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Mesh Denoising with Facet Graph Convolutions

Matthieu Armando, Jean-Sébastien Franco, and Edmond Boyer

Abstract—We examine the problem of mesh denoising, which consists of removing noise from corrupted 3D meshes while preserving
existing geometric features. Most mesh denoising methods require a lot of mesh-specific parameter fine-tuning, to account for specific
features and noise types. In recent years, data-driven methods have demonstrated their robustness and effectiveness with respect to
noise and feature properties on a wide variety of geometry and image problems. Most existing mesh denoising methods still use
hand-crafted features, and locally denoise facets rather than examine the mesh globally. In this work, we propose the use of a fully
end-to-end learning strategy based on graph convolutions, where meaningful features are learned directly by our network. It operates
on a graph of facets, directly on the existing topology of the mesh, without resampling, and follows a multi-scale design to extract
geometric features at different resolution levels. Similar to most recent pipelines, given a noisy mesh, we first denoise face normals with
our novel approach, then update vertex positions accordingly. Our method performs significantly better than the current state-of-the-art
learning-based methods. Additionally, we show that it can be trained on noisy data, without explicit correspondence between noisy and
ground-truth facets. We also propose a multi-scale denoising strategy, better suited to correct noise with a low spatial frequency.

Index Terms—Mesh denoising, normal filtering, graph convolution, feature preserving, geometric deep learning

1 INTRODUCTION

OLYGON meshes are extensively used to represent geo-

metry models of 3D shapes. This applies in particular to
real shapes that can be digitized into 3D meshes using cap-
ture devices and reconstruction methods. The mesh models
resulting from such acquisition processes are perturbed by
noise originating from various sources, including capture
sensor imprecision and numerical issues. Mesh denoising
aims at correcting or reducing such noise perturbations on
3D mesh models.

Mesh denoising is, in essence, an ill-posed problem since
differentiating noise from the original geometric features
requires prior knowledge on the noise, the shape, or both. A
common strategy in that respect is to assume known distri-
butions, typically Gaussian noise or smooth shapes, with
nevertheless severe limitations. Chosen distributions are
only a coarse approximation of the true distributions, and
they are usually hand-picked depending on the application.
As a result, they do not generalize well. Actually, in most
capture scenarios, it proves difficult to provide hand-crafted
prior models for noise or shape that cover a reasonable
part of the spectrum of possible distributions. Consequently,
data-driven strategies for mesh denoising have gained in-
terest over the last decade, boosted by the success of deep
learning in various domains, in particular image denois-
ing e.g. FFDNet [1]. Related approaches learn distributions
from training examples and have already shown promising
results with meshes, as in [2], [3]. For instance, in [2], a
neural network is trained to denoise mesh normals. For
that purpose, hand-crafted features are pre-computed for
each face and fed into the network individually. While not
end to end, the results obtained demonstrate the ability to
learn local denoising patterns. Our work follows this line
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of research, with the objective to further exploit learning
methods, and propose a fully end-to-end solution. We want
to build a network that can learn relevant features over
a large receptive field, and retain connectivity information
throughout the network, so as to ensure spatial consistency.

Convolutional neural networks excel at learning
spatially-varying features at different scales, with a limited
number of parameters, notably through the use of pooling
and unpooling layers. For these reasons, CNNs have proven
very successful in most image processing tasks, and image
denoising is no exception. For the recent super-resolution
challenge NTIRE2017 [4], the top three methods all include
convolutional layers. The ability of CNNs to model complex
features at different scales is obviously useful for denoising.
Our goal is to check if this holds for geometric data as well

A significant challenge is that traditional CNNs are
restricted to regular grid structures, such as images. Sev-
eral works have tried to circumvent this limitation, and
extend convolutional layers to graph-like structures, such
that graph convolutional networks (GCNs) has become a
whole new field of research. We build on FeaStNet [5] which
exhibits two key characteristics for our problem. First it
generalizes convolution layers of standard CNNs to graphs
in a natural way. Second, it allows to express pooling and
unpooling layers over graphs, a key feature which we use
to increase the receptive field of our network.

We contribute therefore with an end-to-end learning
framework for mesh denoising. Our network considers the
graph of faces of a mesh and uses the layer defined in [5],
but for vertex graphs, as a building block, with an architec-
ture, pooling strategy and graph connectivity that is adapted
to the mesh denoising problem. Such a learning framework
can exploit spatial organization as an additional feature with
respect to recent works that consider spatial distance or
patch similarity. This strategy proves to be successful and
outperforms the current state of the art on the benchmark
of [2]. Moreover, it opens research opportunities to denoise



graph signals other than normals on meshes.

The remaining of the article is as follows. Section 3 gives
an overview of our approach, which is then detailed in
sections 4 and 5. Section 6 describes our implementation
choices as well as two extensions to our baseline method.
Finally, section 7 is dedicated to different experiments, both
on synthetic and real data.

2 RELATED WORK

We give here a general review of previous works on mesh
denoising. This section does not aim to be exhaustive, given
the prolific nature of the field, but merely tries to present
the general trends, through seminal works and influencial
papers. These categories are not mutually exclusive.

2.1 Early works

Early mesh denoising methods were isotropic, based on
laplacian smoothing [6], [7], [8]. They smooth sharp features
as well as noise. As such, they are fairing rather than denois-
ing methods. In an attempt to discriminate between high-
frequency noise and sharp features, subsequent methods
introduce anisotropic filtering usually inspired by image
denoising techniques, such as bilateral filtering [9], or scale
space and anisotropic diffusion [10], [11].

