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Abstract—The huge wealth of linked data available on the
Web (also known as the Web of data), organized according to the
standards of the Semantic Web, can be exploited to automatically
discover new knowledge, expressed in the form of axioms, one of
the essential components of ontologies. In order to overcome the
limitations of existing methods for axiom discovery, we propose
a two-objective grammar-based genetic programming approach
that casts axiom discovery as a genetic programming problem
involving the two independent criteria of axiom credibility and
generality. We demonstrate the power of the proposed approach
by applying it to the task of discovering class disjointness axioms
involving complex class expression, a type of axioms that plays an
important role in improving the quality of ontologies. We carry
out experiments to determine the most appropriate parameter
settings and we perform an empirical comparison of the proposed
method with state-of-the-art methods proposed in the literature.

Index Terms—Ontology Learning, OWL Axiom, Disjointness
Axiom, Genetic Programming, Grammatical Evolution, Multi-
Objective Optimization.

I. INTRODUCTION

The growth of the Semantic Web also known as the Web
of data, where the Linked Open Data (LOD) is a prominent
representative opens up exciting opportunities for ontology
learning. Due to heterogeneous semantic resources on the Web,
ontological knowledge bases (KBs) may turn out to incomplete
and noisy. Specifically, the incompleteness refers to the lack
of information in ontology while the noise is relevant to the
issues of invalid information. To enhance the quality of an
ontology, the existence of axioms can be considered as the
agents in pinpointing errors and inconsistencies in KBs. In
ontology construction and knowledge base enrichment, the
automatic asquistion of axiom is a central task which goes
under the name of axiom learning. Like other types of axioms,
class disjointness axioms are used to check the consistencies of
the information contained in the ontologies or to deduce new
information. For example, a reasoner will be able to deduce
an error, i.e., a logical inconsistency of facts in the ontology,
whenever the class Fish is associated to a resource related to
the class Planet, if there is a constraint of disjointness between
the two concepts Fish and Planet.

As a consequence of the essential role of class disjointness
axioms in existing ontologies, learning hidden knowledge in
terms of axioms from a LOD repository in the context of the
Semantic Web has been the object of research using several

different methods. Some prominent research towards the au-
tomatic creation of class disjointness axioms from RDF facts
include supervised classification, like in the LeDA system [1],
statistical schema induction via associative rule mining, like
in the GoldMiner system [2], and learning general class
descriptions (including disjointness) from training data, like
in the DL-Learner framework [3]. In adtition, recent contri-
bution has proposed using unsupervised statistical approaches
like Formal Concept Analysis (FCA) [4] or Terminological
Cluster Trees (TCT) [5], to discover disjointness axioms.
Most approaches to learning axioms in the literature are
based on deterministic level-wise generate-and-test methods,
which essentially perform an exhaustive search, coupled with
heuristic pruning, of the the space of hypotheses. Their main
limitation is that they are incapable of scaling up when the
space of the hypothesis, i.e. axioms, becomes too large. As a
consequence, their applicability is restricted to the discovery
of relatively simple axioms, i.e. atomic axioms.

Given the complexity of the problem, a heuristic approach,
such as evolutionary algorithm, can handle with the search for
more complex axioms whose space is incomparably larger.
In fact, there are also some recent works [6]–[9] applying
an evolutionary approach by using Grammatical Evolution
(GE) to extracting class disjointness axioms from large RDF
repository, i.e., DBpedia1. The use of a grammar allows
great flexibility: only the grammar needs to be changed to
mine different data repositories for different types of axioms.
Extracted axioms in [6], [7] include both atomic and complex
axioms, i.e., defined with the help of relational operators of in-
tersection and union; in other words, axioms like Dis(C1, C2),
where C1 and C2 are complex class expressions including
operators. However, the dependence on SPARQL endpoints
(i.e., query engines) for testing mined axioms against facts,
i.e. instances, in large RDF repositories limits the performance
of the method. In addition, evaluating the effectiveness of
the method requires the participation of experts in specific
domains, i.e. the use of a Gold Standard, which is proportional
to the number of concepts. Hence, the extracted axioms are
limited to the classes relevant to a small scope of topics,
namely the Work topic of DBpedia. Also, complex axioms are
defined with the help of relational operators of intersection and

