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Abstract

1D Total Variation (TV) denoising, considering the data fidelity and the Total Variation
(TV) regularization, proposes a good restored signal preserving shape edges. The main is-
sue is how to choose the weight λ balancing those two terms. In practice, this parameter is
selected by assessing a list of candidates (e.g. cross validation), which is inappropriate for
the real time application. In this work, we revisit 1D Total Variation restoration algorithm
proposed by Tibshirani and Taylor. A heuristic method is integrated for estimating a good
choice of λ based on the extremums number of restored signal. We propose an offline version
of restoration algorithm in O(n log n) as well as its online implementation in O(n). Com-
bining the rapid algorithm and the automatic choice of λ, we propose a real-time automatic
denoising algorithm, providing a large application fields. The simulations show that our
proposition of λ has a similar performance as the states of the art.

1 Introduction

In this article, we consider the denoising of 1D raw signal. Such signals are mathematically
modelled with u, a real function defined on a bounded open subset Ω of R: u : Ω → R.
Finite number of noised samples of u are available: the noised observations y = (y1, · · · , yn) are
sampled at t = (t1, · · · , tn) with t1 < · · · < tn and yi the sample at ti. We assume the sampling
period τi = ti − ti−1 is not constant, and the observation yi is u(ti) adding an independent
random noise ε:

yi = u(ti) + ε (1)

with E(ε) = 0 and V(ε) = σ2.

1.1 Signal restoration methods

Our objective is to restore u by knowing y, which is also called inverse problem. We hope to
have an automatic denoising method in a real time context with high precision and limited
calculation resource demand. It is an active research domain, and we give here a short review
of existing methods:

• Digital filter: for 1D signals with a constant sampling frequency, digital filters are widely
used. For example, Savitzky–Golay filter [1] is one of the most popular. It consists in
fitting a local polynomial regression to each sample point, and it can be formalized as a
convolution with a fixed kernel. The method is extremely rapid, since the kernel can be
pre-calculated. However, for the inconstant sampling period, the convolution kernel needs
to be recalculated for each sample point, which makes this method inefficient.
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• Probabilistic approach: by introducing priors regarding the signal properties and the
model parameters, the restoration is obtained by maximising the a posteriori distribution.
See more details in [2].

• Variational denoising methods: it consists in at first defining an energy function F (y, u) :

Rn × Rn → R, and estimating the restored signal by:

u∗ = arg min
u
F (y, u) (2)

Usually, the energy function is a weighted sum of two terms:

F (y, u) = L(y, u) + λD(u) (3)

with the data fidelity L(y, u), the regularization D(u) and a hyper-parameter λ ∈ R+

balancing the weight of two terms.

In this article, we focus on variational denoising methods with Total Variation (TV) regu-
larization:

D(u) =

∫
Ω
|∇u| (4)

where ∇u is the gradient of u.
Total Variation based restoration method is first proposed in [3]. The authors in [4] propose

an unconstrained minimisation problem:

u∗TV = arg min
u

∫
Ω
λ|∇u|+ |u− y|2 (5)

for a given Lagrange multiplier λ > 0, and prove the uniqueness of solution as well as an one-to-
one correspondence between the noise’s variance σ2 and λ. TV-based methods preserve sharp
edges and propose a locally smooth restoration. It has been applied to signal ([5]), image ([3],
[4]) and more generally to graph structure ([6], [7]).

For 1D signal, we can estimate efficiently the exact solution with a given weight parameter
λ. We present here two families:

• Dynamic of λ ([8], [9]): those algorithms estimate the solution by following the dynamic
of u∗TV in function of λ. The authors in [8] propose a path algorithm to estimate Λ, the
list of λ provoking a change of u∗TV topology, by varying λ from +∞ to 0. Those methods
are efficient for estimating the solutions with several candidate values of λ.

• Dynamic of “new” sample: for a sequence of n points, the author in [10] proposes to add
the samples one by one into consideration and update the solution sequentially based on
the local behavior of TV-restoration [11]. This method is particularly appropriate for the
online processing of a stream of data.

The performance of the restoration depends on the choice of λ, which is one of the obstacles
for the real application. The automatic hyper-parameters selection is an active research domain
for mathematics (probabilistic and variational approaches) and computer science. Traditional
approaches consist in calculating a goodness-of-fit criterion for several candidate values and
selecting the best one, including cross-validation. Those approaches choose randomly a part of
data to test the performance of the model fitted without this part. It is difficult to find out the
optimal λ in the real time context. Another approach is to introduce some prior knowledge, e.g.
in knowing the largest number possible of constant piece of u, a good choice of λ can be proposed
quickly [8]. Many efficient methods are based on the prior knowledge about the noise ε: the
authors in [12] and [13] propose to select the parameter under Morozov’s discrepancy principle
[14]: e.g. the L2 norm of restoration residuals (y − u∗TV ) is equal to the variance of noise, and
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the authors in [15] propose to select the parameter based on the statistical characteristics of
restoration residuals. If necessary, we can estimate the noise variance σ2 by [16] and [17].

We present here more in detail two methods based on known σ2 that work well for n points
1D signal:

• Stein unbiased risk estimation (SURE) [18] is an unbiased estimator of restoration error
|u∗−unet|22 with unet the original signal. [8] shows that the freedom degree of 1D TV-based
restoration is the segment (c.f. Section 2.1) number of restored signal, noted K, which
give us:

SURE(λ) = |y − u∗(λ)|22 + 2σ2K − nσ2 (6)

By assessing a list of candidates, we select the parameter λ giving the minimum of
SURE(λ):

λSURE = arg min SURE(λ) (7)

• Adaptive universal threshold (AUT) [19] selects the parameter λ based on the behavior
of the restoration with an elegant pre-choice of λ: λN = σ/2

√
n log log n. Based on the

restoration with λN , we get an estimation of the number of segments K̂. Thereafter, the
authors adjust the choice of λ by:

λAUT =
σ

2

√
n

K̂
log log

n

K̂
(8)

In addition, some heuristic methods are available: the authors in [9] propose to estimate λ
by tracking the quantity |u∗TV (λl)−u∗TV (λl−1)|2 with λl the smallest λ giving a restoration with
l − 1 segments. More generally for the weight parameter of (3), some heuristic methods (e.g.
L-curve [20]) are proposed based on the variation of L(y, u) in function of D(u).

1.2 Contributions

Our contributions are resumed as follows:

• First, by revisiting the algorithm proposed in [8] and [9], we propose an online approach to
estimate the list Λ based on the local influence of a new sample for the TV-based method.
This approach is efficient for both hyper-parameter selection and data stream restoration.

• Second, we propose an automatic choice of the weight parameter λ based on the numbers
of the restored signal’s local extremums in function of λ without any prior knowledge on
the signal.

The overall time complexity (for both the automatic choice of the weight parameter λ and
the reconstruction of the signal) is in O(n) for online implementation with a space complexity
in O(n).

1.3 Structure of this paper

The structure of this work is as follow: in Section 2, we will at first revisit the results of [8]
and [9] about 1D TV-restoration method and analyse the influence of the introduction of a
new sample point. Then, based on the established theoretical elements, we propose (Section 3)
respectively some (offline and online) algorithms for estimating Λ, u∗TV with a given λ and a
good choice of hyper-parameter λ for a good performance of restoration. Thereafter (Section
4), we compare our method with different existing methods on some simulated and measured
signals. Finally, conclusions and perspectives are depicted. For the sake of readability, the
proofs are gathered in Appendix A.
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2 Theoretical analysis: revisit of 1D Total Variation Restora-
tion

We aim to recover the unknown vector u = (u1, · · · , un) from the noisy observations y =
(y1, · · · , yn) with yi the sample at time ti. We introduce the sampling period vector τ =
(τ1, · · · , τn) with:

τi =

{
ti − ti−1, i = 2, ..., n.

t2 − t1, i = 1.
(9)

We consider the minimization of the discrete approximation of (5):

F (·, y, τ, λ) :Rn → R
u 7→ L(y, u, τ) + λD(u) (10)

with data fidelity term L(y, u, τ) =
∑n

i=1 τi(yi − ui)2 and total variation regularization term
D(u) =

∑n−1
i=1 |ui − ui−1|. For the sake of simplicity, F (u, y, τ, λ) is noted as Fn(λ) for the case

of n sample points.
The restored signal is given by:

u∗(λ) = (u∗1(λ), · · · , u∗n(λ)) = arg minFn(λ) (11)

By following, we will at first introduce the segment notation of the restoration proposed in
[9]. Then, we will analyse the dynamic of u∗(λ) in function of λ and the local modification of
the restoration due to the induction of a new sample at the end of sequence.

