Intensity Harmonization Techniques Influence Radiomics Features and Radiomics-based Predictions in Sarcoma Patients - Archive ouverte HAL Access content directly
Journal Articles Scientific Reports Year : 2020

Intensity Harmonization Techniques Influence Radiomics Features and Radiomics-based Predictions in Sarcoma Patients

(1, 2, 3) , (1) , (1) , (3, 1) , (3, 1) , (1) , (4, 5, 2)
1
2
3
4
5

Abstract

Intensity harmonization techniques (IHT) are mandatory to homogenize multicentric MRIs before any quantitative analysis because signal intensities (SI) do not have standardized units. Radiomics combine quantification of tumors' radiological phenotype with machine-learning to improve predictive models, such as metastasticrelapse-free survival (MFS) for sarcoma patients. We post-processed the initial T2weighted-imaging of 70 sarcoma patients by using 5 IHTs and extracting 45 radiomics features (RFs), namely: classical standardization (IHTstd), standardization per adipose tissue SIs (IHTfat), histogram-matching with a patient histogram
Fichier principal
Vignette du fichier
NORMRI_R1_manuscript_SRcor_Clean2.pdf (5.66 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03050686 , version 1 (10-12-2020)

Identifiers

Cite

Amandine Crombé, Michèle Kind, David Fadli, François Le Loarer, Antoine Italiano, et al.. Intensity Harmonization Techniques Influence Radiomics Features and Radiomics-based Predictions in Sarcoma Patients. Scientific Reports, 2020, 10 (1), ⟨10.1038/s41598-020-72535-0⟩. ⟨hal-03050686⟩
48 View
40 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More