices are biofuel cells and batteries.​(61) In this case negative and positive printed             

carbon electrodes are functionalized by electrodepositing of metals from their salt           

solutions.​(62) 

Screen printed tattoo-based films have also been used to overcome limitations in            

electronic components assembly linked to traditional lamination and direct printing          

methodologies. Piva et al. adopted a printed PEDOT:PSS on TT as a charge selective              

electrode for photovoltaic cell.​(63) The electrode can be directly transferred onto the            

developed organic solar cell just by wetting the support paper. Such process eliminates             

the need in surface treatment and the use of ink additives, which are often harmful for                

the other active layers, while maintaining good conductivity (R​sheet ​= 170 Ω) and power              

conversion efficiency (up to 7 %).  

Screen printing on TT is also widely used for fabrication of sensors for             

electrophysiological monitoring. Recently, Hanein’s group demonstrated screen printed        

conductive carbon electrodes with plasma polymerized 3,4-ethylenedioxythiophene       

(pPEDOT) on TT for surface electromyography recordings.​(64) The electrodes design          
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has been lately improved by the use of a silver ink for the feed lines, while the carbon                  

ink was adopted only for the skin-contact sites.​(65) In another work,​(66) the silver             

elastomeric tattoo plus the adhesive porous layer (ca. 36 μm thick) was compared with              

a screen-printed silver ink tattoo (ca. 11 μm thick) providing increased yield strain (ca.              

8% vs. 4%) and lower Young modulus (ca. 0.03 MPa vs. 0.27 MPa).  

Screen printing is a powerful, simple, highly scalable method for the deposition of             

functional layers. However, it has some drawbacks related to the development of            

conformable electronics, mainlythe need of highly viscous inks, typically more than           

several thousands of cP. The high ink viscosity has two main consequences. First,             

polymer binders, organic solvents, and other additives have to be added to the ink to               

reach the optimal texture, limiting the content of the target component and inhibiting its              

key electrical, optical and mechanical properties. Second, the thickness of the printed            

layers depends on the nature of the used inks, mainly from the dimensions of the               

dispersed phase which are usually in the order of several micrometers. Screen printing             

is a contact manufacturing process that requires the use of a mask, which is usually               

expensive by itself and causes waste of material. Another drawback of this contact             

printing method, related to the need of a master, is the relatively poor lateral resolution,               

mostly limited by the mask mesh size. In some extreme cases, with a combination of               

the right screen material, mesh size, correct exposure of the emulsion, optimal surface             

energy, and suitable inks it is possible to reach the individual feature size as low as                

40-60 μm, while in general cases it is 100-500 μm.​(67,68) 

A more advanced printing technology is inkjet printing, which is based on digital and              

non-contact transfer of material in a form of colloid onto a substrate. In comparison to               
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screen printing, inkjet does not require a physically patterned mask for printing and             

allows producing more complex features with resolution of down to 10 μm and             

submicrometer thickness.​(69) Inkjet printing can be effectively combined with other          

patterning technologies. Zucca et al. firstly implemented inkjet printing along with           

spin-coating as a supplemental fabrication method.​(26) Spin coated PEDOT:PSS films          

were patterned into electrodes by inkjet printing a sodium hypochlorite (NaClO) solution.            

NaClO acts as an overoxidizing agent which causes irreversible breaking of conjugation            

in PEDOT. Local treatment of thin PEDOT:PSS film leads to formation of large area              

electrodes separated by insulating borders. Hanein’s group also used inkjet printing of            

PEDOT inks for coating of screen-printed silver/carbon electrodes observing a reduced           

skin-contact impedance.​(70) Inkjet printing could be successfully employed not only as           

an assistive processing step, but also as a direct additive approach for thin film              

deposition. Ferrari et al. demonstrated fully printed PEDOT:PSS multielectrode arrays          

for electrophysiological monitoring.​(28) Vacuum sputtering of gold was also here          

adopted to create thin interconnections between printed PEDOT:PSS electrodes and          

connection pads for external measurement devices (figure 3c). Bonacchini et al. inkjet            

printed all components of edible organic field effect transistors directly on untreated            

commercial tattoo paper.​(27) After each printing step the thermal postprocessing at 125            

℃ was applied for solvent removal and sintering of AgNP inks. 

