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Abstract

The design of converging-diverging blades for Organic Rankine Cycle applications widely

relies on automated shape-optimization processes. As a result, the optimization produces

an adapted-nozzle cascade at the design conditions. However, only few works accounts for

the uncertainties in those conditions and their consequences on cascade performance. The

proposed solution, i.e. including uncertainties within the optimization routine, demands an

overall huge computational cost to estimate the target output statistic at each iteration of

the optimization algorithm. With the aim of understanding if this computational cost is

avoidable, we study the impact of uncertainties in the design conditions on the robustness

of deterministically optimized proÞles.

Several optimized blades, obtained with di!erent objective functions, constraints and de-

sign variables, are considered in the present numerical analysis, which employs a turbulent

ßow solver and a state-of-the-art uncertainty-quantiÞcation method. By including measured

Þeld variations in the formulation of the uncertainty-quantiÞcation problem, we show that a

deterministic shape optimization already improves the robustness of the proÞle with respect

to the baseline conÞguration. Guidelines about objective functions and blade parametriza-

tion for deterministic optimizations are also provided. Finally, a novel methodology to

estimate the mass-ßow-rate probability density function for choked supersonic turbines is

proposed, along with a robust reformulation of the constraint problem without increasing

the computational cost.
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1 INTRODUCTION

Nowadays, Organic Rankine Cycle (ORC) power systems are a cost-competitive solution

to exploit heat sources at medium-low enthalpy level [1]. The success of this technology

mainly relies on a suitable design of its turboexpander [2], where the working ßuid is a

heavy and complex organic compound. These ßuids feature low enthalpy drop combined

with comparatively high expansion ratio, large volumetric variation, and low speed of sound.

These speciÞc features led designers to focus on compact axial [3, 4] or radial-inßow [5, 6]

conÞgurations characterized by one or a few stages. In case of multi-stage axial turbines, the

optimization drives the design towards a Þrst supersonic stator, which processes a signiÞcant

fraction of the expansion ratio [7]. In case of radial-inßow turbines, the di"culty to arrange

a multi-stage architecture demands the entire expansion process to be handled in a single

stage, thus splitting the expansion in two cascades only. This layout induces severe supersonic

ßows in the radial-inßow nozzle [8, 9], posing the same design issues also characterizing the

Þrst-stage axial stator. Moreover, these cascades work in close proximity to the saturation

curve, facing severe non-ideal gas e!ects in the expansion process.

Supersonic ßows combined with non-ideal gas e!ects result in a very challenging aero-

dynamic design process of the blading. Novel semi-analytical design guidelines have been

recently proposed [10, 11] to deÞne the blade channel shapes of such nozzles in a cost-

e!ective way. However, the design of these machines can greatly beneÞt from the application

of automated shape-optimization methods [12, 13, 14, 15]. These design methods lead to

converging-diverging cascades which resemble an adapted nozzle in design conditions. How-

ever, the introduction of uncertainties in the turbine operating conditions may unpredictably

change its performance due to the complex interactions between non-ideal gas e!ects and

supersonic ßow regime. Therefore, a robust design, i.e. a design which is less sensitive to

the system uncertainties, has to be devised [16] to ensure competitive performance in real
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Þeld operations. This problem was already tackled by some authors: a Þrst attempt at opti-

mization under uncertainties for dense-gas ßow applications was carried out by considering

an isolated airfoil [17] and later a transonic cascade [18]. Recently, a sensitivity analysis of

upstream ßow quantities and geometrical uncertainties was carried out [19], followed by a

multi-objective robust optimization [20].

Gathering information from all these previous studies, a discrepancy about which param-

eters should be taken as uncertain emerges, in the absence of a systematic study about ORC

blades operating under uncertainties. Moreover, even though attempts of robust optimiza-

tions were carried out, no evidence is presently available on the lack of robustness of optimal

conÞgurations obtained by a deterministic optimization process. The latter is a necessary

condition to justify the (very high) computational e!ort required by robust optimization

techniques.

This work aims at providing such evidences, by performing an uncertainty-quantiÞcation

analysis of several supersonic nozzle cascades for ORC applications including realistic oper-

ating uncertainties. Five blade conÞgurations are investigated, by combining di!erent ob-

jective functions, constraints and design variables in the deterministic-optimization set up.

A turbulent compressible ßow solver is employed along with a state-of-the-art uncertainty-

quantiÞcation (UQ) method, based on the Polynomial Chaos-Kriging surrogate approxima-

tion. Flow (inlet total temperature and pressure, ßow direction and outlet static pressure)

and turbulent (turbulent intensity and eddy viscosity ratio) boundary conditions are taken

as uncertain parameters, referring to real Þeld variability [21].

The paper is structured as follows: Section2 is devoted to the deÞnition of the prob-

lem, deriving the optimized cascades and the corresponding uncertainties for the design

conditions. Then, in Section3 the numerical tools, i.e. the ßow solver and the uncertainty-

quantiÞcation strategy, are illustrated. A systematic study for the statistic and the grid

convergence is also reported to verify the uncertainty-quantiÞcation set up. In Section4,
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after a dedicated discussion on the meaning of constraint fulÞlment within a probabilistic

framework, a simpliÞed model to predict mass-ßow-rate probability density functions (PDFs)

is proposed for choked supersonic turbines. Finally, cascade performance, which satisfy the

aforementioned constraint on the mass-ßow rate, are discussed from both a physical and

a quantitative standpoint. This analysis is instrumental to derive guidelines which allow

a proper tuning of deterministic shape optimizations to achieve robust performance of the

resulting optimized blades. In the last section, some conclusions about the need of a robust

optimization procedure are drawn and future works are prospected.

2 PROBLEM DEFINITION

2.1 Blade conÞgurations

The analysis concerns a supersonic axial-ßow turbine stator featuring converging-diverging

blades [3]. The working ßuid is MDM (C8H24O2Si3, octamethyltrisiloxane), which exhibits

relevant non-ideal e!ects in the considered operating range. From a deterministic standpoint,

the ßow is expanded from superheated conditions (TT0 = 543.15 K and PT0 = 8 bar) with an

expansion ratio of 7.5 (P1 = 1.072 bar).