1https://wiki.dbpedia.org/



union, which can also be mechanically derived from the known
atomic axioms. To overcome that limitation, the type of mined
class disjointness axioms in [8], [9] is extended to include
the existence restriction (∃r.C) and value restriction (∀r.C)
constructors, where r is a property and C a class, which cannot
be mechanically derived from a given set of atomic axioms.
Furthermore, a training-testing model is applied to objectively
validate the method. Specifically, the whole DBpedia is used
as the objective benchmark for evaluating the extracted axioms
from a small training RDF dataset, i.e. sample of DBpedia, and
eliminating the use of Gold Standard created by knowledge
experts. The evaluation framework based on possibility theory
[7]–[9] to determine the fitness values of generated axioms
in the evolutionary cycle, i.e. the credibility and generality of
axioms. However, the selection pressure in each phases of the
evolutionary process tends naturally to drive the diversity of
the population down. In addition, the presence of highly fit but
possibly invalid candidate axioms in the population reduces the
number of valid axioms that can be discovered which can be
derived from unsuited fitness function in evaluation framework
which based on a single criterion.

Along the lines of the studies using GE to mine class
disjointness axioms, we extend the approach as a multi-
objective problem, i.e. multi-objective GE, in additition to
the trade-off between a set of objectives. Specifically, we
used an multi-objectives approach to refine the evaluation of
candidate axioms that improves the adaptive fit of a population
of candidate axioms constrained by two independent criteria,
i.e. the credibility and generality. We also proposed a new
measure called the similarity and a method to compute it.
We aim to optimize the evaluation framework for the axioms
which ensures the high accuracy, generality and the diversity
of the obtained axioms. In the study, we reuse the grammar
and the training-testing model to extract class disjointness
axioms in [8], [9] and perform comparison with the relevant
approaches.

The rest of the paper is organized as follows: some basics
in GE and GE in axioms discovery are provided in Section II.
Axiom discovery in multi-objective GE approach is presented
in Section III. Section IV introduces the organization of
dataset. The experimental settings and results are presented
and discussed in Section V. Finally, conclusions and directions
for future research are given in Section VI.

II. GRAMMATICAL EVOLUTION FOR AXIOM DISCOVERY

The foundation of our study is Grammatical Evolution (GE),
a recent evolutionary model pioneered by Michael O’Neil and
his collaborators [10]. In this section, we provide a summary
of the GE in addition to theoretical and technical ingredients
concerning axiom discovery.

A. Basics

Grammatical Evolution (GE) is an evolutionary approach
that extends Genetic Programming (GP) [11], [12] to allow
the exploration of the space of computer programs through the
use of a grammar-mediated representation. Programs, viewed

Fig. 1. Grammatical Evolution mechanism

as phenotypic solutions or phenotypes, are decoded from
variable-length binary strings, i.e., genotypic individuals or
genotypes, through a transformation called mapping process.
According to it, the variable-length binary string genomes,
or chromosomes, are split into consecutive groups of bits,
called codons, representing an integer value, used to select,
at each step, one of a set of production rules from a for-
mal grammar, typically in Backus-Naur form (BNF), which
specifies the syntax of the desired programs. Furthermore,
inspired by biological evolution and its fundamental mecha-
nisms, these programs are “bred” using iterative improvement
of an initially random population of programs. That is an
evolutionary process. At each iteration, known as a generation,
improvements are made possible by stochastic variation, i.e.,
by a set of genetic operators, usually crossover and mutation,
and probabilistic selection according to pre-specified criteria
for judging the quality of an individual (solution). According
to the levels of fitness, the process of selecting individuals,
called fitness-based selection, is performed to create a list of
better qualified individuals as input for generating a new set of
candidate solutions in the next generation. The new solutions
of each generation are bred by applying genetic operators on
the selected old individuals. Then, replacement is the last step
and decides which individuals stay in a population and which
are replaced on a par, with selection influencing convergence.
An illustration of the GE mechanism is presented in Fig 1.

B. BNF Grammar

In terms of axioms discovery, “programs” or “phenotypes”
refer to axioms constrained by a given BNF grammar. A BNF
grammar is a context-free grammar consisting of terminal
and non-terminal symbols (also called just terminals and non-
terminals) and being represented in the form of a four-tuple
{N,T, P, S}, where N is the sets of non-terminals, which
can be extended into one or more terminals; T is the set of
terminals, which are tokens in the described language; P is
the set of the production rules that map N to T ; S is the
start symbol and a member of N . When there are a number
of productions that can be used to rewrite one specific non-
terminal, they are separated by the ‘|’ symbol.