2.2 Normal filtering methods

A more recent trend has seen the emergence of a two-
steps framework, first introduced by Taubin in 2001 [12].
First, some local, non-linear denoising filter is applied to
the facets’ normals rather than the vertex positions. Then,
as a second stage, vertex positions are updated according
to the filtered face normals. This is usually repeated in
an iterative manner. It yields better results than applying
similar filters directly to the vertex positions. Such methods
can be characterised by three distinct parts:

e Normal filtering, which is the central component:
Yagou et al. suggest mean and median filtering [13]
or alpha-trimming filtering [14]. Most methods are
based on bilateral filtering [15] or some of its deriva-
tives, such as joint bilateral filtering [16]. Different
approaches include that of Yadav et al. [17], that
uses a element-based normal voting tensor: it filters
the eigenvalues of a local covariance matrix on each
facet. In [18], they propose a similarity function that
is more robust to outliers.

e Vertex updating: This step is less critical and more
consensual than normal filtering. Sun et al. give a
thorough review on the subject in [19]. Most methods
follow the original proposition of Taubin [12], or
some derivative: it sets a constraint of orthogonality
between the estimated normal of each face and its
adjacent edges, and proposes to solve it in the least
squares sense via a gradient descent optimization.

o Neighborhood choice: Some methods follow a more
combinatorial approach, i.e. they select neighbours
based on local connectivity (as in [19]). Others use
a simple spatial kernel, i.e. they select neighboring
facets and weigh their contribution based on eu-
clidian distance in 3D (and normals). As Liu et al.
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[20] point out, this can lead to cross-region mixing.
Instead of weighing contributions based on spatial
distance and signal difference, they consider all val-
ues of the signal of interest along the geodesic path.

These are good general-purpose methods that work reason-
ably well for most surfaces and random noise distributions.
However, for a given application, their parameters need
to be carefully tuned, to strike the good balance between
noise removal and features preservation. In particular, this
includes at least the number of iterations, which can only be
set through trial and error.

We follow the same general framework, but our model
returns denoised normals in a single regression step. Thus,
we avoid the usual trade-off between removing noise and
preserving original features: optimal parameters are learned
directly from training data.

2.3 Gilobal optimization

Other recent works follow a global optimization approach,
like Lo-minimization, introduced by He et al. on vertex
positions [21], and improved by Zhao et al. to include face
normals information as well [22]. Instead of processing faces
(or vertices) independently, these methods try to compute
a global solution that minimizes some energy term on
the whole mesh, based on some prior on surfaces. They
usually rely on the assumption that real surfaces are made of
smooth regions punctuated by sparse sharp features. These
examples work well for CAD-like models, but they are less
successful on meshes with dense features. Besides, they are
quite slow to compute. Instead, we propose to learn a prior
from training data.

2.4 Spectral methods

Spectral methods have been used for a wide range of mesh
processing applications. Zhang et al. provide a thorough
survey on the subject [23].

Early denoising methods based on Laplacian filtering [6]
fall into this category, even though they can be carried out
in the spatial domain via convolutions. Some subsequent
methods require the explicit computation of eigenvectors,
which comes at a high computational cost. To remedy this
problem, most approaches partition a given surface into
smaller patches that are processed separately (e.g. [24]).
More recent works include TSGSP [25], a two-stage ap-
proach, also applied on a per-patch basis. They estimate the
noise level for a given patch, and perform low-pass spectral
filtering on it. Then, they use some sort of guided normal
filtering.

Generally speaking, spectral methods have trouble re-
covering sharp edges, which yield harmonics of many dif-
ferent frequencies [26].

2.5 Nonlocal similarity methods

Other works rely on the assumptions that similar patches
can be found on a real surface, and their aim is to make
use of this redundancy of information. Like most mesh
denoising approaches, these are inspired by successful im-
age processing concepts. For example, Yoshizawa et al. [27]
extend the Non-Local means concept of Buades et al. [28] to



geometry processing. More recently, Wei et al. [29] or Li
et al. [30] co-filter similar patches using low-rank matrix
recovery.

While we do not explicitly consider non-local similarity
in our method, because of the large receptive field of our
network, it could theoretically leverage such redundancy.

2.6 Data-driven methods

Data-driven methods, that try to learn from examples, have
been gaining increasing popularity for mesh denoising. An
early work in this category [3] formulates the whole mesh
denoising problem in a Bayesian way, with a generative
model of the noisy surface. The prior on surface shapes
is expressed as a potential between normals of adjacent
faces. Different potential functions are compared and, in-
terestingly, the prior parameters are determined through
supervised learning. This is a first step towards application-
specific denoising techniques, without the cumbersome
hand-tweaking of parameters. However, the prior is con-
strained with a limited number of parameters and while the
shape prior is learned, the noise model parameters are still
hand-picked.

More recently, Wang et al. train neural networks to
denoise facets” normals [2]. Hand-crafted local geometry
descriptors called FND for filtered facet normal descriptor
are taken as inputs. They are based on the bilateral and
joint bilateral filters. The approach uses then single-hidden
layer feed forward networks (SLFN) in a cascaded way. The
method is fast and effective, yet still far from end-to-end
learning: (1) The descriptors fed to the network are hand-
crafted and computationally expensive; (2) It divides input
data into clusters and trains separate networks for each
one; (3) It applies the cluster-based regression in a cascaded
way and the vertex-updating steps taking place in-between
regression steps are highly constrained (and hand-crafted).
This results in additional hyperparameters that need to be
set manually. Furthermore, we believe that features learned
specifically for the task at hand might be more effective than
FNDs at conveying relevant information. [31] use a similar
design with iterative per-face learning using FNDs, but with
a two-steps framework, where the second normal estimation
is supposed to recover features lost during the first step.

Also [32] propose a learning framework based on a non-
local similarity approach: Patch vectors based on a similarity
criterion are grouped and fed into a convolution network. In
contrast, our convolutions have a spatial support, and can
extract meaningful local features at different scales.

