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Abstract Arousal results in widespread activation of

brain areas to increase their response in task and behav-

ior relevant ways. Mediated by the Ascending Reticular

Arousal System (ARAS), arousal-dependent inputs in-

teract with neural circuitry to shape their dynamics.

In the occipital cortex, such inputs may trigger shifts

between dominant oscillations, where α activity is re-

placed by γ activity, or vice versa. A salient example of

this are spectral power alternations observed while eyes

are opened and/or closed. These transitions closely fol-

low fluctuations in arousal, suggesting a common ori-

gin.To better understand the mechanisms at play, we

developed and analyzed a computational model com-

posed of two modules: a thalamocortical feedback cir-

cuit coupled with a superficial cortical network. Upon

activation by noise-like inputs originating from the ARAS,

our model is able to demonstrate that noise-driven non-

linear interactions mediate transitions in dominant peak

frequency, resulting in the simultaneous suppression of

α limit cycle activity and the emergence of γ oscilla-

tions through coherence resonance. Reduction in input

provoked the reverse effect - leading to anticorrelated

transitions between α and γ power. Taken together,

these results shed a new light on how arousal shapes

oscillatory brain activity.
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1 Introduction

Arousal is a mechanism in vertebrates that character-

izes simultaneous, widespread and behaviorally relevant

activation of multiple brain areas. Signatures of arousal

in animals include enhanced responsiveness to sensory

stimuli, increased motor recruitment, as well amplified

emotional responses in humans (Quinkert et al. 2011).

Arousal is mediated through the selective activation

of the Ascending Reticular Arousal System (ARAS)

(Brown et al. 2012; Edlow et al. 2012; Fuller et al. 2011;

Koval’zon 2016; Moruzzi and Magoun 1949; Steriade
1996). The ARAS plays an important role in regulating

the different stages of wakefulness, the endocrine and

autonomous nervous system and regulates the cardio-

vascular system by modulating the overall excitability

level in the brain. To do this, ARAS projections inner-

vate directly and/or indirectly various sub-cortical and

cortical brain regions (Brown, Lydic, and Schiff 2010;

Edlow et al. 2012; Fuller et al. 2011), such as the thala-

mus (Schiff 2008; Steriade 1996) and the cortex (Franks

2008; Lakatos et al. 2004; McNally et al. 2020). It is thus

no surprise that through these widespread projections,

the ARAS influences cognitive processes and behaviour

significantly. Prominent examples of arousal-driven ef-

fects include increased attention (Coull 201998; Lakatos

et al. 2004), sleep (Richter, Woods, and Schier 2014;

Steriade, McCormick, and Sejnowski 1993) as well as

anaesthetic-induced loss of consciousness (Brown, Ly-

dic, and Schiff 2010; Franks 2008; Hutt 2011). As a

corollary, arousal - and thus the ARAS - impact signif-

icantly oscillatory brain activity.
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A salient and still puzzling phenomenon is the change

in occipital α rhythmic activity (8Hz-12Hz) observed

whenever subjects and animals open and/or close their

eyes and overt behavior. This phenomenon, historically

referred to event related desynchronization and desyn-

chronization (ERD/ERS), has been repetitively shown

to track changes in cortical activation states (Pfurtscheller

and Silva 1999). The origin of the so-called Berger rhythm

(Adrian and Matthews 1935; Berger 1935) as well as the

mechanisms responsible of task-related α power fluctu-

ations is still under active debate. Broadly speaking,

there are two main hypotheses for the generation of this

salient rhythmic phenomenon. Historically, first claims

that the occipital cortex generates the α rhythm is

supported by more recent experimental evidence (Bol-

limunta et al. 2008), as well as by behavioural studies

pointing out the importance of the α−rhythm in visual

attention (Thut et al. 2006). Building on these observa-

tions, another main hypothesis states that α− activity

has a thalamic origin (Hughes and Crunelli 2005; Vi-

jayan and Kopell 2012), while recent experiment studies

further suggest that these oscillations propagate in the

form of travelling waves to drive the thalamus (Hal-

gren et al. 2019). To this end, an emergent view in

which cortico-thalamic feedback - involving both oc-

cipital cortex and thalamic structures - generates the

α− rhythm has received strong support from both ex-

perimental and theoretical studies (Bollimunta et al.

2011; Hashemi, Hutt, and Sleigh 2015; Hutt 2019; Hutt

et al. 2018; Sleigh et al. 2011). Given significant fluctu-

ations in α-power during arousal and/or visual atten-

tion, it however remains unclear how the ARAS interact

with cortico-thalamic feedback projections to mediate

observed changes in occipital oscillatory activity.

Activation of the visual system , e.g. by opening/

closing the eyes or by attention, does not only alter oc-

cipital α−rhythms but also cortical γ− activity within

the same regions (Geller et al. 2014), cf. Fig. 1(A). In-

terestingly, such focal changes in α and γ power are of-

tentimes anti-correlated with one another: increases in

α− activity follows concomitant decreases in γ power,

and vice versa. Geller et al. (2014) have found experi-

mentally strong occipital γ− activity and weak α− ac-

tivity in ECog-data when the subject has open eyes,

whereas the inverse occurs with closed eyes. This anti-

correlation, characterized by focal shifts in dominant

oscillatory frequency in occipital regions suggests that

both these rhythms are regulated by a common, arousal-

dependent input. Specifically, recalling the arousal- de-

pendent α− activity, we raise the question whether fluc-

tuations in γ− activity may also result from changes

in arousal through an interference with the cortico-

thalamic feedback loop. In support of this hypothesis, it

is well-known that arousal induces cortical γ−rhythms

(Kim et al. 2015; Lakatos et al. 2004; McNally et al.