The original cascade, referred to as baseline in the following and shown in Figure1, was

the subject of several optimization trials in recent years [13, 14, 15]. In the present work,

the baseline as well as the following optimized blades are studied from a UQ perspective.

All optimal blades are obtained by applying the tool FORMA (Fluid-dynamic OptimizeR

of turboM achineryA erofoils) [14, 22], applying di!erent objective functions, constraints, and

design variables. In the context of FORMA, the baseline blade is parametrized by resorting

to a B-Spline technique. A non-uniform control-point (CP) distribution is prescribed for the

blade parametrization, locally increasing the number of CPs where the blade curvature is

high. The cascade ßow Þeld suggests that the most critical region for the performance is
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downstream of the throat section, due to the onset of shock waves at the trailing edge and

on the rear suction side of the blade. An analysis of variance [23] devoted to the evaluation

of the impact of control point positions on the cascade performance conÞrmed quantitatively

this deduction, attributing a higher relative weight to the CPs placed on the rear suction side.

CFD simulations are run using a high-Þdelity ßow model and a surrogate-based evolutionary

strategy is employed to reduce the computational cost of the optimization.

With reference to the design space reported in Figure1(a), which features 13 movable CPs

in the rear part of the blade, two objective functions are considered, namely the minimization

of the entropy production across the cascade (labelled hereinafter DS) and the minimization

of the standard deviation of azimuthal pressure distribution evaluated at half of the axial

chord downstream of the trailing edge (labelled hereinafter DP):

DP =

!"
"
#

np$

i=1

(Pi ! Pmix )2

np
; DS = sout ! sin . (1)

np is the number of computational points along the azimuthal direction on the down-

stream traverse, where the pressure Pi is computed. Pmix is the mixed ßow pressure. sout

and sin are the mass-averaged speciÞc entropy at the outlet and inlet domain respectively.

These deÞnitions are motivated by the interest in maximizing the stator aerodynamic

performance and/or the uniformity of the ßow at the inlet of the subsequent rotor. For the

two objective functions, both unconstrained and constrained optimizations are performed.

The constrained optimization exploits a penalty formulation, where the di!erence between

the actual constraint value and the speciÞed threshold is added to the objective function after

multiplication by a penalty coe"cient, which establishes both the quantitative homogeneity

with the objective function and the weight of the constraint. In this work, the mass-ßow

rate is constrained to remain within± 1% of the baseline value.

The combination of objective functions (DP, DS) and constraints (CNS) identiÞes 4
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optimal blades, namely 13CP-DP, 13CP-DS, 13CP-CNS-DP, and 13CP-CNS-DS. For one

of these cases, i.e. the constrained minimization of the entropy generation, a comparative

optimization is performed in a reduced design space, reported in Figure1(b), featuring 7

movable Control Points placed on the rear suction side only (7CP-CNS-DS).

The resulting Þve optimal individuals are illustrated in Figure2. Geometrical di!erences

among optimal blades, which can be better appreciated in the zoom of Figure2, mainly

involve the trailing edge and the pressure side as a consequence of di!erent problem for-

mulations. On the other hand, a common element distinguishes the optimal blades with

respect to the baseline. Indeed, optimal blades feature a higher curvature in the diverging

channel and an almost straight proÞle downstream of the cascade opening. To proper appre-

ciate the ßow conÞguration in this class of cascades and the impact of the optimization on

the cascade aerodynamics, Figure3 shows the Mach number distributions for the baseline

conÞguration and for the 13CP-DS proÞle, taken as representative of the optimal cascades.

The baseline cascade features a strong shock, clearly visible in Figure3(a), generated by

the recompression occurring in the rear suction side, and due to the local surface curvature.

As a result of the optimization, the main shock observed in the baseline cascade is almost

eliminated, thus signiÞcantly improving the aerodynamic performance of optimal cascades.

Only the Þsh-tail shock, which stems from the Þnite thickness of the trailing edge, is reßected

on the rear suction side of the adjacent blade, as illustrated by the representative optimized

proÞle 13CP-DS in Figure3(b). The optimized cascades feature a more uniform ßow Þeld

downstream of the throat, also evidenced by an almost straight path of the wake, conversely

to the waving character induced by the main shock in the baseline layout.

The corresponding performance, evaluated with the same computational ßow model used

for the UQ analysis and presented in Section3, are listed in Table 1. The table reports,

along with the evaluation of the objective functions and of the constraint, the total-pressure
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loss coe"cient, which quantiÞes the cascade-aerodynamic performance:

Y =
PT , in ! PT , out

PT , in ! Pout
(2)

2.2 Uncertainties DeÞnition

In the present study, we formulate the UQ problem by identifying two groups of uncertainties:

physically-relevant and physically-unknown uncertainties.

Regarding the Þrst category, we neglect uncertainties in the thermodynamic model, be-

cause previous works proved that they a!ect cascade performance in a negligible way com-

pared to the operating uncertainties [17, 18]. These latter, i.e. uncertainties in the Navier-

Stokes boundary conditions, are extrapolated by referring to Þeld-property variations in an

existing ORC power plant [21]. Despite a di!erent working ßuid and turbine layout with

respect to the present case, those data are the only available in literature to the authorsÕ best

knowledge, and give a clear indication about their order of magnitude. Upstream-quantity

uncertainties are taken as the maximum range of variation measured in the power plant. As

far as the downstream static pressure is concerned, only condensation-temperature measure-

ments are reported. Therefore, the latter are propagated via a Monte Carlo simulation to

derive the corresponding back-pressure variation. This operation is performed by considering

the thermodynamic properties of MDM rather than the organic ßuid employed in the power

plant.

