
HAL Id: hal-03053781
https://inria.hal.science/hal-03053781

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

[Re] Volume computation for polytopes: Vingt ans après
Andreas Enge

To cite this version:
Andreas Enge. [Re] Volume computation for polytopes: Vingt ans après. The ReScience journal,
2020, 6 (1), pp.#17. �10.5281/zenodo.4242972�. �hal-03053781�

https://inria.hal.science/hal-03053781
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

R E S C I E N C E C
Replication / Discrete Mathematics

[Re] Volume computation for polytopes: Vingt ans après

Andreas Enge1
1INRIA, Université de Bordeaux, CNRS, LFANT, F-33400 Talence, France

Edited by
Thomas Arildsen ID

Reviewed by
Dmitrii Pasechnik ID

Received
10 April 2020

Published
04 December 2020

DOI
10.5281/zenodo.4242972

Abstract This article endeavours to reproduce the experimental study of B. Büeler, A. Enge, K. Fukuda: Exact Volume
Computation for Polytopes: A Practical Study, 2000, in which a variety of algorithms for volume computation are
applied to a variety of different higher-dimensional polytopes. The original software is used on a modern machine
to redo the computations. It turns out that due to Moore’s law, running times go down, but the original conclusions
are still valid.

Dedicated to Komei Fukuda, who taught me the values of free software and scientific ethics

1 The original study

1.1 Volume computation for polytopes
A convex polytope of dimension d can be given in two forms: by its vertex or V -representation as the
convex hull of n points v1, . . . , vn ∈ Rd; or by its halfspace orH-representation as the bounded inter-
section of m halfspaces given by inequalities aix ⩽ bi with ai ∈ Rd and bi ∈ R, i = 1, . . . ,m, or
in matrix notation Ax ⩽ b with A ∈ Rm×d and b ∈ Rm. When both are available, this is called the
double description, which also provides the incidence information which point vj lies on the boundary of
which halfspace given by the equality aix = bi. The elements of the (unique) minimal V -representation
are called vertices; the boundaries {aix = bi} of the (unique unless the polytope is contained in a strict
affine subspace) minimalH-representation are called facets.
Algorithmically these representations are not equivalent, since the size of one may be exponential in
the size of the other. For instance, the d-dimensional hypercube can be given by m = 2d inequalities
−1 ⩽ xj ⩽ 1 for j = 1, . . . , d, but it has 2d vertices x with xj ∈ {−1, 1} for j = 1, . . . , d. There is
a notion of duality, which “swaps” vertices and facets. So the dual of a hypercube, a cross polytope, has
the exponential number 2d of facets and the linear number 2d of vertices.
The volume of a polytope is understood with respect to the standard measure of Rd; for instance, the
hypercube has volume 2d. Algorithms for exact volume computation generally decompose the poly-
tope into smaller ones, for which a volume formula is available. These can be simplices, a generalisa-
tion of 2-dimensional triangles or 3-dimensional tetrahedra, given by d + 1 facets or d + 1 vertices
v0, . . . , vd, which are the intersections of any subset of d facets; the volume of such a simplex is given
by 1

d! |det(v1 − v0, . . . , vd − v0)|. In the case of a decomposition into simplices, one speaks of a
triangulation. For instance, by triangulating the facets and augmenting each of the d − 1-dimensional
simplices by an interior point of the polytope, one obtains a boundary triangulation. Alternatively, there
are signed decompositions into simplices, usually containing also points exterior to the polytope, such
that by an inclusion–exclusion principle every point in the interior of every simplex is counted exactly
once. Other methods decompose the polytope into “pyramids”, the convex hull of a facet and an addi-
tional vertex, with volume 1

d times the height times the d − 1-dimensional volume of a facet. All these
algorithms eventually recurse over the dimension, so for general polytopes they end up having an expo-
nential complexity in the dimension.

Copyright © 2020 A. Enge, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Andreas Enge (andreas.enge@inria.fr)
The authors have declared that no competing interests exist.
Code is available at https://doi.org/10.5281/zenodo.4293820 – DOI 10.5281/zenodo.4293820..
Data is available at https://doi.org/10.5281/zenodo.4293875 – DOI 10.5281/zenodo.4293875.
Open peer review is available at https://github.com/ReScience/submissions/issues/27.

ReScience C 6.1 (#17) – Enge 2020 1

https://orcid.org/0000-0003-3254-3790
https://orcid.org/0000-0002-7557-6886
mailto:andreas.enge@inria.fr
https://doi.org/10.5281/zenodo.4293820
http://oadoi.org/10.5281/zenodo.4293820
https://doi.org/10.5281/zenodo.4293875
http://oadoi.org/10.5281/zenodo.4293875
https://github.com/ReScience/submissions/issues/27
https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

1.2 Experimental results

The subject of [1] was to implement all algorithmswe could find in the literature and to compare their suit-
ability for different classes of polytopes. We also suggested practical improvements to some algorithms
and developed a new one.
Table 1 from [1, §5.3] summarises our computations; it records for each algorithm (the columns) and
each polytope (the rows, sorted by decreasing ration/m) the running time in seconds, aswell as reasons
why the computation may not have succeeded. The last two columns give the timings for switching
from one representation to the other. The rough conclusion was that the “upper right” and “lower left”
corners of the volume computation part correspond to good combinations. For detailed descriptions of
the algorithms and the polytopes, see the original article [1].

