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Abstract
We investigate the connection between properties of formal languages and properties of their
generating series, with a focus on the class of holonomic power series. We first prove a strong version
of a conjecture by Castiglione and Massazza: weakly-unambiguous Parikh automata are equivalent
to unambiguous two-way reversal bounded counter machines, and their multivariate generating
series are holonomic. We then show that the converse is not true: we construct a language whose
generating series is algebraic (thus holonomic), but which is inherently weakly-ambiguous as a Parikh
automata language. Finally, we prove an effective decidability result for the inclusion problem for
weakly-unambiguous Parikh automata, and provide an upper-bound on its complexity.
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1 Introduction

This article investigates the link between holonomic (or D-finite) power series and formal
languages. We consider the classical setting in which this connection is established via the
generating series L(x) =

∑
n≥0 `nx

n counting the number `n of words of length n in a given
language L.

On the languages side, the Chomsky–Schützenberger hierarchy [10] regroups languages
in classes of increasing complexity: regular, context-free, context-sensitive and recursively
enumerable. For power series, a similar hierarchy exists, consisting of the rational, algebraic
and holonomic series. The first two levels of each hierarchy share a strong connection, as the
generating series of a regular (resp. unambiguous context-free) language is a rational (resp.
algebraic) power series.

This connection has borne fruits both in formal language theory and in combinatorics. In
combinatorics, finite automata and unambiguous grammars are routinely used to establish
rationality and algebraicity of particular power series. In formal languages, this connection
was (implicitly) used to give polynomial-time algorithms for the inclusion and universality
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tests for unambiguous finite automata [35]. In [15], Flajolet uses the connection between
unambiguous context-free grammars and algebraic series to prove the inherent ambiguity
of certain context-free languages, solving several conjectures with this tool. Using analytic
criteria on the series (for instance, the existence of infinitely many singularities), he establishes
that the series of these context-free languages is not algebraic. Hence these languages cannot
be described by unambiguous context-free grammars and are therefore inherently ambiguous.

In this article we propose to extend the connection to holonomic series. Holonomic series
enjoy non-trivial closure properties whose algorithmic counterparts are actively studied in
computer algebra. Our aim is to show that these advances can be leveraged to obtain non-
trivial results in the formal languages and verification worlds. These results are particularly
noteworthy as the notion of unambiguity in automata theory is not fully understood [11].
The work of extending the connection was already initiated by Massazza in [27], where
he introduces two families of languages, named RCM1 and linearly constrained languages
(LCL), whose generating series are holonomic. These classes are, however, not captured
by well-known models of automata, and this limits their appeal. Recently, Castiglione and
Massazza addressed this issue and conjectured that RCM contains the languages accepted by
deterministic one-way reversal bounded machines (RBCM for short) [8]; Massazza proved the
result for RBCM for two subclasses of one-way deterministic RBCM [28, 29]. This conjecture
hints that the class RCM is related to models of automata such as RBCM, which are used in
program verification.

Our first contribution is to prove a stronger version of this conjecture. We show that
RCM and LCL respectively correspond to the languages accepted by weakly-unambiguous2
version of Parikh automata (PA, for short) [24] and pushdown Parikh automata. Intuitively,
Parikh automata are3 finite non-deterministic word automata enriched with the ability to test
semilinear constraints between the number of occurrences of each transition in the run. In
terms of RBCM, these classes correspond to unambiguous two-way RBCM and unambiguous
one-way RBCM enriched with a stack. Parikh automata are also commonly used in program
verification. In view of the literature, these results might seem expected but they still require
a careful adaptation of the standard techniques in the absence of a stack and become even
more involved when a stack is added.

After having established the relevance of the classes of languages under study, we provide
two consequences of the holonomicity of their associated generating series.

The first consequence follows Flajolet’s approach mentioned previously and gives criteria
to establish the inherent weak-ambiguity for languages accepted by PA or pushdown PA, by
proving that their generating series are not holonomic. These criteria are sufficient but not
necessary; this is not surprising as the inherent weak-ambiguity is undecidable for languages
accepted by PA. Yet, the resulting method captures non-trivial examples with quite short
and elegant proofs. In contrast, we give an example of inherently weakly-ambiguous PA
language having a holonomic series (and therefore not amenable to the analytic method) for
which we prove inherent weak-ambiguity by hand. The proof is quite involved but shows
the inherent ambiguity of this language for a much larger class of automata (i.e., PA whose
semi-linear sets are replaced by arbitrary recursive sets).

1 The name RCM comes from the fact that these languages are defined using a Regular language, a
semilinear Constraint and a Morphism.

2 We use the term weakly-unambiguous here to avoid a possible confusion with the class of unambiguous
PA defined in [7] which is strictly contained in our class. Our notion of non-ambiguity is the standard
one: every word has at most one accepting computation (this is detailed in Remark 11).