Unfortunately, there are no similar indications in literature to derive plausible uncer-

tainties also for turbulence and for ßow direction. The latter is arbitrarily assumed to vary

within ± 5 deg. Due to the lack of information about turbulence measurements in ORC

power plants, we assign comparatively large uncertainties in the turbulence intensity and

eddy viscosity ratio.

Finally, uniform distributions are assumed for all uncertainties, since no evidence about
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a speciÞc prior distribution is provided in literature. Lower and upper values are taken

symmetric with respect to the mean value (corresponding to the deterministic values reported

in Section 2). Table 2 reports a complete summary of the uncertainties and related ranges

employed in the following UQ studies.

3 NUMERICAL TOOLS

In this section, the ßow solver and the thermodynamic model are described. For a fair

comparison, the same ßow model is also used within the previous optimization processes.

Then, the UQ method is discussed along with its veriÞcation for the statistic and the grid

convergence.

3.1 Flow Model

Numerical simulations are performed with ANSYS-CFX 18.1R! , setting total quantities (PT0 ,

TT0 ) and ßow angle (! 0) as inlet boundary conditions. The outlet boundary condition is

imposed as static pressure (P1), formulated as average static pressure and accepting an

oscillation of 5% around the mean value. Moreover, the outlet domain is placed at four

axial chords downstream of the trailing edge to avoid spurious pressure-wave reßection. As

only the blade-proÞle aerodynamics are of interest, the quasi-3D blade-to-blade ßow model

is applied, considering a stream-tube of constant cross-section.

The turbulence model is k! " SST, whose boundary conditions are set as Turbulence

Intensity TI and eddy viscosity ratio µt /µ . The deterministic performance reported in Table

1 are obtained by using design ßow conditions as presented in Section2, purely axial ßow

and turbulent boundary conditions equal to TI = 5% andµt /µ = 50. Meshes are generated

with ANSYS-TURBOGRID R! , by imposing a proper cell clustering near blade proÞle to en-

sure y+ < 1 in every condition. The implemented thermodynamic model is the Span-Wagner
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equation of state as formulated in [24], by a Look-up-Table (LuT) approach. Thermody-

namic tables are built by referring to the NIST REFPROPR! [25] database, which also makes

available dedicated correlations for transport properties. High-resolution schemes are em-

ployed in the discretization of both ßow and turbulence equations. A central di!erence

scheme is instead adopted for the di!usive ßux. The computational ßow solver, in terms of

physical model, discretization schemes and mesh settings, was previously validated against

experimental data [26].

Furthermore, a dedicated grid convergence assessment for the baseline cascade was per-

formed at the beginning of this study and its main results are proposed in Figure4 for the

two objective functions discussed in this work (see Equation1). The mesh composed by

200k cells shows the best compromise between computational cost and accuracy (0.4% and

1.7% of deviations for pressure-based and entropy-based objective functions, respectively,

with respect to the Þnest mesh). Based on this evidence, all deterministic results discussed

in this work are computed with the 200k mesh.

3.2 Uncertainty QuantiÞcation Method

The UQ analyses are carried out with a recently-proposed surrogate strategy called Poly-

nomial Chaos-Kriging (PCK). The combination of these two surrogate models results in a

metamodelling technique which is more e"cient than Polynomial Chaos and Kriging taken

separately [27]. First, a Latin Hypercube Sampling (LHS) algorithm is used to generate a

Design of Experiments (DoE), where the surrogate model is trained. The number of samples

to have a proper representation of the CFD response is discussed in the next subsection.

The PCK strategy couples the advantages of a Kriging, which Þts the observed value, with

a Polynomial Chaos expansion, which instead better approximates the global trend of the

function. As a matter of fact, it is a universal Kriging model, i.e. a stationary Gaussian

process, whose mean trend is represented by a weighted sum of multivariate polynomials
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orthonormal with respect to the input distribution. The model can be expressed by the

following equation:

QoI =
N$

|i |=0

#i# i(X ) + $2Z(X ) (3)

where X = [T T0 , PT0 , P1, TI , ! 0, µt /µ ] is the vector containing the uncertain variables,

while QoI represents the Quantity of Interest, namely the mass-ßow rate ( úm), the standard

deviation of azimuthal pressure distribution (DP), the entropy production (DS) and the

total-pressure loss coe"cient (Y). We built one surrogate model for each QoI considered in

the present study. In general, the Þrst term of Eq.3 is the model trend given by Polynomial

Chaos expansion, while Z(X ) is the zero mean, unit variance, stationary Gaussian Process,

with covariance R(x, x", ! ). The latter is chosen as a Mat«ern function with%= 5/ 2 [28].

The optimal set of orthonormal polynomials are determined by a sparse Polynomial Chaos

expansion based on Least Angle Regression Selection (LARS) [29]. Finally, the Kriging

surrogate is calibrated by solving the maximum likelihood problem via genetic algorithms,

thus determining model parameters (! , #i , $).

Once the PCK model is generated, it can be exploited to perform a global sensitivity anal-

ysis. Under this perspective, we computed total Sobol indices ST
i (QoI), representing the total

relative contribution of each variable to the QoI. The deÞnition of Sobol indices stems from

the existence of a unique Sobol functional decomposition. If the QoI is square-integrable,

i.e. QoI " L2(X , P(X )), also the variance can be decomposed into di!erent contributions

attributable to each input or any their interactions. For example, the Þrst order Sobol index

is by deÞnition the ratio between the contribution given by the i-th variable to the variance

and the total variance:

SI
i =

Var[E[QoI|X i]]
Var[QoI]

(4)
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To clarify the meaning of this statistical index, a Þrst order index SIi (QoI) represents the

contribution of each variable taken alone, the second order index SII
ij (QoI) accounts for the

cross interaction of the variable i and j which cannot be decomposed into a single contribution

of each of these variables, and so on for higher order indices. The analytical expressions for

higher order indices recall the one provided in Eq.4 for the Þrst order index. The summation

of all SobolÕs indices involving the i-th variable gives the total Sobol index ST
i (QoI), which

is estimated by computing its Janon estimator [30] via a Monte-Carlo sampling. The whole

surrogate strategy and the sensitivity analysis are implemented within UQLab framework

[31].