We comply with the BNF grammar given in [8],
[9] to mine binary disjointness axioms only, of the
form DisjointClasses(C1, C2), where C1 and C2 may



be atomic or complex classes involving relational operators,
i.e. existential quantification and value restriction, and
possibly including more than one single class identifier, like
DisjointClasses(VideoGame,ObjectAllValuesFrom(hasStadium,
Sport)). To make the paper self-contained, we recall here the
most important aspects of this grammar. The grammar is split
into a static and a dynamic part to ensure that changes in the
contents of RDF repositories will not require the grammar
to be rewritten. The static part defines the syntax of the
types of axioms to be extracted. The content of this part is
loaded from a hand-crafted text file. The structure of the BNF
grammar here aims at mining well-formed axioms expressing
the facts, i.e. instances, contained in a given RDF triple store.
Hence, only resources that actually occur in the RDF dataset
should be generated. The static part of the grammar is thus
structured as follows:

The dynamic part contains production rules for the low-level
non-terminals, called primitives in [6], [7]. These production
rules are automatically filled at run-time by querying the
SPARQL endpoint of the RDF data source at hand. Let us
consider an example representing a small sample of an RDF
dataset:
PREFIX dbr: http://dbpedia.org/resource/
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbprop: http://dbpedia.org/property/
PREFIX rdf: http://www.w3.org/1999/02/22\-rdf-syntax-ns\#

dbr:Amblycera rdf:type dbo:Animal.
dbr:Salweenia rdf:type dbo:Plant.
Dbr:Himalayas rdf:type dbo:NaturalPlace.
dbr:Amadeus rdf:type dbo:Work.
dbr:Cat_Napping dbprop:director dbr:William_Hanna.
dbr:With_Abandon dbprop:artist dbr:Chasing_Furies.
dbr:Idris_Muhammad dbprop:occupation dbr:Drummer.
dbr:Genes_Reunited dbo:industry dbr:Genealogy.

The productions for Class and ObjectPropertyOf would
thus be:
(r9) Class := dbo:Animal (0)

| dbo:Plant (1)
| dbo:NaturalPlace (2)
| dbo:Work (3)

(r10) ObjectPropertyOf := dbprop:director (0)
| dbprop:artist (1)
| dbprop:occuptation (2)
| dbo:industry (3)

C. Mapping Process

In the mapping process, codons are used consecutively to
choose production rules in the BNF grammar according to the
function:

production = codonmodulo
[Number of productions for the

current non-terminal

]
(1)

We illustrate the decoding of an integer chromosome
into an OWL class disjointness axiom through a specific
example (see Fig 2). Let the chromosome be (352, 265,
529, 927, 419). There is only one production for the
non-terminals Axiom, ClassAxiom, DisjointClasses,
ObjectIntersectionOf, ObjectSomeValuesFrom
and ObjectAllValuesFrom, as it can be seen from
Rules 1–3 and 6–8. In these cases, we skip using any codons
for mapping and concentrate on reading codons for non-
terminals having more than one production, like in Rules 4,
5, 9, and 10.

III. MULTI-OBJECTIVE GE FOR AXIOM DISCOVERY

Within the evolutionary process, the evaluation framework
quantifies the quality of axioms, which is the base for selecting
individuals (solutions) for the recombination, mutation, and
replacement phases. In previous work [7]–[9], the aim was to
look for credible and general axioms, based on possibilistic
axiom scoring for credibility and on a scoring of their gen-
erality. These two scores were then combined into a single
fitness function, i.e., a single objective. The superiority of an
axiom over other ones was simply determined by comparing
their fitness scores. However, the fitness values can suffer
from one of two objectives offsetting the other, for instance
when a high generality score is assigned to axioms possessing
a low possibility. In fact, the two criteria of generality and
credibility are incommensurable and any way of combining
them is therefore largely a matter of points of view, hard to
justify on an objective basis. To overcome that limitation, we
treat the problem as a multi-objective optimization problem,
which allows for explicit trade-offs with respect to a set of
objectives.