2020; Steriade et al. 1991b) and tunes synchronisation

in the visual cortex (Fries et al. 2001; Lee et al. 2003;

Munk et al. 1996). Recently, Pisarchik et al. (2019) have

taken up the idea of coherence resonance (Gang et al.

1993; Longtin 1997; Pikovsky and Kurths 1997) and

have proposed that “neural circuits adapt their [intrin-

sic] noise level according to cognitive demand in order

to increase signal-to-noise ratio”. By noise, we refer here

to statistically uncorrelated fluctuations stemming from

elevated neural spiking activity. This is in line with re-

cent results of Hakim, Shamardani, and Adesnik (2018)

revealing γ−band coherence in the visual cortex by non-

oscillatory stimulation.

Recently, Lefebvre, Hutt, and Frohlich (2017) have

proposed that fluctuations in α− power may be in-

duced by ARAS-driven noisy inputs to the thalamus,

interfering with the cortico-thalamic feedback loop. In

the present study, we built on those results and de-

veloped a feedback model that generates both α and

γ oscillatory activity and further depends on ARAS-

mediated stochastic drive. We have enhanced our model

by including not only cortio-thalamic feedback but also

distinct cortical layers to better capture laminar corti-

cal responses to thalamic and ARAS inputs. Since the

ARAS projects both to the cortex and the thalamus (cf.

Fig. 2), we hypothesized that ARAS-mediated inputs

would engage cortico-thalamic feedback loop to support

changes in oscillatory neural activity across both cor-

tical and thalamic populations. We assumed that this

tuning mediated by ARAS - and hence arousal - occurs

when eyes are opening/closing, through increase in vi-

sual attention (Bollimunta et al. 2011) or, alternatively,

during drowsiness or REM-sleep, as seen experimen-

tally (Cantero et al. 1999). Since the ARAS projects to

supragranular cortical layers (Koval’zon 2016), we fol-

low the line of thought of Pisarchik et al. (2019) and

hypothesise that cortical γ− activity is noise-induced

and the ARAS contributes to this cortical noise. Con-

sequently, the cortical dynamics may obey a coherence

resonance mechanism - this is what we explore here.

Figure 1(B) presents the spectral power distribution of

simulated EEG in the course of time and one observes a

qualitative agreement with the alternating dominance

of α− and γ−rhythms.

The subsequent sections introduces the ARAS as a

regulator of input to the thalamus and cortex as well

as the cortico-thalamic feedback and intracortical co-

herence resonance model. Both these models combine

to describe α− and γ− activity under eyes open and

eyes closed conditions. The Results section presents the
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Fig. 1 Experimental electrocorticogram (ECog) in the occipital cortex and model simulations for alternating eyes open and
eyes closed conditions. (A) The plot shows transformed power in the α− and γ-frequency band, that alternates in the course of
time. Modified from Figure 2 in (Geller et al. 2014) with permission. (B) Time-frequency log-power plot of simulated EEG-data
showing alternating power in the γ- (25 − 40Hz) and α−(8 − 14Hz) frequency band. See the Method section for more details.

gained results and explains the dynamical mechanisms

in detail. The Discussion summarizes the results and

embeds them into current literature.

2 Methods

2.1 The relationship between ARAS activation and

intrinsic noise

The ARAS is known to drive the brain and sets its

level of excitability. For instance, anaesthetics diminish

thalamic input to the cortex, reduces cortical and thala-

mic firing activity and induce sedation and loss of con-

sciousness at larger concentration. In the ARAS, brain

stem sub-structures play an important role and notably

contribute to the cortico-thalamic feedback loop and

the excitation level in the cerebral cortex. Specifically,

there is experimental evidence that the brain stem con-

tributes to the occipital and parietal α-rhythm (Brown

et al. 2012) and indirectly via the ARAS the cortical

γ-rhythms (Kim et al. 2015; Lakatos et al. 2004; Mc-

Nally et al. 2020). Recently, a modelling study has pro-

posed that ARAS activity contributes primarily to the

generation of frontal EEG α− activity under propofol

anaesthesia (Hutt et al. 2018). This study assumes that

the ARAS drives the cortical and thalamic structures

by uncorrelated noise.

The ARAS is not a diffusive system as assumed af-

ter the ground-breaking work of Moruzzi and Magoun

(1949), but comprises several sub-arousal systems (Ko-

val’zon 2013, 2016; Richter, Woods, and Schier 2014).