Tavakoli et al.​(71) showed a non-conventional approach of conductive traces fabrication           

using printed silver nanoparticles (AgNP) ink covered with gallium-indium eutectic          

solution (EGaIn). The AgNP circuit was inkjet printed, while a thin layer of EGaIn was               

drop casted on top, filling the gaps between nanoparticles. In that way traces with              
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improved conductivity and more tolerant to tensile strain were produced. Excess of            

EGaIn was removed by a weak solution of acetic acid acting as a reducing agent and                

rinsed with water afterwards. For mechanical protection final circuits were encapsulated           

with a PDMS film. In further work by the same group laser printing was used for circuits                 

templating, letting toner also be the wetting layer for silver epoxy paste which adheres              

only to the printed toner part.​(72) EGaIn was deposited on top of wet silver              

nanoparticles resulting in a semisolid layer which exhibited high electrical conductivity           

and low electromechanical coupling.  

A different approach that does not entail direct patterning of materials, has also been              

reported. Wet transfer, dry patterning strategy” for graphene electronic tattoo (GET)           

fabrication was proposed.​(73) The so called “cut-and-paste” method implemented         

chemical vapor deposition of graphene on a Cu substrate on top of which             

polymethylmethacrylate (PMMA) was spin-coated. Cu was etched leaving graphene         

embedded into soft thin (≅ 400 nm) PMMA matrix which was then transferred onto TT               

paper. PMMA/Graphene layer was patterned by cutting with a mechanical plotter           

allowing to peel off excess area. Same group has also shown alternative approach of              

tattoo-based electronics by sequential thermal evaporation of Cr and Au on 1.4 μm PET              

film laminated on slightly wet tattoo paper.​(55) Figure 3d displays fabricated electrodes            

with open-mesh serpentine ribbon shape which helped sustain mechanical deformation          

at large strain. 
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4. Applications 

4.1 Human Biomonitoring 

Tattoo-based devices find their main application in non-invasive human biomonitoring.          

The possibility to pattern functional materials onto tattoo paper has been investigated in             

the last 10 years, with the most recent scenario in imperceptible wearables            

development. Seamless skin-conformable devices will be able to improve the user           

experience while providing continuous high-quality health data for remote biomonitoring. 



 

Figure 4. Tattoo-based human biomonitoring. (a): wireless fEMG recordings. In the           
upper part (real-time recording and training boxes) the independent component analysis           
(ICA) maps, where red color indicates highest muscle activation. Independent          
component (IC) maps were calculated for EMG segments I (1.3 s), II (3 s), VII (1.8 s)                 
and VIII (1 s) (picture reproduced and adapted from ​(74) with permission from Springer              
Nature). (b,c): temporary tattoo electrodes (TTEs) in clinical electro- and          
magneto-encephalography. (b): the power spectral density of EEG recordings         
performed with TTEs in comparison with standard Ag/AgCl electrodes. (c):          
schematization of EEG and MEG recordings with the MEG map showing no            
interferences of TTEs electrodes and the contemporary EEG-MEG signal acquisitions          
(b,c adapted from ​(34) with permission from NPJ). (d): GET device in the hydration (H.               
sensing) and skin temperature (T. sensing) assessment in comparison with commercial           
sensing devices (reproduced from ​(73) with permission by American Chemical Society).           
(e): tattoo-based electrochemical sensing for a non-invasive glucose monitoring. The          
electrodes design, the skin-transferred device and the operation mechanism combining          
reverse iontophoretic extraction of interstitial glucose and an enzyme-based         
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amperometric biosensor (reproduced from ​(58) with permission by American Chemical          
Society). 
 
Among various biosensing applications, biopotential monitoring is one of the most           

investigated. Surface electrophysiology recordings indeed represent essential tools for         

basic research, diagnostic and monitoring purposes in clinics, or in sport science as well              

as in neural engineering. These recordings include signals acquisition techniques like           

electroencephalography (EEG), electromyography (EMG), electrocardiography (ECG).      

