
HAL Id: hal-03059076
https://hal.inria.fr/hal-03059076

Submitted on 12 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

C language mechanism for error handling and deferred
cleanup

Jens Gustedt, Robert Seacord

To cite this version:
Jens Gustedt, Robert Seacord. C language mechanism for error handling and deferred cleanup. The
36th ACM/SIGAPP Symposium on Applied Computing (SAC’21), Mar 2021, virtuelle, South Korea.
�10.1145/3412841.3442116�. �hal-03059076�

https://hal.inria.fr/hal-03059076
https://hal.archives-ouvertes.fr


C language mechanism for error handling and deferred cleanup
extended abstract

Jens Gustedt
INRIA and Université de Strasbourg

France
jens.gustedt@inria.fr

Robert C. Seacord
NCC Group

USA
robert.seacord@nccgroup.com

ABSTRACT
This paper introduces the implementation of a C language mecha-
nism for error handling and deferred cleanup adapted from similar
features in the Go programming language. This mechanism im-
proves the proximity, visibility, maintainability, robustness, and
security of cleanup and error handling over existing language
features. This feature is under consideration for inclusion in the
C Standard. The library implementation of the features described
by this paper is publicly available under an Open Source License at
https://gustedt.gitlabpages.inria.fr/defer/.
ACM Reference Format:
Jens Gustedt and Robert C. Seacord. 2021. C language mechanism for error
handling and deferred cleanup: extended abstract. In The 36th ACM/SIGAPP
Symposium on Applied Computing (SAC ’21), March 22–26, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3412841.3442116

1 INTRODUCTION
The defer mechanism can restore a previously known property
or invariant that is altered during the processing of a code block.
The defer mechanism is useful for paired operations, where one
operation is performed at the start of a code block and the paired
operation is performed before exiting the block. Because blocks
can be exited using a variety of mechanisms, operations are fre-
quently paired incorrectly. The defer mechanism in C is intended to
help ensure the proper pairing of these operations. This pattern is
common in resource management, synchronization, and outputting
balanced strings (e.g., parentheses or HTML tags). A panic/recover
mechanism allows error handling at a distance.

Unlike existing high-level languages, C lacks a general mecha-
nism for resource management and error handling, outside of C’s
use of integer error codes and outmodedmechanisms such as errno.
Consequently, resource management in C programs can be complex
and error prone, particularly when a program acquires multiple
resources. Each acquisition can fail, and resources must be released
to prevent leaking. If the first resource acquisition fails, no cleanup
is needed, because no resources have been allocated. However, if
the second resource cannot be acquired, the first resource needs to
be released. Similarly, if the third resource cannot be acquired, the
second and first resources need to be released, and so forth. This

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8104-8/21/03.
https://doi.org/10.1145/3412841.3442116

pattern results in duplicate cleanup code, and it can be error-prone
because of this duplication and the associated complexity.

C programmers need to manage the acquisition and release of
resources. Because resources exist in limited quantities, it is always
possible that a resource cannot be acquired because the supply
of that resource has been exhausted. Examples of C standard li-
brary functions [2] that acquire resources include storage functions
(malloc, calloc, realloc, aligned_alloc), mutexes (mtx_init,
mtx_lock, mtx_timedlock, etc.), strings (strdup, strndup), and
streams (fopen, freopen).

Improper resource management and error handling frequently
results in software vulnerabilities. They can result in denial-of-
service (DoS) attacks which seek to prevent legitimate users from
being able to access information systems, devices, or other network
resources [3]. For example, if an attacker can identify an external
action that causes memory to be allocated but not freed, memory
can eventually be exhausted. Once memory is exhausted, additional
allocations fail, and the application is unable to process valid user
requests. Another variant of such erroneous resource management
can be exploited in multi-threaded programs that use mutexes. By
default, most systems have no provisions to cope with a mutex that
is locked by a thread that exits. Other threads that try to access that
same mutex will block, eventually causing a deadlock of the whole
execution.

Another common error associated with manual memory man-
agement is the deallocation of memory more than once, without an
intervening allocation. Double Free vulnerabilities can be exploited
to execute arbitrary code with the permissions of a vulnerable
process [4]. A common source of this error is the deallocation of
memory while handling an error condition which is then deallo-
cated again during normal cleanup procedures.

To cope with these shortcomings, the C standards committee
(ISO/IEC JTC1/SC22/WG14) is investigating the adaptation of Go’s
mechanism of deferred execution to C [1]. There is evidence that
this mechanism provides improved cleanup and error handling over
existing C language features (such as goto or longjmp) and over
features that could be imported from other languages such as C++,
C# or Java like constructor/destructor pairings, exception handling,
or finally blocks, or from compiler extensions such as explicit
destructor functions (GCC compilers).

This paper provides a concise overview of the features that are
proposed by our reference implementation.