2.1 Segment notation

The considered functional (10) is convex but not derivable. Since we work on a finite sample
of signal, the solution u∗(λ) can be seen as piece-wise constant. We use a similar notation as
[9] to represent the constant piece: a set of index {j, j + 1, · · · , k} of consecutive points whose
restored value u∗j (λ) = · · · = u∗k(λ) is called a segment if it can not be enlarged, which means if
u∗j−1(λ) 6= u∗j (λ) (or j = 1) and u∗k(λ) 6= u∗k+1(λ) (or k = n). The number of segments of u∗(λ)

is noted as K(λ). The following notations are introduced for the jth segment of u∗(λ):

• Index set Nj(λ) = {ij1, · · · , i
j
nj} with nj(λ) = Card(Nj(λ)), containing the point index

inside the jth segment.

• Segment level v∗j (λ) = u∗i (λ),∀i ∈ Nj(λ)

An equivalent representation of u∗(λ) is provided by the set of segment levels v∗(λ) =
(v∗1(λ), · · · , v∗K(λ)(λ)), with v∗1(λ) 6= v∗2(λ), v∗2(λ) 6= v∗3(λ), · · · , v∗K(λ)−1(λ) 6= v∗K(λ)(λ), and the

cutting set (or signal structure) N (λ) = {N1(λ), · · · ,NK(λ)(λ)}. The total variation under the
segment representation is given by (12) which is derivable.

TV (v(λ)) =

K(λ)−1∑
j=1

|vj+1(λ)− vj(λ)| (12)

With a given cutting set N (λ), v∗(λ) can be estimated by:

v∗(λ) = {v∗1(λ), · · · , v∗K(λ)}

= arg min{
K(λ)∑
j=1

∑
i∈Nj

τi(yi − vj)2 + λ

K(λ)−1∑
j=1

|vj+1 − vj |} (13)
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Let s(v) = {s0(v), s1(v), · · · , sK(v)} with

si(v) =

{
0 i = 0 or K

sign(vi+1 − vi) i = 1, · · · ,K − 1
(14)

K = Card(v) and s∗ = s(v∗(λ)), first order optimality conditions of (13) imply:

v∗j (λ) = y∗j +
λ

2Tj
(s∗j − s∗j−1) (15)

with j = 1, · · · ,K(λ), the segment length Tj =
∑

i∈Nj(λ) τi and the mean value inside jth

segment y∗j =

∑
i∈Nj(λ)

τiyi

Tj .

We introduce some items for facilitating the presentation, illustrated in Figure 1:

• We will call the local maximum segment max segment, the local minimum segment min
segment and the rest neutral segment.

• We will call the last point of a segment (excepted the last segment) the junction of
segments.

Max segment

Neutral segment

Min segment

Junctions of segments

Figure 1: Illustration of max, neutral, min segments and the junction of segments. The last
point of the last segment is not a junction of segments

2.2 Influence of hyper-parameter λ on cutting set N (λ)

When the cutting set N (λ) is known, the computation of v∗(λ) is direct by (15). In this section,
we present the influence of λ on the cutting set N (λ).

The authors in [8] and [9] describe the behavior of solution u∗(λ) as λ decreases. Inspired
from an elegant theorem in [21] and [2] (Proposition 2.5.1, p52) about the piece-wise relation
between the restoration with Potts model and the parameter λ, we reformulate the results in
[8] by the following theorem:

Theorem 1. There is a sequence Λ = (λ1, λ2, · · · , λn, λn+1) with 0 = λn+1 ≤ λn ≤ λn−1 ≤
· · · ≤ λ2 < λ1 = ∞ such that ∀λa, λb ∈ [λl+1, λl) with l = 1, · · · , n, we have the same cutting
set N ∗(λa) = N ∗(λb).

Remark 1. In the continuous setting, only two segments are merged for λ ∈ Λ. We have
0 = λn+1 < λn < λn−1 < · · · < λ2 < λ1 = ∞ such that ∀λ ∈ [λl+1, λl) with l = 1, · · · , n, the
restored signal u∗(λ) has l segments: Card(N ∗(λ)) = l.

0

] segments

λn

n

λn−1

n− 1

λn−2

n− 2

· · · λ4

3

λ3

2

λ2

1

5



2.3 Dynamic of segments level in function of λ

Theorem 1 allows us to break the estimation of Λ into some simpler sub-problems: λl can be
estimated from λl+1 for 1 < l ≤ n. We will describe the dynamic of the restored signal u∗(λ)
while λ increases.

For λ = 0, (11) is the least-square estimation, providing u∗(0) = y. Assuming that yi 6= yi+1

for every i, u∗(λ) has n segments for 0 ≤ λ < λn, each segment having only one point.
For simplicity of the presentation, we assume that only two segments are merged for λ ∈ Λ.

Following Remark 1, Λ has n+ 1 distinct elements with λn+1 = 0 and λ1 = +∞.
As λ increases, (15) implies that the min and max segments approach to their neighbors,

while the neutral segments remain the same level. For λ ∈ Λ, two neighbor segments have the
same level and form together a new segment. Let’s take an example: we assume λl+1 known
which gives a solution with l segments. Let this solution be vl(λ) = {vl1(λ), · · · , vll(λ)} and
N l(λ) = {N l

1(λ), · · · ,N l
l (λ)}, we introduce also the following notations:

βlj =
1

2T lj
(slj − slj−1) (16)

Γl = (γl1, · · · , γll−1) = (βl1 − βl2, · · · , βll−1 − βll) (17)

∆vl(λ) = (vl1(λ)− vl2(λ), · · · , vll−1(λ)− vll(λ)) (18)

with sl = s(vl) and T lj =
∑

i∈N lj
τi.

Let λl+1 ≤ λa < λb < λl, since the cutting set stays the same, we have:

∆vli(λa) = ∆vli(λb) + γli(λa − λb) (19)

and |∆vli(λa)| ≥ |∆vli(λb)| for every i. The cutting set changes when ∆vli(λ) = 0: two segments
are merged together. The merged segment index is given by:

k = arg min
k

(|∆vlk(λl+1)/γlk|) (20)

λl can be obtained by:
λl = λl+1 + |∆vlk(λl+1)/γlk| (21)

The value of λl provoking this merge depends on the nature (i.e. min, max or neutral) of those
two neighbors (slk−1, slk and slk+1 ), their length (T lk and T lk+1) and the difference between their

segment levels (∆vlk).
The solution with l − 1 segments, v∗(λl) and N (λl), is given by the following equations:

v∗(λl) =

{
vlj + βlj(λl+1 − λl), j = 1, · · · , k − 1

vlj+1 + βlj+1(λl+1 − λl), j = k, · · · , l − 1
(22)

N (λl) =


N l
j , j = 1, · · · , k − 1

{N l
k,N l

k+1}, j = k

N l
j+1, j = k + 1, · · · , l − 1

(23)

When λ > λ2, the total variation regularization becomes too important, and all the points
form one single segment.

In summary, when λ increases, the difference between two neighbour segments levels (i.e.
|v∗j − v∗j+1|) becomes smaller, and the total variation of the restored signal decreases.
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2.4 Influence of hyper-parameter λ on extremums number of restored signal

A good choice of λ provides a restoration preserving the intrinsic variation of signal and elimi-
nating the local oscillation introduced by noise at the same time. However, the segment number
Card(N ∗(λ)) may not be a good indicator of the local oscillation of the restored signal since
the neutral segments do not contribute to total variation of restored signal.