Non-invasive interfacing with the body for biosignal acquisition is the preferred           

approach, as accomplished by means of dedicated skin-contact electrodes.​(75) Dry          

(metal) or wet (gelled Ag/AgCl) electrodes are typically used.​(76) Ag/AgCl electrodes           

are today the gold standard owing to their high signal quality. The main drawbacks of               

state of art skin-contact electrodes are related to their intrinsic bulkiness, weight, lack of              

compliance and obtrusiveness when worn on skin, among others. Additionally, wet           

Ag/Agcl electrodes suffer from gel drying out in about 6-8 hours, impairing their             

continuous or long term use. In contrast, tattoo based electrodes have been presented             

that can overcome the aforementioned limitations. As recently demonstrated,         

biopotential sensing enabled by tattoo-based sensors can produce the best          

signal-to-noise ratio (SNR), in comparison with other soft and stretchable          

electrodes.​(77) These results have been attributed to a larger contact area developed            

by the tattoo electrodes, with respect to the other stretchable sensors, owing to their              

conformal contact . Tattoo electrodes (based on TT1 paper) for the recording of             

biopotentials have been firstly reported in 2015 by Zucca et. al who demonstrated the              

acquisition of surface electromyography (sEMG) and used it for the myographic control            

a robot arm prosthesis.​(78) A thin spin coated or inkjet printed film of the conducting               
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polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was      

used as electrode. With just around 600 nm of overall thickness these tattoo electrodes              

represented the thinnest skin-contact electrodes until then. Moreover, thanks to the           

excellent conformability, adhesion on skin was solely provided by means of VdW forces,             

without the use of any glue.  

Following that first report, the fabrication process and the reliability of temporary tattoo             

electrodes (TTEs) have been improved and single as well as multielectrodes arrays            

(MEAs) have been developed for the recording of various biosignals.​(28,34) TTEs           

long-term recording capability has been assessed over more than 48h. ECG and EMG             

signals were recorded from diverse anatomical locations showing the benefits of these            

ultraconformable electrodes also in the field of facial EMG (fEMG).​(28) This is quite             

relevant since the lack of an optimal electrode is limiting the growing of fEMG and its                

applications in multiple areas as video gaming, lie detection, neurological diseases           

evaluation and monitoring of facial motion disorders. Indeed, bulky and cumbersome           

Ag/AgCl electrodes are not suitable to this purpose, as they impair the user’s natural              

movement. 

Additionally, growing of facial hair through TTE has been demonstrated without           

impairment of functionality,​(28) which opens up interesting and unprecedented         

opportunities in long term monitoring in body locations densely covered by hair (e.g.             

shaved scalp).  

Usage of TTEs on skin for multiple days evidenced excellent breathability with no             

adverse side effects as itchiness, redness or accumulation of epidermal perspiration, as            

shown in other cases. 
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Tattoo electrodes for fEMG (based on a commercial TT paper, by Papilio, having a              

structure similar to TT1 but releasing a thicker film) have also been developed for the               

recording of freely behaving humans.​(74) Here, fEMG electrodes were adopted, in           

wired and wireless mode, to detect the three muscles involved in different smiles (the              

orbicularis oculi​, the ​zygomaticus major​, and the ​levator labii superioris muscles). With            

the wireless setup, coupled with an independent component analysis (ICA) algorithm,           

the activation of the three muscles was identified in face-to-face interactions, in a             

natural work environment (​figure 4a​). Notably, in this case the overall electrode            

thickness was ~70 μm, thus preventing a conformal contact with the complex texture of              

skin, characterised by 10-100 μm thick valleys and ridges. Nevertheless, the device            

features (e.g. the dry electrodes patterned on the DIY TT kit and the ICA algorithms)               

enables minimal mechanical artifacts and high-spatial resolution with electrodes         

crosstalk-free mapping, that are not possible today in clinical practice with standard            

electrodes. On the same strategy fEMG tattoo electrodes arrays were proved to achieve             

muscle localization, targeting anatomically distant muscles on the lower and upper part            

of the face.​(70) Subject-specific muscle mapping, for both voluntary and spontaneous           

smiling, was also achieved with an hemifacial 16 electrodes array, showing an            

automated and objective assessment of normal and abnormal smiling with applications           

in neuropsychological diagnosis as well as in facial plastic surgery.​(79) ECG and EEG             

recordings, performed using GET sensor fabricated with “cut-and-paste” method, were          

proved with comparable performances with respect to gold standard gel electrodes.​(73)           

In addition to electrophysiological measurements, the GET was also able to measure            
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skin temperature and hydration (figure 4d). Lately GET electrodes have also been            

adopted to acquire electrooculography (EOG) signals for human-robot interfaces.​(80)  

Among biopotential monitoring, the EEG recording is the current frontier and the most             

critical to be performed with new conformable electrodes. This is mainly because of             

EEG small signal amplitude and the low frequencies content. EEG signals range from             

0.5 to 100 μV in amplitude, which is about 100 times lower than ECG signals, with                

frequency content from 0.1 to 100 Hz. Moreover, there is the need to develop long               

lasting devices in order to enable long-term and continuous brain monitoring, especially            

with application in the neurocognitive field (e.g. epilepsy) and in neuroprosthetics. The            

development of conformable and unperceivable EEG electrodes can have         

groundbreaking consequences, as the use of brain neural computer interfaces (BNCIs)           

in daily life scenarios (as described in ​(81)​) could get more realistic. 