2 PRINCIPAL FEATURES
The principal features of the proposed language mechanism are:

• guard prefixes a guarded block
• defer prefixes a defer clause

https://gustedt.gitlabpages.inria.fr/defer/
https://doi.org/10.1145/3412841.3442116
https://doi.org/10.1145/3412841.3442116
https://doi.org/10.1145/3412841.3442116


SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Jens Gustedt and Robert C. Seacord

• break ends a guarded block and executes all its defer clauses
• return unwinds all guarded blocks of the current function
and returns to the caller

• thrd_exit unwinds all active deferred statements of the
current thread and exits that thread

• exit unwinds all active deferred statements of the current
thread and exits the execution

• panic starts global unwinding of all guarded blocks
• recover stops a panic and provides an error code

The existing features break, return, thrd_exit and exit gain
new functionality while the remaining features are new. Existing
features are overloaded by macro definitions that take effect as soon
as the library header is included.

2.1 The defer Statement
The defer statement defers execution of the deferred statement to
the end of the guarded block (described in the next subsection). The
syntax is

defer statement

Deferred statements may not themselves contain guarded blocks or
other defer statements, and must not call functions that may result
in a termination of the execution other than panic. Additionally,
such a call to panic must only occur after the current panic state
has been tested with recover.

The deferred statement may use any local variable that is visible
where the defer is placed and that is alive when the deferred state-
ment is executed at the end of the encompassing guard or function
body. This property is verifiable at compile time, and a violation
usually results in compilation failure. The reference implementa-
tion puts everything in place such that a deferred statement uses
the last-written value for all variables.

2.2 The guard Statement
The guard statement marks a whole block as guarded for uses of
the defer mechanism.

guard compound-statement

If such a block terminates normally or with a break or continue
statement, all deferred statements that have been registered are
executed in reverse order of their registration. There is also a
macro defer_break that can be used in contexts where break
or continue statements would refer to an inner loop or switch
statement. In addition, return, exit, quick_exit, and thrd_exit
also trigger the execution of deferred statements, but continue this
treatment up to their respective levels of nesting of guarded blocks.
In contrast, other standard means of non-linear control flow out
of, or into, the block (goto, longjmp, _Exit, and abort), do not
invoke that mechanism and may result in memory leaks or other
damage when used within such a guarded block.

In the C standards committee proposal [1], each function body
implements a guarded block such that an explicit guard statement
is not necessary for many common use cases. We use the term
"guarded block" throughout this paper, regardless of whether a
guard statement is used or the function body defines the guarded
block. Listing 1 shows a guarded block containing three deferred
statements. The defer keyword indicates that the evaluation of the

following statement, such as a call to free, is deferred to the end of
the guarded block. The deferred statement is evaluated regardless
of how the guarded block exits. In Listing 1, the block can be exited
after the final statement is evaluated, or if a break statement is
evaluated. Deferred statements are evaluated in the inverse order
they were encountered. Possible branches for this guarded block
are shown in Figure 1. Dashed lines represent conditional error
handling paths that are executed when resources are unavailable
or evaluation is interrupted by a signal.
Figure 1: Control flow of a guarded block with three defers

defer defer defer

guard

? ??

Listing 1: An example with three deferred statements

guard {
void * const p = malloc (25);
if (!p) break;
defer free(p);
void * const q = malloc (25);
if (!q) break;
defer free(q);
if (mtx_lock (&mut)== thrd_error) break;
defer mtx_unlock (&mut);
// all resources acquired

}

This approach has advantages over familiar C, C++, C# or Java
solutions. Cleanup code that releases resources is collocated with
the code that acquires these resources, making it easier for pro-
grammers to ensure statements are properly paired. Similar to C# or
Java’s finally blocks, cleanup code is clearly visible. This differs
from atexit handlers in C or constructor/destructor pairs in C++,
where cleanup code may be defined in a different translation unit.

Listing 2: Emulation of defer by goto

void * const p = malloc (25);
if (!p) goto DEFER0;
if (false) {

DEFER1: free(p); goto DEFER0;
}
void * const q = malloc (25);
if (!q) goto DEFER1;
if (false) {

DEFER2: free(q); goto DEFER1;
}
if (mtx_lock (&mut)== thrd_error) goto DEFER2;
if (false) {

DEFER3: mtx_unlock (&mut); goto DEFER2;
}
// all resources acquired
goto DEFER3;
DEFER0 :;

For control flow that doesn’t include return, exit, or other
non-returning functions calls an equivalent control flow can be
implemented with existing C language features. The guarded state-
ment from Listing 1 is equivalent to the code segment in Listing 2.
The if (false) statement guarantees that the deferred statements



C language mechanism for error handling and deferred cleanup SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

are not evaluated when they are first encountered. The labels and
goto statements implement the backward branches to execute the
deferred statements when the guarded block terminates.