A. Multi-Objective Evolutionary Algorithms

A Multi-objective Optimization (MO) [13] problem in-
volves a number of objective functions constituting a multi-
dimensional objective space, in addition to the decision vari-
able space. Specifically, a solution to a MO problem is a
vector of decision variables x = (x1, x2, ...., xn)T in the
decision space X . For each x, there exists an objective vector
y = (y1, y2, ...., yn)T in the objective space Y mapped by a
function f : X → Y .

The term domination is used for the situation of comparing
two solutions x(1) and x(2). A solution x(1) dominates the
other solution x(2) (x(1) � x(2)) if x(1) is no worse than x(2)

in all objectives (no component of y(1) is smaller than the
component of y(2), where y(1) = f(x(1)) and y(2) = f(x(2))),
and x(1) is strictly better than x(2) in at least one objective (at
least one component is greater). The set of optimal solutions
in the decision space X is denoted as Pareto-optimal solutions
or Pareto set. In addition, there are corresponding optimal
objective vectors, i.e. points, in the objective space Y , denoted
as Pareto-optimal front or non-domination front. In MO, all
objectives are equally important, i.e., finding the optimum
solution cannot be based on one objective alone while skipping
other objectives. The goal of MO is to find multiple solutions



Fig. 2. An illustration of mapping process

representing the possible non-dominated trade-offs among the
objective functions, i.e., a set of solutions lying on the Pareto-
optimal front. In addition, a set of obtained solutions is sought
for that is also diverse enough to represent the entire range of
the Pareto-optimal front.

This results in a heuristic approach, the Multi-objective
Evolutionary Algorithm (MOEA) [13], [14], which follows
the goal of MO but refers to finding multiple non-dominated
points as close to the Pareto-optimal front as possible, i.e.,
a Pareto-optimal front approximation, with respect to the
trade-off among objectives. Also, it provides operators, i.e.,
recombination and mutation operators, to constantly improve
the evolving non-dominated points.

NSGA-II [15] is one of the well-known multi objective
evolutionary algorithms, which simultaneously optimizes each
objective without being dominated by any other solution.
NSGA-II concentrates on finding non-dominated solutions in
addition to elistist and diversity preserving mechanisms.

As a particular case of MOEA, the approach we propose
comprises the integration of GE in MOEA i.e., using NSGA-
II, for axiom discovery, which we call Multi-Objective GE
(MOGE). Basically, the mechanism of MOGE is quite similar
to the one of a MOEA, except that we define multi-objective
problems using integer arrays called codons as decision vari-
ables. The codons do not define axioms, i.e., the programs,
themselves, but provide instructions for deriving axioms using
the BNF grammar through the mapping process explained
above.

B. Multi-objective Evaluation Framework

The goodness of an axioms is determined by its dominance,
whereby it obtains a score on each objective which is not

dominated by the corresponding score of another axiom.
To derive such axioms, we extend the classic GE approach
presented in [6]–[9] to MOGE. We also develop separate
objective functions to evaluate the fitness of each axiom. In
order to ensure the diversity of the obtained axioms, a scoring
of the similarity of each axiom to the other axioms in the
population (essentially, a local phenotypic crowding measure)
is also considered in the evaluation framework. In this section,
we first recall axiom the scoring, regarding possibility and
generality applied in [7]–[9]. In addition, we introduce a new
scoring, called the similarity. Finally, the objective functions
for the method are presented.

1) Possibility Measure: is based on possibility theory [16],
a mathematical theory of epistemic uncertainty. In the open-
world, the knowledge base represented by RDF repository is
incomplete. Additionally, as a results of the heterogeneous and
collaborative character of the LOD, there exist some missing
and erroneous facts (instances) in RDF datasets, i.e. noisy
knowledge. Hence, adopting an axiom scoring heuristics based
on possibility theory (see [17] for the theoretical background)
is well-suited. Accordingly, a candidate axiom φ is viewed as a
hypothesis that has to be tested against the evidence contained
in an RDF dataset. Its content is defined as a finite set of
logical consequences

content(φ) = {ψ : φ |= ψ}, (2)

obtained through the instantiation of φ to the vocabulary of
the RDF repository; every ψ ∈ content(φ) may be readily
tested by means of a SPARQL ASK query. The support of
axiom φ, uφ, is defined as the cardinality of content(φ). The
support, together with the number of confirmations u+

φ (i.e.,
the number of ψ for which the test is successful) and the



number of counterexamples u−φ (i.e., the number of ψ for
which the test is unsuccessful), are used to compute a degree
of possibility Π(φ) for axiom φ, defined, for u(φ) > 0, as

Π(φ) = 1−

√√√√1−

(
uφ − u−φ
uφ

)2

.

