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Abstract—Bluetooth devices naturally emit many public sig-
nals. It opens new paths for passive mobility analysis, and allows
building larger datasets direly needed by the research on mobile
systems, but also raises new practical challenges. One of them
is the correlation between the public packets and the emitters.
The Bluetooth standard forces devices to regularly change the
identifier they carry in the public packets, but we show in this
paper it does not prevent from correlating packets from a given
sender. The number of devices changing their MAC address at
any given time is expectedly small; we only need to find a property
differentiating a handful device at a time for MAC association.
In this paper, we propose such a property and demonstrate the
efficiency of the association strategy on Bluetooth Low Energy.

Index Terms—Bluetooth Low Energy, Public packet correla-
tion, Passive sensing

I. INTRODUCTION

Research on mobile systems involves the analysis of spa-
tiotemporal data. Unfortunately, gathering data is hard: re-
cruiting volunteers demands considerable technical, logistic,
and administrative efforts, and the subjects are generally an
inhomogeneous sample of the population. All these drawbacks
are inherent to active, intrusive data collection methods.

Against these issues, passive measurement strategies are
a good contender, limiting the selection bias and expanding
the potential target pool by orders of magnitude. They all
draw upon the same principle: rebuilding information from
the signals connected devices naturally emit. In this context,
we could infer the mobility of the devices by leveraging
their Wi-Fi, cellular, or Bluetooth signals. But cellular signals
are fully ciphered and Wi-Fi signals are not regular enough
for precise trajectory reconstruction; in contrast, Bluetooth
(public) packets are regular, not ciphered, and practically every
connected device emit them. Bluetooth, and more precisely its
Low Energy variant, is a good candidate.

The price for these advances is a set of new challenges,
one of the first being the device anonymization methods
that modern Bluetooth protocols use. Most devices run the
Bluetooth Low Energy (BLE) variant. With BLE turned on, a
device shows it exists by sending public advertising packets,
which contain an IEEE 802 MAC address [1][2, p. 69]. To
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protect the user and avoid displaying a unique identifier, the
BLE protocols force devices to regularly change their public
MAC address: it is the MAC randomization process. Being
randomized, the MAC addresses are not private data, while
regular MAC addresses may be, according to GDPR1. From
BLE 4 to BLE 5.1, the protocols require devices to keep their
MAC addresses for at least 15 minutes [3, p. 1756][4, p 2226].

This paper focuses on the MAC randomization process. It is
a widely supported feature, independently of the superjacent
OS. Nevertheless, current works in the literature either focus
on devices not scrupulously respecting the standard [5], [6],
or on the weaknesses the OS provider involuntarily intro-
duces [7], [8]. Such strategies, though dealing with the MAC
randomization process, target specific types of devices or OS
versions; they reduce the extent of the device identification
and the size of a mobility dataset. Instead, this paper targets
any Bluetooth signal devices publicly emit. To the best of our
knowledge, we are the first to bring a solution to associate
Bluetooth randomized MAC addresses together, denoted as an
association strategy. Such a strategy will allow the scientific
community to study device mobility despite the Bluetooth
MAC randomization process.

We introduce an association strategy that leverages the long
timespan between MAC changes. Over a small population,
the number of devices that will change their MAC address
at the same time is expectedly small. To differentiate these
devices, we only need a property that can discriminate a
handful of devices at a time, in opposition to the previously
cited papers that search for a device specific property bleeding
through advertising packets. In this work, we identify such
a discriminating property and use it to associate Bluetooth
randomized MAC addresses from a single device.

In short, we define our contributions as follows:

• We review literature works tracking devices and detail
their limitations for our goal (section II);

• We describe our Bluetooth association strategy, highlight
the main difficulty justifying the need of a weak identifier,
and study it (section III);

1https://gdpr-info.eu/



• We collect three datasets of public Bluetooth advertising
packets in three scenarios For users’ privacy protection,
the datasets were fully anonymized. Among them, a
controlled environment that will serve as a ground truth
(section IV);

• We analyze in detail the performance indicators we use
to rate the association strategy. Our results show that the
strategy is more effective in environment where user tend
to spend more time, such as parks than in very dynamic
environments (section IV and section V).

II. RELATED WORKS

Current works on BLE tracking do not frontally attack the
MAC randomization process. They either try to leverage the
non-compliance of the manufacturers to the standard or exploit
the vulnerabilities the Application layer introduces.