In order to understand the role of the ARAS in shap-

ing brain dynamics, a first approximation of its rather

complex activity may nonetheless provide insights. To

this end, we consider ARAS-mediated input as addi-

tive noise, interacting with both the cortico-thalamic

feedback loop and the cortex, with arousal-dependent

statistics (i.e. mean and variance). Such noise is as-

sumed to mimic uncorrelated synaptic bombardment

resulting from spiking activity projecting from the ARAS

neurons. Consequently, strong and weak arousal in the

ARAS reflect high and low intrinsic noise intensity, re-

spectively. Inspired by experimental observations and

the relation between arousal and intrinsic noise activa-

tion by the ARAS, we hypothesise that for high arousal

condition (e.g. eyes open), strong γ− and weak α− ac-

tivity are characterized by high intrinsic noise level. In

contrast, weak γ- and strong α-activity - characteriz-

ing low arousal (e.g. eyes closed) would reflect reduced

intrinsic noise level.

To model the effect of arousal and ARAS inputs, we

introduce the arousal state function e(t) that relates

the intrinsic noise level in both cortical and thalamic

populations with the state of arousal i.e.

e(t) =
2

π
atan

(
sin(2πpt/T )

s

)
, 0 ≤ t ≤ T (1)

with 0 < e(t) < 1 and the scaling factor s = 0.05,

the number of periods p = 20 and the total simula-

tion time T = 1.2pTsegment. The interval Tsegment is

the duration of an arousal state sequence eyes open -

eyes closed. If e(t) is maximum at e ≈ 1, then eyes

are open and the intrinsic noise level is maximum. The

minimum value e ≈ 0 reflects closed eyes and the in-

trinsic noise level is minimum. The power spectrum of

the neural activity computed in each of the two seg-

ments should have a frequency resolution df that dic-

tates Tsegment = 2/fsdf with the sampling rate fs. Fig-

ure 3(A) shows the arousal state function e(t) where we

define the condition eyes open for e(t) ≥ 0.5 and eyes

closed for e(t) < 0.5.
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Fig. 2 Schematic of cortical layers and afferent/efferent con-
nections projecting to different populations.

Taken together, the intrinsic noise intensity across both

cortical and sub-cortical populations is given by

D(t) = Dmin + (Dmax −Dmin)e(t) (2)

with maximum and minimum noise level Dmax and

Dmin. The choice of Dmax and Dmin is different for the

model type and neuron types introduced in the subse-

quent section 2.2.

2.2 The network model

The present work aims to characterize changes between

α− and γ-power in visual cortex while arousal level

is changing in subjects with open and/or closed eyes.

There is strong evidence that resting α-rhythms origi-

nate from the feedback connection between the cortex

and thalamic structures, while γ−rhythms emerge from

local intra-cortical connections. By virtue of the layer

physiology in the cerebral cortex, cf. Fig. 2, a network

model in layers I-III describes the emerging γ−activity
while a cortico-thalamic feedback network including in-

put layer IV and output layers V and VI models de-

scribes α−activity.

Cortical module: microscopic multi-layers network of

excitatory and inhibitory cortical neurons

The model for layer I-III (Hutt et al. 2020)

1

αic

dV en
dt

= −V en (t) +H0

N∑
m=1

Kself
nmH[V em(t)]

−
N∑
m=1

K inter
nm H[V im(t)] + Iice + ξicn (t)

1

βic

dV in
dt

= −V in(t)−
N∑
m=1

Kself
nmH[V im(t)]

+H0

N∑
m=1

K inter
nm H[V en (t)] + Iici + ηicn (t)

(3)

with n = 1, . . . , N assumes excitatory and inhibitory

synapses with respective dendritic currents V en (t) and

V in(t) at network node n and time t. The network is

populated by interconnected excitatory and inhibitory

neurons located at each node, whose synaptic proper-

ties are identical in both cell types. Each neuron at a

node is a McCullogh-Pitts neuron with firing rate step

function H[V ] = 0 for V < 0 and H[V ] = 1 for V ≥ 0

and the relative maximum firing rate of both cell types

is given by the scalar factor H0. The connection matrix

Kself
nm denotes the intra-population connection weights,

i.e. between excitatory neurons and between inhibitory

neurons, and the matrix K inter
nm reflects the connections

between excitatory and inhibitory neurons.

External fluctuating input stimulates each cell with con-

stant mean Iice , I
ic
i and random fluctuations ξicn (t), ηicn (t).

We assume that the noise ξicn , η
ic
n has zero mean and

variances Dct
e , D

ct
i with

〈ξicn (t)ξicm(τ)〉 = Dct
e , 〈ηicn (t)ηicm(τ)〉 = Dct

i .

These random fluctuations originate from intrinsic noise

processes and ARAS via the brain stem, cf. Fig. 2. We

point out that the noise variances may depend on the

experimental condition, cf. Eq. (2). The present work

considers primarily the mean-field dynamics in this net-

work (cf. section 2.3) and we refer the reader to (Hutt

et al. 2020) for more details on the single neuron model.