Finally, the surrogate response is also used to generate the PDF of the QoIs. This is

again done by a Monte-Carlo sampling evaluated through the PCK surrogate. Output values

are collected in histograms on which a Kernel Density Estimation (KDE) is applied. The

bandwidth of the kernel density estimator is chosen according to SilvermanÕs rule [32], which

may give inaccurate results when multi-modal distributions are present. For this reason, we

check from the histograms that the empirical distributions are not multi-modal, otherwise a

manual tuning of the bandwidth is operated.

3.3 Statistic and Grid Convergence

To properly set up the UQ method, an assessment of the grid and of the statistic convergence

is conducted, in terms of (i) grid reÞnement and (ii) DoE size, on which the surrogate PCK

is trained, respectively. Starting with the mesh reÞnement, so far all previous UQ analyses

focused on the grid convergence from a deterministic perspective, assuming that the dis-

cretization error is preserved when moving to a stochastic level. However, this assumption

is not necessarily valid, because a mesh, which is judged su"ciently accurate for determin-

istic purposes, might instead alter the hierarchy of uncertainties or the PDF shape when

uncertainties are propagated through the numerical solver. Therefore, the assessment of the
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grid impact on the stochastic response is necessary to conÞrm the reliability of the method.

Figure 5 reports the three grids tested in the present study, consisting in 50k, 200k and 500k

cells respectively. Note also that even the coarsest mesh features a proper cell distribution

near the blade wall to ensure y+ < 1 during the UQ assessment. Figure6 reports total Sobol

indices and PDFs of the mass-ßow rate (aÐb) and of the entropy production (cÐd). The

veriÞcation is performed on the representative optimized proÞle 13CP-DP. The DoE size is

identical for the three meshes in order to isolate the geometrical-discretization error on the

overall result. The coarsest grid is suitable for the mass-ßow-rate characterization, which

presents negligible variations by increasing the mesh size both in the sensitivity indices, Fig-

ure 6(a), and in the PDF shapes, Figure6(b). Of course, this evidence has a clear physical

interpretation. As the supersonic turbine is choked, the mesh size a!ects the mass-ßow rate

only until the throat section: imposing a y+ < 1 at the blade wall, the mesh is locally Þne

in the bladed channel, exactly where it is important for the mass-ßow-rate computation. A

di!erent trend is observed if the entropy production is concerned. For this QoI, the coarsest

grid entails an overestimation of the total temperature impact on the entropy production, see

Figure 6(c). Conversely, the 200k mesh exhibits trends which are comparable to the Þnest

one. Moreover, although PDF shapes are comparable, see Figure6(d), the one generated

with 50k mesh reports a mean entropy production which is higher than the corresponding

Þnest value of around 7%. The same quantity, but evaluated with 200k, shows a deviation

of around 1.5% with respect to the Þnest value, which is in a fair agreement with the grid-

convergence result for the deterministic computations. Therefore, the intermediate mesh

represents the best trade-o! between computational cost and accuracy.

Finally, two DoE sizes, composed by 100 and 200 samples, respectively, are compared with

reference to the intermediate mesh. The comparison is reported in Figure6. Again, mass-

ßow rate does not evidence any di!erence neither in the sensitivity indices nor in the PDF

shapes. On the other hand, entropy production presents a small deviation by increasing the
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number of samples, also revealing a slightly di!erent interaction among input uncertainties.

However, the di!erence is small (lower than 0.5% in the mean values) and does not alter the

uncertainty hierarchy.

Based on these results, the intermediate mesh with 200k cells and the smallest DoE size

with 100 samples are retained in the following calculations.

4 RESULTS

In this section, a possible interpretation of constraint fulÞlment under uncertainties in terms

of mass-ßow rate is proposed, also providing a straightforward method for its prediction

in chocked supersonic turbines. This analysis is instrumental to understand whether an

optimal blades is worth to be analysed in subsequent sections. On the one hand, noz-

zle cascades, which do not satisfy the mass-ßow constraint, are considered not technologi-

cally relevant, therefore they are not included in further comparisons. On the other hand,

technologically-relevant blades are analysed in terms of cascade performance and ßow-Þeld

uniformity, bearing in mind the deterministic-optimization problems to which they belong.

These information are inferred to establish the optimal set up in terms of design space, con-

straint and objective function formulation to achieve the best performance when the blade

is working under uncertainties.

4.1 Robust mass-ßow-rate constraint formulation

The formulation of a shape-optimization problem for supersonic turbines in power systems

demands the constraint of mass ßow rate to match the power target. For subsonic turbines,

due to the strong relationship between mass-ßow rate and velocity triangles, the optimization

problem can be reformulated by Þxing the outlet ßow angle. However, this is not possible

when dealing with choked supersonic turbines, as the mass-ßow rate is decoupled from what
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is occurring downstream. A direct constraint on this quantity is therefore necessary to

Þnd optimal blades which are also technologically relevant. The most straightforward way

to deal with constrained-optimization problem is to apply a penalty formulation, i.e. a

penalty is added to the objective function penalizing those individuals which do not satisfy

the constraint. When dealing with non-linear problems, considerable improvements of the

objective function can be obtained by accepting a small degree of unfulÞllment. As far as

the mass-ßow rate is concerned, up to a certain value, a small variation of the mass-ßow rate

discharged by the 2D proÞle can be compensated by a variation in the blade height, justifying

a small discrepancy in the mass-ßow rate value with respect to the baseline. However, the

problem becomes more complex when uncertainties are introduced, as a constraint may be

satisÞed or not according to a certain probability. In this work, we want to provide evidence

about the main quantities a!ecting the mass-ßow rate for supersonic nozzle cascades to

understand whether the mass-ßow rate should be included in a wider framework of robust

optimization.

Total Sobol indices and PDFs for the Þve optimized blades are reported in Figure7.