The papers [5] and [6] focus on the non-compliance. The
former shows not only that manufacturers of old or low-power
devices (smartwatch, wearable) either never renew the random
address or advertise with the true MAC address, but also that
manufacturers tend to allocate the non-random MAC addresses
in batch, giving away the model of the device in the MAC
prefix. The second paper shows that the sparse geographical
knowledge of the user suffices to track a device, and focuses
on the consequences of improper MAC randomization.

Publications [7], [8] and [9] focus on application layer-
induced vulnerabilities. The papers [9] and [7] show the use
Apple and Microsoft make of the data field in public packets–
intended for general data–leaks partial identifiers: they find two
key identifiers that are constants for a device. They exploit
a mis-synchronization between the changing of the MAC
and the changing of the content of the message: the device
sometimes keeps the key identifiers before and after the MAC
changing. Hence the name: carry-over algorithm. Paper [7]
further analyzes the practicality of the attack; paper [8] reverse
engineers the protocol Apple uses inside the public Bluetooth
packets to hone the carry-over strategy.

In either case, the strategies give strong result and enable
tracking on the long run. But if tracking non-changing MAC
was reliable at the publication of [5], the situation (hopefully)
changed. It appears from our dataset (see setup B in sec-
tion IV-A) that only 4.5% to 8.4%2 of the devices still use non-
changing MAC address. We also find the carry-over algorithm
only targets between 0.8% and 2.8%2 of Apple devices. It
is too restrictive to build a representative enough mobility
dataset.

We propose a strategy that is less precise than the existing
ones–which marks near a 100% accuracy–but targeting every
device publicly advertising.

III. BLUETOOTH MAC ASSOCIATION STRATEGY

Put aside the devices not acutely following the standard
and exposing the true MAC address of the device, our early
experiments show that the MAC randomization event is rare.

295% confidence interval on a sample of 675 addresses taken supposedly
at random near a high activity center.

0 5 10 15 20 25 30 35 40
Time (min)

3C:E9:B2

F1:7E:D9

19:B7:EE

A1:42:D3

97:BD:44

20:22:02

08:A3:39

Fig. 1: MAC addresses in a controlled environment

Consider Fig.1. It shows the advertising MAC address of an
iPhone 7S, an iPad Mini 1, and an iPad Pro 2019 captured
in a controlled environment (as Section IV-A details) over
40 minutes. We use the same color for the different MAC
addresses coming from the same device. For readability, we
crop the MAC on the last three bytes.

The equivalences naturally appear as the times of disap-
pearance and appearance visually line up. As we can see, the
device using 08:A3:39 never changes its MAC; it corresponds
to the iPad Mini 1, old enough not to apply BLE 4.0 properly.

The association {A1:42:D3, 97:BD:44} (orange) and
{3C:E9:B2, F1:7E:D9} (blue) bear no ambiguity. The diffi-
culty arises with the associations of F1:7E:D9 with 19:B7:EE
and 97:BD:44 with 20:22:02: they both occur almost at
the same time. These four MAC addresses are in conflict and
require special considerations.

A. Detecting and reducing the conflicts

Conflicts are not unlikely because devices stop emitting
during the MAC changing process. We measure four seconds
for an iPhone 7S. We note dswap this delay. As we will detail
later, dswap depends on the device.

Seeing the MACs as objects, grouping the corresponding
advertising packets will prove handier: a MAC M has a
beginning (M begin), an end (Mend), and is a collection of
packets.

An appearing MAC M3, as in Fig.2, may pair with a MAC
M1 only if M3 appears in the range [Mend

1 ; Mend
1 + dswap],

that is, if M1 and M2 validate the Boolean function:

C : Mi,Mj 7→Mend
i < M begin

j ≤Mend
i + dswap (Mi) (1)

Two disappearing MAC M1 and M2 are in conflict if they
may associate with the same MAC, i.e. if there exists a M3

such that C(M1,M3) and C(M2,M3) are both true. With the
function C, we generate all the possible conflicts (assuming
we correctly calibrate dswap).

In some cases, we can solve the conflicts with deduction;
Fig.2 shows a typical case where carefully selecting the associ-
ations suffices to resolve the conflict, as we show hereafter. We



Fig. 2: Schema of two conflicting disappearing MAC. In blue,
the MAC presence through time and in yellow the timespan
when the new MAC should appear.

make an assumption: when a MAC disappears, we prefer the
hypothesis that the sending device changed its MAC, rather
than left the sensing range. This assumption is sensible for
relatively static environments such as parks.

In Fig.2 M1 and M2 are in conflict, as they can both
associate with M3. The study of the whole set of possible
associations shows that only one maximizes the number of
paired devices: {M1,M3} and {M2,M4}.