Listing 3: A linearization

void * const p = malloc (25);
if (!p) goto DEFER0;
void * const q = malloc (25);
if (!q) goto DEFER1;
if (mtx_lock (&mut)== thrd_error) goto DEFER2;
// all resources acquired
mtx_unlock (&mut);

DEFER2: free(q);
DEFER1: free(p);
DEFER0 :;

A common C idiom for cleanup handling is to linearize resource
management as shown in Listing 3. This code has the advantage
of making the conditional error handling code explicit but at the
cost of proximity; the cleanup code is removed from where its
need arises. This linearization requires a naming convention for
the labels. For more complicated code the maintenance of these
jumps can be error prone.

In contrast to such commonly found idioms, deferred statements
do not depend on arbitrary label names (C) or RAII classes (C++)
and do not change when defer or break statements are added or
removed.

All exits from a guarded block by break, return, thrd_exit,
exit, or an interruption by a signalmust be detected and acted upon.
This is difficult to implement in C and requires try/catch blocks
in C++. The defer mechanism ensures that deferred statements are
guaranteed to be executed, provided program execution progresses.
The defer statement has syntax similar to other control structures,
such as if and for blocks.

For maintainability and robustness we opted for object access by
reference within a deferred statement and not by value. Listing 1
illustrates the importance of access by reference. The value of p
could be changed bymeans of realloc, for example. If defer copies
the value, the deferred call to free would use a stale copy of the
value.

Because the scope in which the deferred statement is executed
is limited, compilers can detect and diagnose a usage of a variable
that is out of scope. As stated earlier, vulnerabilities can occur if
resources are not released, or released more than once. Security is
improved because of increased proximity and visibility of cleanup
code to the resource acquisition code, and to improvements in
maintainability and robustness.

2.3 Regular termination
There are three severity levels for termination of a guarded block:
break or similar just terminates the guarded block, return termi-
nates all guarded blocks of the same function and exit or panic
terminates all guarded blocks in the same thread across all func-
tion calls. The implementation augments break (within a guard)
and return by this functionality. This is achieved by overloading
these features by macros, a technique that the C standard explicitly
allows. Code that is compiled with the<stddefer.h> header will
also replace calls to the C library functions exit, thrd_exit, and
quick_exit by calls to their corresponding wrappers.

2.4 Panic/Recover
Error handling at distance is supported by the introduction of a
panic/recover mechanism, which is similar to throw/catch in C++.
Panic/recover depends on the defer mechanism to release resources
during stack unwinding. Generally, a panic is a condition which
requires unwinding one or several levels of deferred statements.
Such a panic may occur implicitly if the run-time library detects or
signals a fault, or explicitly by the use of a macro dedicated to that
purpose.

The panic macro is called to indicate an abnormal execution
condition. It triggers the execution of all active deferred statements
of the current thread in the reverse order they are encountered,
until either a deferred call to recover is executed or all deferred
statements have been executed. If no recover statement is encoun-
tered, the function stack unwinds the caller’s stack and executes
all deferred statements registered in that stack frame. This process
continues until a recover expression is encountered or all deferred
statements have executed.

Our reference implementation applies the convention that user
error codes passed to panic are always positive, and system error
codes are generally negated errno numbers.

Once a deferred statement begins evaluation, the condition that
led there can be investigated by means of recover. The recover
function returns an integer value indicating why the deferred state-
ment is executing. A return value of 0 indicates that the deferred
statement is the result of a break, return or exit. Any other value
indicates that the deferred statement is executing as the result of a
panic. The programmer is responsible for handling the recovered
error and may re-issue the panic fromwithin the deferred statement
if it is impossible to recover at a particular level of abstraction.

3 CONCLUSIONS
An effort is underway to add a mechanism for error handling and
deferred cleanup to the C standard by providing a new library clause
for a new header with the proposed name<stddefer.h> [1].

C code converted to use defer typically has less code, equal or
better performance, and improved usability based on an analysis of
existing open source libraries such as OpenSSL, PostgreSQL, and
Flux.

ACKNOWLEDGMENTS
Thanks to Aaron Ballman, Alex Gilding, JeanHeyd Meneide, Miguel
Ojeda, Tom Scogland, Martin Uecker, Freek Wiedijk and Simon
Harraghy for their contributions to this work.

REFERENCES
[1] Aaron Ballman, Alex Gilding, Jens Gustedt, Tom Scogland, Robert C. Seacord,

Martin Uecker, and Freek Wiedijk. 2020. Defer Mechanism for C. ISO SC22 WG14
N2542, http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2542.pdf.

[2] ISO. 2018. ISO/IEC 9899:2018: Programming languages — C. International Organi-
zation for Standardization, Geneva, Switzerland.

[3] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher. 2004. Internet
Denial of Service: Attack and Defense Mechanisms. Prentice Hall, Upper Saddle
River, NJ, USA. 372 pages. Radia Perlman series in computer networking and
security.

[4] Robert C. Seacord. 2013. Secure Coding in C and C++ (2nd ed.). Addison-Wesley
Professional.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2542.pdf

	Abstract
	1 Introduction
	2 Principal Features
	2.1 defer Statement
	2.2 guard Statement
	2.3 Regular termination
	2.4 Panic/Recover

	3 Conclusions
	Acknowledgments
	References