Triangulation Signed decomp.
V-rep. V- andH-rep. H-rep.

n

m
d m n Bnd Del CH HOT Lnd Ld rL H→V V→H

cube-9 28.4 9 18 512 25e3 270 82 4.0 .3 1.6 .3 1.1 12
cube-10 51.2 10 20 1024 **

c
**

a 940 18 .6 3.3 .5 2.7 36
cube-14 585 14 28 16384 **

c
**

a
**

c 3300 13 90 10 88 3500
rh-8-20 56 8 20 1115 **

c
**

b 93 7.8 1.5 28 14 28 1900
rh-8-25 104 8 25 2596 **

c
**

b 430 27 3.5 80 120 80 4600
rh-10-20 109 10 20 2180 **

c
**

b 3000 63 5.2 90 31 91 9500
rh-10-25 309 10 25 7724 **

c
**

b 34e3 390 15 390 600 380 44e3
CC8(9) 1.5 8 54 81 410 40 11 3.4 **

c 75 140 72d 140d

CC8(10) 1.43 8 70 100 1300 80 28 7.7 **
c 210 880 200d 340d

CC8(11) 1.38 8 88 121 3500 150 65 17 **
c 550 4400 550d 800d

Fm-6 3 15 59 177 11e5 **
a 25 12 **

c
**

b 69009 13e3d 6600
ccp-5 0.3 10 56 16 .7 .5 .2 .2 **

c 200 29006 4.5 .7
ccp-6 0.09 15 368 32 520 150 43 23 **

c
**

c
**

c 4400d 2000d

rv-8-10 0.42 8 24 10 .3 .2 .1 .1 **
c 82 .2 16 .5

rv-8-11 0.2 8 54 11 .4 .1 .2 .1 **
c 2100 79 33 .9

rv-8-30 0.007 8 4482 30 170 4.0 6.9 6.8 **
c

**
c

**
c 7200 150

rv-10-12 0.34 10 35 12 .4 .2 .1 .2 **
c 1300 .3 92 1.0

rv-10-14 0.08 10 177 14 1.9 .2 .2 .1 **
c

**
c

**
c 510 5.1

cross-8 0.063 8 256 16 .5 .3 .2 .2 **
c 2800 170 4.2 .5

cross-9 0.035 9 512 18 0.9 .5 .3 .3 **
c

**
b 2700 12 1.2

Table 1. Timing for the different methods and examples. abeyond memory limit, bvolume com-
puted incorrectly, cproblem is intractable with this method, dʻcddʼ is faster by a factor of at least
100, 6,9storage performed for 6 and 9 levels resp.

2 Software installation

The goal of this article, written in the context of the “Ten Years Reproducibility Challenge”1, is to try and
reproduce the results of [1], by running the old code on a current machine and comparing results. In fact,
[1] is my first scientific article, written not ten, but more than twenty years ago. The first challenge is
obviously to locate the old source code (and example data files) and to compile it with modern tools.

1https://rescience.github.io/ten-years/

ReScience C 6.1 (#17) – Enge 2020 2

https://rescience.github.io/ten-years/
https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

2.1 Fast track
The volume computation software written during the project, called vinci, was published under the GPL
and is still available on my web page [2], which also hosts the polytope data files. It is written in ANSI
C, so I expected no problems redoing the computations, and indeed there were none: It is enough to
download and uncompress the vinci source code and the polytope files, to type make and to run the
generated binary. This could be the end of §2. However, it turns out that the version on the web is not
the one used for carrying out the computations of [1]. For instance, the algorithm of column “Del” in
Table 1, deemed numerically too unstable, has been removed before publication of the source code. So
tomeet the reproducibility challenge, I have attempted to get back as closely as possible to the historical
situation when writing [1].

2.2 Historically informed performance

Software — The historical instrument, an HP 7000/735-99 server, has long gone; so the challenge is
to run the historical software on a modern machine. First of all, where is the historical source code?
The article [1] was submitted in January 1998, revised in August 1998, and published in a book with
conference proceedings in 2000. Only the latest released version 1.0.5 of vinci is available on the web [2].
It contains aChangeLog file that dates it to 2003, and gives 2001 as the release date for 1.0.1 (no date
for release 1 is mentioned), which is clearly after writing the article. On my private hard disk I have kept
an mbox file containing mails with the results of the batch submission system of the time, including the
outputs of the vinci runs. In these, the software identifies itself as “VINCI - Version gamma as of” with
three different dates, “27.09.1997”, “18.10.1997” and “11.10.1997”. On the same disk, there is indeed a
file vinci_gamma.tar.bz2; uncompressing it produces files with time stamp October 12, 1997,
a rather close match. Moreover, it turns out that the software identifies itself with the date “12.10.1997”
defined in vinci.h.
In the following, I document precisely the steps taken to compile this source code as well as all auxiliary
software.

$ wget https://zenodo.org/record/4293820/files/vinci_gamma.tar.bz2
$ tar xvf vinci_gamma.tar.bz2
$ cd vinci_gamma
$ make
vinci.c:750:1: warning: return type defaults to ’int’ [-Wimplicit-int]

750 | main (int argc, char *argv [])
| ^~~~

Indeed, the return type int is missing in front of main, and by default the current gcc version 9.2.0
complains about it.

$./vinci square

prints 4, the volume of the hypercube in dimension 2, the files for which are included in the vinci tarball.
So far, so good; the twenty years old software compiles and seems to run without problem.
According to the article, we need the auxiliary software packages lrs and qhull; they are used for com-
puting a boundary triangulation (column “Bnd” of Table 1) or a Delaunay triangulation (column “Del”),
respectively. The two binaries are compiled separately, put into the vinci directory and called from vinci
via the C library system call; communication is done through input and output files. The article [1]
provides URLs for the different programs, but the exact versions of the time were not recorded.
The current website of lrs2 lists as the oldest available versionlrslib-0.4.0 of December 11, 2000,
which is after our experiments. So the historically informed performance needs to compromise and rely
on a slightly newer lrs version than available at the time.