EEG recordings have been demonstrated and characterised by means of TTEs (based            

on TT2* paper) in a clinical monitoring set-up (figure 4b,c). Full compatibility with             

complementary instrumentation adopted for neurocognitive evaluations, as the        

magnetoencephalography (MEG), was proved for the first time with dry tattoo           

electrodes.​(34)  

A different example of tattoo sensing platform for skin physiology monitoring is based             

on screen-printed elastomeric silver electrodes plus a porous adhesive layer.​(66) The           

elastomeric nature of these electrodes and the porous layer were here adopted to             

develop an improved mechanical contact with the skin, in terms of strain and adhesion.              

ECG tattoo electrodes have also been developed with a capacitive coupling (e.g. not in              

direct contact), using a top adhesive layer and proving their usability up to five days.​(82)  
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The most recent advance in tattoo-based wearables proposes a battery-free platform,           

with a wireless energy harvesting system, for the recording of human ECG.​(83) The             

platform is composed of a tattoo-based unit built on TT2 paper and an ECG reader. The                

tattoo unit (thickness from 7 to 105 μm, depending on printing strategy – inkjet or screen                

printing – without the insulating plastic covering) is produced by printing a stretchable             

AgInGa circuit and it is composed of two electrodes for electrophysiological recording            

and a coil for energy harvesting. The reusable ECG circuit, able to acquire and transmit               

the heart rate, is composed of a Bluetooth modulus and a single-channel integrated             

biopotential chip. The platform has been tested on one healthy volunteer demonstrating            

“data-on-demand” transmission of the heart beat rate. Excellent SNR was proved,           

thanks to the bi-phasic AgInGa conductor. Future directions will investigate the           

biocompatibility of the active material, the EGaIn liquid metal, that still needs to be fully               

proved and the capability of continuous monitoring.  

4.2 Electrochemical biosensing 

While the development of imperceptible wearables for electrophysiology is the most           

contemporary scenario, the first application of tattoo paper in human monitoring has            

been in electrochemical sensing, as pioneered by Wang’s group​(54)​. They exploited the            

capability of TT to develop an intimate contact with the skin to have direct access to                

chemical constituents in the sweat for real-time health and fitness monitoring. From an             

analytical point of view, one of the major barriers to monitoring the concentration of ions               

in sweat lies in the sampling step (e.g. Macroduct​Ⓡ ​sweat collection systems for sodium              

estimation). Many different TT electrochemical sensors have been demonstrated         

embedding a working, a reference and a counter (when needed) electrode. In the case              
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of lactate monitoring the amperometric biosensor exploited an enzymatic mediator onto           

the working electrode,​(84) and sweat lactate analysis was successfully demonstrated          

during exercise. With the same strategy a stripping-voltammetric Zn detection has been            

proved for determination of trace metals in sweat.​(57) Monitoring of pH was also             

proved, by means of ion-selective electrodes (ISEs), on multiple locations of the human             

body. The potentiometric sensors, evaluated during exercise, showed stable signals          

even under profuse perspiration.​(85) With a similar approach ammonium has been           

monitored, using an ammonium-selective polymeric membrane, and a polyvinyl butyral          

(PVB) solid-state reference membrane was proved for the first time in a wearable             

device.​(56) The same group further presented a tattoo-based potentiometric sodium          

sensor with Bluetooth signal transmission.​(86) Thereafter, an epidermal glucose         

monitoring device has been developed which combines both extraction and sensing           

operations. The device couples reverse iontophoretic operation and an amperometric          

biosensor (figure 4e). It has two compartments, an anodic and a cathodic one, between              

which a small current is applied in order to extract (on the cathode) the skin interstitial                

fluid (ISF) containing glucose. Through the cathode working electrode, modified with the            

glucose oxidase (GOx) enzyme, micromolar levels of glucose were recorded, also in the             

presence of other common interfering chemical species, demonstrating high selectivity          

and sensitivity.​(58) With the same approach, a wireless alcohol monitoring platform has            