As previously highlighted, not all blades are found via a constrained-optimization problem;

examples are 13CP-DP and 13CP-DS. In the stochastic framework, a blade which does not

deterministically fulÞll a constraint might satisfy the same constraint with some probability.

The Þrst thing to notice by inspecting total Sobol indices, see Figure7(a), is that, for all

blades, only upstream total quantities inßuence the mass-ßow rate. Among them, the total

pressure always plays a major role with respect to the total temperature (ST
PT0

( úm)# 0.85

vs ST
T T0

( úm)# 0.15, they add up to 1, no cross-interaction is present). Coherently with what

is expected for a choked supersonic turbine, the downstream static pressure does not have

any e!ect on the mass-ßow rate. This is true as long as the variation in static pressure is

large enough so that the blade is always in choked conditions. Moreover, neither turbulent

boundary conditions nor incidence angle have any inßuence. Once we have understood
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which elements contribute to the mass-ßow rate, we still need to Þgure out: (i) how large

the mass-ßow-rate uncertainty is; (ii) to what extent the constraint is fulÞlled.

Mass-ßow-rate PDFs along with the prescribed acceptable range for the deterministic

optimizations (± 1%) are reported in Figure7(b). The probability of the constraint being

satisÞed is proportional to the overlapped area between the target PDF and the deterministic

threshold. It follows that blades optimized by direct imposition of the constraint satisfy the

constraint with a large probability (> 70%), but still PDF tails fall out the prescribed range.

As the PDF support is wider than the acceptable tolerance on the constraint, the robust

fulÞlment of the constraint cannot be ensured with 100% probability without reducing the

input uncertainties. On the other hand, blades optimized without any direct constraint

exhibit di!erent behaviours: 13CP-DP satisÞes the constraint with a probability of nearly

9% while 13CP-DS never satisÞes it. Therefore, a deterministic imposition of the constraint

drives the optimization towards a more robust fulÞlment, i.e. the constraint is satisÞed with a

larger probability. However, although the constraint is never satisÞed with 100% probability,

the computed mass-ßow-rate uncertainties are not large enough to make undistinguishable

proÞles obtained with and without constrained-optimization problems.

The knowledge of a simple way to reconstruct the PDF without resorting to an expensive

UQ algorithm can be used to formulate an alternative optimization problem, which enforces

the constraint-fulÞlment robustness at the same computational cost. Indeed, the similar

shape of the PDFs along with nearly identical total Sobol indices suggest a pattern that can

be deduced a priori. The mass-ßow rate can be easily computed by referring to the throat

section (M=1), assuming isentropic ßow in the convergent part of the blade along with the

conservation of the total enthalpy:

úm = &t At ct (5)
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where the subscriptt indicates the throat section,&is the density,A is the cross-sectional

area andc is the speed of sound. Upon examination of Equation5, the density and the speed

of sound in the throat section are a!ected by a variation in the upstream total quantities,

while the cross-sectional area is constant. The sensitivity analysis demonstrated no cross-

correlation between the two total quantities, so their contribution to the mass-ßow rate can

be regarded separately. The impact of the total-pressure variation on the speed of sound

is practically negligible in these thermodynamic conditions, hence an increase in the total

pressure produces an increase of the mass-ßow rate as a consequence of the density rise.

Since the relationship between pressure and density (at Þxed temperature) is practically

linear in those range of variations, a uniform pressure distribution will directly translate into

an uniform mass-ßow-rate distribution. A careful inspection of the mass-ßow-rate PDFs, see

Figure 7(b), reveals a ßat central region which actually resembles an uniform distribution.

Moreover, this region is predominant in the deÞnition of the whole probability function, in

agreement with the higher contribution of the total pressure to the mass-ßow-rate uncer-

tainty unveiled by the sensitivity analysis. By process of elimination, the total-temperature

variation should be responsible for the PDF tails, which di!erentiate the mass-ßow-rate PDF

from an uniform distribution. Indeed, the total temperature a!ects both density and speed

of sound, but in an opposite way: in these thermodynamic conditions, as the temperature

increases, the density decreases but the speed of sound increases. The competitive e!ects of

the total temperature in the mass-ßow rate can explain the sti!er response in the resulting

PDFs. The overall symmetry of the examined PDF with respect to the mean value can be

a consequence of the symmetric interval chosen for the input uncertainties.

Gathering these information, a simple methodology to predict the mass-ßow-rate PDF

is proposed. With reference to the extreme values of total pressure and total temperature,

namely PT0,min ÐPT0,max and TT0,min ÐTT0,max , respectively, let us consider all the possible

permutations of upstream total states (PT0 , TT0 ). Once the upstream total state is identiÞed,
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the mass-ßow rate can be computed by solving the 1D problem in the Equation5. Then,

the mass-ßow-rate value has to be properly collocated, according to the related upstream

state, to form the trapeze as in Figure8(a). Finally, the trapeze height has to be computed

by imposing the total area equal to 1, thus generating a consistent mass-ßow-rate PDF.

In Figure 8(b) the PDF obtained through the UQ model and the 1D-based model are

compared. The proposed model perfectly predicts the mass-ßow-rate PDF, showing prac-

tically no di!erences between the analytical and the numerical probability functions. This

simpliÞed model to estimate the mass-ßow-rate PDF can be combined with deterministic

optimization to account for the inherent constraint violations. For example, the penalty to

the objective function can be applied whenever

Pr (0.99 úmbase < úm< 1.01 úmbase) < # (6)

where # is the acceptable probability of the mass-ßow rate deviating± 1% from the

baseline value, rather than the pure deterministic formulation:

0.99 úmbase > úm> 1.01 úmbase (7)

In this way, the robust fulÞlment of the constraint is enforced without an explicit and

time-consuming uncertainty propagation. In principle, the robust mass-ßow-rate constraint

can be formulated for any choked supersonic turbine subjected to uniform uncertainties in

the inlet total pressure and temperature.