$ wget http://cgm.cs.mcgill.ca/~avis/C/lrslib/archive/lrslib-040.tar.gz
$ tar xvf lrslib-040.tar.gz

2http://cgm.cs.mcgill.ca/ avis/C/lrslib/archive/

ReScience C 6.1 (#17) – Enge 2020 3

https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

$ cd lrslib-040/
$ make
buffer.c:69:5: error: conflicting types for ’getline’

69 | int getline(void)
| ^~~~~~~

In file included from buffer.c:6:
/home/enge/.guix-profile/include/stdio.h:616:18: note:

previous declaration of ’getline’ was here
616 | extern __ssize_t getline (char **__restrict __lineptr,

The function getline is declared in buffer.c and used only there, and it clashes with a function
of the same name in the C library glibc-2.29. Such a function is not part of the C standard, but
a GNU extension3; running git blame on its source4 shows that it has been around since at least
1995. So while the makefile of lrs hardcodes gcc as the C compiler, the binary was probably linked
at the time against the C library of the HP system without that extension. The function getline is
renamed to mygetline, and its three occurrences (declaration, definition and usage) are replaced in
the file by the following commands:

$ wget https://zenodo.org/record/4293820/files/lrs-getline.patch
$ patch < lrs-getline.patch

where the content of the file lrs-getline.patch is given in Table 2.

diff -u lrslib-040/buffer.c lrslib-040/buffer.c
--- lrslib-040/buffer.c 2020-09-11 14:06:05.504948673 +0200
+++ lrslib-040/buffer.c 2020-09-11 14:07:01.532951018 +0200
@@ -9,7 +9,7 @@
char *line;

int maxline;
-int getline(void);
+int mygetline(void);
void notimpl(char s[]);

main(int argc, char *argv[])
@@ -38,7 +38,7 @@

bufsize= -1; /*upper index of buffer size*/
count=-1; /* count lines output ”begin” before ”end” minus 1*/
counton=0;

- while (getline() > 0)
+ while (mygetline() > 0)

{
i=0;
if(strncmp(line,”end”,3)==0) counton=0;

@@ -66,7 +66,7 @@
}

/* getline from KR P.32 */
-int getline(void)
+int mygetline(void)
{

int c,i;
extern int maxline;

Table 2. lrs-getline.patch

Then compilation with make goes through. (It turns out that reproducing a reproducibility experiment
is a tricky affair: Between writing the first version of this article and revising it a few months later,
compilation of lrs actually stopped working; gcc-10.2.0 complains about a lacking inclusion of
stdlib.h and then about duplicate definitions, whereas gcc-9.3.0 emits warnings, but does
compile the project nevertheless.)
So build lrs (with a suitable compiler version) and copy the binary into the correct directory:

3Search for “getline” in the documentation at
https://archive.softwareheritage.org/browse/content/sha1_git:c48e3e692f6f4a9c9dfd8e51ebb1ecf18e756e28/raw/?filename=
stdio.texi

4https://sourceware.org/git/?p=glibc.git;a=blob;f=stdio-common/getline.c;h=9b1641f23e1ae527de54a206a7e7b3f49bea
d0f3;hb=HEAD

ReScience C 6.1 (#17) – Enge 2020 4

https://archive.softwareheritage.org/browse/content/sha1_git:c48e3e692f6f4a9c9dfd8e51ebb1ecf18e756e28/raw/?filename=stdio.texi
https://archive.softwareheritage.org/browse/content/sha1_git:c48e3e692f6f4a9c9dfd8e51ebb1ecf18e756e28/raw/?filename=stdio.texi
https://sourceware.org/git/?p=glibc.git;a=blob;f=stdio-common/getline.c;h=9b1641f23e1ae527de54a206a7e7b3f49bead0f3;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=stdio-common/getline.c;h=9b1641f23e1ae527de54a206a7e7b3f49bead0f3;hb=HEAD
https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

$ make
$ cp lrs ../
$ cd ../

(The current lrs version lrslib-070 has also renamed the internal function; so here I have simply
redebugged a problem that was already solved in a later version.)
The qhull website5 distributes code from 2019 and qhull-1.0 from 1993 according to the time
stamps of the files of the tarball and their copyright notices. So it is either too old or too new. The
git repository of the project provides some more information:

$ git clone https://github.com/qhull/qhull.git qhull-git
$ cd qhull-git
$ git tag -l

The last command prints tags ranging from v3.0 to v7.3.2, and then from 2002.1 to 2019.1. The file
src/Changes.txt states that version 3.0 was released on February 11, 2001; at the time, we prob-
ably used version 2.4 of 1997, but not having its source code, I again compromised in my historically
informed performance by using release 3.0

$ git checkout v3.0
$ cd src
$ make
$ cp qhull ../../
$ cd ../../

Now the vinci_gamma directory contains the three binaries vinci, lrs and qhull. The latter
two can be tested on the square via

$ export PATH=.:$PATH
$./vinci square -m lrs
...
Using ’lrs’ for computing a boundary triangulation.
...
Volume: 4

$./vinci square -m qhull
...
Running qhull with the options d i Q0 Qz.
precision problems

2 coplanar half ridges in output
1 coplanar horizon facets for new vertices

Output file of qhull opened.
2 pseudo-simplices to be computed.
...
Volume: 4.000000000000e+02

So it looks like we are operational for vinci.
Table 1 also contains timings for switching between the V - and the H-representations; the “easy” di-
rection (from fewer vertices/facets to many facets/vertices) is computed by lrs, already installed above;
the “hard” direction is computed by the additional external software pd (“primal-dual”), which is no more
available at the web page given in the old paper. However, it can be found using a quick web search:

$ wget http://www.cs.unb.ca/~bremner/software/pd/pd.tar.gz
$ mkdir pd-build
$ cd pd-build
$ tar xvf ../pd.tar.gz

The time stamp of the extracted files isMay 14, 2013, but themain C file gives as date November 20, 1997.
Depending on the example (here, rv_10_12.ine), the computation may fail with an error message
such as

5http://www.qhull.org/

ReScience C 6.1 (#17) – Enge 2020 5

http://www.qhull.org/
https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

Mulint overflow for a*b
a=...b=... BASE: 10000 DIGITS: 250
Maximum integer is BASE^(DIGITS-1)-1

Increase BASE and/or DIGITS and recompile!

