On a rank factorisation problem arising in gearbox vibration analysis - Archive ouverte HAL Access content directly
Conference Papers Year :

On a rank factorisation problem arising in gearbox vibration analysis

(1) , (2) , (3) , (4) , (5)
1
2
3
4
5

Abstract

Given a field $K$, $r$ matrices $D_i \in K^{n \times n}$, a matrix $M \in K^{n \times m}$ of rank at most $r$, in this paper, we study the problem of factoring $M$ as follows $M=\sum_{i=1}^r D_i \, u \, v_i$, where $u \in K^{n \times 1}$ and $v_i \in K^{1 \times m}$ for $i=1, \ldots, r$. This problem arises in modulation-based mechanical models studied in gearbox vibration analysis (e.g., amplitude and phase modulation). We show how linear algebra methods combined with linear system theory ideas can be used to characterize when this polynomial problem is solvable and if so, how to explicitly compute the solutions.
Fichier principal
Vignette du fichier
IFAC_2020_final.pdf (225.97 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03070702 , version 1 (15-12-2020)
hal-03070702 , version 2 (16-12-2020)

Identifiers

  • HAL Id : hal-03070702 , version 2

Cite

Elisa Hubert, Axel Barrau, Yacine Bouzidi, Roudy Dagher, Alban Quadrat. On a rank factorisation problem arising in gearbox vibration analysis. IFAC 2020 - 21st World Congress, Jul 2020, Berlin / Virtual, Germany. ⟨hal-03070702v2⟩
76 View
57 Download

Share

Gmail Facebook Twitter LinkedIn More