Finally, [33] propose a CNN-based denoising technique,
NormalNet. For each face, the normals of neighbouring facets
are projected into a locally-defined voxel grid and 3D con-
volutions are performed in this new regular structure, in
order to regress refined normals. This approach is based
on a cascaded structure similar to that of [2], alternating
normals regression and vertex updating. Relevant features
are actually learned by the network. However, each normal
regression is performed in a separate locally-defined space.
Thus, the potential of convolutional networks for spatial
consistency is not fully exploited. Besides, the proposed
solution seems to rely on a computationally heavy prepro-
cessing step per face whereas our network operates directly
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on the whole mesh, and does not resort to some local space
transform and resampling.

3 METHOD OVERVIEW

We consider a surface S described by a mesh M = {V, £},
where V' is the set of vertices and £ the set of topological
edges connecting them. Suppose that a noisy observation

= {V,€} is available. We assume that V is obtained
through a generative process V = V 4 A where N is the
acquisition noise. In this work we do not address topological
noise and, hence, we assume that the observed topology and
connectivity is correct, i.e. E=¢€.

In order to denoise a mesh, a common practice among
the most efficient methods is to first denoise the mesh
normals before updating the vertex positions accordingly,
hence benefiting from the scale invariance of the normals.
We adopt the same strategy and consider the face normals
as they proved more efficient than vertex locations in our
experiments. Following Wang et al. [2] we assume that
local noise patterns can be learned from examples in train-
ing datasets. However, differently from [2], we investigate
the ability to learn directly from the normal information,
without relying on intermediate handcrafted descriptors. To
this purpose, we build on image denoising techniques with
CNNs and extend them to meshes and their associated ir-
regular graphs using a graph convolutional network (GCN)
approach [5].

We therefore train a network to regress faces normals,
given a graph of faces with noisy positions and noisy nor-
mals. We implement a multi-scale architecture, with pooling
and unpooling layers [5], that allows for noise patterns at
different scales.

In a final step, we update the vertex locations given
the corrected normals. Without loss of generality, we make
use of the differentiable solution presented in [19] that
iteratively optimizes vertex locations so that the faces they
define are orthogonal to the predicted normals (see [19] for
details).

To sum up, as depicted in Figure 1, our method takes
as input a noisy mesh {V,&, N}, where N are the noisy
normals, and outputs a denoised mesh {V,E Y } with a
vertex updating scheme based on normal predictions N.
Such denoised normal predictions are obtained with multi-
scale graph convolutions applied on face normals over the
mesh. Details on the network architecture, its training and
the evaluation follow.

4 NEURAL NETWORK

This section describes the neural network architecture of our
approach. First, we give a general view of the architecture
and then describe the convolution layers in more details.
The method used for pooling operations is detailed in
section 5.2.

4.1 Architecture

Our graph convolution network builds on the popular
U-net architecture [34], originally introduced for image
segmentation. U-net takes as input a signal defined over



4 Generate

Y
[

¢z O
Ry

Generate
graph

Ground truth mesh

Training time

v

Vertices
update

Estimated normals

Denoised mesh

Fig. 1. Full pipeline. Given an noisy mesh, we build a graph of faces with normal information (sec. 5.1) and precompute coarser representations for

pooling (sec. 5.2). This is fed into our GCN (4) that is trained to regress the

denoised normal for each face. During inference, the estimated normals

are used to update the vertex positions through an iterative process (sec. 6.3).

a 2D domain and essentially consists of two consecutive
subnetworks: (i) First a contracting path, which is a
succession of convolution and pooling layers, that can
extract global context from the signal, but loses small
scale features on the way; (ii) Then an expanding path,
roughly symmetrical, consisting of up-convolutions
and convolutions, where the final output has the same
spatial size as the input. By up-convolutions, it is meant
upsampling operation, followed by a convolution that
halves the number of channels ( [34]).

A key property of the architecture lies in the so-called
skip-connections: features from the contracting path are
concatenated to corresponding features in the expanding
path. This way, small-scale features are not lost through the
successive pooling operations, and the final output depends
on both large-scale context and small-scale features. Besides
image segmentation, this design has already proven suc-
cessfull in image denoising [35]. We investigate therefore
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Fig. 2. The network architecture: Inputs are 6D vectors composed of
normal and position information and outputs are 3D corrected normals;
3 different scales are taken into account.

a similar multi-scale architecture with our approach (see
Figure 2). U-net is primarily designed for regular image
grids, we thus need to adapt it to the irregular grid structure
of meshes. This implies redefining local convolutions as well
as the pooling and unpooling operations.

Geometric deep learning has been actively researched
recently. Several works have proposed solutions to extend
regular convolutional layers to irregular graphs by applying
filters directly to the manifold surface (e.g. [36], [37]). We
choose to exploit the FeaStNet graph convolutional layer
of [5], originally introduced for mesh registration. Contrary
to the approaches cited above, it does not require a re-
sampling of the original data. Besides, it can be naturally
integrated in a multi-scale architecture. Even though it was
used in a classification context only, and with a different
input, it can be adapted to our regression task given the
proper loss. Thus, we perform multi-scale convolutions on
decimated coarser graphs.

4.2 Convolutional layers

Fig. 3. The graph convolutional layer from [5], which we adapt to faces
instead of vertices.