Thalamo-cortical module: microscopic network of inter-

acting cortical and subcortical populations

We further introduce a hybrid model that describes net-

work dynamics in cortical layers V and VI including the

cortico-thalamic feedback and input from cortical lay-

ers I-III. The network of N nodes obeys the following

evolution equations

1

αct

duen
dt

= −uen(t) + bAen(t) + Seen (t− τ) + Sein (t− τ)

+ Icte +

N∑
m=1

CnmV
e
m(t) + ξctn (t)

1

βct

duin
dt

= −uin(t) + bAin(t) + Sien (t− τ) + Sii(t− τ)

+ Icti + ηctn (t)

1

a

dAen
dt

= −Aen(t) + uen(t)

1

a

dAin
dt

= −Ain(t) + uin(t) .

(4)

with n = 1, . . . , N and where uen and uin are the effec-

tive excitatory and inhibitory potentials generated of



γ- and α-rhythms alternations by arousa 5

excitatory and inhibitory neurons, respectively, at net-

work node n. The delayed interaction with delay time τ

represents an effective propagation time from layers V

and VI to thalamic structures and back to the cortex via

input layer IV. In the cerebral cortex, layers V and VI

receive excitatory input from cortical layers I-III which

enter our model by the coupling matrix C. The neuron’s

dynamics further consider synaptic adaption described

by the currents Aen, A
i
n, cf. (Hutt et al. 2018). The pa-

rameters αct, βct and a are temporal membrane rates

of the respective cell type and the temporal adaption

rate. In addition, the neurons receive synaptic input

expressed by

Skln (t) =
1

N

N∑
m=1

W kl
nmE

kl
m(t) , k, l = {e, i}

with the synaptic weights W kl
nm of connection between

node n and m and the synaptic response function Eklm(t)

obeying

τ l
dEklm(t)

dt
= −Eklm(t) +Xk

m(t) .

Here τ l denotes the time scale of synapses of type l =

{e, i}. The spike train Xk
m(t) is generated by a non-

homogeneous Poisson process for a neuron of type k at

node m with rate f(ukm).

External constant input Icte , I
ct
i and fluctuating input

ξctn , η
ct
n stimulate the neurons. The fluctuating inputs

are independent, identically distributed Gaussian pro-

cesses with zero mean and they share the variance Dct
o ,

i.e.

〈ξctn (t)ξctm(τ)〉 = Dct
o , 〈ηctn (t)ηctm(τ)〉 = Dct

o .

These random fluctuations originate from intrinsic noise

processes in the single neurons and the ARAS stimu-

lating the thalamus and their variances may depend

on the experimental condition, cf. Eq. (2). For more

details, we refer the reader to (Hutt et al. 2018). The

present work considers primarily the mean-field dynam-

ics in this network that is described in more detail in

section 2.3.

2.3 Mesoscopic dynamics: combining cortical and

cortico-thalamic modules

Experimental data gathered at larger spatial scales, such

as EEG measured on the scalp or ECog observed on the

top of the cortex, map the collective activity of very

large population of neurons. To this end, mean-field

descriptions of microscopic modules (both intra corti-

cal and thalamo-cortical) enables a comparison between

simulated and observed data, as well and derive deeper

insights into underlying dynamical mechanisms at play

in arousal-mediated oscillatory transitions.

The mean-field model derived from the intra-cortical

module equations (3) reads (Hutt et al. 2020)

1

αic

dVe
dt

= −Ve(t) + EKselfS
ic
e [Ve(t)]−KinterS

ic
i [Vi(t)]

+ Iice + ξic(t)

1

βic

dVi
dt

= −Vi(t)−KselfS
ic
i [Vi(t)] + EKinterS

ic
e [Ve(t)]

+ Iici .

(5)

The set of equations describe the dynamics of the mean

time-dependent dendritic currents

Ve(t) =
1

N

n∑
n=1

V en (t) , Vi(t) =
1

N

n∑
n=1

V in(t) .

Excitatory and inhibitory neurons excite and inhibit

themselves with mean weight Fself , respectively. More-

over, excitatory (inhibitory) neurons excite (inhibit) in-

hibitory (excitatory) neurons with weight Kinter. The

parameter E weights the excitation relative the inhibi-

tion. The model is reminescent of the celebrated Amari

neural population model (Amari 1977). In the stochas-

tic mean-field description presented here, it is impor-

tant to distinguish microscopic and macroscopic fluctu-

ations. The model (5) describes the temporal evolution

of the mean of a nonlinearly coupled network subjected

to additive microscopic noises {ξicn }, {ηicn } at each net-

work node, cf. Eqs. (3). These random fluctuations at

the microscopic level interact with the network non-

linear transfer function, resulting in a linearized effec-

tive non-linear structure. This effect has been shown in

detail in several previous studies (Herrmann et al. 2016;

Hutt, Mierau, and Lefebvre 2016; Hutt et al. 2018, 2020;

Lefebvre, Hutt, and Frohlich 2017; Lefebvre et al. 2015;

Rich et al. 2020). Roughly speaking, the stronger the

noise, the more flat the transfer function. The model (5)

for vanishing macroscopic fluctuations ξic = 0 would as-

sume that the microscopic additive noise is identically

independent Gaussian distributed with constant net-

work mean and variance. If, however, the network mean

and variance fluctuate randomly themselves over time,

then the mean-field dynamics itself is stochastic (Hutt

et al. 2020). Since it is realistic to assume a fluctuating

network mean and variance, it is necessary to add the

term ξic 6= 0. Hence ξic denotes small random macro-

scopic input originating from intrinsic network fluctu-

ations and possibly macroscopic external input from

other brain areas. We assume i.i.d. Gaussian distributed

fluctuations with 〈ξic〉 = 0, 〈ξic(t)ξic(t′)〉 = Dic with the
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macroscopic noise variances Dic.