3 In this article, we use an equivalent definition where the transitions of the automaton are additionally
labeled by vectors of natural numbers. A run is accepting if the sum of all the vectors encountered in
the run satisfies a semilinear constraint.
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The second consequence is of an algorithmic nature. We focus on the inclusion problem for
weakly-unambiguous PA, whose decidability can be deduced from Castiglione and Massazza’s
work [8]. Here our contribution is an effective decidability result: we derive a concrete
bound B, depending on the size of the representation of the two PAs, such that the inclusion
holds if and only if the languages are included when considering words up to the length B.
This bound B is obtained by a careful analysis of the proofs establishing the closure properties
of holonomic series (in several variables), notably under Hadamard product and specialization.
We do this by controlling various parameters (order, size of the polynomial coefficients, . . . )
of the resulting partial differential equations.

2 Primer on holonomic power series in several variables

In this section, we introduce power series in several variables and the classes of rational,
algebraic and holonomic power series. We recall the connection with regular and context-free
languages via the notions of generating series in one or several variables.

Let Q[x1, . . . , xk] be the ring of polynomials in the variables x1, . . . , xk with coefficients
in Q and let Q(x1, . . . , xk) be the associated field of rational functions.

The generating series of a sequence (fn)n∈N is the (formal) power series in the vari-
able x defined by F (x) =

∑
n∈N fnx

n. More generally, the generating series of a sequence
a(n1, . . . , nk) is a multivariate (formal) power series in the variables x1, . . . , xk defined by
A(x1, . . . , xk) =

∑
(n1,...,nk)∈Nk a(n1, . . . , nk)xn1

1 . . . xnk

k . In this article, we only consider
power series whose coefficients belong to the field Q. The set of such k-variate power series
is denoted Q[[x1, . . . , xk]]. Power series are naturally equipped with a sum and a product
which generalize those of polynomials, for which Q[[x1, . . . , xk]] is a ring. We use the bracket
notation for the coefficient extraction: [xn1

1 . . . xnk

k ]A(x1, . . . , xk) = a(n1, . . . , nk). The sup-
port of A ∈ Q[[x1, . . . , xk]] is the set of (n1, . . . , nk) such that [xn1

1 . . . xnk

k ]A 6= 0. The inverse
1/A of a series A ∈ Q[[x1, . . . , xk]] is well-defined when its constant term [x0

1 . . . x
0
k]A is not

zero. For instance, the inverse of A(x1, x2) = 1− x1x
2
2 is 1

1−x1x2
2

=
∑
n≥0 x

n
1x

2n
2 .

The generating series of a language L over the alphabet Σ = {a1, . . . , ak} is the univariate
power series L(x) =

∑
w∈L x

|w| =
∑
n∈N `nx

n, where `n counts the number of words of
length n in L. Similarly the multivariate generating series of L defined by L(xa1 , . . . , xak

) =∑
(n1,...,nk)∈Nk `(n1, . . . , nk)xn1

a1
. . . xnk

ak
where `(n1, . . . , nk) denotes the number of words w

in L such that |w|a1 = n1, |w|a2 = n2, . . . , and |w|ak
= nk, and |w|a denotes the number of

occurrences of a ∈ Σ in w. This way, we create one dimension per letter, so that each letter
a ∈ Σ has a corresponding variable xa.

Observe that the univariate generating series of a language is exactly L(x, . . . , x), obtained
by setting each variable to x in its multivariate generating series.

I Example 1. The generating series of the language P of well-nested parentheses defined
by the grammar S → aSbS + ε is P (xa, xb) = 1−

√
1−4xaxb

2xaxb
and its counting series is4

P (x) = 1−
√

1−4x2

2x2 . Indeed the production of the grammar translates to the equation
P (xa, xb) = xaxbP (xa, xb)2 + 1. This equation admits only one power series solution, namely
1−
√

1−4xaxb

2xaxb
.

4 As for the inverse, the square root of a power series with nonzero constant term can be defined using
the usual Taylor formula

√
1− x =

∑
n≥0

1
(1−2n) 4n

(2n
n

)
xn.
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A power series A(x1, . . . , xk) =
∑
n1,...,nk

a(n1, . . . , nk)xn1
1 . . . xnk

k is rational if it sat-
isfies an equation of the form: P (x1, . . . , xk)A(x1, . . . , xk) = Q(x1, . . . , xk), with P,Q ∈
Q[x1, . . . , xk] and P 6= 0. The generating series (both univariate and multivariate) of reg-
ular languages (i.e., languages accepted by a finite state automaton) are rational power
series [4]. It is well-known that the generating series can be effectively computed from a
deterministic automaton accepting the language (see for instance [17, §I.4.2] for a detailed
proof). For example, the multivariate generating series of the regular language (abc)∗ is