From the code, it turns out we are in 32-bit mode; but larger constants are hard-coded for 64-bit arith-
metic. To switch, one may add -DB64 to CFLAGS in makefile as follows:

$ wget https://zenodo.org/record/4293820/files/primal-dual-64bit.patch
$ patch < primal-dual-64bit.patch

where the content of primal-dual-64bit.patch is reproduced in Table 3.
Then compile and copy the binary to the correct directory:

$ make
$ cp pd ../
$ cd ../

diff -u pd.old/makefile pd/makefile
--- pd.old/makefile 2020-09-16 16:03:22.724144656 +0200
+++ pd/makefile 2020-09-16 16:03:53.564145534 +0200
@@ -3,7 +3,7 @@
http://wwwjn.inf.ethz.ch/ambros/pd_man.html

CC = gcc -Wall
-CFLAGS = -O -DNDEBUG -DOMIT_TIMES
+CFLAGS = -O -DNDEBUG -DOMIT_TIMES -DB64

Table 3. primal-dual-64bit.patch

With the patch applied, BASE becomes 109 and DIGITS becomes 112; so with or without the 64-bit
patch, the maximal precision is about 1000 decimal digits, which is apparently not enough. Interest-
ingly, the culprit is the input file (discussed in more detail in §2.2.2), which specifies a precision with
the directive digits 1000. As a solution, one may multiply the number of digits in the file by 2 un-
til the computation passes; this is necessary only for the “hard” direction using pd. For recomputing
the corresponding entries of the table, the precision is thus increased as follows: For rh_8_*.ext
and rv_8_*.ine, from 500 to 1000 digits; for rh_10_*.ext, from 500 to 2000 digits; and for
rv_10_*.ine, from 1000 to 2000 digits.

Input files — It turns out that between the versions gamma and 1.0.5 of vinci, the requirements for the
polytope input files changed. For algorithms working with the double description, both require the V -
representation in a .ext-file (for “extreme points”) and the H-representation in a .ine-file (for “in-
equalities”). But the older version also requires a .icd-file for the incidence information, while the
newer one recomputes it on the fly from the other two files. The polytopes on the web [2] lack the .icd-
files. These could be recreated using code from vinci-1.0.5, but luckily it turned out that I had
also kept copied of the historical polytope files on my hard disk.

(Re-)debugging, or reverse debugging — The -m parameter of vinci specifies the method to use for
volume computation; if it is not set, it uses the default -m hhv (for the gamma version, renamed to -m
hot in release 1.0.5), corresponding to the column labelled “HOT” in Table 1. As seen above, this works
on the square, but it fails already on a 4-dimensional hypercube with a segmentation fault. Using a gdb
backtrace and comparing the offending function tri_ortho between the versions gamma and 1.0.5
reveals that indeed a null pointer is dereferenced; the bug is fixed by applying a patch as follows:

$ wget https://zenodo.org/record/4293820/files/vinci-dummy.patch
$ patch < vinci-dummy.patch

where the content of vinci-dummy.patch is reproduced in Table 4.

ReScience C 6.1 (#17) – Enge 2020 6

https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

diff -u vinci_gamma.old/vinci_volume.c vinci_gamma/vinci_volume.c
--- vinci_gamma.old/vinci_volume.c 2020-09-16 17:31:16.512294710 +0200
+++ vinci_gamma/vinci_volume.c 2020-09-16 17:31:55.952295832 +0200
@@ -211,7 +211,7 @@

rational volume, *stored_volume;
rational distance, maxdistance = 0;
boolean i_balance = FALSE, store_volume = FALSE, compute_volume = TRUE;

- T_Key **dummy;
+ T_Key *dummy;

*V = 0;

@@ -227,7 +227,7 @@
{ copy_set (face [d], &(key.vertices.set));

key.vertices.d = d;
}

- tree_out (&tree_volumes, &i_balance, key, &stored_volume, dummy, key_choice);
+ tree_out (&tree_volumes, &i_balance, key, &stored_volume, &dummy, key_choice);

if (*stored_volume < -0.5) /* volume has not yet been computed and is -1 */
{

if (!G_OutOfMem) /* stored_volume points to a tree element where the volume */

Table 4. vinci-dummy.patch

Maybe the code worked at the time on the HPmachine since, as its name indicates, the variable dummy
is indeed not used after the call to tree_out; it is only required for a different volume computation
method.
In 1997, we displayed timing information with two decimals; given Moore’s law, this is not enough any-
more, and the following patch switches to four decimals:
$ wget https://zenodo.org/record/4293820/files/vinci-print.patch
$ patch < vinci-print.patch

where the content of vinci-print.patch is shown in Table 5.
diff -u vinci_gamma.old/vinci.c vinci_gamma/vinci.c
--- vinci_gamma.old/vinci.c 2020-09-16 17:31:16.512294710 +0200
+++ vinci_gamma/vinci.c 2020-09-16 17:35:24.744301773 +0200
@@ -968,7 +968,7 @@

#endif

- printf (”\n\nTime passed with computation: %8.2f s\n”, time_passed (0));
+ printf (”\n\nTime passed with computation: %9.4f s\n”, time_passed (0));

printf (”___\n\n”);