been developed. Here iontophoresis interests transdermal delivery of pilocarpine to          

induce sweat and the working electrode is functionalized with an alcohol-oxidase           

enzyme.​(59) Subsequently, simultaneous sampling and analysis of the two biofluids is           

demonstrated. The concept is realized through sweat stimulation (via transdermal          
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pilocarpine) at anode, alongside extraction of ISF at cathode.​(87) On a similar concept a              

wearable for chemical-electrophysiological sensing has also been reported, where         

lactate and bipolar ECG were measured simultaneously, with negligible cross-talk,          

enabling a new class of hybrid sensing devices.​(88) Finally, ultrasound transdermal           

microballistic delivery, based on microporous membranes containing cargo-loaded        

“microcannons”, has been reported with possible application in penetrative needle-free          

drug delivery for therapeutics and skin care.​(89)  

 

Figure 5. Tattoo-based electronics, beyond skin applications. (a) Schematics of a tattoo            
biofuel cell, functionalized with lactate oxidase (LOx), to harvest biochemical energy           
from human perspiration. (b) Power density generated and recorded with the biofuel cell             
from human sweat in real-life scenario. Repeated on-skin measurements with a single            
biofuel cell: I) first measurement, II) measurement after 2 h (a,b reproduced from ​(90)              
with permission by Wiley). (c) A tattoo-based charge selective electrode for organic            
indoor photovoltaics. The photovoltaics minimodule (active area 6 cm​2​) coupled with a            
backup capacitor powering a temperature–humidity sensor and an LCD display in           
indoor conditions (≈280 lux). (d) I–V curves of the photovoltaics minimodule measured            
at 300, 500, and 1000 lux (c,d reproduced from ​(63) with permission by Wiley). (e)               
Tattoo-based edible electronics transferred onto a capsule and a strawberry. (f) The            
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voltage transfer curve (VTC) and gain curve of a tattoo complementary inverter based             
on P3HT:PS and P(NDI2OD-2T) organic semiconductors, acquired before (black) and          
after (blue) transfer on a pharmaceutical capsule (e,f reproduced from ​(27) with            
permission by Wiley). 
 

In all these tattoo biosensors extensive in-vitro characterization has been performed           

revealing in most cases a near-Nernstian trend response, with fast and reversible            

reactions between the sensor and the analyte solution. Particular attention has been            

also devoted to the mechanical characterization, proving that such electrochemical TT           

sensors can endure repetitive deformations and mechanical strains onto different          

body-area both during exercise and normal daily activity. Notably, in the case of             

potentiometric sensors, the tattoos functionality has been maintained even when minor           

cracks were observed in the electrodes. This is due to the fact that potentiometric              

response is independent of electrode area, in contrast to voltammetric and           

amperometric measurements.​(85) 

4.3 ​On-skin energy harvesting and batteries 

Tattoo paper has been also adopted as the substrate for the fabrication of wearable              

powering modules. An enzymatic biofuel cell (BFC) was developed that can harvest            

energy from lactate, a metabolite secreted on skin during perspiration.​(90) The BFC            

operation was based on the oxidation of sweat lactate and the reduction of oxygen at               

the anodic and cathodic compartments (​figure 5​a). The relatively low and variable            

power output (from 5 to 70 μW cm​−2 depending on individuals different fitness levels)            

indicates that more efforts are still required in the power generation and for the              
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integration of energy storage components, to propel BFC as a new paradigm within             

tattoo electronics.​(90) 

On the other hand, a Ag-Zn tattoo battery has been developed and used to power a                

LED when worn on skin. The tattoo battery displayed limited cycling capabilities            

(charge–discharging efficiency) and capacity losses, imputed to the fabrication process,          

including electrode architecture and types of electrolytes. Nevertheless in the route of            

thin-film batteries Ag-Zn cells provide an attractive alternative to Li-ion batteries           

because of the extensive global reserves of Zn and because they are safer (Ag–Zn cells               

use water-based electrolytes, unlike Li-ion batteries rely on hazardous nonaqueous          

solvents).​(62)  

4.4 Beyond skin applications 

A more exotic application of tattoo paper has been proposed by Piva et. al. for the                

fabrication of organic indoor photovoltaics (figure 5b).​(63) The idea was to use the             

tattoo paper as a transferable and transparent carrier of the charge selective electrode.             