1
1−xaxbxc

=
∑
n≥0 x

n
ax

n
b x

n
c . Its univariate generating series is 1

1−x3 .
The connection between rational languages and rational power series is not tight. For

instance, the generating series of the non-regular context-free language {anbn : n ≥ 0} is
1

1−xaxb
, which is rational. In fact, it has the same generating series as the regular language

(ab)∗. Also there exist rational power series with coefficients in N which are not the generating
series of any rational language. This is the case for x+5x2

1+x−5x2−125x3 as shown in [4].
A power series A(x1, . . . , xk) is algebraic if there exists a non-zero polynomial P ∈

Q[x1, . . . , xk, Y ] such that P (x1, . . . , xk, A(x1, . . . , xk)) = 0. All rational series are algebraic.

I Example 2. The series 1
1−x1x2

=
∑
n≥0 x

n
1x

n
2 is rational, as it satisfies the equation

(1 − x1x2)A(x1, x2) = 1. The series A(x1, x2) =
√

1− x1x2 is algebraic but not rational,
since A(x1, x2)2 + (x1x2 − 1) = 0 and there is no similar algebraic equation of degree 1.

The reader is referred to [34, 17] for a detailed account on rational and algebraic series.
In the same manner that rational series satisfy linear equations and algebraic series satisfy

polynomial equations, holonomic series satisfy linear differential equations with polynomial
coefficients. To give a precise definition, we need to introduce the formal partial differentiation
of power series. The differential operator ∂xi

with respect to the variable xi is defined by

∂xiA(x1, . . . , xk) =
∑

n1,...,nk

ni a(n1, . . . , nk)xn1
1 . . . x

ni−1
i−1 x

ni− 1
i x

ni+1
i+1 . . . xnk

k .

The composed operator ∂jxi
is inductively defined for j ≥ 1 by ∂1

xi
= ∂xi

and ∂j+1
xi

= ∂xi
◦∂jxi

.

I Definition 3 (see [33, 26]). A power series A(x1, . . . , xk) is holonomic or D-finite5 if the
Q(x1, . . . , xk)-vector space spanned by the family {∂i1x1

. . . ∂ikxk
A(x1, . . . , xk) : (i1, . . . , ik) ∈

Nk} has a finite dimension. Equivalently, for every variable z ∈ {x1, . . . , xk}, A(x1, . . . , xk)
satisfies a linear differential equation of the form Pr(x1, . . . , xk)∂rzA(x1, . . . , xk) + . . . +
P0(x1, . . . , xk)A(x1, . . . , xk) = 0, where the Pi’s are polynomials of Q[x1, . . . , xk] with Pr 6= 0.

In the sequel, except for Section 5, we rely on the closure properties of the holonomic
series and will not need to go back to Definition 3.

I Example 4. A simple example of holonomic series is A(x) = ex
2 =

∑
n≥0

x2n

n! . It is
holonomic (in one variable) since it satisfies ∂xA(x)− 2xA(x) = 0.

For a more involved example, consider the language L3 = {w ∈ {a, b, c}∗ : |w|a = |w|b =
|w|c}, containing the words having the same number of occurrences of a’s, b’s and c’s. This
language is classically not context-free. Moreover there are

( 3n
n,n,n

)
words of length 3n in L3

5 A priori, these notions differ: a function A(x1, . . . , xk) is called D-finite if all its partial derivatives
∂n1
x1 · · · ∂

nk
xk
·A generate a finite dimensional space over Q(x1, . . . , xk), and holonomic if the functions

xα1
1 · · · xαk

k ∂β1
x1 · · · ∂

βk
xk
· A subject to the constraint α1 + · · · +αk +β1 + · · · +βk ≤ N span a vector

space whose dimension over Q grows like O(Nk). The equivalence of these notions is proved by deep
results of Bernštĕın [2] and Kashiwara [21, 36].



A. Bostan, A. Carayol, F. Koechlin, and C. Nicaud 114:5

and the power series
∑
n≥0

( 3n
n,n,n

)
xn is transcendental [15, §7]. Its multivariate generating

series L3(xa, xb, xc) is equal to
∑
n≥0

(3n)! (xaxbxc)n

(n!)3 and satisfies the partial differential
equation:

(27x2
axbxc−xa)∂2

xa
f(xa, xb, xc) + (54xaxbxc− 1)∂xaf(xa, xb, xc) + 6xbxcf(xa, xb, xc) = 0,

and the symmetric ones for the other variables xb and xc.

Holonomic series are an extension of the hierarchy we presented, as stated in the following
proposition (see [12] for a proof, and [3] for bounds, algorithms and historical remarks).