}

Table 5. vinci-print.patch

Lawrence’s method, a signed decomposition algorithm (corresponding to the columns “Lnd” and “Ld”
in Table 1) uses a random hyperplane. In the original code, we tried to make it reproducible between
different runs by calling srand with the fixed seed 4, then using rand to create several int values.
However, the random numbers are not the same due to different values of RAND_MAX: 231 − 1 on my
modern 64-bit system, probably 215 − 1 on the old 32-bit HP system (the old logs indeed show 15-bit
randomnumbers, which is consistent with this hypothesis). This implies that the simplex volumes added
and subtracted during the algorithm are not the same any more. Vinci prints the random numbers, and
it would be possible to replace the calls to rand by using the fixed list of numbers of the time; given the
numerical instability of the signed decomposition, where substractions may result in huge cancellations,
I considered it was not worth the effort.
It turns out that an additional tiny patch is needed to reproduce the results for one of the volume com-
putation algorithms. Lasserre’s method requires to choose a pivot in a matrix; by default vinci uses a
defensive partial pivoting strategy, choosing the largest pivot in absolute value, while the column “rL” of
Table 1 was computed with an early abort strategy, choosing the first pivot larger than the value 0.01 of
MIN_PIVOT if possible. There is no command line parameter for selecting the behaviour, so a trivial
patch needs to be applied to vinci.h:
$ wget https://zenodo.org/record/4293820/files/vinci-pivoting.patch
$ patch < vinci-pivoting.patch

ReScience C 6.1 (#17) – Enge 2020 7

https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

the content of which is reproduced in Table 6.

diff -u vinci_gamma.old/vinci.h vinci_gamma/vinci.h
--- vinci_gamma.old/vinci.h 2020-09-16 17:31:16.512294710 +0200
+++ vinci_gamma/vinci.h 2020-09-16 17:37:09.484304753 +0200
@@ -65,7 +65,7 @@
#define QHULL_OPTIONS ”d i Q0 Qz”

/* location of external programmes with paths and options for qhull */

-#define PIVOTING 1
+#define PIVOTING 0
#define MIN_PIVOT 0.01

/* for choosing a pivoting strategy whenever this is needed, e.g. for determinant */
/* computation */

Table 6. vinci-pivoting.patch

This one-character change has an important influence on the running time, while still producing correct
results; I initially forgot it, and to give an example, the running time of about 6s for rL on rh-10-25 in
Table 8 rises to about 29s with partial pivoting. This is due to our strategy of dynamic programming in
Lasserre’s algorithm, where partial pivotingmakes it less likely that volumes of subfacesmay be retrieved
from memory, as explained right above §5.1 in [1]. Pivoting also plays a role when computing a simplex
volume as a determinant; but the article [1] mentions it only in the context of Lasserre’s algorithm and
not for triangulations. Indeed, a quick experiment with CH on rh-10-20 shows no noticeable difference in
the running time. And looking at the output of the batch jobs used to produce Table 1 shows that partial
pivoting is used for other algorithms than Lasserre’s.
After all these little patches, it is time to build the vinci executable again:

$ make

2.3 Modern times

For good measure and to go with modern tools, I have also included vinci release 1.0.5 into GNU Guix6,
a modern, functional (in the sense of functional programming) GNU/Linux distribution with exact de-
pendency tracking and the aim of easing reproducibility7. The full build recipe, added in git commit
b457f3cc16, is shown in Table 7.
Besides some self-explaining metadata, the core content of the record are the fields build-system
and arguments. To start with, the build system is chosen as gnu-build-system, which essen-
tially runs

./configure && make && make check && make install

Of these four phases, only the second one,make, is actually kept. The check phase is disabled by the line
#:test? #f. Installation is done “by hand”, copying only the binaryvinci into the output directory.
The package depends on lrs, which is called lrslib in GNU Guix, via theinputs field. The configure
phase is replaced by a phase in which the actual location of the lrs binary is coded into the vinci.h
header file, instead of expecting it in the current directory.
GNU Guix has mechanisms for “going back in time”; the commands

$ guix pull --commit=b457f3cc16
$ guix environment --ad-hoc vinci

downgrade the Guix version on a machine to the moment where vinci-1.0.5 was added to it and
start an ephemeral environment with the vinci version of this commit. Unfortunately, guix pull
modifies the user environment (otherwise said, it pollutes the environment with state, which is non-
functional). Functional time travel is enabled by guix time-travel, which essentially combines
the two previous commands into one without modifying state:

$ guix time-machine --commit=b457f3cc16 -- environment --ad-hoc vinci
6https://guix.gnu.org/
7See Konrad Hinsens̓ blog post at https://guix.gnu.org/blog/2020/reproducible-computations-with-guix/

ReScience C 6.1 (#17) – Enge 2020 8

https://guix.gnu.org/
https://guix.gnu.org/blog/2020/reproducible-computations-with-guix/
https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

(define-public vinci
(package

(name ”vinci”)
(version ”1.0.5”)
(source
(origin

(method url-fetch)
(uri (string-append ”https://www.math.u-bordeaux.fr/~aenge/software/”

”vinci/vinci-” version ”.tar.gz”))
(sha256
(base32
”1aq0qc1y27iw9grhgnyji3290wwfznsrk3sg6ynqpxwjdda53h4m”))))

(build-system gnu-build-system)
(inputs
‘((”lrslib” ,lrslib)))
(arguments
‘(#:tests? #f ; no check phase

#:phases
(modify-phases %standard-phases
(replace ’configure

;; register the lrs location in the config file
(lambda* (#:key inputs #:allow-other-keys)