4.2 ANOVA of cascade-loss coe!cient

Before comparing the optimized blades which satisfy the mass-ßow-rate constraint at least

for a small probability, the contribution of input uncertainties in the determination of cascade

losses is examined. To this end, ST
i (Y) for each optimized cascade are reported in Figure9.
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Contrary to ST
i ( úm), which are equal among the di!erent blades, cascade losses are inßuenced

by input uncertainties in a di!erent way. The Þrst thing to note is that uncertainties in the

turbulent boundary conditions and in the inlet ßow angle are not inducing any variation in

the cascade performance. For such nozzle cascades, turbulence e!ects have a relevant role in

the total-loss coe"cient, as clearly discussed in [13] where inviscid and turbulent simulations

are compared. Nevertheless, the present analysis suggests that the inlet boundary conditions

of the turbulence equations do not have any signiÞcant follow-up in the development of

turbulent boundary layer on the blade walls, at least according to the RANS model employed

in this work. As expected, on the other hand, the large rounded leading edge makes the

blade robust to incidence angle up to± 5 deg. Since many loss mechanisms are involved, it

is not immediate to correlate how the remaining uncertainties, i.e. TT0 , PT0 and P1, a!ect

the cascade performance within a robust-performance framework.

As a general rule, a deterministic shape optimization applied to a supersonic cascade pro-

duces a blade channel which features a smooth and shock-free expansion process. However,

the blade is ÕadaptedÕ for the design conditions and there is no control about its response

to a variation in the boundary conditions. To illustrate a possible physical interpretation of

the di!erences found in STi (Y), we will consider the two extreme cases: (i) 13CP-DS, where

practically the only contribution to losses is given by the total-temperature variation; (ii)

7CP-CNS-DS, where the contribution of the total-temperature uncertainty is smaller than

both the inlet total-pressure and the outlet-static-pressure variations. The other cascades

are expected to be in between these two exemplary cases. The standard-deviation and the

mean pressure Þelds are combined to illustrate the coe"cient of variation (CoV =$/µ ) Þelds

in Figure 10(a)Ð(b) for these two representative cascades. Two similar uncertainty peaks are

recognized as the shock wave is reßected on the adjacent blade, but a qualitative di!erence

arises when moving downstream. The two peaks are kept separated for the 7CP-CNS-DS,

see Figure10(a), instead they coalesce downstream for the 13CP-DS, see Figure10(b). This

19



di!erence in the stochastic Þeld proves that a deterministic optimization may grant alterna-

tive robust behaviour to the optimized cascade. The azimuthal pressure distribution along

with its uncertainty bands (evaluated as twice the standard deviation) are reported for the

two cases in Figures10(c) and 10(d), respectively. Indeed, the shock pattern generated by

the two blades delivers di!erent pressure and uncertainty distribution. Considering the stan-

dard deviation of the mean azimuthal-pressure distribution as indicator of the overall change

in the downstream ßow Þeld, i.e. DP as in Equation1, the corresponding PDFs are com-

pared in Figure10(e). 13CP-DS exhibits a downstream pressure Þeld which is more robust

to operating uncertainties. On the other hand, the larger variability in the 7CP-CNS-DS

PDF indicates a less robust response, as the variation in the operating conditions is likely

to trigger a change in shock-wave location and/or intensity.

Although a higher total-temperature contribution seems to indicate a more robust blades

in terms of ßow-Þeld distribution, a proper physical interpretation, formulated as follows, is

required for the generalization. Cascade losses are proportional to the entropy production

and to the local temperature at which losses take place, i.e. Y$ T$S [ 33]. The overall pres-

sure contributions, given by both the total-upstream and/or the static-downstream pressure,

i.e. ST
PT0

(Y) and ST
P1

(Y), respectively, prevail whenever a slight change in the expansion ratio

produces an appreciably di!erent shock interaction and a consequent variation in the entropy

generation (proportional to the shock strength). On the other hand, if the total-temperature

contribution ST
T T0

(Y) is predominant, the preserved ßow-Þeld uniformity implies a smaller

variation in the shock pattern and in the resulting entropy production. Therefore, for the

latter blades, cascade losses are mainly inßuenced by the temperature level rather than by

a variation of the shock pattern, inducing overall a more uniform ßow Þeld which may be

beneÞcial for the performance of the subsequent cascades.
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4.3 Impact of objective functions from a UQ perspective

In this section, blades obtained with the minimization of di!erent objective functions are

compared from a probabilistic perspective. In literature, the main dispute for the optimiza-

tion of a ORC supersonic nozzle cascade is between an entropy-based [20, 15, 22] and a

pressure-based [13, 12] objective function. Historically, the latter was preferred in inviscid

simulations, where the minimization of pressure ßuctuations directly acted on the only source

of cascade losses, namely the shock loss. When RANS ßow solvers are employed, a shift in

the trend is observed, preferring an entropy-based objective function which inherently in-

cludes viscous phenomena such as shock-boundary layer interaction and shock-induced ßow

separation at the trailing edge. However, since such a supersonic proÞle is representative

of a Þrst stator, the reduction of pressure ßuctuation downstream of the cascade has also

the beneÞcial e!ect of decreasing the subsequent stator-rotor interactions, with a potential

improvement of rotor aerodynamic performance along with a reduction of the aerodynamic

forcing. However, whether one objective function brings some additional advantages over

the other from a stochastic perspective is still unclear.