Possibility alone is a reliable measure of the credibility of a
class disjointness axiom, all the more so because (and this is a
very important point), in view of the open world assumption,
for two classes that do not share any instance, disjointness can
only be hypothetical (i.e., fully possible, if not contradicted by
facts, but never necessary). Possibility is measured by defining
the numbers of counterexamples and the support. These values
are counted by executing the corresponding SPARQL queries
based on graph patterns, via an accessible SPARQL endpoint.
We refer the interested reader to [7], [8] for an in-depth
description of the relevant SPARQL queries.

2) Generality measure: is determined by the quantities of
the facts(instances), in the extension of its components. In [6],
the generality of an axiom is defined as the cardinality of the
set of the facts in the RDF repository reflecting the support of
each axiom, i.e., uφ. However, in case one of the components
of an axiom is not supported by any fact, its generality should
be zero. Hence, the generality of an axiom should be measured
by the minimum of the cardinalities of the extensions of the
two class expressions involved, i.e. gφ = min{‖[C]‖, ‖[D]‖}
where C, D are class expressions.

3) Similarity measure: quantifies the similarity of an axiom
φ, s(φ), to the population of n axioms which is defined by
the average of similarity metrics s(φ, ai) between axiom φ
and each axiom ai in the population:

s(φ) =
1

n− 1

n∑
i=1;ai 6=φ

s(φ, ai) (3)

In order to measure the similarity coefficient s(φ) as in the
above formula, the similarities s(φ, ai) need to be computed.
As mentioned in II-B, axioms are structured in the form of
binary axioms of the form φ ≡ DisjointClasses(A,B)
and ai ≡ DisjointClasses(C,D) where A, B, C, D can
be atomic expressions or complex expressions containing
relational operators of restriction, i.e., existential quantification
and value restriction. We define the similarity between two
axioms based on the similarities between pairs of expressions
as

s(φ, ai) = max{s(A,C), s(A,D), s(B,C), s(B,D)} (4)

Expressions in each axiom are represented in the form of
binary trees where each node can be an atomic class or a
relational operator, namely existential quantification (∃), value
restriction (∀), or intersection (u) operators. Determining each
similarity between expressions, e.g., s(A,C), is performed on
corresponding binary trees t1 and t2. Binary trees are traversed
simultaneously and each pair of corresponding nodes (pj , qj)
in both trees, i.e., pj in t1 and qj in t2, is compared to each

other and the value returned is the similarity between two
nodes, i.e., s(pj , qj), according to Table I. One notable point is
that if both nodes represent atomic classes, the value returned
is 1 if the two nodes represent the same class; otherwise the
value returned is 0. Each similarity between expressions, e.g.
s(A,C), is defined as

s(A,C) =
1

k

k∑
j=1

s(pj , qj) (5)

where k is the number of pairs defined by the number of nodes
in the smallest tree.

TABLE I
MATRIX FOR THE COMPARISON BETWEEN NODES

Node Atomic class u ∃ ∀
Atomic class 0 or 1 0 0 0
u 0 1 0 0.5
∃ 0 0 1 0
∀ 0 0.5 0 1

4) Objective Functions: are used for the comparisons be-
tween axioms which reflect the correlation of measures to
determine the quality of each axiom. We propose two objective
functions, f1 and f2, used in our approach, which aim at
obtaining axioms that maximize the value of possibility and
generality, while not being too similar among themselves:

Maximize f1 = Π(φ) ·
√

1− s(φ)
2

Maximize f2 = gφ ·
√

1− s(φ)
2

Where 0 ≤ Π(φ) ≤ 1; gφ ≥ 0 ; 0 < s(φ) < 1

(6)

IV. DATASET ORGANIZATION

To investigate the effectiveness of our approach, we organize
our dataset following the “training-testing” model. Specifi-
cally, the learning process is performed with the input data
source derived from a training RDF dataset, a random sample
of DBpedia, whereas the evaluation of discovered axioms is
based on a testing dataset, which is the full DBpedia, which
can be considered as an objective benchmark. The workflow
of this model is shown in Fig 3.