Let’s return to (12): only the max and mix segments are considered in the total variation.
We note g(λ) the number of extremums of the restored signal u∗(λ). A noised signal has a
large value of total variation and a large number of local extremums due to the local oscillation,
while a well-restored signal which keeps (ideally) only the intrinsic variation of signal may have
a small g(λ). g(λ) seems to us a good indicator of D(u∗(λ)) and allows us to estimate a correct
choice of λ for the restoration.

In this section, we will analyse the relation between g(λ) and λ. Theorem 2 shows the
monotonicity of the extremums number (g(λ)) in function of λ.

Theorem 2. There is a sequence Λg = (λg1, λ
g
2, · · · ) ⊂ Λ with ∞ = λg0 > λg1 > λg2 > · · · such

that:

• g(λa) = g(λb), ∀λa, λb ∈ [λgl+1, λ
g
l ) for every l.

• g(λ′) > g(λ′′), ∀λ′ ∈ [λgl+1, λ
g
l ) and ∀λ′′ ∈ [λgl , λ

g
l−1) for every l.

g(λ) can be estimated directly from Λ, shown in Proposition 1.

Proposition 1. Assumes that only two segments are merged together for λl ∈ Λ. In this case,
at least one of the two merged segments is a local extremum. Let ∆g(λl) = g(λl+1)− g(λl):

• If only one segment is an extremum, then the new segment is also an extremum. ∆g(λl) =
0.

• If both segments are extremums and neither are the first or the last segment, the new
segment is not an extremum. ∆g(λl) = −2.

• If both segments are extremums and one is the first or the last segment, then the new
segment is an extremum. ∆g(λl) = −1.

We propose a simple method to calculate ∆g(λl): let {vl,N l} be the solution for λ = λl+1,
N l
j and N l

j+1 be the two segments to merge, and sl = s(vl) following (14), ∆g(λl) can be obtained
following Table 1.

Conditions Results

slj−1 × slj+1 slj−1 + slj + slj−1 ∆g(λl)

6= 0 = −|slj−1 + slj+1|

= 0
< 2 = −1
= 2 = 0

Table 1: Calculation of ∆g(λl) in function of slj−1×slj+1 and slj−1 +slj +slj−1 with N l
j and N l

j+1

the two segments to merge.

2.5 Local diffusion of a new observation

For 1D signal, the new samples arrive sequentially. Assume n samples are collected and the
new sample (yn+1, tn+1) arrive with tn < tn+1. In this section, we show that the restoration
change locally with the introduction of the new sample for a fixed λ.
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Let u∗ = (u∗1, · · · , u∗n) = arg minFn based on the n first observations with λ fixed and
û = (û1, · · · , ûn, ûn+1) = arg minFn+1 with Fn+1 = Fn+(tn+1−tn)(yn+1−un+1)2+λ|un+1−un|,
we introduce the following notations:

• For û = arg minFn+1:

– Segment level set: v̂ = {v̂1, · · · , v̂K̂}.

– Index set of jth segment: N̂j = {̂ij1, · · · , î
j
n̂j
} with n̂j = Card(N̂j).

– Segment length set: T̂ = {T̂1, · · · , T̂K̂} with T̂j =
∑

i∈N̂j τi

• For u∗ = arg minFn:

– Segment level set: v∗ = {v∗1, · · · , v∗K∗}.

– Index set of jth segment: N ∗j = {ij,∗1 , · · · , ij,∗n∗j } with n∗j = Card(N ∗j ).

– Segment length set: T ∗ = {T ∗1 , · · · , T ∗K∗} with T ∗j =
∑

i∈N ∗j
τi

We can establish the following theorem for the influence of yn+1 over the restoration of n
first samples:

Theorem 3. If there exists an index j ∈ {2, · · · ,K∗(λ)} such that sign(v∗j−1(λ) − v∗j (λ)) =

sign(v∗K∗(λ)(λ)− yn+1), then the new reconstruction û satisfies ûi(λ) = u∗i (λ) for all i < ij,∗1 .

The diffusion from yn+1 changes only the last part of u∗ up to the junction of two segments
whose sign of the variation v∗j−1(λ) − v∗j (λ) corresponds to that of v∗K∗(λ) − yn+1, costless to
detect. For updating u∗(λ) with yn+1, only the last points are necessary, and we will introduce
the following definition:

Definition 1. A sequence (u∗m, · · · , u∗n) is called non-isolated with m = ij∗1 where j is the last
segment which satisfies sign(v∗j−1(λ)− v∗j (λ)) = sign(v∗K∗(λ)− yn+1).

Theorem 4 shows the length of the non-isolated sequence decreases in function of λ. For
λ = 0, each segment contains only one point, and the new sample creates a new segment without
any influence to the first n points. For a large value of λ, all the points form a segment giving
the global mean value, so all the restored signal points are influenced by the new sample.

Theorem 4. Let λ1 < λ2 and the length of the non-isolated sequence of u∗(λ) be l(λ), we have
l(λ1) ≤ l(λ2).

In summary, the new sample (yn+1, tn+1) changes only the last part of the restoration u∗(λ)
with a given λ, and the influence of the new sample diffuses “further” with the augmentation
of λ.

2.6 Independence between segments of restored signal

In this section, we show that the merges of points inside a segment are independent of the points
outside the segment.

We propose to save Λ in a new vector Λ◦ = (λ◦1, λ
◦
2, · · · , λ◦n−1) with λ◦i the value of λ for

which the points i and i + 1 are merged into the same segment. For each segment of the
restored signal u∗(λ̂) with a given λ̂, we add one point at the junction of segments by following
the definition below:
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Definition 2. Let λ̂ and ελ > 0, we have v∗(λ̂) = {v∗1(λ̂), · · · , v∗l (λ̂)}, N ∗(λ̂) = {N1, · · · ,Nl},
l = K(λ̂) and si = sign(v∗i+1(λ̂) − v∗i (λ̂)). For each segment {yNj , τNj} with j = 1, · · · , l, let

ci = λ̂+ελ
2si

, we introduce the virtual segment {y+
Nj , τ

+
Nj} where:

y+
Ni =


{yN1 , v

∗
1(λ̂) + c1}, i = 1.

{v∗i (λ̂)− ci−1, yNi , v
∗
i (λ̂) + ci}, i = 2, ..., l − 1.

{v∗l (λ̂)− cl−1, yNl}, i = l.

(24)

τ+
Ni =


{τN1 , 1}, i = 1.

{1, τNi , 1}, i = 2, ..., l − 1.

{1, τNl}, i = l.

(25)

Following the dynamic of the restoration described in Section 2.3, the variation of segment
level depends on the sign of ∆v but not its value. For a segment of u∗(λ̂) (i.e jth segment

N ∗j (λ̂) = {ij∗1 , · · · , i
(j+1)∗
1 − 1}), the only influences from the points outside the segment are the

signs of ∆v on the borders of the segment (i.e. for the first point of segment sign(u∗
ij∗1

(λ̂) −

u∗
ij∗1 −1

(λ̂)) and for the last point of segment sign(u∗
i
(j+1)∗
1

(λ̂) − u∗
i
(j+1)∗
1 −1

(λ̂))). Under the same

border conditions, the merges of sub-segments inside a segment of u∗(λ̂) are independent of the
points outside the segment, which will merge with this segment for λ > λ̂. For each virtual
segment, those border conditions are guaranteed by the introduction of points at the junction
of segments. In consequence, we can break the estimation of Λ◦ into some independent sub-
problems for each virtual segment, shown in the following proposition:

Proposition 2. Let Λ◦ the estimation with all the samples {yi, ti}1,··· ,n, Λ◦i = {λ◦i,1, · · · } the

estimation with ith virtual segment (y+
Ni , τ

+
Ni) and

Λ∗i =

{
{λ◦1,1, · · · , λ◦1,n1−1}, i = 1.

{λ◦i,2, · · · , λ◦i,ni}, i = 2, ..., l.
(26)

we have ∪i=1,··· ,lΛ
∗
i = {λ|λ ≤ λ̂ ∩ λ ∈ Λ◦}.