A convolutional layer within a neural network takes as
input a signal x of dimension D and outputs a feature signal
y of dimension E that is the result of local convolutions of



x by some filter with weights to be learned. With a regular
2D grid, the local support of the filter is a neighborhood
on the grid, typically 8 pixels around a central pixel in an
image, and the convolution boils down to local weighted
sums of the input signal multiplied by some feature trans-
formation matrices. Such a local support being constant,
filter weights can be shared over nodes within the grid,
hence drastically reducing the number of parameters to be
learned. Over an arbitrary mesh, this property does not hold
since neighborhoods differ from one vertex to another. In
order to enable shared convolution operators over graphs,
Verma et al. [5] suggest assigning a weighted sum of a fixed
number M of feature transformations to each node inside
the support region, where the assignment is a function
of x which parameters are learned by the network, along
with the transformation weights. They formulate the GCN
convolutional layer as (see figure 3):

M
1
m=1 v JES;

where b is a bias term, S; the support region of x; on
M, W,, the E x D weight matrix of the m™ feature
transformation and ¢, (x;,x;) is the assignment function
of that transformation:

gm (X3, X;) o< exp(u;xi + V;';ij +Cm), (2)

with u,,, v,, and c,, the parameters to be learned in
addition to the transformation weights (W, b). See [5] for
more details. Finally, the number of learned parameters for
each convolution is M DE for weights W, E for the bias
b, M D for the assignment variables u and v, and M for
c. In total, this yields M (D + 1) assignment weights. Such
convolution is applied at each node in the input graph and
the outputs y; obtained over the mesh are used to feed the
next convolutional layer in the network.

In this work, we use a similar GCN formulation, but with
noticeable differences: (1) the architectural design presented
in section (4.1) is more similar to the original design of U-
Net, with the up-convolution pattern. (2) Our network op-
erates on a different input graph with a higher connectivity
(section 5.1) and a different input signal (normals + posi-
tion). (3) In contrast to the classification problem of FeaStNet
with a cross-entropy loss, we tackle a regression problem.
(Losses used are detailed in section 6). (4) Graph coarsening
is based on spatial and normal proximity, contrary to the
random coarsening used in FeaStNet (see section 5.2), and
we perform two iterations of the coarsening algorithm per
pooling layer (section 6), in order to increase the receptive
field of the network.

5 DATA REPRESENTATION

The previous section presents the neural network architec-
ture we use to process information defined over a graph. We
discuss in this section how to apply it in our specific mesh
denoising context. In particular we precise the input graph
we consider as well as the multi-scale strategy with meshes.

5.1 Input Graph

The noisy meshes we want to denoise come with a natural
graph structure that is their vertex connectivities. While a
reasonable choice when the input signal is defined at the
vertices, e.g. the vertex locations, this graph appears less
adapted with the normal information we want to process
that is defined at the face level. A simple solution would be
to merge the face normals around a vertex, but this would
loose local information. Thus, we cannot operate directly on
the graph of vertices like FeaStNet. Other graph structures
with mesh faces as nodes can be considered, for instance
(see figure 4):

e The dual representation of the mesh: each face is
connected to exactly 3 neighboring faces, with which
it shares an edge with, i.e. each node has degree 3.

e An extended dual representation where each face is
connected to all faces in its 1-ring vertex neighbor-
hood, i.e. all the faces it shares a vertex with.

We adopt the mentioned extended dual representation
that increases the receptive field of our neural network.
A higher degree at each node in the graph favors quicker
propagation of the signal through convolutions. In practice,
in our experiments, each face has more than 10 neighbors
on average in this graph representation.

Fig. 4. Input face graphs in red (the vertex mesh appears in black): (left)
The dual representation of the vertex mesh with valence 3; (right) The
extended graph where each face is connected to its 1-ring neighborhood
resulting in a much denser representation.

5.2 Multi-scale representation

As stated previously, receptive fields of different sizes
enable the neural network to capture contexts at different
scales and, hence, to learn denoising patterns at different
scales as well. By reducing the sampling frequency of the
signal, pooling is a good way of enlarging the receptive
field, without for that matter increasing the complexity
with a larger depth of the network. Besides, pooling adds
implicit spatial regularization by sharing features between
neighbouring points. However, while downsampling a
regular grid is a straightforward operation, the case of
meshes with arbitrary graph structures appears more
challenging.

To address this issue and build a multi-scale mesh rep-
resentation, we choose the graph coarsening solution of
Defferrard et al. [38]. It is a greedy multi-level coarsening
technique with, at its core, the max-cut coarsening strategy
used by the Graclus clustering algorithm [39]. At each coars-
ening level, graph nodes are grouped into pairs, except for
a few remaining singletons. To this aim, Graclus iteratively



picks an unmarked node z, and pairs it with its unmarked
neighbor y that maximizes:

e(z,y) N e(z,y)

7 i 3)

where e(z,y) is the edge weight between nodes z and
y, and d, is the degree of node z, i.e. the sum of the
edge weights between z and its neighbors. The process is
iterated until all nodes have been visited. Then, at each
level, Defferrard et al. introduce fake nodes to be paired
with the singletons, in order to form a binary tree where
each node has two children in the next finer level. Finally,
nodes are reordered so that the tree structure is implicitly
encoded in the indexing of the nodes. This makes pooling
and unpooling operations as simple and efficient as for a
regular 1D signal.

For neighboring faces x and y with normals n,,n, and
barycenter positions c;, ¢, we set the edge weight as:

||z _Cy||2

e(x,y) = maz(ng.ny, €) X exp — 52
2

)
where [, is the average edge length in the graph. Intuitively,
this weight favors close faces with similar normals to be
grouped together. ¢ is set close to zero, and ensures that
neighboring faces stay connected even around an extreme
bend. For subsequent coarsening operations, we sum the
edge weights of all edges grouped together by pairing
operations. Figure 5 illustrates the mesh coarsening ap-
proach. This weighting differs from FeaStNet, that uses con-
stant edge weights, which makes the coarsening operations
purely random.