The mean-field representation of the cortico-thalamic

microscopic module equations (4) reads

1

αct

dUe
dt

= −Ue(t) + bAe(t) +KeeS
ct
e [Ue(t− τ)]

−KeiS
ct
i [Ui(t)] + cVE(t) + Icte + ξct(t)

1

βct

dUi
dt

= −Ui(t) + bAi(t) +KieS
ct
e [Ue(t− τ)]

−KiiS
ct
i [Ui(t− τ)] + Icti

1

a

dAe
dt

= −Ae(t) + Ue(t)

1

a

dAi
dt

= −Ai(t) + Ui(t)

(6)

with the mean time-dependent potentials

Ue,i(t) =
1

N

n∑
n=1

ue,in (t) , Ae,i(t) =
1

N

n∑
n=1

Ae,in (t) .

located in cortical layers V-VI and the synaptic mean

adaption variables Ae(t), Ai(t). In contrast to Eq. (5),

this model corresponds to a set of hybrid Wilson-Cowan

equations (Wilson and Cowan 1972). Equation (6) is

an effective reduced model of the cortico-thalamic feed-

back loop with net delay τ that receives input from

layers I-III with coupling constant c. The external in-

put ξct represents macroscopic i.i.d. Gaussian random

fluctuations originating from intrinsic fluctuations and

external input from other brain areas with 〈ξct〉 = 0,

〈ξct(t)〈ξct(t′)〉 = Dctδ(t−t′) with the macroscopic noise

variances Dct.

The effective mean-field transfer functions in both

models are defined by

Smn (x) =
1

2

(
1 + erf

(
x−Θm√

2σmn

))
with n = {e, i}, m = {ct, ic}, the mean firing threshold

Θm and the steepness rate σmn . They represent the pop-

ulation rate of incoming spikes relative to a maximum

firing rate and thus reflect a firing probability (Hutt and

Buhry 2014). We point out that the transfer functions

result from the microscopic properties of the network,

like the firing rate function of individual neurons (Hutt

and Buhry 2014) and the intrinsic microscopic noise

level (Hutt et al. 2020). In more detail, the steepness

rates of both neuron types σme,i depend on the intrinsic

noise levels Dm
e,i, cf. section 2.2, by

σic
e = Dic

e (t)

σic
i = Dic

i = const

σct
e = Dct

o (t)
√

2

(
Ae+

2

2λe+
+

2Ae+A
e
−

λe+ + λe−
+
Ae−

2

2λe−

)

σct
i = Dct

o (t)
√

2

(
Ai+

2

2λe+
+

2Ai+A
i
−

λe+ + λe−
+
Ai−

2

2λe−

)
with

λe± =
1

2

(
αcta∓

√
(αct − a)2 + 4bαcta

)
λi± =

1

2

(
βcta∓

√
(βct − a)2 + 4bβcta

)
Ae+ =

√
2π

a− λe+
λe− − λe+

Ae− = −
√

2π
a− λe−
λe− − λe+

Ai+ =
√

2π
a− λi+
λi− − λi+

Ai− = −
√

2π
a− λi−
λi− − λi+

.

The noise variancesDic
e (t), Dct

o (t) depend on the arousal

level as per Eq. (2) whereas the noise variance in in-

hibitory intracortical neurons Dic
i remains constant.

The nonlinear dynamics of both model systems (5, 6)

may be explained by the dynamic topology about their

equilibria. Neglecting the additive noise ξic(t), ξct(t),

the equilibria are defined by dVe/dt = dVi/dt = dUe/dt =

dUi/dt = dAe/dt = dAi/dt = 0 and their stability

reads off the Jacobian eigenvalue spectrum. This spec-

trum permits to classify the equilibria and indicates

the shape of the expected power spectrum of the sys-

tem signal close to the equilibrium in the presence of

weak noise. For instance, if the eigenvalue spectrum of

an equilibrium has real eigenvalues only, then the lin-

ear power spectrum has a maximum at zero frequency

only. A spectral peak at non-zero frequency may be

present if the eigenvalue spectrum has complex eigen-

values and the frequency of the power peak may be close

to the imaginary part of the complex eigenvalues (Hutt

2013). Such an activity is called a quasi-cycle. If, in ad-

dition, this stable focus is generated and destroyed by

increasing the system’s noise, then one calls this effect

coherence resonance. This is found in the intracortical

model as shown in the Results section.