In the following analysis, three proÞles are considered: 13CP-CNS-DS, 13CP-CNS-DP

and 13CP-DP. The latter is included because there is a small probability that it may actually

satisfy the constraint. The total-pressure-loss PDFs of the optimized blades and of the

baseline are reported in Figure11to highlight the e!ect of a deterministic shape optimization

on the resulting proÞle robustness in terms of overall performance. For all examined cases,

the optimization almost halves the cascade losses and improves the robustness of the cascade,

whose performance feature a lower variations when subjected to operating uncertainties. All

cascade-loss PDFs exhibit nearly the same shape (similar to a normal probability function)

with a maximum deviation between the mean and its inferior/superior 0.05-quantiles of

$Y # 0.15%pts. As far as the unconstrained blade (13CP-DP) is concerned, it always

outperforms its constrained counterpart (13CP-CNS-DP); besides, its losses are lower than
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the entropy-based constrained proÞle (13CP-CNS-DS) with a probability of about 95%. A

comparison between the two constrained-optimized proÞles shows that the pressure-based

proÞle presents a higher cascade-loss mean value with a lower standard deviation than its

entropy-based counterpart. Moreover, despite the higher mean value, there is still a# 40%

of probability that the pressure-based cascade may behave better than the entropy-based

one. Based on these results, on the stochastic ground the optimization provides nearly

equivalent outcomes regardless the deÞnition of the objective function. Indeed, as the main

shock occurring in the baseline cascade signiÞcantly contributes both to the overall loss and

to the pressure gradients downstream of the cascade, the minimization of the shock strength,

with its consequent loss and impact on the boundary-layer development, is pursued by both

the objective functions.

A very di!erent trend is appreciated when the ßow uniformity downstream of the cascade

is of interest, as observed in Figure12 by DP probability functions. Both objective functions

alter the shape of the baseline PDF, inducing a sti!er change in the shock-wave generation

for the optimized cascades as operating conditions vary. However, a substantial di!erence

between entropy-based and pressure-based proÞles is evident. Despite comparable cascade-

loss coe"cients, the pressure-based optimized blades feature pressure-gradient PDFs skewed

towards low-quantiles, resulting in a more robust response in terms of ßow-Þeld distribution.

On the contrary, 13CP-CNS-DS presents a nearly-normal distribution centred on a higher

value (almost 4 times the pressure-based one). The optimization based on the entropy as

objective function do not account for the onset of weak pressure waves (both compression and

expansion) downstream of the trailing edge, whose contribution to the entropy production

is indeed negligible but they do a!ect the pressure disuniformity in the stator-rotor gap.

In accordance with these Þndings, the optimization of a ORC supersonic nozzle cascade

should involve the minimization of the pressure standard deviation downstream of the trailing

edge, even in presence of viscous ßow solver, because it results in a twofold advantage:

22



(i) minimization of losses, evidencing only a marginal di!erence in the cascade-loss PDFs;

(ii) reduction of ßow disuniformity, outperforming the entropy-based proÞle from both a

deterministic and a stochastic perspectives.

4.4 Impact of design variables from a UQ perspective

The last analysis compares the implication of di!erent design spaces in the stochastic re-

sponses of the so-optimized proÞles. The investigation is carried out by varying the design

variables as in Figure1 and employing the same ßow model and optimization set up in

terms of objective functions and constraints. The resulting two blades are: 7CP-CNS-DS

and 13CP-CNS-DS. It is worth to underline that the 7CP-CNS-DS proÞle demanded about

a half of the computational time, which was required for the optimization of the 13CP-CNS-

DS. The extra available CPs enable the displacement of the diverging part of the pressure

side and a rigid movement of the trailing edge (preserving its thickness). Previous studies

[13, 23] showed that the improvement in the cascade performance by moving these regions

is marginal (but still measurable in deterministic terms), if compared to the one achievable

by displacing the diverging and the rear part of the suction side. The cascade-loss PDFs

are illustrated in Figure 13 for both the optimized proÞles and the baseline. The two PDFs

exhibit a similar distribution, which features a lower standard deviation than the baseline

one for both the cases. Moreover, it can be noticed that the performance of 7CP-CNS-DS

is slightly less robust then its counterpart obtained by a higher CP number. Nevertheless,

with reference to the deterministic cascade-loss values, see Table1, 7CP-CNS-DS outper-

forms the deterministic performance of 13CP-CNS-DS with a probability of around 25%.

Correspondingly, 13CP-CNS-DS might operate worse than the deterministic 7CP-CNS-DS

with a probability of 30%. Based on these results, the trailing-edge region and the pressure

side downstream of blade throat seem not to provide a signiÞcant contribution to the ro-

bustness of the blade proÞle, mirroring the marginal net improvement given by deterministic
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computations [23]. It follows that, within the parametrization framework here employed,

the number of adjustable CPs can be restricted to the rear suction side only, thus saving

computational resources at nearly equal performance from a stochastic perspective.

5 CONCLUSION

In this paper we discuss the impact of a deterministic shape optimization on the performance

of supersonic turbine nozzles when operating under uncertainties. The analysis was carried

out by resorting to a well-known cascade conÞguration in the Þeld of Organic Rankine Cycle

applications, featuring severe non-ideal gas behaviours and a highly-supersonic ßow regime.

A turbulent ßow solver, relying on a state-of-the-art multi-parameter equation of state, was

employed. The uncertainty quantiÞcation strategy involved a recently-proposed Polynomial

Chaos-Kriging surrogate technique. Within this framework, we tested 5 optimized proÞles

which were obtained applying deterministic optimizations and changing the objective func-

tion (pressure standard deviation Ð entropy production), the constraint (no constraint Ð

mass-ßow-rate constraint) and the design space (7 Ð 13 movable control points). The main

outcomes from this analysis are summarized as follows:

¥ the mass-ßow-rate probability density function can be deduced a priori for choked

supersonic cascades. A 1D-based methodology is proposed to include the mass-ßow-

rate probability density function within the formulation of a deterministic optimization

problem, enforcing its robust constraint fulÞlment with no extra computational cost;

¥ overall, a deterministic optimization leads to a more robust design, but the shock-wave

pattern and the consequent cascade performance may be a!ected by uncertainties at

least in two di!erent ways;

¥ uncertainties in the ßow boundary conditions have a higher inßuence on the cascade-
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performance with respect to uncertainties in the turbulent boundary conditions;

¥ for this kind of turbines, whose losses are dominated by shock waves (and slightly af-

fected by viscous-shock interaction), the best objective function seems to be the stan-

dard deviation of the downstream azimuthal pressure distribution. Its minimization

increases the ßow-Þeld uniformity downstream of the stator, thus eventually improv-

ing the stator-rotor interaction, and it has the positive side-e!ect of reducing cascade

losses by removing the main shock;

¥ the increase in the number of control points, also including the pressure side and the

trailing edge, seems not to be justiÞed for the examined nozzle cascades, because the

gain in cascade performance is marginal and might be nulliÞed when uncertainties are

introduced.