6 IMPLEMENTATION

In this section we provide implementation details. In addi-
tion to network and training settings, we precise the vertex
updating scheme which re-estimates a mesh given corrected
face normals as predicted by our network. In relation to
this step, we also present two extensions we investigated:
First the ability to train with unregistered data by using
a loss function, based on a mesh to mesh distance, which
applies to the meshes obtained after the vertex updating
step; Second a multi-scale approach for vertex updating that
corrects vertex positions in a coarse to fine manner using
intermediate normal outputs of the network at different
scales.

6.1 Network Setting

The network takes as input 6D vectors composed of face
barycenter positions and face normals and outputs 3D face
normals. Adding the face position gives better results in our
experiments (see the supplemental for input comparisons).
The following implementation choices were made for all the
experiments reported in this document:

e We choose leaky ReLU [40] as the activation function
throughout the network since it demonstrated better
convergence properties than ReLU.

e In contrast to the original U-net architecture [34],
we use only 3 different levels or scales, i.e. 2 pool-
ing layers, and we perform only 1, instead of 2,
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convolutions at a time in-between other layers. The
motivation for these changes is to reduce the network
complexity while keeping the same general design.

o Contrary to FeaStNet, we perform two coarsening
steps between two consecutive levels, i.e. the number
of nodes is approximately divided by 4 in-between
levels. (See figure 5).

o For all convolution layers, we set the number of
filters (see equation 1) to M = 9. We perform max
pooling on the features for all pooling layers, which
provides similar results to average pooling but accel-
erates back-propagation in practice.

6.2 Training

The network is trained with a L1 loss on the angular
difference between the ground-truth facet normals, and
the estimated normals, without regularization, using Adam
optimization [41]. All meshes are centered on the origin
for data normalization, and scaled so that the diagonal of
the bounding box is set to unit length. Each noisy face
makes up a single training example for our network (along
with its noisy neighbourhood and ground-truth normal).
Thus, meshes in the training set form natural batches for
training. For meshes with less than 100k faces, we use them
as training batches. For meshes with more than 100k we
generate several patches, of 100k faces each, that we grow
from a random seed facet, until every face is present in at
least one patch. We use these patches as training batches.
In both cases, we only perform back-propagation on 10k
faces randomly sampled, which is hence our real batch size.
The whole patch is still needed however, since other faces
appear in the convolutions.

Our network is not intrinsically invariant with respect
to rigid transformations of the input data. We choose to
let the network learn this invariance from the data, and
encourage this through data augmentation by applying at
each training step a random rotation to the input mesh or
patch. In our experiments, it proved better than to have this
invariance built into the model, with equal performance and
faster training.

6.3 Vertex updating

In order to update the vertex positions x on M given the
corrected normals n, we follow the iterative approach of
Xianfang et al. [19]. This approach iteratively moves vertices
in order to make the mesh edges as orthogonal as possible to
the estimated normals of the edge neighboring faces. First,
let us define JF} as the set of edges that constitute the
boundary of face k, and F, (i) as the set of faces that share
vertex 4. The chosen strategy optimizes:

min E(x,n) = Z Z (ng - (x5 — %)), @)

X
kEF (i,5)€0Fy

with a gradient descent. At each iteration, it updates the
position x; of each vertex with the new position X; given
by:

1

| Fo (i)

X; = X; +

Z n(ny - (cp — %)), (6)

kEF, (1)



Fig. 5. Graph coarsening example. The input graph (left) is shown with every node (facet) colored according to the input normal orientation.
Subsequent images show the graph at coarser levels. For illustration purposes, normals and positions are here propagated to coarser levels with
average pooling. In reality, these quantities are not retained beyond the first layer of the network, and thus, they are not defined for coarser levels of

the graph.

where cy, is the barycenter of face k, and ny is the esti-
mated normal for face k. We perform 60 such iterations in
our experiments. This number was chosen empirically as
increasing it further has no visible effect for most use cases.

6.4 Learning from unregistered data

In order to train with datasets that do not provide exact
associations between ground-truth and noisy normals, we
propose a specific training scheme. The interest arises with
real datasets, e.g. the Kinect dataset in [2], for which the
correspondences between noisy and unnoisy meshes can
only be estimated. Our scheme integrates the vertex up-
dating step into the back-propagation and defines a mesh
to mesh distance loss that applies directly on the vertex
positions. This loss combines an accuracy term L,.. and a
completeness term Lc,,p. They are respectively the average
distance from points of V to V, and the average distance
from points of V to V:

1

£acc = = i ~i — &5ll) 7
T Z min (% — ;1)) )
x; €V
c LS i (Jx; - %) ®)
comp = = min (||x; — X;]|).
P |V| xievijev /

Note that this formulation of a global loss over meshes
is made possible since our network considers complete
meshes as input, and not individual facets with precom-
puted descriptors. It allows the network to converge to
possibly better associations on the training data than the
provided estimated ones. Moreover, our results on the
Kinect datasets have shown that the vertex updating step
is imperfect. On some occasions it actually increases the
angular error on normals. By integrating this loss in the
training, we allow the network to optimize its predictions
with respect to the final output mesh rather than the pre-
dicted normals. We validate this strategy on the synthetic
dataset of [2] in section 7.4.

6.5 Multi-scale vertex updating

The vertex updating method presented in section 6.3 im-
plicitly assumes independent and zero mean noise at each
vertex. This is not always true with real data. In particu-
lar when performing Poisson reconstructions from noisy
point clouds, large artifacts can appear. Because space is

resampled during the Poisson reconstruction, vertices are
not raw independent measurements. In fact, the sampling
frequency in the final mesh can be significantly higher than
that of the captured point cloud. Thus, a single noisy mea-
surement can lead to an artifact spanning several triangles.
Figure 6 shows examples of such artifacts. Applying the
vertex updating scheme on these examples results in very
slow convergence since the artifact scale is significantly
larger than the receptive field (i.e. the first vertex ring on the
mesh) of the approach. Consequently, it takes a considerable
number of iterations to converge to a planar result, even
when the estimated normals are correct (see figure 7). This
impacts the training too, if we include this step into the
back-propagation as proposed in section 6.4.