2.4 Simulated EEG

To gain synthetic EEG data, we have integrated numer-

ically Eqs. (5,6) with an Euler-Maruyama scheme (Buck-



γ- and α-rhythms alternations by arousa 7

Table 1 Parameter set of model (5) and (6) to generate re-
sults shown in Fig. 3 and 4.

parameter description value

αic exc. synaptic rate 200 Hz
βic inh. synaptic rate 50 Hz
Kself synaptic weight 3.7
Kinter synaptic weight 3.9
Iice constant input 1.1
Kic

i constant input 0.4
Dic noise variance 10−5

αct exc. membrane rate 50 Hz
βct inh. membrane rate 100 Hz
a adaption rate 5 Hz
b adaption coupling 0.5
Kee coupling weight 2.21
Kei coupling weight 3.46
Kie coupling weight 4.58
Kii coupling weight 1.69
Icte constant input 0.1
Icti constant input 0.0
Dct macr. noise variance 10−7

τ time delay 14 ms
Θct firing threshold 0.1
Θit firing threshold 0.0
Dit

i micr. noise variance 0.5
Dic

min micr. noise variance 0.1
Dic

max micr. noise variance 0.8
Dct

o,min micr. noise variance 1.2

Dct
o,max micr. noise variance 1.4

w weight in EEG signal 0.5
E weight of excitation to inhibition 1.7
c weight of ic model in ct 0.01

war and Winkler 2007) with integration time step ∆t =

5 · 10−4 and the parameters from Table 1.

Experimental multi-array studies in visual areas V2

and V4 (Bollimunta et al. 2008) have indicated that

layers V+VI are the most likely occipital α-generators.
Since our effective cortico-thalamic feedback model (6)

describes the mean potentials in this layer and excita-

tory neurons are supposed to dominate EEG activity,

we assume that the EEG depends strongly on Ue(t)

in Eqs. (6). Moreover, EEG or ECog may also cap-

ture strong activity in layers I-III modelled as Ve(t).

However, since it is difficult to quantify the respective

contributions of both possible EEG/ECOG sources, i.e.

the activity in layers I-III and layers V+VI, we assume

a relative weight w between both signals and define the

synthetic observed EEG as

EEG(t) = (1− w)Ve(t) + wUe(t). (7)

Experimental EEG-signals are sampled with a sam-

pling rate fs, and as such, we downsampled EEG(t)

to fs = 500Hz.

To investigate possible alternations of power in the

α− and γ-frequency band mediated by arousal, we band

pass-filtered the EEG signal accordingly. To this end,
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Fig. 3 Simulated EEG for alternations between eyes closed
and eyes open. (A) Arousal state function e(t) taken from
Eq. (1). (B) simulated EEG signal (7). (C) Bandpass-filtered
EEG signal showing α−activity (red) and γ−activity (blue).
(D) Instantaneous power of the bandpass-filtered EEG (8)
.

we employ a Butterworth-filter of 4th order with edge

frequencies 6Hz,12Hz (α−band) and 25Hz, 45Hz (γ−band).

Moreover, the instantaneous power in both bands Pα,γ
illustrate well temporal alternations of power. A sliding

window of duration Tsegment/10 (cf. section 2.1 for defi-

nition of Tsegment) moves over the signal with time step

1/fs, in which the instantaneous power is computed to

Pα,γ(tj) =
1

Nw

j+Nw∑
i=j

EEG2
α,γ(ti) (8)

with discrete time points tj = j/fs, the integer number

of time points in the sliding window Nw = [Tsegmentfs]

and the bandpass-filtered signal EEGα,γ in the α− and

γ−band.

To illustrate further the alternating spectral power

distribution in the course of time, we compute a trial-

averaged time-frequency representation of the EEG spec-

tral power. To this end, we computed the continuous

wavelet transform

Wa(τ) =
1√
a

∫ ∞
−∞

EEG(t)Ψ

(
t− τ
a

)
dt
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by utilizing the Morlet mother wavelet

Ψ(x) = e−x
2/2 cos(5x)

in the Python module PyWavelet (Lee et al. 2019).

Here, τ is a time shift and a denotes the scale that

is related to a pseudo-frequency (Mallat 1998) f by

a = fc/(f∆t) with the center frequency fc. In the im-

plementation used it is fc = 0.8125. This relates Wa(τ)

to the time-frequency representation W (f, τ). Then the

power spectral density about frequency f at time in-

stance τ is |W (f, τ)|2.

For illustration, we have considered an EEG-signal seg-

ment of two periods, i.e. two states eyes open and eyes

closed, as a single trial. Then the trial-averaged time-

frequency spectral power is defined as

S(f, τ) =
1

trials

trials∑
k=1

|Wk(f, τ)|2 ,

where Wk(f, τ) is the continuous wavelet transform of

EEG(t) in the k − th 2 periods-segment. Figure 1(B)

shows S(f, τ) for trials = 25.

3 Results

We assume that opening eyes increases the ARAS ac-

tivity through visual attention and elevates the level

of brain excitability. To mimic this in our model, the

arousal state function e(t) (Eq. (1)) reaches its maxi-

mum during states of arousal and thus intrinsic noise

in both cortical layer I-III and V+VI are maximum as

well. Figure 3(A) illustrates the arousal state function

alternating between the states eyes open and eyes closed

implying alternating noise levels betwen two different

ARAS mediated arousal states. The resulting EEG mir-

rors these fluctuations: the time series exhibits alter-

nations between high-frequency, low-amplitude oscilla-

tions at eyes open conditions and low-frequency high-

amplitude oscillations at eyes closed state (Fig. 3(B)).