Proposition 2 allows us to estimate separately Λ◦ for each segment of u∗(λ̂) except the
junctions of segments since they have λ◦ > λ̂. Combining with the local influence of the
new sample to the restoration (i.e u∗(λ̂)), the independence between segments implies that
the introduction of new sample brings a local modification of Λ◦, respectively the non-isolated
sequence of u∗(λ̂) and the junction of u∗(λ̂)’s segments. The local influence of the new sample
points motivates the online estimation of Λ◦.

3 Proposition of Algorithms

In this section, we will propose some real-time algorithms for estimating a good choice of λ and
the restoration u∗(λ) with a given λ.

3.1 Estimation of the elements of Λ and their corresponding solution

The author in [8] established a path algorithm for estimating Λ by moving the parameter from
λ =∞ to λ = 0. In the following, we will revisit this algorithm in order to get simultaneously
Λ and g(λ).

9



Following the dynamic described in Section 2.3, the estimation of an element of Λ consists
in finding two segments to merge by (20) and updating all segments in function of λ by (22)
and (23). But the update of the non-merged segments is useless: since β does not change,
the variation of the segment level v in function of λ remains linear with the same slope (β).
For estimating λl giving the solution with l − 1 segments, the most important is the minimum
of |∆vl

Γl
| providing the value of λl and the position of the merge. The merge of two segments

changes up to two elements of Γl, respectively the left and right neighbors of the new merged
segment.

Let η = (η1, · · · , ηn−1) with:

ηi =
yi+1 − yi
βi+1 − βi

(27)

and β = (β1, · · · , βn) where β is obtained following (16) with y and τ , we introduce the order of
merge n◦ = arg sort(η, ascending = True). At each iteration, we need to treat the first element
of n◦, and reproduce n◦ for the remaining segments after changing the value of η for the new
segment’s neighbor(s).

Besides, at each merge of segments, we save two new values (λnew,∆g(λnew)), respectively
λnew the λ value provoking the merge and ∆g(λnew) the variation of g(λ) after the merge. We
propose to save those new values in two vectors of size n− 1 by following Section 2.6:

• Λ◦ = (λ◦1, λ
◦
2, · · · , λ◦n−1) with λ◦i the value of λ for which the points i and i+ 1 are merged

into the same segment.

• ∆g◦ = (∆g(λ◦1),∆g(λ◦2), · · · ,∆g(λ◦n−1))

The algorithm (DP-TV) is shown in Algorithm 1. At each iteration, after finding two merged
segments by the first element of n◦, the new values are saved at the junction of two merged
segments (the last point of the left merged segment).

Remark 2. 1. With a careful implementation of the computation of n◦ (i.e. binary search
tree), it can be implemented in low time and space complexity, respectively O(n log n) and
O(n).

2. If the original noised signal has constant pieces (i.e. ∃i, yi = yi+1), we need to replace
the constant piece {y, τ}j,··· ,k by {y,

∑k
i=j τi} before applying our algorithm. Under the

assumption of continuous noise, the probability to have a constant piece is equal to 0, but
it remains a practical issue of implementation in the real data with actual floating point
arithmetic.

3. A major practical issue is the merge of multiple segments for the same value of λ due
to the errors inherent to floating point arithmetic of the micro-processor. With a slight
modification, DP-TV can deal with this situation, in which the first elements of η are
equal.

3.2 Estimation of u∗(λ) and g(λ)

With Λ◦ estimated by Algorithm 1, we need to apply the following method for estimating the
solution u∗(λ) with a given λ:

• Find the cutting set: j = {j1, · · · , jl+1} with j1 = 0, jl+1 = n and λ◦ji > λ for 1 < i ≤ l.

• Initialisation: voutput and Toutput two vectors of size l. For each segment [ji + 1, ji+1] with

1 ≤ i ≤ l: Toutput,i =
∑ji+1

m=ji+1 τm and voutput,i = 1
Toutput,i

∑ji+1

m=ji+1 τmym.

10



Algorithm 1 DP-TV: Estimation of all elements of Λ and their corresponding solution

Require: y = (y1, · · · , yn), τ = (τ1, · · · , τn)
ṽ = y, τ̃ = τ
λ̃ = (0, · · · , 0) . Initialisation
s = s(ṽ) following (14)
β̃ = β following (16) with τ̃ and s
Left neighbour vector nl = (0, · · · , n− 1)
Right neighbour vector nr = (2, · · · , n+ 1)
Get Γ̃ and ∆ṽ by (17) and (18) with β and y
η = |∆ṽ/Γ̃|
n◦ = arg sort(η, ascending = True)
for i = 1, · · · , n− 1 do

k = n◦i . Find segments to merge
vnew = ṽk + β̃k(ηk − λ̃k)
λnew = ηk
τnew = τ̃k + τ̃nrk
Λ◦k = λnew . Save for output
Get ∆g◦k by Proposition 1
kleft, kright = nlk, nrk . Update η for next merge
λ̃kright , ṽkright , τ̃kright = λnew, vnew, τnew

β̃kright = 1
2τnew

(skright − skleft)
nlkright , nrkleft = kleft, kright
krr = nrkright
if kleft >= 1 then . Not first segment

vleft = ṽkleft + (λnew − λ̃kleft)β̃kleft
ηkleft = | vleft−vnew

β̃kleft−β̃kright
|+ λnew

end if
if kright < n then . Not last segment

vrr = ṽkrr + (λnew − λ̃krr)β̃krr
ηkright = | vnew−vrr

β̃kright−β̃krr
|+ λnew

end if
Resort n◦{i+1,··· ,n−1} following ηn◦{i+1,··· ,n−1}

end for
return Λ◦,∆g◦
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• Adjust the segment levels with the given λ: the level of ith segment is given by:

v∗i (λ) = voutput,i + βiλ (28)

with βi = 1
2Toutput,i (si − si−1) and s = s(voutput).

The complexity for estimating u∗(λ) with a given λ is in O(n).
The estimation of g(λ) is given by:

g(λ) = 1−
n−1∑
i=1

∆g◦i 1{λ◦i−λ} (29)

with:

1α =

{
1, α > 0

0 α ≤ 0
(30)

The complexity for estimating g(λ) is in O(n log n) since we need to sort Λ◦. We can reduce
it to O(n) by saving directly Λ and ∆g(λ) for λ ∈ Λ at each iteration, instead of ∆g◦.

3.3 Estimation of λ from g(λ)

What is a good λ? Our objective is to denoise the observations y. By knowing the true signal
unet, the mean squared error of the reconstruction u∗(λ) is defined by:

R(λ) =
1

n
||unet − u∗(λ)||22 (31)

A good λ must have a small value of R(λ). The optimal λ can be found out by:

λop = arg minR(λ) (32)

Usually, only some prior knowledge or even nothing about unet is known. Here, we propose
a rapid deterministic approach to find out a similar value of λop without any prior knowledge
about the original signal unet and the noise ε. The only assumption we made is following: the
noise ε represents the high frequency of the observed signal y, while the original signal unet
represents the low frequency. This assumption is natural for the signal processing community.

With a known cutting set, the denoising is simply done by an average over the points inside
each segment. A good denoising cutting must regroup enough points in each segment. The
value of λ need to be chosen carefully:

• A small λ provides a fine cutting: averaging locally over a small portion of points limits
the denoising effect.

• A large λ gives a coarse cutting: the structure of u is vanished by the global average over
a big portion of points, and it provides a poor denoising performance.

The question is how to get a good compromise between local and global behaviors. The key
feature is the number of min-max segments g(λ) of u∗(λ). Following (15), the segment level v

is piece-wise linear in function of λ, and
∂v∗j
∂λ depends on segment length Tj : short segment is

more sensitive to the variation of λ. Supposing a moderate noise is added to the original signal,
we can have the following observations:

• For a small λ, the restored signal has a huge number of small min-max segments introduced
by noise. A small augmentation of λ can merge two min-max segments.

• For a large λ, we have some long segments due to the intrinsic structure of signal. We
need a large increase of λ to merge two min-max segments.