To address this issue, we propose a multi-scale vertex
updating scheme that allows for faster convergence. We
generalize equation 6 to work in a multi-scale fashion and
apply it successively at different scales, from coarsest to
finest. For a given coarsening level p and face f;, we note
¢}, the barycenter of graph node C' that contains f, (at the
finer level, C' = fj. Otherwise, C is a set of faces pooled
together):

1
= > e )

(a) Real-life example

(b) Toy example

Fig. 6. Left: A real-life example of reconstruction artifact: close-up of
a reconstruction of a planar surface from the DTU dataset [42]. Right:
Our toy example for testing, where an originally square planar mesh
presents an unwanted bump that spans a large number of faces. we
purposefully emphasize the problem to test the limits of the vertex-
updating framework.
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(b) (0,0,2000)

(c) (100,10,10)

(d) (500,10,10)

Fig. 7. Toy example correction with constant estimated normals facing
up. The algorithm should ultimately converge to a flat plane with folds.
Top Single scale: (a): after 160 iterations. (b): after 2000 iterations
Bottom Multi-scale: (c): after (100,10,10) iterations (from coarsest level
to finest). (d): after (500,10,10) iterations).

For a given scale p, each vertex updating step is given by:

X =x; + — Y ARl (ch - x))).
FLEF, ()

(10)

This is in essence similar to the previous scheme (equation
6) with however a larger neighborhood around each vertex.
Figure 7 demonstrates the faster convergence of our method
on the toy example. For the choice of nf, the face normals
in the cluster could be averaged. We choose instead to trust
the network ability to better behave than an averaging filter
and we train it to predict normals at each coarsening level
during the expanding path, with the cost defined in section
6.4. Please note that barycenters defined in equation 9 are
only used in equation 10 and they do not flow through the
network (see figure 5).

7 EXPERIMENTS
7.1 Evaluation Strategy

In order to evaluate the benefit of our end-to-end learning
architecture, we first compare to current state-of-the-art
learning-based approaches for mesh denoising which are
the Cascaded Normal Regression (CNR) method of [2] and
NormalF-Net [32]. Comparisons on synthetic and real data
are presented in sections 7.2 and 7.3 respectively. We follow
the experimental setup of CNR [2] as the authors pro-
vided all the necessary data for that purpose. They perform
four different experiments, on four datasets (one synthetic
dataset, and three obtained from Kinect scans). The authors
of NormalF-Net provided us with all their results on these
datasets.

As a baseline evalutation, we also report results
from other parametric methods when available. In
particular, results for Non-Local Low-Rank Normal
Filtering (NLLR) [30] were computed using the
executable file released by the authors. We try four
sets of parameters everytime ((oar,Viter, Ni) €
{(0.25,7,7),(0.39,7,7),(0.39,10,10), (0.6,10,10)})  and
keep the best results only.

In addition, we evaluate the benefit of the extensions
presented in section 6 by comparing them with our baseline
approach (7.4). Finally, we also test the generalization ability

8

of our network in a practical real scenario with MultiView
Stereo data (7.5).

7.1.0.1 Metric.: For the numerical evaluations, we
consider the average angular difference between denoised
normals and ground truth normals. This metric can be
computed using either the raw output normals estimated by
the network, or the refined normals of the denoised meshes
as obtained after a vertex location optimization. We believe
that the raw normals should be used for the evaluation since
it is the critical part for the denoising problem and also
where our main contribution lies. The vertex updating step
is a process that can alter the raw measurement, as will be
shown in our experiments. However, we note that [2] and
[32] while also using the angular difference with respect to
ground truth normals, consider the refined normals after
the vertex updating step. This seems legitimate in their case
since they follow an iterative scheme where vertex updating
is an intrisic part of the method. Therefore, we also use
refined normals to guarantee a fair comparison.

7.2 Comparison on Synthetic Data
7.2.1 Dataset

We first validate our method on the publicly available
synthetic dataset of [2]. It is composed of 50 meshes divided
into 3 categories: CAD-like models with flat areas and an-
gular features, smooth models with low frequency features
and complex models with multi-scale features. 21 are used
for training, and 29 for testing. For each mesh, three noisy
versions are provided, obtained by adding Gaussian noise
with different standard deviations to the vertex positions.

7.2.2 Results

In addition to the learning methods mentioned above,
we add results obtained with Bilateral Mesh Denoising [9],
Bilateral Normal Filtering (BNF) [15], Guided Mesh Normal
Filtering (GMNF) [16] , Lo Minimization [21] and the bayesian
method [3], all provided by the authors of [2]. In each case,
we only show results for the best set of parameters tested
by [2]. We found that the vertex updating step plays a
significant role in smoothing out some of the remaining
noise in this evaluation (see supplementary). Figure 8 shows
quantitative results. Even before the regularization provided
by the vertex updating step, our approach performs better
on average than all the others and clearly outperforms
them in all data categories after that step. Figure 15 shows
qualitative results on the test set. Additional comparisons,
including results on other synthetic data, also appear in the
supplementary material.

Finally, we also compare our appraoch to the spectral
method TSGSP [25], since it demonstrates competitive re-
sults with respect to CNR on this test set. Numerical results
are shown in table 1: Our method outperforms all the others
by a fair margin on average, which validates the learning
framework we propose.