(let* ((lrs (assoc-ref inputs ”lrslib”))
(lrsexec (string-append lrs ”/bin/lrs”)))

(substitute* ”vinci.h”
((”#define LRS_EXEC \”lrs\””)
(string-append ”#define LRS_EXEC \”” lrsexec ”\””))))

#t))
(replace ’install
(lambda* (#:key outputs #:allow-other-keys)
(let* ((out (assoc-ref outputs ”out”))

(bin (string-append out ”/bin”)))
(install-file ”vinci” bin))

#t)))))
(home-page
”https://www.math.u-bordeaux.fr/~aenge/?category=software&page=vinci”)
(synopsis ”Volume computation for polytopes”)
(description
”Vinci implements a number of volume computation algorithms for convex

polytopes in arbitrary dimension. The polytopes can be given by their
V-representation (as the convex hull of a finite number of vertices), by
their H-representation (as the bounded intersection of a finite number of
halfspaces) or by their double description with both representations.”)

(license license:gpl2+)))

Table 7. Definition of the vinci package in GNU Guix

ReScience C 6.1 (#17) – Enge 2020 9

https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

Of course it is not possible to travel to an alternative past: When the software versions of §2.2 were
written, Guix did not yet exist, so there is no past in which they would have been available in Guix.
Tomake it possible to carry out the historically informed performance of §2.2 with modern tools, I added
the older software versions to an additional “channel” of Guix, guix-past8, which was introduced in the
context of another article in this Ten Years Reproducibility Challenge [3, §2.3]. Channels are a way of
defining “overlays” on top of the “official” Guix distribution. Using them requires a declaration in a config-
uration file. For instance, the guix-past channel is registered by putting exactly the following lines into
$HOME/.config/guix/channels.scm:

(cons (channel
(name ’guix-past)
(url ”https://gitlab.inria.fr/guix-hpc/guix-past”)
(introduction
(make-channel-introduction
”0c119db2ea86a389769f4d2b9c6f5c41c027e336”
(openpgp-fingerprint
”3CE4 6455 8A84 FDC6 9DB4 0CFB 090B 1199 3D9A EBB5”))))

%default-channels)

Then

$ guix pull

updates GNU Guix (from %default-channels) to its latest version, and adds the guix-past
channel. Finally

$ guix environment --ad-hoc vinci@0.97.10.12 \
lrslib@4.0 primal-dual@0.97.11.20

creates an ephemeral environment in which the vinci, lrs and pd versions referenced in §2.2 are available.

3 Reproduced results

In line with the Ten Years Reproducibility Challenge, I have used the historically informed approach de-
scribed in §2.2 to recompute Table 1. According to [1], themachine used at the timewas anHP7000/735-
99 workstation with about 500MB of RAM. We did not record more detail; a web search reveals docu-
mentation about an HP 9000 (not 7000) 735/99 computing cluster9, introduced in 1992, with a 32-bit
PA-7100 CPU clocked at 99 MHz and a 30W power consumption. I now performed all computations on
my laptop with an Intel Core i5-6300U CPU running at 2.4 GHz (with a boost mode up to 3.0 GHz) and
a thermal design power of 15W10 with 16GB of main memory. The results are recorded in Table 8. As
in [1], I used a MIN_PIVOT of 0.01 for Lasserre’s algorithm of column “rL” and partial pivoting for all
other methods, cf. the discussion at the end of §2.2.3 on reverse debugging.
At first glance, the table looks quite similar to the old one: Volumes that were computed incorrectly
are still incorrect; intractable computations are (mostly) still intractable; and while all running times are
lower, the conclusions of [1] about which algorithms behave well or poorly on which classes of polytopes
are confirmed.
Unlike in [1], all computations with Lawrence’s formula in the degenerate case (column “Ld”) fail. This
may be due to bad interfacing with the used version of lrs, which is not the same as in [1]; but since
already there we concluded that Lawrence’s method is numerically unstable and should thus be avoided
(at least in the way we implemented it, with a random hyperplane), I did not find it worthwhile to debug,
and also did not try to recompute the examples that already failed in 1997.
A few entries in the table deserve special comment, since the computations can now be carried out on a
machine with more memory. These are cube-10 with lrs (column “Bnd”) and qhull (column “Del”); the

8https://gitlab.inria.fr/guix-hpc/guix-past
9https://www.openpa.net/systems/hp-9000_735_755.html, https://www.hpmuseum.net/display_item.php?hw=431
10https://ark.intel.com/content/www/us/en/ark/products/88190/intel-core-i5-6300u-processor-3m-cache-up-to-3-00-ghz.h

tml

ReScience C 6.1 (#17) – Enge 2020 10

https://gitlab.inria.fr/guix-hpc/guix-past
https://www.openpa.net/systems/hp-9000_735_755.html
https://www.hpmuseum.net/display_item.php?hw=431
https://ark.intel.com/content/www/us/en/ark/products/88190/intel-core-i5-6300u-processor-3m-cache-up-to-3-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88190/intel-core-i5-6300u-processor-3m-cache-up-to-3-00-ghz.html
https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

Triangulation Signed decomp.
V-rep. V- andH-rep. H-rep.