The problem boils down to solving an (unbalanced) linear
assignment problem [10]. It aims at minimizing the cost of an
association between a set of inputs (the disappearing MACs)
and a set of outputs (the appearing ones). To determine the sets
of disappearing and appearing MAC in conflict–the conflict
clusters–around some MAC M, we compute the equivalence
class of M in the transitive closure of C (viewed as a partial
equivalence relation). For Fig.2, starting from M1 it would
generate (M1,M3), then (M2,M3) and finally (M2,M4).

B. Finding a weak identifier

A weak identifier is a property I ∈ I of a device, deducible
from its advertising packet sequences such that (i) I is big
enough to resolve local conflicts (experimentally, ten proper-
ties suffice) and (ii) the distribution of I is relatively uniform
across the device population. In other words, a weak identifier
is a device property accessible to the sniffer, splitting the
device population into a few homogeneous groups. The brand
of the device or the type of advertising packet (contained in
the data field of the packets) are (very) weak identifiers; but,
they are mostly not uniform. The duration between advertising
packets is a better option.

a) Definition of the advertising interval Tint: An ad-
vertising device sends an advertising packet on all three
advertising channels available, within approximately 20 ms [4,
p. 2754]. After such a burst, it has to wait for Tadv seconds,
defined in eq.(2). Writing Tvar for a “pseudo-random value
[in the] range 0 ms to 10 ms” [4, p. 2751] and Tint for a

fixed value within the range
[
20 ms; 10.24 s

]
3,

Tadv = Tint + Tvar (2)

The device regenerates Tvar every burst; the value Tint seldom
changes. We call Tint a (device) characteristic time.

The characteristic time also gives insight on the capability
of the device: a lower time hints at a more proactive device.
We expect such devices to swap their MAC more swiftly,
i.e. to have a lower dswap. Remember that dswap allows us
to generate all the possible conflicts according to eq.(1). We
calibrate dswap as a multiple of Tint; dswap = 10×Tint gives
good experimental results.

b) Measuring Tint: The variations of Tvar make the
measure of the characteristic time imprecise. Without further
hypothesis, we can only group the times into 10 ms-wide
bins. Then, the sniffer may miss packets and it listens on all
three advertising channels randomly. From its point of view,
assuming it missed N − 1 packets in a row, two consecutive
packets from a same device are distant by:

TN
packet = N × (Tint + Tvar) + Tchannel. (3)

Tchannel is the delay the position of the channel in the
advertising burst induces and Tvar is the random variable
defined earlier; we identify it with its valuation.

To compute Tint for a given MAC, we first get an estimate
of Tint as T̃int by picking the most filled bin. We rely on
the robustness of the sniffer, so T̃int differs from Tint by at
most 10 ms (the bin width) plus Tchannel. Then, we improve
the estimate by taking two packets distant in time (simulating
TN
packet for some large N ), by computing N using T̃int and

by getting a finer estimate of Tint by rewriting eq. (3) as:

Tint =
TN
packet − Tchannel

N
− Tvar (4)

We do not know Tvar nor Tchannel, but the bin-width (of
10 ms) absorbs them.

C. Resolving conflicts

We use Tint as a weak identifier; we compare them with
the absolute value of the difference.

As we have also set a value for dswap, we are now able to
compute the conflict clusters and to resolve them. Next section
details the corresponding algorithm.

D. Algorithmic resolution

The heart of the algorithm lies in the computation of
conflict clusters. Let P be the set of all tentative associations,
conflicting or not; remember eq.(1) defining C.

P =

{(
{M1, . . .Mk} ,

{
M ′

1, . . .M
′
m

})
| ∀Mi, ∃M ′

j , C
(
Mi,M

′
j

)}
(5)

P is a set of pairs breaking a conflict cluster into the set of
disappearing MACs and the set of appearing MACs; A non-
ambiguous association of M1 and M2,such as in Fig.1, would
have the form: ({M1} , {M2}).

3The lower bound depends on the kind of advertising packet the device
sends. It does not matter here.



To resolve the conflicts, we use a distance comparing the
weak identifiers; we write it Did, such that:

Did(Mi,Mj) =

{
dswap (Mi)− dswap (Mj) if C(Mi,Mj)

∞ otherwise
(6)

It is the difference between the characteristic times, or an
infinite value when the association is impossible.

With these notations, we write the algorithm 1.

Algorithm 1 Association strategy algorithm
Input: The set of advertising packets M

Compute T the set of characteristic time
Compute P using T
Association← {}
for all (S, S′) in P do

LocalAssoc← LinearAssignment(S, S′, Did)
Association += LocalAssoc

end for

The Union Find algorithm helps compute P in a rea-
sonable time [11]. The Hungarian algorithm [12] solves
LinearAssignment and runs in strongly quadratic time with
respect to the number of MAC in conflict at the same time.
We see in section IV-B it does not impede the performances.