7.2.3 Runtime experiments

We performed runtime experiments on a desktop computer
with a 2.40GHz Intel(R) Xeon(R) CPU E5-2630 v3, 32GB of
memory, and a NVIDIA Titan XP GPU. This configuration
is chosen to be as close as possible to the experimental
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Fig. 8. Average angular error in degrees, on the synthetic benchmark
dataset of [2], per category. From left to right: @B BMD [9], @B BNF [15],
O GMNF [16], [21] Lo Minimization, @ bayesian method [3],
@ CNR [2], NormalF-Net [32&)- NLLR [30], @D Ours (raw
normals estimated by our network), Ours (final result).

TABLE 1
Average angular error (in degrees) over some test meshes of the
synthetic dataset of [2] with intermediate noise level. Values for TSGSP
and CNR are taken from [25].

Name of Model TSGSP [25] CNR[2] Ours
Block 2.3414 2.3436 2.3890
Bumpy torus 3.9688 4.0464 3.1715
Bunny hi 5.3268 5.1152 5.0205
Carter100K 6.8722 7.8415 5.6258
Child 6.2145 6.9801 5.3627
Chinese lion 7.1285 7.6701 6.2854
Cube 0.7747 0.8656 0.9172
Eight 6.0995 5.8017 6.0118
Eros100K 8.0866 8.3486 7.2148
Fertility 3.8456 3.6379 3.1902
Genus3 2.4576 2.5751 1.8895
Joint 1.6837 1.6970 1.8098
Kitten 2.8386 2.8195 2.4857
Nicolo 4.5729 4.4868 4.0940
Part Lp 2.5046 2.5422 2.3340
Plane sphere 1.3816 1.2606 1.2193
Pulley 4.7630 4.5899 3.7931
Pyramid 0.9446 0.9912 1.1349
Rolling stage 4.5187 41767  3.4522
Screwdriver 3.7645 2.9652 3.1492
Smooth feature 0.9847 1.0085 1.0418
Sphere 2.5285 2.3076 2.0047
Star 1.5895 1.6502 1.3793
Trim star 6.4181 4.1866 4.7672
Turbine Lp 3.7025 2.7707 2.5397
Average over faces 4.7989 47945  4.0840

setup of NormalF-Net [32], for a meaningful comparison.
Their experiments are run on a PC with a CPU of the
same generation (2.2GHz Intel Xeon E5-2650), 64GB RAM
and a NVIDIA GTX-1080Ti. The computation time for dif-
ferent test meshes with various sizes are given in table 2,
and results from [32] for other learning methods are also
reported. In our case, the preprocessing step is performed
on the CPU only, and could certainly be accelerated with a
proper parallel implementation. The most time consuming
parts are the coarsening of the graph and, for large meshes
only, the input subdivision into separate mesh patches that
are processed separately. The inference step by our network,
including the vertex updating step, is run on the GPU.

Fig. 9. Close-ups of meshes from the Kinect v1 (left) and Kinect v2
(right) datasets [2] showing holes and disjoint parts, as common in both
datasets.

Our approach is slower than CNR [2] on small meshes,
though this might be partly due to some overhead cost,
given that our inference time scales really well with mesh
sizes on the test data. Nevertheless, an efficient GPU imple-
mentation for the preprocessing step will be required to be
competitive with CNR in terms of running time.

On the other hand, our method is significantly faster than
NormalF-Net [32], and several orders of magnitude faster
than NormalNet [33], where a local support is computed for
each facet independently. This validates our motivation for
using graph convolutions on the mesh.

TABLE 2
Running time of our method (in seconds) on some test meshes of the
synthetic dataset of [2]. Results for competitors are taken from [32] and
obtained with a PC that presents slightly different specifications, though
minor enough to legitimate orders of magnitude comparisons.

Model SharpSphere  Fertility =~ Grayloc Eros Gargoyle
Faces 20882 27954 68580 100000 171112
Ours

Preprocessing 16 25 54 82 149
Inference 7 8 9 10 11
Total runtime 24 33 63 91 160
Competitors

CNR [2] 1 2 3 5 10
NormalF-Net [32] 97 110 345 481 975
NormalNet [33] 836 1132 5418 9163 20763

7.3 Comparison on Real Data
7.3.1 Datasets

CNR [2] also provides three Kinect datasets, obtained re-
spectively from Microsoft Kinect v1 scans, Microsoft Kinect v2
scans, and reconstructions of Microsoft Kinect v1 scans, using
KinectFusion [43]. We use a similar experimental setup on
these datasets, with two major differences regarding the
Kinect v1 and v2 experiments.

First, we note that meshes in these datasets suffer from
topological noise, which violates our central premise. They
present numerous holes and disjoint parts, as shown in
figure 9. Since our convolutional layers are based on local
connectivity, this means each disjoint part of a given mesh
will be processed independently by our network. This is
one limit of our approach. To deal with such data, filters
based on spatial distance (as in CNR) or patch similarity (as
in NormalF-Net) can be better equipped than filters based
on local connectivity. Nevertheless, in order to improve the
performance of our network, we add a new — binary -
channel to our input, that differentiate between faces that lie
on a border of the mesh, and faces that do not. This results



in faster convergence during training, and slightly improves
our results.

Second, since meshes in the Kinect vl and v2 datasets are
obtained from depthmaps, we constrain vertices to move
only along the depth direction in this case. These two
changes are not applied to the KinectFusion dataset.

7.3.2 Results

Numerical results are shown in figure 10, and qualitative
results in figure 11. We perform on par with or better
than competitors on all the Kinect datasets. Interestingly,
we notice that the angular error is actually increased by
the vertex updating step for the Kinect-Fusion dataset. This
is presumably due to the very specific sampling of those
meshes, with many thin triangles. The reader can refer
to the supplemental material for more illustrations. This
supports the argument made before that comparisons before
refinement steps are more pertinent. Besides, this provides
an extra motivation for the vertex loss we propose in 6.4.