These alternating states exhibit strong γ− and α−activity

(Fig. 3(C)). Taken together, switches between eyes open

and eyes closed, mediated by changes in the arousal

state function amplitude, lead to anti-correlated switches

between strong γ− and α-activity, cf. Fig. 3(D). These

results are in good agreement with experimental obser-

vations in the visual cortex, cf. Fig. 1.

A closer look at the power spectral density in both

conditions clearly reveals that open eyes induces pri-

marily γ−rhythms and closed eyes induces a strong

α−rhythm (Fig. 4(A)). This switch of power was fur-

ther found to be statistically significant, see Fig. 4(B).

These results suggest that changes in arousal state lead

to alternation in the dominant peak frequency expressed

α γ
open close open close

0.001

0.002

* *

p
o
w
e
r

0.01

0.02

10 20 30 40
frequency [Hz]

(A)

(B)

p
o
w
e
r

2

Fig. 4 Power spectra of the EEG-signal in condition eyes
open (blue) and eyes closed (red). (A) The power averaged
over P = 20 intervals (bold line) between maxima and min-
ima at vertical standard deviation distance (shaded area). (B)
Power statistics in the α− and γ−band in the two conditions,
p < 0.05.

whithin cortical populations through an interaction with

the thalamocortical feedback loop.

To understand the underlying dynamics, we have

computed the equilibria and their stability, cf. section 2.3

and Fig. 5. For low microscopic noise variances Dic
e -

characterizing the minimal arousal state - we observe

bi-stability in the intracortical model with a top sta-

ble node, center saddle node and bottom stable focus
(Fig. 5(A)). Increasing the microscopic noise variance,

this bi-stability vanishes through a saddle-node bifur-

cation and a single bottom stable focus remains. Due

to the presence of additive noise, this state exhibits

quasi-cycles that are observed as a γ-peak in the sig-

nal’s power spectrum. This noise-induced transition is a

signature of coherence resonance. Taken together, this

analysis reveals that opening eyes (that is modelled by

maximizing the arousal state function e) induces co-

herence resonance in the γ-frequency band and closing

eyes stabilizes the intracortical dynamics about a stable

node.

Concurrently, the cortico-thalamic feedback network ex-

hibits a shift away from an oscillatory instability thresh-

old towards a more stable focus equilibrium as micro-

scopic noise level Dct
o is increased (Fig. 5(B)). Increas-

ing the noise stabilizes the dynamics by pushing the

fixed point further from the limit cycle regime, sup-

pressing the amplitude of the quasi-cycle which is re-

sponsible of observed cortico-thalamic fluctuations. The
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Fig. 5 Bifurcation diagrams of both cortical and thalamo-
cortical modules. (A) In the intracortical model (5) the sys-
tem transitions from a stable node equilibrium in the top
state at low noise variance Dic

e to a stable focus equilibrium
at high noise variance with a characteristic frequency in the γ-
band, i.e. the system exhibits coherence resonance. (B) In the
cortico-thalamic model (6) the noise variance Dct

o is chosen
that the system evolves about a stable focus equilibrium (in
the α−frequency band) below an oscillatory instability point.
Increasing Dct

o moves the system away from the instability
point and diminishes the quasi-cycle amplitude. The arousal
state function e(t), cf. Eq. (1), moves the system back and
forth along the blue-colored double arrow in time. Solid and
dashed lines denote stable (unstable) equilibria, the dotted
lines in (B) denote the maximum and minimum values of a
nonlinear limit cycle.

characteristic frequency of this quasi-cycle is in the α−
frequency band. Hence, opening the eyes quenches and

suppresses the cortico-thalamic feedback oscillations by

increasing microscopic noise, while closing eyes ampli-

fies oscillatory activity through a reduction in ARAS-

mediated inputs, i.e. reduction of microscopic noise,

reminiscent of experimental observations with the α−
rhythm.

4 Discussion

Arousal is a brain mechanism that acts like an activa-

tion gate to recruit neural populations and determines

their excitability in a task-dependent way. The Ascend-

ing Reticular Arousal System, involving the brain stem

and related structures, is one of the main driver of

arousal, projecting to various brain areas and impacting

their dynamics. One of the most salient dynamical hall-

mark of arousal are shifts in oscillatory neural activity

observed in occipital cortical areas with increased visual

stimuli, notably when animals open and/or close their

eyes. The α-rhythm, one of the most robust biomarkers

of brain states observed with EEG, dominates in states

of low arousal. Upon increases in arousal, the α-rhythm

is suppressed and replaced by other, typically faster and

more local oscillations, such as the γ-rhythm.

We propose that alternations between those domi-

nant oscillatory modes are controlled by ARAS in an

arousal-dependent way. While the mechanisms remain

unclear, insight can be gained by observing how ARAS-

mediated inputs engage and interfere with the neural

circuitry responsible of these anti-correlated rhythms.

Whereas α-activity likely has a thalamocortical origin,

specifically between thalamic regions and layers IV-VI

of the cortex, the γ-rhythm has been shown to originate

from superficial cortical areas, namely layers I-III.