Finally, in the present stochastic context, we found nearly-normal probability density

function for cascade-loss coe"cients, with a maximum deviation from the mean value of

around $Y # 0.15%pts. This result leaves small room for further cascade-performance im-

provements, for example by directly addressing operating uncertainties with much time-

consuming robust-optimization techniques.

An open problem, on the other hand, is how to reduce the cost of the optimization and

to preserve accuracy by using lower-Þdelity codes, both on the choice of the physical model

and on the mesh resolution. In this case, the interest in using an uncertainty-quantiÞcation

approach to take into account the error introduced by the low-Þdelity model still remains to

be properly assessed. This problem will be tackled in future works.
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Nomenclature

ORC Organic Rankine Cycle
PDF Probability Density Function
UQ Uncertainty QuantiÞcation
DoE Design of Experiments
LHS Latin Hypercube Sampling
CNS Constrained
PCK Polynomial Chaos - Kriging
CP Control Point
QoI Quantity of Interest
ANOVA ANalysis Of VAriance

7CP-CNS-DS Optimal blade obtained with 7 movable CPs, minimizing the entropy
production and constraining the mass ßow rate

13CP-DS Optimal blade obtained with 13 movable CPs and minimizing the entropy
production

13CP-CNS-DS Optimal blade obtained with 13 movable CPs, minimizing the entropy
production and constraining the mass ßow rate

13CP-DP Optimal blade obtained with 13 movable CPs and minimizing the stan-
dard deviation of azimuthal pressure distribution downstream half axial
chord of the trailing edge

13CP-CNS-DP Optimal blade obtained with 13 movable CPs, minimizing the standard
deviation of azimuthal pressure distribution downstream half axial chord
of the trailing edge and constraining the mass ßow rate

DS SpeciÞc entropy production (Eq.1)
DP Standard deviation of azimuthal pressure distribution (Eq.1)
Y Total pressure loss coe"cient (Eq.2)
ST Total Sobol index (Eq. 4)
! 0 Inlet ßow angle
TT0 Inlet total temperature
PT0 Inlet total pressure
P1 Outlet static pressure
TI Turbulence intensity
µT /µ Eddy viscosity ratio
úm Mass-ßow rate
M Mach number
U Uniform distribution
µ Mean value
$ Standard deviation
CoV Coe"cient of variation $/µ
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Tables

Blade DS [J/ (kg K)] DP [Pa] OF/ OFbase Y[%] úm/ úmbase

BASELINE 4.46 16 626 1.00 17.96 1.00
7CP-CNS-DS 2.31 4553 0.52 9.83 1.00
13CP-CNS-DS 2.29 4172 0.51 9.77 1.00
13CP-CNS-DP 2.32 1313 0.08 9.87 1.00
13CP-DS 2.18 5712 0.49 9.30 1.10
13CP-DP 2.24 1156 0.07 9.54 1.03

Table 1: Performance in terms of objective-function reduction, total-pressure loss coe"cient
and degree of fulÞlment of the mass-ßow-rate constraint for the baseline and the optimized
blade proÞles. The results are obtained with 200k mesh.

Variable Range

TT0 U([541.07, 549.23]) K
PT0 U([7.880, 8.120]) bar
P1 U([1.061, 1.083]) bar
TI U([2.5, 7.5]) %
! 0 U([! 5, 5]) deg
µt /µ U([1, 100])!

Table 2: Uncertain variables and their related range of variation for the following UQ anal-
yses.

Figures

27



!"#

!$#

Figure 1: Baseline-cascade parametrization with 7 (a) and 13 (b) adjustable control points.
The shaded area corresponds to the overall design space.

7CP-CNS-DS
13CP-CNS-DS
13CP-CNS-DP
13CP-DS
13CP-DP

Figure 2: Comparison of optimized blade proÞles obtained with di!erent control points (7CP
Ð 13CP), objective functions (DS: entropy production Ð DP: standard deviation of azimuthal
pressure distribution) and constraints (CNS: mass ßow constrained within± 1% with respect
to baseline value).
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Figure 3: Mach number ßow Þeld of the baseline cascade (a) and of the optimized blade
13CP-DS (b). The numerical simulations are performed with 200k mesh.
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Figure 4: Grid-convergence assessment for the baseline cascades in terms of standard devi-
ation of azimuthal pressure distribution (a) and entropy production (b), normalized to the
Þnest-grid value.
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Figure 5: Mesh reÞnements for the stochastic grid-convergence assessment. The medium
mesh (200k) showed the best compromise between accuracy and computational cost.
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Figure 6: Evolution of sensitivity indexes and of PDFs in terms of mesh size for CFD
evaluation and size of Design of Experiments (DoE) to tune the PCK surrogate. The analysis
is performed on the representative optimized proÞle 13CP-DP. (a) total Sobol indices of
the mass-ßow rate; (b) PDFs of the mass-ßow rate; (c) total Sobol indices of the entropy
production; (d) PDFs of the entropy production.
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Figure 7: Total Sobol indices (a) and PDFs (b) of the mass-ßow rate for the optimized blade
proÞles. The area Þlled with solid lines indicates the acceptable degree of unfulÞlment from
the penalty formulation in the present deterministic optimizations.
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Figure 8: (a) Schematic construction of the mass-ßow-rate PDF using the proposed 1D ana-
lytical approach; (b) Comparison between analytically-generated (dashed lines with markers)
and UQ-generated (shaded area) mass-ßow-rate PDFs.
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