12



In consequence, the small values of λ (named denoising regime) vanish the extremums
introduced by noise in averaging over a fine cutting, and the large values of λ (named destructing
regime) regroup the intrinsic extremums of signal. The above analysis shows a specific structure
of g(λ): g(λ) decreases quickly in denoising regime, but slowly in destruction regime. In the
transitory region between two regimes, the noises are nearly all removed, but the shape of
original signal is preserved. To sum up, a good λ may correspond to the discontinuity of the
tendency (or gradient) of g(λ)’s decreasing.

We present a simulation of block signal [22] illustrated in Figure 2a: y is a piece-wise constant
signal (noted unet) adding a Gaussian noise ε ∼ N (0, 1). g(λ) of this signal is shown in Figure
2b. The shape of g(λ) corresponds well to our analysis:

• Denoising regime: for λ < 2, g(λ) decreases quickly since some small min-max segments
are merged.

• Destructing regime: for λ > 7, g(λ) decreases slowly. For λ > 500, the total variation
regularisation becomes too important, and g(λ) decreases to 1: u∗(λ) has only one segment
with u∗(λ) = mean(y).

Our intuition is the following: a good λ must lie on the last part of transitory region
between desnoising regime and the destructing regime, and the transitory region corresponds
to the tendency discontinuity of g(λ) in function of log(λ) behind a shape decreasing.

Since g(λ) is monotonically decreasing and piece-wise constant, the estimation of the ten-
dency of g(λ) in function of log(λ) is not obvious. We use the following approximations: for
λ ∈ Λg, we introduce the numerical differential operators:

∂g(λ)+ = g(qλ)− g(λ) (33)

∂g(λ)− = g(λ)− g(λ/q) (34)

with q > 1. ∂g(λ)− and ∂g(λ)+ are respectively the approximation of the left and right
derivative of g(λ) in function of log(λ).

The approximation of second derivative of g(λ) is given by:

∂2g(λ) = ∂g(λ)+ − ∂g(λ)− (35)

∂2g(λ) with log10(q) = 1 for every λ ∈ Λg is shown in Figure 2c.
We propose the following method to estimate a good λ:

• Get ∂2g(λ) by (35) for ∀λ ∈ Λg, and the transitory region is given by:

λtrans = arg max ∂2g(λ) (36)

• Adjustment: the transitory region has a similar value of ∂2g(λ), and ∂2g(λ) decreases
sharply in destruction regime. A good estimation of λ can be given by the last λ ∈ Λg of
transitory region. One proposition is to find out the first sharp decreasing of ∂2g(λ) for
all λ ∈ {λ ∈ Λg} ∩ {λ ≥ λtrans}. We propose to estimate the choice of λ by:

λours = arg min
λ∈{λ∈Λg}∩{λ≥λtrans}

∂4g(λ) (37)

with:
∂4g(λgi ) = ∂2g(λgi+2)− 2∂2g(λgi+1) + ∂2g(λgi ) (38)

The value of q needs to be large in order to avoid the local variation of the gradient of g(λ).
Typically, 0.5 ≤ log10(q) ≤ 1 can well approximate the tendency of g(λ). Besides, q can be
chosen automatically: we propose q as the length of a long step of g(λ) (in logarithm), and our
proposition is q = max(log10(λgi+1/λ

g
i )) without the two first steps of g(λ).

The complexity for estimating λours from g(λ) is in O(n).
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Figure 2: Simulation: how to choose a good λ from the extremums number (g(λ)). Top:
Simulated block signal y = unet + ε with ε ∼ N (0, 1), SNR = 16.91dB, and the restoration with
our proposition u∗(λours) is shown in black; Middle: the extremums number (g(λ)) in function
of λ; Bottom: ∂2g(λ) with log10(q) = 1 for every λ ∈ Λg. Color: green (λop = arg minR(λ)),
red (our approach).

3.4 Online implementation of DP-TV

Our objective is to restore a huge amount of noised signals in a real time context. It asks
for a weak temporal and spatial complexity for estimating the restoration u∗(λours). In this
section, based on the local modification introduced by the new sample, we will propose an online
implementation of Algorithm 1.

We note (Λ◦,n,∆g◦,n), a set of two vectors of size n − 1, the solutions of Algorithm 1
with n samples. With the new sample (yn+1, tn+1), the new results (Λ◦,n+1,∆g◦,n+1) based on
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n + 1 samples can be obtained by updating (Λ◦,n,∆g◦,n). We will only talk about the online
estimation of Λ◦,n+1 from Λ◦,n in detail. In the following, we note an application of Algorithm
1 to a given sequence of signal ({y}, {τ}) as Λ◦ = DP-TV({y}, {τ}).

After choosing a value of λ, noted λ̂, we can get the restoration u∗(λ̂) for the first n points.
Following Theorem 3, the introduction of the new sample changes only the non-isolated sequence
of u∗(λ̂). Besides, Proposition 2 implies that λ◦,ni = λ◦,n+1

i if λ◦,ni ≤ λ̂ for the isolated sequence,

and the merge of the new restored signal û(λ̂)’s segments (i.e {λ◦,n+1
i > λ̂}) depends on the

value of yn+1.

Λ◦,n+1

{λ◦,n+1
i > λ̂}: need to update (part 1)

{λ◦,n+1
i ≤ λ̂}:

get u∗(λ̂)

Non-isolated sequence:
need to update (part 2)

Isolated sequence:
unchanged (part 3)

Figure 3: Illustration of online implementation: the changed and unchanged part of Λ◦,n+1 with
the introduction of the new sample.

λ̂ is indeed a cutting point of Λ◦,n+1: {λ◦,n+1 ≤ λ̂} and {λ◦,n+1 > λ̂} will be treated
separately. We note m and j∗ respectively the first point and the first segment of the non-
isolated sequence of u∗(λ̂) following Definition 1. The results based on the first n points can be
cut into three parts, illustrated in Figure 3, and we will detail the update procedure for each
part.

We treat at first the unchanged part of Λ◦,n+1 (part 3 of Figure 3): all λ◦,n+1
i ≤ λ̂ remain

the same for i < m. Formally, we have the following equation:

λ◦,n+1

{λ◦,n+1
1,··· ,m−1≤λ̂}

= λ◦,n
{λ◦,n1,··· ,m−1≤λ̂}

(39)

For the non-isolated sequence (part 2 of Figure 3), Λa = λ◦,n+1

{λ◦,n+1
m,··· ,n≤λ̂}

can be estimated by

DP-TV(y+
{m,··· ,n+1}, τ

+
{m,··· ,n+1}) where:

• y+
{m,··· ,n+1} = {v∗j∗(λ̂)− λ̂+ελ

2sign(vj∗−vj∗−1) , y{m,··· ,n+1}}

• τ+
{m,··· ,n+1} = {1, τ{m,··· ,n+1}}

with ελ > 0.
The non-isolated and isolated sequences can be assembled into Λtemp = {λtemp1 , · · · , λtempn }

with:

λtempi =

{
λ◦,ni , i < m.

λai−m+2, i ≥ m.
(40)

It remains the update of {λ◦,n+1
i > λ̂} = {λtempi > λ̂} (part 1 of Figure 3). Let b =

{λ◦,n+1 > λ̂} containing indeed all the junctions of û(λ̂)’s segments, we can get Λb = λ◦,n+1
b =

DP-TV(v̂(λ̂), T̂ (λ̂)).
Finally, Λ◦,n+1 can be assembled in the following way:

λ◦,n+1
i =

λ
temp
i , if λtempi ≤ λ̂.
λbp(i) if λtempi > λ̂.