To better understand these oscillatory transitions

and the role played by the ARAS, we developed and an-

alyzed a thalamocortical feedback model coupled with

a superficial cortical network model that exhibits anti-

correlated α and γ oscillations. Specifically, our model

shows that arousal-mediated inputs - which take the

form of uncorrelated noise mimicking afferent spiking

activity - provoked alternation in dominant oscillations,

enabling transitions between slow thalamocortical os-

cillations and fast cortical oscillations. Mathematical

analysis revealed that α−activity is a noise-driven quasi-

cycle which is suppressed by noisy inputs and replaced

by fast, quasi-cycle like responses in superficial layers

through the mechanism of coherence resonance. Taken

together, these results are in good agreement with ex-

perimental data observed in ECog-data in these fre-

quency bands during arousal fluctuations (Geller et al.

2014).

Our computational and mathematical results shed a

new light on the mechanism underlying the suppression

of EEG slow wave activity observed during visual atten-

tion and overt behavior, a phenomenon referred to as

Event Related Desynchronization (ERD). Such desyn-

chronization that preferentially targets the α-band dur-

ing movement and/or sensory stimulation, has been

historically linked to an elevated activation state of

the cortex through a significant suppression of slow

frequency spectral power (Steriade et al. 1991a). The

opposite effect, called Event Related Synchronization

(ERS), in which spectral power increases within the

same bands during withdrawal, has been linked in con-

trast to a disengagement of cortical networks and thus



10 Axel Hutt, Jérémie lefebvre

interpreted as a form of functional inhibition (Klimesch,

Sauseng, and Hanslmayr 2007; Pfurtscheller 2001). Our

results show that ARAS-mediated inputs can engage

and interfere with cortical and subcortical networks to

mediate such transitions spontaneously - and supports

the hypothesis by which the suppression of α-power

reflects enhanced activation of cortical activity. Fur-

thermore, our results suggest that focal activation of

task-relevant circuits would support spatially localized

oscillatory transitions, such as those observed in experi-

ments (Pfurtscheller and Silva 1999) and computational

simulations (Griffith, McIntosh, and Lefebvre 2021).

4.1 Insights about the mechanisms of γ− and

α-rhythms generation

In our model, this switch involves a coherence resonance-

like mechanism in the supragranular layers of the oc-

cipital cortex as γ−rhythm generator. The neural noise

that induces this rhythm originates from the brain stem

or, more generally, from the ARAS (cf. Fig. 2). Pre-

vious experimental (Hakim, Shamardani, and Adesnik

2018; Niell and Stryker 2010; Pisarchik et al. 2019) and

theoretical (Tchumatchenko and Clopath 2014) studies

seem to confirm this theoretical finding. In more general

terms, this affirms the hypothesis that intrinsic neural

noise affects the information processing heavily in the

brain (Pertermann et al. 2019; Solanka, van Rossum,

and Nolan 2015).

Our study proposes that the dominant α−power ob-

served in human subjects with closed eyes or, equiva-

lently low arousal, represents a quasi-cycle generated by

thalamocortical feedback. This cycle has a large magni-

tude for low arousal (eyes closed) and vanishes for high

arousal (eyes open). This is consistent with an exper-

imental study on the impact of arousal on the power

and frequency of occipital α−activity (Cantero et al.

1999).

The proposed model includes two distinct sub-models,

which are different in their network topology and under-

lying dynamics. This distinction between the cortico-

thalamic feedback loop and an intra-cortical network

generating slow-large amplitude and fast-low amplitude

rhythms is in full line with experimental findings (Bas-

tos et al. 2014).

4.2 Limitations

In addition to switches in γ− and α− in the occip-

ital cortex, several previous experimental studies have

highlighted changes in other frequency bands in various

brain areas due to changes in arousal level and/or open-

ing and closing eyes (Barry and De Blasio 2017; Geller

et al. 2014). Parietal areas show switches between α−
and γ−rhythms similar to our results, whereas frontal

areas do not show such bimodality. As such, our model

focuses on the occipital areas solicited by visual arousal.

Future work will determine which model elements are

thought to differ across brain areas and thus identify

brain area-specific mechanisms. However, we mention

that our cortico- thalamic feedback model already per-

mits to describe the propofol- induced induction of α−
activity observed in frontal regions under general anaes-

thesia (Hutt et al. 2018). This reinforces the relevance

of our model as it permits to describe the generation of

α-activity in two different experimental conditions by

the same underlying mechanism: the decrease of ARAS

activity.

Apart from the focus on a specific brain area, the sin-

gle neuron dynamics and the network topology in our

model are oversimplified to the cost of important neuro-

physiolical details. The cortico-thalamic model neurons

employ a Poisson firing statistics and the intracorti-

cal neurons a traditional static McCullogh-Pitts firing

mechanism. Moreover, the networks are assumed being

homogeneous that is an obvious simplification. We have

chosen such simple properties in order to discover a fun-

damental mechanism underlying the brain dynamics.

This line of argumentation follows the principle research

approach that a real-existing mechanism observed in

simple but still reasonable neural models remains valid

in biologically more realistic models. Of course, future

work will have to extend the presented models to verify

this research approach. However, the coherence reso-

nance and dynamic transition mechanism proposed in

this work has been found in previous biologically more

realistic models already.
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