Bnd Del CH HOT Lnd Ld rL H→V V→H

cube-9 180 3.3 1.2 .048 .0036 **
b .0020 .010 .10

cube-10 4400 5.7 16 .22 .0068 **
b .0033 .023 .26

cube-14 **
c

**
a

**
c 35 .15 **

b .093 .56 63
rh-8-20 **

c
**

b 1.5 .11 .015 **
b .14 .26 19

rh-8-25 **
c

**
b 8.2 .47 .038 **

b 1.1 .73 55
rh-10-20 **

c
**

b 42 .82 .044 **
b 0.30 .89 110

rh-10-25 **
c

**
b 590 6.7 .15 **

b 5.7 3.7 530
CC8(9) 3.1 .43 .15 .044 **

c
**

b 1.1 .57 .94
CC8(10) 10 .84 .39 .10 **

c
**

b 6.3 1.6 3.4
CC8(11) 27 1.7 .88 .22 **

c
**

b 31 4.0 5.2
Fm-6 7800 **

a .32 .15 **
c — 83 100 180

ccp-5 .008 .005 .0004 .0003 **
c

**
b 37 .028 .001

ccp-6 4.4 1.8 .67 .32 **
c — **

c 22 4.4
rv-8-10 .004 .003 .0001 .0001 **

c
**

b .0008 .21 .002
rv-8-11 .005 .002 .0001 .0001 **

c
**

b 0.89 .44 .003
rv-8-30 1.6 .042 .037 .034 **

c — **
c 110 1.6

rv-10-12 .004 .003 .0001 .0001 **
c

**
b .0012 1.1 .003

rv-10-14 .019 .004 .0003 .0003 **
c — **

c 6.5 .015
cross-8 .005 .004 .0006 .0006 **

c
**

b 1.1 .026 .004
cross-9 .010 .001 .0011 .0011 **

c — 16 .091 .007

Table 8. Timing for the different methods and examples. abeyond memory limit, bvolume com-
puted incorrectly, cproblem is intractable with this method

latter requires about 3GB of memory. Our implementation of Lasserre’s algorithm (column “rL”) uses a
dynamic programming style approach to store and retrieve volumes of lower-dimensional faces, starting
at dimension d− 2, and going down to dimension 2 (since edges, of dimension 1, are always simplices,
their length is easy to recompute and does not warrant wasting memory). For the complete cut polytope
on five vertices, ccp-5 of dimension 10, we needed in [1] to limit storage to six levels, from dimension 8
down to 3, while now we can also store 2-dimensional volumes. The same holds for the metric polytope
Fm-6 of dimension 15, where instead of storing face values of nine levels we can store all twelve levels
from dimension 13 down to 2, using a bit less than 5GB of memory.
For a closer comparison, it is interesting to consider the factor by which the current computations are
faster than in 1997. This is recorded in Table 9 for the combinations of polytopes and algorithms where
this makes sense, that is, those that are computed correctly and with a running time that could be mea-
sured to two significant digits in both tables and, for Lasserre’s method, with the same level of storage.
Again, all numbers are rounded to two significant digits. Since numbers are divided that were already
rounded to two significant digits, there is a total rounding error of up to 11%, but this should be enough
for drawing some general conclusions.
The disparity between the numbers, ranging from 37 to 450, is somewhat surprising; in the following, I
try to provide some explanations.
The results in the first column labelled “Bnd” are entirely computed by lrs. The discussion on BASE and
DIGITS at the end of §2.2.1 shows that the software relies on its own implementation ofmultiprecision
integers using machine integers; so it is reasonable to assume that the quite homogeneous factors
in Table 9, between 100 and 140, measure the relative performance of integer arithmetic on the two
machines. This is consistent with the upper half of column “H→V ”, from cube-9 to Fm-6, which is

ReScience C 6.1 (#17) – Enge 2020 11

https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

Triangulation Signed d.
V-rep. V- andH-rep. H-r.

Bnd Del CH HOT Lnd rL H→V V→H

cube-9 140 82 68 83 — — 110 120
cube-10 — — 59 82 — — 120 140
cube-14 — — — 94 87 110 160 56
rh-8-20 — — 62 71 100 100 110 100
rh-8-25 — — 52 57 92 110 110 83
rh-10-20 — — 71 77 120 100 100 86
rh-10-25 — — 58 58 100 110 100 83
CC8(9) 130 93 73 77 — 130 130 150
CC8(10) 130 95 72 77 — 140 120 100
CC8(11) 130 88 74 77 — 140 140 150
Fm-6 140 — 78 80 — — 130 37
ccp-5 — — — — — — 160 —
ccp-6 120 83 64 72 — — 200 450
rv-8-10 — — — — — — 76 —
rv-8-11 — — — — — 89 75 —
rv-8-30 110 — 190 200 — — 65 94
rv-10-12 — — — — — — 84 —
rv-10-14 100 — — — — — 78 340
cross-8 — — — — — 150 160 —
cross-9 — — — — — 170 130 —

Table 9. Factor gained in running times from 1997 to 2020.

also computed by lrs, while I have no explanation for the factors 340 and 450 in the lower half of column
“V→H”, from ccp-5 to cross-9, again obtained by lrs. The remaining results in the columns “H→
V” and “V→H” are computed by pd with essentially the same multiprecision arithmetic, with a more
spread variation of the factors; I do not know enough of the algorithm and implementation to venture an
explanation.
The column “Del” is obtained by a mixture of a call to qhull for computing the Delaunay triangulation,
and the computation of the resulting simplex volumes in vinci; both use double precision, so one might
conclude that the rather homogeneous numbersmeasure the relative performance of floating point oper-
ations between the two machines. This is, however, also the case for “Lnd”, with a somewhat larger gain
on themodernmachine. Lasserre’s algorithm of column “rL” alsomakes heavy use of floating point arith-
metic, not only for the volume computation formula, but also for the linear algebra when projecting faces
onto affine subspaces. Additionally, it stores partial results for later reuse in a balanced search tree. So
the higher factor in the “rL” columnmight be explained by a relatively better memory performance on the
modern machine. However, also the algorithms behind the columns “CH” and “HOT” store partial results
in a tree in memory, and there the factors are rather small. On the other hand, for the “combinatorial part”
of going down by one dimension, they do not use floating point operations for projections, but symbolic
intersection of faces with facets, both given by an ordered array of vertices specified by their labels of
int type. So the relative performance of this operation may explain the consistently smaller factors in
the two columns, except for the outlier rv-8-30. This polytope with 30 facets has by far the largest
number of vertices, 4482, of all considered examples (cf. Table 1). So the combinatorial structure of the
polytopes appears to not only have an influence on the relative performance of the different algorithms,
but also on the performance of the same algorithm on different processors: While the factors do vary
a lot over the complete table, they are quite similar inside a “block” of one algorithm applied to a fixed

