Mean Absorption Coefficient Estimation From Impulse Responses: Deep Learning vs. Sabine - Archive ouverte HAL Access content directly
Conference Papers Year : 2020

Mean Absorption Coefficient Estimation From Impulse Responses: Deep Learning vs. Sabine

Abstract

We consider the problem of estimating the mean absorp-tion coefficients of a room from an impulse response us-ing supervised learning on simulated training sets. Twoneural network architectures and two training dataset de-signs are considered. The proposed approach is shown toyield smaller estimation errors than the classical Sabineand Eyring formulas, despite not relying on any geomet-rical information on the room. Simulated results demon-strate the robustness of the approach under different chal-lenging acoustic conditions.
Fichier principal
Vignette du fichier
FA_2020.pdf (273.99 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03045556 , version 1 (08-12-2020)

Identifiers

Cite

Corto Bastien, Antoine Deleforge, Cédric Foy. Mean Absorption Coefficient Estimation From Impulse Responses: Deep Learning vs. Sabine. E-FA 2020 - Forum Acusticum 2020, Dec 2020, Lyon / Virtual, France. pp.2, ⟨10.48465/fa.2020.0785⟩. ⟨hal-03045556⟩
183 View
366 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More