A PEDOT:PSS layer was screen-printed onto the tattoo paper and then directly            

transferred onto the photoactive layer. The excellent transmittance of TT1 permitted to            

achieve the goal of transferring a robust yet semi-transparent top electrode onto            

glass-supported organic photovoltaics With this approach an excellent power         

conversion efficiency (PCE) as high as 7%, from 300 to 1000 lux was achieved and a                

real indoor application was proved powering a temperature–humidity sensor with its           

LCD display in an office environment (250-300 lux). 

Another class of devices that can be fabricated onto tattoo paper are transistors, which              

are the fundamental building blocks in electronics, especially for signal elaboration. In a             
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recent work tattoo paper (TT1) served as a versatile platform for applications in edible              

electronics.​(27) Fully printed organic field-effect transistors (both p- and n-type) were           

successfully transferred and operated onto food and pharmaceutical capsules proving          

the integration of electronics onto ingestible substrates with complex geometries (figure           

5c).  

Finally, the possibility to build wireless communication modules onto tattoo paper has            

been reported. Screen printed tattoos has been characterized with respect to a            

relatively low sheet resistance (41 mΩ/sq), giving hope for the development of            

high-frequency components, as antennas that can be used in wireless applications,           

such as remote healthcare.​(91) 

 
5. Conclusions 
 
TT paper has been shown as a suitable and affordable substrate to develop             

conformable electronics. Conformable devices have to answer two big challenges. First,           

they have to provide an imperceptible interface with the surface, acting as a             

second-skin on it. Second, they should ensure reliable manipulation and transferring of            

the devices, which can be difficult when high aspect ratio (thickness/lateral dimension ~             

10​-4 – 10​-5​) comes into play.​(19) TT paper fulfills these requirements owing to its              

layered structure that allows for easy release of an ultrathin film. Multiple fabrication             

strategies can be adapted to work on TT paper, including various printing methods (e.g.              

screen printing, inkjet) physical and chemical vapour deposition. The possibility to           

pattern TT with diverse methodologies open to heterogeneous applications. Since its           

inception in the field of human biomonitoring, around ten years ago, TT has been              
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adopted in numerous studies with multiple purposes, primarily within on-skin          

applications. Lately TT paper has been coupled with standard electronics to build up             

wearable and wireless platforms.​(59,65,83) The fabrication of wireless devices with          

biomonitoring purposes exploits today a hybrid approach, which couples a tattoo-based           

sensing unit with a standard signal processing/transmission unit (based on rigid,           

mm-thick, Si-based electronics,). The combination of thin-film sensing devices with          

flexible electronics circuits can be envisioned in future developments. These coupling           

could allow to have a reusable flexible processing/transmission unit and a low-cost            

disposable tattoo sensing interface. Such an approach can open new paradigms in            

diagnosis and monitoring of human health, introducing continuous, cheap and          

non-invasive opportunities. The coupling however comes at the cost of some new            

challenges to be overcome as regards the mechanical coupling of the ultrathin            

disposable tattoo with the thicker and stiffer flexible unit. 

Nevertheless, the long-term challenge will be the integration of multiple sensors and            

electronic subsystems on TT (e.g. circuits for signal conditioning/transmission and          

powering) for the development of a fully functional conformable electronic device. A            

specific challenge in this respect will be connected with compatibility of multiple            

consecutive deposition and fabrication processes on the same tattoo paper substrate.  

Apart from skin-contact applications, TT paper has been adopted as an unconventional            

substrate for devices in edible electronics and photovoltaics. Recently, a self-healing           

transistor has also been proposed. It is a 3 µm thick tattoo-like sensor assessed for               

on-body detection of temperature and humidity.​(92) The self-healing capability has been           

here integrated to lead to more environmentally friendly applications.  
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Along this direction TT paper can enable new opportunities for the rise of diverse and               

contemporary fields. The first example is in the area of sustainable and transient             

electronics.​(20,21) TT exhibits a low environmental footprint, owing to its materials           

composition and production methods. Moreover, its ultralow cost makes it an ideal            

candidate for the fabrication of transient sensors that can be safely degraded in the              

environment after deployment. Some future directions can be envisioned in          

environmental, plants and crop monitoring, as recently shown for other conformable           

sensing technologies in so-called “plants wearables”.​(2,3) Here, the prominent         

capability of TT to be perforated without losing its integrity and functionality, and to allow               

for excellent moisture exchange could open novel opportunities for monitoring plants           

during their growth with minimal obtrusiveness.  
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