IV. PERFORMANCES

This section presents the validation of our association algo-
rithm. The meaning of validation is fourfold here:
(1) Ensuring the algorithm will run in a reasonable amount

of time;
(2) Confirming the functioning of the principle;
(3) Attesting the quality of the characteristic time as a weak

identifier;
(4) Verifying the algorithm pairs the different MAC of a

device.
To ensure the algorithm will run in a reasonable amount of

time (1), we have to show the conflict clusters are generally
small. To confirm the algorithm works in principle (2), it
suffices to test it on a small, controlled environment. To verify
the characteristic time is a weak identifier (3), we have to
see if it breaks devices into sufficiently many homogeneous
groups. But to verify the algorithm correctly associate many
MAC in a busy environment (4), we cannot rely on a ground
truth other than what the state-of-the-art tracking algorithms
may generate. The only applicable here is the carry-over
algorithm [9] and we show it is ineffective on our datasets. We
can but verify, either with quantitative discriminating packet
content, or with qualitative environmental observations, that
the associations are coherent. Yet, any discriminating packet
content being a weak identifier, we could improve our weak
identifier by combining it with the packet content. This new
weak identifier would be more discriminative–i.e. break the
set of devices into more classes–and the algorithm would be
more effective. So we are bound to verify our algorithm with
sub-optimal parameters.

Nonetheless, the following sections tackle each of these
points. Section IV-A details the hardware and the datasets,

Model iPhone SE iPad 6 iPad 7 iPad Pro 3 iPad Mini 2 iPhone 7
iOS 13.3.1 13.4.1 13.4 13.3.1 12.4.6 13.4.1

TABLE I. Hardware and OS version we use for the Controlled
Environment dataset.

section IV-B shows the practical execution time is fair and
section V analyses the functioning of the algorithm and
different performance markers.

A. Experimental setup

Advertising packets are public, their capture does not re-
quire specialized hardware. We use the internal Bluetooth
chipset of a battery-powered Raspberry Pi 4 and the free
drivers hcitool and btmon [13]. Using this hardware, we
build three datasets to test our algorithm: one in a controlled
environment, two in uncontrolled environments. Each of them,
described below, tests a specific usage pattern. It is important
to notice that, to protect users privacy, we fully anonymize
the data we collect by consistently replacing the (randomized)
MAC addresses with a 48 bits random value. We also, do
not store any information that could identify individual users.
Finally, as [9] points out, Android phones unlikely advertise
themselves. The datasets will be mostly biased toward Apple
devices.

a) Controlled Environment: We capture the packets com-
ing only from the 6 devices of table I over 40 minutes.
We control the devices; we can deduce a ground truth using
optional packet information.

b) Uncontrolled environment: We capture adverting
packets for about an hour in two environments: one, noted
setup A, extremely heterogeneous with more than a thousand
devices, and the other, setup B, where about 50 devices remain
in the sensing range for the whole measure. In both setup
A and setup B, we witness two mobility classes: the very
dynamics, staying less than 60 seconds in the sensing range
and accounting for the vast majority of devices, and the very
static, staying in range during the whole measure. Setup A
will be a stress test; setup B will be a validation test.

To highlight mobility classes, we plot the cumulative dis-
tribution function (CDF) of the MAC lifespan in Fig. 3. The
steep left-hand side of the curve corresponds to the dynamic
class: most devices spend less than two minutes in sensing
range.

MAC randomization breaks the “natural” shape of the curve,
especially in setup A, introducing a step. MAC randomization,
until BLE 4.1, forces devices to change their MAC precisely
every 15 minutes; hence the disproportion of MAC living for
15 minutes. Setup B does not shows such a step probably
because of its size.

B. Estimation of the conflict cluster size

The bottleneck of the Algorithm 1 is the computation of all
the LinearAssignment instances, which is strongly quadratic
in the size of the conflict cluster. To show the algorithm will
run in a reasonable time, we plot the cumulated distribution of
the sizes of cluster conflicts in setup A in Fig.4. As the dataset
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setup A.

is a stress test, it represents an expected worst-case scenario.
78% of the clusters involve fewer than ten devices. Hence,
the algorithm will not suffer from the quadratic complexity.
In practice, our algorithm handles setup A containing about
2500 MACs in less than 10 seconds on an Intel i7, 10th

Gen.
The few clusters gathering a hundred devices or more are a

weakness of the algorithm: the construction of P gives equal
importance to all the associations (before the weighting) to
ease its computation. Stair-like sequences of appearing and
disappearing MAC will expand a conflict cluster over time;
MAC with short lifespan amplify the process.