7.4 Method Extensions

In this section, we present results obtained using the 2
extensions exposed in sections 6.4 and 6.5 and compared to
our standard approach. For the multi-scale vertex updating,
the iteration numbers are set to (80,20,20) from coarsest
to finest (see figure 7). Figure 12 shows numerical results
on the synthetic dataset of [2]. It shows that the extensions
benefits to the vertex location estimation but not to the nor-
mal estimation, which can be expected since the extensions
apply a loss on vertices.

Figure 13 shows qualitative results. The approach with-
out extensions yields smoother results that are visually
pleasing, however it tends to lose more small scale features
from the original mesh. Figure 14 illustrates the contribution
of each scale to the final output: The coarsest normals
smooth out noise and small scale features. Subsequent steps
better reconstruct those features. Note that the orientation of
estimated normals has no influence on the vertex updating
step in equation 10. Depending on the initialization of the
network weights, normals can therefore be flipped. This
happens in this example, for the intermediate level.

7.5 Generalisation to Other Data

The ability of our learned model to generalize to unseen
data is a primary concern, in particular with real data as
produced by digitalization apparatus. This appears chal-
lenging for a model trained on synthetic data only, that
are intrinsically less diverse than real data. To evaluate
the generalization capability of our method, we tested it
on surfaces obtained by multi-view stereo reconstructions
from RGB images, using the reconstruction method of [44].
Such surfaces exhibit various noise types, such as missing
concavities, holes, topological noise, flipped faces, among
other acquisition imperfections. While correcting all of them
is beyond the scope of this work, the question that arises
is whether our framework can improve the reconstruction
results by exploiting the learned local noise and shape
patterns.

Figure 16 shows qualitative results of the model trained
on the synthetic dataset (from 7.2). We compare our method
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Fig. 10. Average angular errors in degrees, on the 3 Kinect datasets
of [2], per scanned model. @B CNR. NormalF-Net. © Ours (raw
estimated normals). @ Ours (refined normals). @ NLLR.

to CNR [2] and HC laplacian smoothing [7] that form both
a general purpose baseline. Compared to this baseline, our
model appears to better preserve the recovered features, e.g.
the shirt folds in the back, and to better filters out random
noise. On the other hand, CNR produce a smoother results,
removing some large noise patterns, however losing some
features along the way, e.g. the jawline, fingers, or shirt folds.
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Fig. 11. An example from the Kinect v2 dataset of [2]. NF-Net stands for
NormalF-Net

(a) noisy
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Fig. 12. Extension (Sec. 6.4 and 6.5) evaluation: Comparison of the
average error on the test set from the synthetic dataset of [2]. Blue:
Network trained with our standard approach. Red: Network trained using
both extensions. (a): Average distance of each vertex of the denoised
mesh to the closest vertex of the ground-truth, normalized by the diago-
nal length of the mesh. (b): Average angular error on facet normals.

8 CONCLUSION

In this work, we have presented a novel end-to-end learning
approach for normal denoising on a mesh surface. It demon-
strates that a graph convolutional network architecture can
learn meaningful features with respect to local shape and
noise patterns and, thanks to its convolutional nature, it can
also learn spatial consistency without the need for explicit
constraints. As a result, the approach presents better results
when compared to the state of the art methods for mesh
denoising. We have also investigated 2 extensions of this
framework. First, building on the observation that the vertex
updating step is fully differentiable, we have proposed a
new learning framework that can use unregistered noisy
data. Second, within this framework, we have extended the

S 8

(a) Ground Truth (b) loss on normals  (c) loss on vertices
Fig. 13. Extension evaluation: Close-ups of the “chinese lion” mesh
from the synthetic dataset of [2]. (b): Network trained with our standard
approach. (c): Network trained using the 2 extensions described in

section 6.
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Fig. 14. Multi-scale vertex updating extension: Close-ups of the "gar-
goyle” mesh. Top row: Normals estimated by the network at different
resolution levels (in (c) normals are flipped by the network, see text for
detail). Bottom row: Mesh obtained after the contribution on each set of
normals.

standard vertex-updating scheme to work in a multi-scale
mannet, so as to alleviate its constraint on the vertex dis-
placement. These extensions provide additional constraints
on the vertex locations that can help recovering small fea-
tures on a noisy mesh, this in comparison to a training loss
based on local orientations of the surface, as without the
extensions. An interesting direction to explore here is how
to benefit from both modalities, orientation and location,
through the training loss.

One of the limitation of the framework we propose is
that it does not handle topological noise, assuming the
connectivity of the input mesh to be correct. While this
assumption is valid in many cases, there are situations
where spatial relation can be more meaningful than local
connectivity (e.g. with incorrectly disjoint components). This
is true with, for instance, the Kinect datasets, as shown in our
results. As many recent learning-based methods have been
proposed for point cloud denoising, it would be interesting
to investigate how they could contribute in our framework
by handling purely spatial information.

On the application side, the interest of a learning-based
strategy over traditional hand-crafted methods is its ca-
pacity to better model complex types of real noise. One
typical example being the multi-view stereo reconstruction
pipeline, from capture to reconstruction. In the future, we
plan to investigate if our method is able to improve a
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Fig. 15. Qualitative results from Wang et al. synthetic database, with the highest noise level. The last row shows close-up views of the chinese lion
model. Note how sharp and complex features are handled by the different methods.

given reconstruction method by learning its intrinsic noise
distribution. Finally, our approach is not fully end-to-end
since it still requires an additional vertex updating step.
Whether this additional step can be integrated in the net-
work architecture is certainly a future work.
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