Fig. 3. Workflow of class disjointness axioms discovery using GE in the
training- testing model



We use the same Training Dataset2 (TD) used in [8], [9],
with 6,739,240 connected RDF triples with a variety of topics
from DBpedia, which randomly collect 1% of the triples from
DBpedia 2015-04 (English version).The performance of the
method is measured by using the entire DBpedia 2015-04 as a
test set, measuring possibility, generality, and similarity scores
for every distinct axiom discovered by our algorithm. To avoid
overloading DBpedia’s SPARQL endpoint, we set up a local
mirror using the Virtuoso Universal Server.3

V. EXPERIMENTS & RESULTS

A. Experimental Protocol

We use the BNF grammar introduced in Section II. In
addition, to make fair comparisons possible with previous
studies [8], [9], a set of milestones of total effort k (defined
as the total number of fitness evaluations) corresponding to
each population size are also recorded for each run, namely
100,000; 200,000; 300,000 and 400,000, respectively. The
maximum numbers of generations, maxGenerations (used as
the stopping criterion of the algorithm) are automatically
determined based on the values of the total effort k, thus
popSize ·maxGenerations = k.

A prototype system of the proposed method was developed
in Java, using Apache Jena to interface with SPARQL end-
points and GEVA v.2.0 4, a reference Java implementation of
GE. Also, we integrated the system with the MOEA frame-
work API,5 a Java framework for multi-objective optimization.
The parameters are listed in Table II.

TABLE II
PARAMETER VALUES FOR MOGE.

Parameter Value
Total effort k 100,000; 200,000; 300,000; 400,000
initLenChrom 6
pCross 80%
popSize 1000; 2000; 5000; 10000

B. Results

We ran the MOGE method for 20 distinct runs for each of
the different parameter settings summarized in Table II, using
the BNF grammar defined in Section II-B. The full set of valid
distinct axioms, i.e., axioms φ such that Π(φ) > 0 and gφ > 0
discovered are available online.6 Statistics for automatically
generated axioms are presented in Table III. In addition, we
can see in Fig. 4 that the number of valid distinct axioms
for most parameter settings, i.e., population size popSize and
total effort k, mined by MOGE is significantly greater than
those mined by the single-objective GE method in [8], [9].
This means that the diversity of an extracted set of axioms is
considerably enhanced when we use the MOGE method.

2Available for download at http://bit.ly/2OtFqHp
3https://virtuoso.openlinksw.com/
4http://ncra.ucd.ie/Site/GEVA.html
5http://moeaframework.org/javadoc/index.html
6https://bit.ly/38crj4M

TABLE III
NUMBER OF VALID DISTINCT AXIOMS DISCOVERED OVER 20 RUNS

XXXXXXXk
popSize 1000 2000 5000 10000

100000 8084 16085 41320 50535
200000 8713 17400 41813 76804
300000 7970 17680 40303 70562
400000 8457 16258 40656 67722

Furthermore, we follow the use of the fuzzy extension of
the usual definition of precision in [8], [9] to measure the
accuracy of our results. Accordingly, Π(φ) is interpreted as
the degree of membership of axiom φ in the (fuzzy) set
of the “positive” axioms. The value of precision can thus
be computed against the test dataset, i.e., DBpedia 2015-04,
according to the formula

precision =
‖true positives‖

‖discovered axioms‖
=

∑
φ ΠDBpedia(φ)∑
φ ΠTD(φ)

. (7)

where ΠTD and ΠDBpedia are the possibility measures com-
puted on the training dataset and DBpedia, respectively.

The results in Table IV confirm the high accuracy of
the proposed MOGE method. The precision values are quite
equivalent to the figures of GE method [8], [9] with the range
from 0.984 to 0.996 for all the different considered population
sizes and different numbers of generations (reflected through
the values of total effort).