(41)
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with p : Z→ Z giving the index of i in the vector b.
The other solution vector ∆g◦,n+1 can be estimated from ∆g◦,n in the same way as Λ◦,n+1

(from Λ◦,n).
The online version of DP-TV is summed up in Algorithm 2: DP-TV is applied two times on

a small part of the data, and the results are merged following (41). Concerning the complexity,
only a small part of Λ◦,n+1 needs to be recalculated: we obtain u∗(λ̂) in O(n), Λa in O((n −
m) log(n −m)) and Λb in O(lb log lb) with lb = Card(Λb). The overall complexity depends on
the cutting point λ̂, a trade-off between the complexity of Λa and Λb:

• A large value of λ̂ makes u∗ less fluctuating, and the non-isolated sequence may be long,
even as long as y, which means m = 1. In this case, the computation of Λa is nearly
O(n log n), the same as the offline implementation.

• The reconstruction with small value of λ̂ has a little non-isolated sequence. However, all
λ > λ̂ with λ ∈ Λ◦,n, and need to be recalculated. In the worst case, all the elements of
Λ◦,n need to be recalculated in O(n log n)

A good choice of λ̂ may provide a short non-isolated sequence and a little size of Λb, which
means (n−m) log(n−m) << n and lb log(lb) << n. In this case, the complexity of the online
implementation is O(n). We propose to use the value estimated by the deterministic approach
λ̂ = λours or slightly larger than λours (i.e λ̂ = 2λours). See more details in Section 4.2.

For estimating g(λ) in O(n), we propose to save ∆g(λ) following the order of Λ. For the
online implementation, we believe that the computation of ∆g(λ) for n + 1 points and Λn+1,
the ordered list of Λ◦,n+1, can been seen as an insertion of a small ordered list (Λ of part 2 in
Figure 3) into a large ordered list (Λ of part 3 in Figure 3). After insertion, we need to simply
concatenate the new list with Λ of part 1 for the final result of Λn+1.

Algorithm 2 Online implementation of DP-TV

Require: (y1, · · · , yn), (τ1, · · · , τn), (yn+1, τn+1)
Require: Λ◦,n,∆g◦,n, λ̂

Find non-isolated sequence (m, · · · , n) of u∗(λ̂)
(Λa, va,∆ga) = DP-TV(y+

{m,··· ,n+1}, τ
+
{m,··· ,n+1})

Λ◦,n+1 = (λ◦,n+1
1 , · · · , λ◦,n+1

n+1 ) = {Λ◦,n{1,··· ,m−1},Λ
a
{2,··· }}

∆g◦,n+1 = {∆g◦,n{1,··· ,m−1},∆g
a
{2,··· }}

b = {λ◦,n+1 > λ̂}
(λ◦,n+1
b ,∆g◦,n+1

b ) = DP-TV(û(λ̂), T̂ (λ̂))
return Λ◦,n+1 and ∆g◦,n+1

4 Applications

We have proposed an automatic TV-restoration method for the real time context with limited
computation resource. In this section, we will evaluate the restoration performance and the ex-
ecution time with some simulated signal, and show an application with some real data collected
from a Saint-Gobain’s plant.

4.1 Restoration performance evaluation

In the section, we evaluate the restoration with λours proposed by our method (37) and compare
with different existent methods.
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4.1.1 Metrics and criteria

We use the mean square error R(λ) (31) between the restored signal and the original signal
to evaluate a candidate of λ. The optimal value λop is given by (32). For comparing the
performance between two given values λ1 and λ2, we apply the following criteria:

d(λ1, λ2) = R(λ1)−R(λ2) (42)

d(λ, λop) ≥ 0,∀λ ∈ R+, since λop provides the minimum of R(λ). The smaller d(λ, λop) is, the
better the estimation λ is.

However, it is not clear how to fix a threshold over d(λ, λop) between a good and unacceptable
estimation of λ. It depends on the variance of noise and the shape of the original signal. An
alternative way is to compare with the estimation with K-fold cross-validation.

4.1.2 Cross-validation

The objective of cross validation is to assess how a model behaves on an independent data
set. By selecting the best model, we get an estimation of hyper-parameter. If d(λ, λop) is near
d(λcv, λop) with λcv estimated by cross-validation and λ estimated by another method, we can
say this method has a similar performance as cross-validation.

We show how we use cross-validation (CV) in 1D total variation denoising. The observed
signal {yi, ti}1,··· ,n is splitted randomly into k folds with (nearly) equal size in each fold, noted
(yi, ti) for the ith fold and mi = Card(yi). A model is estimated without a fold of data. For
example, the model without ith fold is noted:

u−i(λ) = arg min
u
{F (y−i, u, t−i, λ)} (43)

where (y−i, t−i) the observed signal without ith fold.
The prediction û−i(t) at time t is given by the linear interpolation of (u−i(λ), t−i). The em-

pirical error of u−i(λ) is estimated over ith fold which does not participate into the construction
of the model:

e−i(λ) =
1

mi

∑
(y,t)∈(yi,ti)

(y − û−i(t))2 (44)

Finally, we can estimate the hyper-parameter λ by:

λcv = arg min
λ∈R+

K∑
i=1

e−i(λ) (45)

Remark 3. A sequence of signal can be seen as a time series. The random split of training and
validation sets is not appropriated for time series [23], since training and validation set are not
independent anymore. However, we are interested in the performance of our model in training
data, but not in an independent data set, so the random split of data is justified.

4.1.3 Results

We are interested in 2 types of periodic signal (unet) shown in Figure 4: piece-wise constant and
piece-wise linear. Gaussian noise ε ∼ N (0, σ2) is added to unet. Examples of simulated noised
signals are also shown in Figure 4. Now, we compare our proposition, λ = λours, estimated by
(37) using log10 q ∈ {0.5, 1} and q automatic, with the proposition by 10-fold cross-validation
(45). For each type of signal and each σ ∈ {0.5, 1, 1.5, 2, 2.5, 3}, 500 simulations are done.

The statistical characteristics of d(λours, λop) with different parameters q and d(λcv, λop)
are shown in Figure 5. For low noise variance, all those methods provide a reconstruction
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Figure 4: 2 types of simulated periodic signal (unet). Examples of y = unet + ε with ε ∼ N (0, 4)
are shown. Left: Piece-wise constant; Right: Piece-wise linear.

u∗(λ) nearly identical to u∗(λop). With the growing noise variance, the estimation of λ is more
and more difficult, and the performance of all methods decreases. For high noise variance
(i.e. σ = 3), those methods still provide a similar restoration as u∗(λop) for 50% cases with
d(λ, λop) < 0.1.

Our methods with different parameters have a similar restoration performance as cross-
validation for both types of periodic signal.

4.1.4 Comparison with existing methods

We compared our approach with some existing methods: Stein unbiased risk estimation (SURE)
[18] and Adaptive universal threshold (AUT) [19]. Both methods are based on the known noise
variance (σ2). SURE assesses a criteria for several candidates λ, while AUT calculates u∗(λ)
for only two nice choices of λ. By following, we will compare those methods with σ known or
unknown. In the case of unknown, the noise variance is estimated by [16].

At first, we applied those methods to restore a non-periodic signal, shown in Figure 6, with
different types of noise. The average value of R(λ) of different methods over 500 simulations
are summarized in Table 2. The results show that our approaches with q ∈ {0.5, 0.75, 1} and q
automatic provide a similar performance as SURE for different types of noise, and out-perform
AUT in the strong noise cases.

The second signal we tested is block signal (c.f Figure 2a) with different sampling points
(frequency). The average values of R(λ) with n = 199, 499 and 999 are shown in Table 3. The
performance of all the methods improves as the increasing of the sampling points. AUT and
SURE have a smaller error than our approaches, but the difference between ours and the other
approaches remains around the order of magnitude of 0.01. Indeed, the performance of our
approaches based on the extremums number depends on the sampling frequency: average over
a big number of points allows a better restoration of the intrinsic extremums of the original
signal.