ReScience C 6.1 (#17) – Enge 2020 12

https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

class of polytopes.
Admittedly, these attempts at explanation are more speculation than proof; for a scientifically sounder
comparison, one would have to carry out more detailed experiments, which would require access to the
old machine.
All factors in Table 9 are (much) larger than the quotient of the nominal clocking speeds of the processors
of about 24. Moreover, the energy efficiency of the computations has probably increased a lot: The
thermal design power has been halved from the processor in the workstation to that in the laptop (while
the figures for the complete system are unknown), and nevertheless the speed of the computations has
gone up by a factor of about 100. This should be attributable to the miniaturisation of transistors as
captured by Moore’s law. Since more than 22 years have passed between the computations, even a
conservative estimate of two years per “Moore cycle” leads to eleven cycles and a factor of 211 ≈ 2000.
Notice that this is very far from the factors recorded in Table 9, which is consistent with the general
observation that Moore’s law does not apply to the performance of serial code anymore, but that the
increased number of transistors is used to place more computing cores onto the same die.
So in order to profit from more powerful computers, code needs to be parallelised. It looks at first as if
this would not be too difficult for volume computation: By recursing over the dimension, the algorithms
visit the polytope faces and perform a tree traversal. So different branches of the tree may be assigned
to different processors. Since not all branches have the same size, a task based approach may prove to
be fruitful. However, by storing and reusing partial results, the faster algorithms exploit the fact that the
face lattice is not a tree, but a directed acyclic graph with cycles if directions are removed: Every edge is
contained in at least two faces of dimension 2, for instance. In a fast parallel implementation, to profit
from this structure would require additional communication between the computing cores.

4 Conclusion

Reproducing the results of Table 1 has been quite easy, due to the following observations.
All used software is free and readily available on the Internet. The task would have been easier if the
software and example polytope files could have been published electronically alongside the article; or
if all software projects (including my own…) had archived all releases on their websites11. Nowadays,
developing source code in a publicly accessible, version controlled repository could also ease the task
of finding a specific release in the future, assuming the technology (git, right now) remains sufficiently
stable and in use or provides an upgrade path (as is available from subversion to git, for instance).
Secondly, all used software is implemented in standard C with a simple makefile. The choice of the
C language seems to be optimal for reproducibility due to its ubiquity; compilers have been available for
all platforms, notably gcc of the GNU project: The oldest version still available on the GNU ftp server12
is release 1.3.5 from 1989. The build system of all used software is also very simple; again, GNU make
is available on all platforms. (In the worst case, the C files could be compiled “by hand” and the resulting
object files could all be linked together into an executable, the presence of makefile in vinci is a mere
convenience.)
Once the software had been compiled, redoing the computations has not posed any problem either (on
the contrary, the availability of more powerful machines has considerably reduced the waiting time!).
However, one of the algorithms (“rL”) has required patching a header file to select an option; it would
have been easier if this had been realised by a command line option, prominently advertised next to the
table of results.
I am pleased to see that while not all computations have been sped up by the exact same factor, ourmain
observations of the time remain valid: The ordering of the algorithms by performance on the different
polytope classes is still the same, making it possible to automatically select the best algorithm for a
given polytope. Moreover the chosen example polytopes are still meaningful; even twenty years later, it
is not possible to go much further due to the exponential complexity of the algorithms (and most likely
of the problem itself). So this is an interesting case in which algorithms may remain relevant over a long
period of time.

11This problem is addressed by the Software Heritage project, https://www.softwareheritage.org/.
12https://ftp.gnu.org/old-gnu/gcc/

ReScience C 6.1 (#17) – Enge 2020 13

https://www.softwareheritage.org/
https://ftp.gnu.org/old-gnu/gcc/
https://rescience.github.io/

[Re] Volume computation for polytopes: Vingt ans après

References

1. B. Büeler, A. Enge, and K. Fukuda. “Exact Volume Computation for Polytopes: A Practical Study.” In: Polytopes
— Combinatorics and Computation. Ed. by G. Kalai and G. M. Ziegler. Vol. 29. DMV Seminar. Basel: Birkhäuser
Verlag, 2000, pp. 131–154. URL: https://hal.inria.fr/hal-03029034/.

2. B. Büeler and A. Enge. vinci. 1.0.5. Distributed under GPL v2+. July 2003. URL: http ://doi .org/10.5281/
zenodo.4294009.

3. L. Courtès. “[Re] Storage Tradeoffs in a Collaborative Backup Service for Mobile Devices.” In: ReScience C 6.1
(2020), #12. URL: http://doi.org/10.5281/zenodo.3886739.

ReScience C 6.1 (#17) – Enge 2020 14

https://hal.inria.fr/hal-03029034/
http://doi.org/10.5281/zenodo.4294009
http://doi.org/10.5281/zenodo.4294009
http://doi.org/10.5281/zenodo.3886739
https://rescience.github.io/

	The original study
	Volume computation for polytopes
	Experimental results

	Software installation
	Fast track
	Historically informed performance
	Software
	Input files
	(Re-)debugging, or reverse debugging

	Modern times

	Reproduced results
	Conclusion