Fig. 5 illustrates the distribution of axioms having Π(φ) > 2
3

in terms of the two objectives, i.e. possibility and generality,
compared with the GE methods of [8], [9]. We perform
the comparison based on the results of the best setting,
i.e., those yielding the largest number of obtained distinct
axioms and the highest accuracy, for either method, i.e.,
{popSize = 10, 000; k = 200, 000} and {popSize =
5, 000; k = 300, 000}, respectively. We can observe that the
number of highly qualified axioms (Π(Φ) > 2

3 and gΦ > 100))
is maintained in MOGE system. More clearly, based on the
specific resulting statistics, the number of obtained axioms
from MOGE in the best setting is 38, 134 which is much
greater than those extracted by the GE, i.e., 23, 767 axioms.
In addition, with the smaller value of total effort k reflecting
the cost of evaluations, i.e., k = 200, 0000 compared with
k = 300, 000 in [8], [9], MOGE is clearly more effective in
inducing highly qualified axioms. We also show the distribu-
tion of the discovered axioms in this best setting in terms of
similarity coefficient in Fig. 6. The range of similarity scores
recorded for these axioms lies below 0.35, which indicates a
good diversity of the classes and properties in the components
of axioms. Based on the given grammar, one part of the axioms
is forced to contain a relational operator, i.e. ∃, ∀, or u, hence,
the overlap of the operators in axioms does not allow the
similarity score to be zero.

According to the results, we consider in detail the
axioms discovered by the algorithm with this best setting.
First, we witness that the number of obtained axioms
containing the ∃ operator is slightly larger than the one
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Fig. 4. Statistical comparison about the number of axioms discovered over 20 runs between MOGE and GE method.

TABLE IV
AVERAGE PRECISION PER RUN (±std)

GE MOGE
XXXXXXXk

popSize 1,000 2,000 5,000 10,000 1,000 2,000 5,000 10,000

100,000 0.981
0.019

0.999
±0.002

0.998
±0.002

0.998
±0.003

0.988
±0.007

0.990
±0.005

0.989
±0.003

0.996
±0.001

200,000 0.973
±0.024

0.979
±0.011

0.998
±0.001

0.998
±0.002

0.989
±0.007

0.990
±0.004

0.987
±0.004

0.988
±0.004

300,000 0.972
±0.024

0.973
±0.014

0.993
±0.007

0.998
±0.001

0.989
±0.007

0.989
±0.003

0.986
±0.004

0.986
±0.003

400,000 0.972
±0.024

0.969
±0.018

0.980
±0.008

0.998
±0.001

0.989
±0.008

0.990
±0.003

0.985
±0.004

0.984
±0.004

of those with the ∀ operator, namely 40,122 and 36,682
axioms, respectively. However, together with the mandatory
class expression containing the ∀ or ∃ operator, most
extracted class disjointness axioms contain an atomic
class expression. This may be due to the fact that the
support of atomic classes is usually larger than the support
of a complex class expression. Specifically, we obtain
7 axioms containing complex expressions in both their
members. These axioms are less general, even though
they are completely possible. An example is the case with
DisjointClasses(ObjectAllValuesFrom(dbprop:operation
dbo:MilitaryConflict) ObjectAllValuesFrom(dbprop:order
dbo:MIlitaryUnit))(Π(φ) = 1.0 ; gφ = 1). Also, we
analyze an example of a completely possible and
highly general axiom, DisjointClasses(dbo:District
ObjectSomeValuesFrom(dbo:birthPlace dbo:Place))
(Π(φ) = 1.0 ; gφ = 8, 483), which we can paraphrase as
“districts cannot have a place as their birthplace”. Knowing
that District and Place are not disjoint, this axiom states
that District and ∃birthPlace.Place are in fact disjoint; in
addition, ∃birthPlace.Place, i.e., “(people) whose birthplace

is a place” is a class with many instances, hence the high
generality of the axiom.

VI. CONCLUSION
We have proposed a multi-objective extension to a grammar-

based genetic programming approach to axiom discovery
which consists of using two objectives plus a “similarity”
score, which is in fact a sort of a local phenotypic crowding
factor. The experimental results confirm that the proposed
method is capable of discovering highly accurate and general
axioms and is more effective compared with the single-
objective methods of previous studies. In the future, we will
focus on mining disjointness axioms involving further types of
complex classes, by bringing into the picture other relational
operators such as owl:hasValue and owl:OneOf. We
also plan on refining the evaluation of candidate axioms with
the inclusion of some measurement of their complexity in the
fitness function.
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Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 3–37.

[15] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[16] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets and Systems, vol. 1, pp. 3–28, 1978.

[17] A. G. B. Tettamanzi, C. Faron-Zucker, and F. Gandon, “Possibilistic
testing of OWL axioms against RDF data,” Int. J. Approx. Reasoning,
vol. 91, pp. 114–130, 2017.