V. PERFORMANCE MARKERS

Fig.5 depicts the automatic associations using our proposed
algorithm on the controlled dataset, which is small enough to
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Fig. 5: MAC associations for the controlled environment.
Same colors for a same device.

deduce the ground truth. As we can see, we associate, with
no errors, MAC addresses that disappear at the same time.

For the other two datasets, if the algorithm works properly,
it should: (a) Keep the associations the carry-over [9]
strategy proposes; (b) Make the step at 15 minutes in figure 6
disappear; (c) Find about 50 static devices in setup B ; and
finally (d) Consider the MACs with different optional packet
information as coming from different devices. In the following,
we tackle all these propositions.

a) Carry-over comparative results: As described in
section II the carry-over algorithm relies on two key
elements in the packets. In either dataset, fewer than 30
devices had both, and the algorithm does not manage any
association. Trying to associate a device using only one key
gave inconsistent results. Apple appears to have patched the
vulnerability.

b) Reducing the 15-minute peak: As noted above, many
devices of the setup A dataset use the recommended Bluetooth
parameters and change their MAC address every 15 minutes.
It translates to a step at 15 minutes in Fig.3 for the CDF.
Thus, to test the effectiveness of our association algorithm we
can verify it detects all the 15-minutes-long MAC address as
changing MAC. More precisely, the peak at 15 minutes should
disappear, and a step for the devices that remained the whole
capture should appear at the end of the measure. In Fig.6, we
plot the CDF of the captured MAC lifespan and the CDF of the
compound MAC lifespan. The compound MAC corresponds to
the lifespan of a device after the association of multiple MAC
addresses. We remove from the original CDF the MACs that
our algorithm groups together as the same device, and we add
the compound duration.

As we can see, in Fig.6, the peak entirely disappears, and
a step appears at the end, although not as sharp as a perfect
algorithm would produce. There is room for improvement.

c) Real population in setup B: There were about 50
people in range during the capture. We remove the passers-by
(MAC lifespan inferior to 60 seconds); they would wrong the
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results because the algorithm assumes people tend to stay in
the capture, and because all the passer-by would count as an
individual.

When executing our association algorithm, we find 43 dif-
ferent devices, which is coherent with the number of expected
devices. All people may not have had a phone. The fact that
the number of found devices is close to the expected number
of devices allows us to assume that our strategy works.

d) Optional parameter mis-associations: The standard
defines four kinds of advertising packets, and devices mostly
use two of them. A device will not use two different types
with the same MAC. Even when changing MAC, a device
will generally keep the same kinds of advertising messages.
This is (almost) a device property, and our associations should
not break it. The same goes for the brand of the device, also
specified in the packet.

We measure, for both datasets, the number of times the
algorithm wrongly associates the two advertising types. This
measure alone would sometimes count the same error twice,
so we add the number of compound MAC with at least
one parameter mis-association. Table II shows the results
in the form Number of mismatches / Number of pairs
or components

In setup A, the algorithm makes less than 5% of mismatches
(both on the brand and the advertising type), and nears 10%
errors on the component-wise measure for advertising types
in setup B. The results show that most of the errors happen
once in the component and that other optional packet param-
eters have little discrimination power. Other weak identifiers
probably exist in the data field of the packets or at the Link
layer.

VI. CONCLUSION

In this paper, we proposed a general algorithm to take the
low frequency of MAC changing at our advantage to associate
different MACs from the same device. For this, we rely on a
weak identifier–the timing between advertising packets–and

Dataset Pair-wise mismatch Component-wise mismatch
Association parameter Brand Adv. type Brand Adv. type
Setup A 5/1087 24/1088 4/388 17/388
Setup B 0/66 3/66 0/31 3/31

TABLE II. Mismatch results for the Advertising packets and
the devices brand.

weigh the tentative associations with the distance between
their weak identifiers. We tested our strategy on a small but
controlled dataset; as the algorithm benefits from a low number
of devices, we applied it on two more significant stress tests.
In these cases, as it is close to impossible to get a ground
truth, we used markers hinting at the method success. Should
researchers find a better weak identifier, the algorithm would
provide better results.

The next step for this work is a theoretical analysis, both on
the probability of conflicts to deduce formal requirements on
the notion of weak identifier and the weak identifier itself, i.e.
on the probability of discrimination in practice, two devices.
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