Concerning the complexity for estimating the choice of λ and the corresponding solution
u∗(λ), in applying a solution algorithm in O(n log n) (e.g. ours), SURE can estimate a choice of
λ in O(n log n+Nn) with N the number of candidates and O(Nn) the complexity for estimating
u∗(λ) from Λ◦ for all candidates, while AUT and our method are in O(n log n). For the online
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(a) Piece-wise constant

(b) Piece-wise linear

Figure 5: d(λ, λop)’s statistical characteristics of 500 simulations for 2 types of periodic signal
with different Gaussian noise variance. We have tested our approach with log10(q) = 0.5, 1 and
automatic choice of q. Solid line (green): automatic choice of q; Dots line (blue): log10(q) = 0.5;
Dashed line (red): log10(q) = 1; Dash-dot line (black): 10-fold cross-validation. Circle marker:
25% quantile; Triangle marker: median; Square marker: 95% quantile.

implementation, the complexity of SURE is in O(n+Nn), while AUT and our approach are in
O(n). In the case of huge number of candidates, SURE is slower than AUT and our method.

We can not compare our approach with the heuristic method proposed in [9] due to the lack
of implementation details. This method tracks the variation of |u∗(λl−1) − u∗(λl)|22 for every
elements of Λ. However, the estimation of all u∗(λ) for every λ ∈ Λ is in O(n2), and this method
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Figure 6: Example of non-periodic simulated signal. unet: original signal; y: noised signal.
y = unet + ε with ε ∼ N (0, 4).

may not be appropriated for the real time context.
In summary, our approach works well for the signal restoration under different types of noise

with high sampling frequency.

N (0, 1) N (0, 22) N (0, 32) N (0, 22)
+U [−2, 2]

minR(λ) 16.16 41.87 73.04 51.59

σ known

AUT 16.43 58.87 160.28 88.31

SURE 17.07 45.31 81.67 56.39

σ unknown, σ̂ estimated by [16]

AUT 16.52 60.17 160.11 90.51

SURE 17.22 46.44 85.02 57.82

Our approach

log10(q) = 0.5 16.64 44.60 82.44 55.38

log10(q) = 0.75 16.58 44.04 80.26 54.41

log10(q) = 1 16.58 44.30 83.95 55.67

q automatic 16.58 45.02 87.64 56.77

Table 2: The average value of R(λ) ∗ 100 of 500 simulations with a non-periodic signal shown
in Figure 6 with different types of noise (Gaussian and uniform) shown in the first line of table.

4.2 Execution time evaluation

In this section, we compare the execution time of offline and online implementations. We
measure the execution time for estimating Λ◦ with DP-TV (offline, O(n log n)) and its online
implementation. For the online implementation, the estimation with n + 1 points is based on
the result with n points, while the offline implementations re-estimate from scratch the results.
All the results shown are the average over 20 simulations: from 50 to 500 sample points of a
periodic piece-wise linear whose one period is the same as Figure 4b.

The performance of the online implementation depends on the choice of the cutting point λ̂.
We will, at first, fix λ̂ = 4, and then discuss about the choice of λ̂. The average execution time
is shown in Figure 7a. Online implementation has a much smaller execution time than offline
implementation: online implementation needs less than 2ms for the 500th sampling point, while
DP-TV needs more than 5ms for a sequence of 500 points.

We compare some choices of the cutting point λ̂, and the results are shown in Figure 7b.
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199 499 999

minR(λ) 23.30 11.49 6.42

σ known

AUT 25.01 11.92 6.56

SURE 24.97 12.24 6.83

σ unknown, σ̂ estimated by [16]

AUT 26.34 12.08 6.59

SURE 25.26 12.42 6.84

Our approach

log10(q) = 0.5 27.88 13.36 7.75

log10(q) = 0.75 28.55 13.57 7.39

log10(q) = 1 30.17 14.63 7.72

q automatic 30.54 13.52 7.51

Table 3: The average value of R(λ) ∗ 100 of 500 simulations of block signal (SNR=16.91dB)
with different sampling points. Examples of original and noised signal are shown in Figure 2a.

For too small and too large value of λ̂ (i.e. λ̂ = 0.1 and 89.67), the execution time is nearly the
same as the offline method since almost all the elements are included in Λb for the first case and
in Λa for the second case, which need to be recalculated. The parameter λ̂ ∈ {1.64, 4, 18.44},
providing a small execution time, seems to us a good choice of the cutting point: all needs less
than 3ms for the 500th point.

However, the choice of λ̂ is not obvious: it depends on the shape of signal and the noise
added. We propose to choose λ̂ = λours, the value estimated by our algorithm or slightly larger:
for the new ith point, we take λ̂i = λi−1

ours estimated from Λ◦,i−1 (the result of i−1 points). It is a
natural choice since λi−1

ours needs to be calculated for restoring the i−1 points signal. The results
of this proposition are shown in Figure 7c. The results with λ̂ = λours and 2λours, containing
the time for estimating λours, have a similar execution time as λ̂ = 4 in our simulation. Our
proposition is not optimal, but it still provides a good online performance. We have to remark
that the execution time is more important for each 50th points since the new period of the
original signal begins and the non-isolated sequence is much longer. Once again, the execution
time of online implementation depends on the shape of the signal.

4.3 Real data application

The high performance of our method encourages the application in real data. We show, in Figure
8, an example of signal collected from a plant of Saint-Gobain and the restoration proposed by
our approach, AUT and SURE. The original signal is unknown for the real data, so we can
not compare qualitatively different methods. An alternative way is to validate the restoration
by industrial process engineer. The proposition of SURE, containing some peaks, is irregular,
while the solutions proposed by our approach and AUT restore well the variations of measured
signal. The process engineer confirms the restoration proposed by our approach is well fitted
for the further applications.

5 Conclusions and perspectives

In this paper, we analysed the behavior of Total Variation restored signal in function of the
hyper-parameter λ and the introduction of a new sample at the end of the sequence. We propose
different algorithms for the real time automatic TV-denoising:

• Based on [8] and [9], we propose some algorithms for estimating efficiently the restored
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Figure 7: Mean execution time between offline and online implementation with different cutting
points λ̂. Execution time is averaged over 20 simulations. Top: Online vs offline (DP-TV
in O(n log n)); Median: Online implementation with different cutting points λ̂; Bottom: A
proposition of the choice of cutting point: for the ith point, λ̂i = λi−1

ours with λi−1
ours our hyper-

parameter estimation based on the first i− 1 points with the automatic choice of q.

signal u∗TV . Our proposition combines the advantages of the existing methods: efficient
for hyper-parameter selection as well as online data stream restoration.

• We propose a rapid heuristic method for selecting a good choice of λ based on the variation
of the extremums number of the restored signal in function of λ. We have compared our
methods with some existing methods (cross-validation, AUT and SURE) under Gaussian
and/or uniform noise, and the simulations show that our method has a similar performance
as cross-validation and SURE which are not compatible with the real time context. The
selection of hyper-parameter stays an open question for other noise models.
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Figure 8: Real signal example: TV-denoising with our approach (blue), AUT (green) and SURE
(black).

The overall complexity for obtaining a restored signal with an automatic choice of λ is in
O(n log n) for the offline implementation and in O(n) for the online implementation in the best
case with a space complexity in O(n).

The low time space complexities and the good performance of the choice of λ provide a
large application field of our methods: for example, monitoring in real time a huge amount
of sensors. We believe that there remains some interesting theoretical and practical issues for
future research. An important theoretical and practical issue is the adaptation of the presented
restoration procedure to low cost embedded devices (typically using 8 bits arithmetic).

A Proofs

We give, at first, some lemmas used by our proofs. Those lemmas are based on a fixed value of
λ, so λ is omitted in most of the notation.

Lemma 1. For the kth segment (N ∗k ) with 1 < k ≤ K, let Tm,k =
∑ikm

j=ik1
τi and ym,k =

1
Tm,k

∑ikm
j=ik1

τjyj, we have the following inequalities:

• ym,k ≥ v∗k for m = 1, · · · , n∗k if v∗k−1 < v∗k.

• ym,k ≤ v∗k for m = 1, · · · , n∗K if v∗k−1 > v∗k.

Lemma 2. For the kth segment (N ∗k ) with 1 ≤ k < K: let T−m,k =
∑iknk

j=ik
n∗
k
−m

τi and y−m,k =

1
T−m,k

∑iknk
j=ik

n∗
k
−m

τjyj, we get:

• y−m,k ≥ v∗k for m = 1, · · · , nk if v∗k+1 < v∗k.

• y−m,k ≤ v∗k for m = 1, · · · , nK if v∗k+1 > v∗k.

Lemma 3. • If u∗m = ûm, ∃m ≤ n, then u∗i = ûi, ∀i ≤ m.

• If sign(v∗j−1 − v∗j ) = sign(v∗j − v̂j), v̂i = v∗i , ∀i ≤ j − 1.
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Lemma 4. In the case where v∗K∗−1 < v∗K∗:

• For yn+1 ≥ v∗K∗, we have v∗j = v̂j and N ∗j = N̂j,∀j < K∗.

• For yn+1 < v∗K∗, if ∃l such that v∗l > v∗l+1, then v∗j = v̂j and N ∗j = N̂j, ∀j ≤ l

Proof of Theorem 2. It is easy to show that at least one of the merged segments is a min or
max segments since the neutral segment is invariant following λ.

Assume that k + 1 segments are merged into a new segment for a given λl−k ∈ Λ. Let the
new segment after merging be Nj(λl−k) = {Nj(λl), · · · ,Nj+k(λl)}, we will discuss the following
cases:

• For j > 1 and j + k < K∗(λl), the new segment is neither the first nor the last segment.
We discuss the following cases:

– v∗j−1(λl) > v∗j (λl) and v∗j+k(λl) < v∗j+k+1(λl): the new segment is a min segment. It
can be easily shown that there must be at least one min segment among {Nj(λl), · · · ,Nj+k(λl)},
and there must be one more min segments than max segments. So let m the number
of min segments among {Nj(λl), · · · ,Nj+k(λl)}, we have g(λl−k) = g(λl)−2(m−1).

– v∗j−1(λl) < v∗j (λl) and v∗j+k(λl) > v∗j+k+1(λl): the new segment is a max seg-
ment. It can be easily shown that there must be at least one max segment among
{Nj(λl), · · · ,Nj+k(λl)}, and there must be one more max segments than min seg-
ments. So let m the number of max segments among {Nj(λl), · · · ,Nj+k(λl)}, we
have g(λl−k) = g(λl)− 2(m− 1).

– v∗j−1(λl) > v∗j (λl) and v∗j+k(λl) > v∗j+k+1(λl) (or v∗j−1(λl) < v∗j (λl) and v∗j+k(λl) <
v∗j+k+1(λl)): the new segment is a neutral segment. Let m the number of min
segments among {Nj(λl), · · · ,Nj+k(λl)}, we have g(λl−k+1) = g(λl)− 2m.

• For j = 1, the new segment is the first segment, and we discuss the following cases:

– v∗k+1(λl) < v∗k+2(λl): the new segment is a min segment. There must be at least
one min segment among {N1(λl), · · · ,Nk+1(λl)}, and there may be one more or
equal min segments than max segments. So let m1 the number of min segments and
m2 the number of max segments among {N1(λl), · · · ,Nk+1(λl)}, we have g(λl−k) =
g(λl)−m1 −m2 + 1.

– v∗k+1(λl) > v∗k+2(λl): the new segment is a max segment. There must be at least
one min segment among {N1(λl), · · · ,Nk+1(λl)}, and there may be one more or
equal max segments than min segments. So let m1 the number of min segments and
m2 the number of max segments among {N1(λl), · · · ,Nk+1(λl)}, we have g(λl−k) =
g(λl)−m1 −m2 + 1.

• For j + k = K∗(λl): the new segment becomes the last one. Same as the previous points.

In summary, g(λ) is piece-wise constant and decreasing.

Proof of Proposition 1. Trivial from Theorem 2

Proof of Theorem 3. Trivial from Lemma 4.

Proof of Theorem 4. Let λ1 < λ2, if u∗j (λ2) 6= u∗j+1(λ2) for j = 1, · · · , n − 1, then u∗j (λ1) 6=
u∗j+1(λ1). If the point j is isolated from the influence of new sample for λ = λ2, then it is also
isolated for λ = λ1.
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Proof of Proposition 2. Let l such that λl+1 ≤ λ̂ < λl. For λ ≤ λ̂, the merge of the elements
inside jth segment (N ∗j (λ̂)) is independent of those inside (j − 1)th (N ∗j−1(λ̂)) and (j + 1)th

segments (N ∗j+1(λ̂)) under the same boundary conditions: sign(u
ij1
−u

ij−1
nj−1

) and sign(u
ij+1
1
−u

ijnj
)

stay the same. The boundary conditions are guaranteed by the introduction of −(λ̂+ελ)/(2sji−1)

and (λ̂ + ελ)/(2sji ) since these two new points will merge with their neighbour for λ = λ̂ + ελ.

So we have λ◦,n
ij1,··· ,uijnj−1

= λ∗,j1,··· ,nj−1.

To finish the proof, notice that ∪Λ∗,j = ∪λ∗,j1,··· ,nj = ∪λ◦,n
ij1,··· ,uijnj−1

= {λ ≤ λ̂, ∀λ ∈ Λ◦}.

Proof of Lemma 1. We can easily show that
∑ikm

j=ik1
τj(yj − ym,k)2 ≤

∑ikm
j=ik1

τj(yj − v∗k)2.

For the cases in which ym,k ∈ [min(v∗k−1, v
∗
k),max(v∗k−1, v

∗
k)],

∑ikm
j=ik1

τj(yj−ym,k)2+
∑iknk

j=ikm+1
τj(yj−

v∗k)
2 + λ(v∗k − v∗k−1) <

∑
j∈Nk τj(yj − v

∗
k)

2 + λ(v∗k − v∗k−1).

Since v∗k is given by the minimisation of Fn,
∑ikm

j=ik1
τj(yj − ym,k)2 +

∑iknk
j=ikm+1

τj(yj − v∗k)2 +

λ(v∗k − v∗k−1) ≥
∑

j∈Nk τj(yj − v
∗
k)

2 + λ(v∗k − v∗k−1).
So ym,k 6∈ [min(v∗k−1, v

∗
k),max(v∗k−1, v

∗
k)].

Proof of Lemma 2. Same as Lemma 1.

Proof of Lemma 3. The uniqueness of the solution of (5) is shown in [4].
(u1, · · · , um) = arg minFm for m < n in condition of um = u∗m. When u∗m = ûm, two solu-

tions (u∗1, · · · , u∗m) and (û1, · · · , ûm) minimize the same functional Fm with the same condition
um = u∗m. So (u∗1, · · · , u∗m) = (û1, · · · , ûm) = (u1, · · · , um).

Assuming that the first j−1 segments contains m points, (v∗1, · · · , v∗j−1) = arg minFm under
the boundary condition of u∗m < u∗m+1. If sign(v∗j−1−v∗j ) = sign(v∗j−v̂j), the boundary condition
is unchanged. So v̂i = v∗i , ∀i ≤ j − 1.

Proof of Lemma 4. The first point is trivial following Lemma 3.
For the sake of clarity, we note the last segment together with the new observation as

Na = {N ∗K∗ , n+ 1}. For yn+1 < v∗K∗ , we will discuss the following cases:

• Influence on N ∗K∗ : we have ûi < u∗i , ∀i ∈ ˆNK∗ following Lemma 1.

• Influence on N ∗K∗−1 with v∗K∗−1 < v∗K∗ : if v̂K∗ > v∗K∗ , then v̂K∗−1 = v∗K∗−1 following
Lemma 3. In the other case, {N ∗K∗−1,Na} may either merge into one segment or split into
several, and v̂K∗−1 < v∗K∗−1 following Lemma 1. In other words, if we have a sequence
v∗j < · · · < v∗K∗ with v∗i+1 − v∗i small enough for all i ≥ j, then yn+1 can change the value
of the elements N ∗j .

• Influence onN ∗i with v∗i+1 < · · · < v∗K∗−1 < v∗K∗ and v∗i > v∗i+1: from the previous analysis,
we have v̂i+1 ≤ v∗i+1 regardless of the value of yn+1 (under the condition yn+1 < v∗K∗).

Following Lemma 3, v̂j = v∗j , and N̂j = N ∗j for j ≤ i.
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