I Proposition 5. Multivariate algebraic power series are holonomic.

In the univariate case6, a power series A(x) =
∑
n anx

n is holonomic if and only if its
coefficients satisfy a linear recurrence of the form pr(n)an+r + . . .+ p0(n)an = 0, where every
pi is a polynomial with rational coefficients [33, Th. 1.2].

We now focus on these closure properties.

I Proposition 6 ([33]). Multivariate holonomic series are closed under sum and product.

Holonomic series are also closed under substitution by algebraic series as long as the
resulting series is well-defined7.

I Proposition 7 ([26, Prop. 2.3]). Let A(x1, . . . , xk) be a power series and let Gi(y1, . . . , y`)
be algebraic power series such that B(y1, . . . , y`) = A(G1(y1, . . . , y`), . . . , Gk(y1, . . . , y`)) is
well-defined as a power series. If A is holonomic, then B is also holonomic.

A sufficient condition for the substitution to be valid is that Gi(0, . . . , 0) = 0 for all i (see
[33, Th. 2.7]). For the case G1 = · · · = Gk = 1, called the specialization to 1, a sufficient
condition is that for every index (i1, . . . , ik), [xi11 . . . xikk ]A is a polynomial in y1, . . . , y`.

The Hadamard product is the coefficient-wise multiplication of power series. If the series
A(x1, . . . , xk) and B(x1, . . . , xk) are the generating series of the sequences a(n1, . . . , nk) and
b(n1, . . . , nk), the Hadamard product A�B of A and B is the power series defined by

A�B(x1, . . . , xk) =
∑

(n1,...,nk)∈Nk

a(n1, . . . , nk)b(n1, . . . , nk)xn1
1 . . . xnk

k .

Observe that the support of F �G is the intersection of the supports of F and G.

I Theorem 8 ([25]). Multivariate holonomic series are closed under Hadamard product.

I Example 9. The generating series of the language L3 of Example 4, which is not context-
free, can be expressed using the Hadamard product: since 1

1−xaxbxc
is the support series

of the subset {(n, n, n) : n ∈ N}, and since 1
1−(xa+xb+xc) is the multivariate series of all the

words on {a, b, c}, we have L3(xa, xb, xc) = 1
1−(xa+xb+xc) �

1
1−xaxbxc

, which is not algebraic.

One of our main technical contributions is to provide bounds on the sizes of the polynomials
in the differential equations of the holonomic representation of the Hadamard product of two
rational series P1

Q1
and P2

Q2
: we prove that their maxdegree is at most (kM)O(k) and that the

logarithm of their largest coefficient is at most (kM)O(k2)(1 + logS∞), where M (resp. S∞)
is the maxdegree plus one (resp. largest coefficient) in P1, Q1, P2 and Q2.

6 The generalization of this equivalence to the multivariate case is not straightforward (see [26] for more
details) and will not be used in this article.

7 Note that the substitution of a power series into another power series might not yield a power series:
for instance substituting x by 1 + y in

∑
n≥0 x

n does not result in a power series as the constant term
would be infinite.

ICALP 2020
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3 Weakly-unambiguous Parikh automata

In this section, we introduce weakly-unambiguous Parikh automata and show that their
multivariate generating series are holonomic. We establish that they accept the same
languages as unambiguous two-way reversal bounded counter machines [19]. Finally, we
prove that the class of accepted languages coincides with Massazza’s RCM class [27, 8].

Parikh automata (PA for short) were introduced in [23, 24]. Informally, a PA is a finite
automaton whose transitions are labeled by pairs (a,v) where a is a letter of the input
alphabet and v is a vector in Nd. A run q0

a1,v1−−−→ q1
a2,v2−−−→ q2 · · · qn−1

an,vn−−−−→ qn computes
the word a1 · · · an and the vector v1 + · · ·+ vn where the sum is done component-wise. The
acceptance condition is given by a set of final states and a semilinear set of vectors. A run is
accepting if it reaches a final state and if its vector belongs to the semilinear set.

0 1 2
a
(1

0
0

)
a
(1

0
0

)
a
(1

0
0

)
, b
(0

1
0

)
, c
(0

0
1

)

The PA depicted above, equipped with the semilinear constraint {(n1, n2, n1 + n2) :
n1, n2 ≥ 0}, accepts the set of words w over {a, b, c} that start and end with a and that are
such that |w|a + |w|b = |w|c.

3.1 Semilinear sets and their characteristic series
A set L ⊆ Nd is linear if it is of the form c +P ∗ := {c + λ1p1 + · · ·+ λkpk : λ1, . . . , λk ∈ N},
where c ∈ Nd is the constant of the set and P = {p1, . . . ,pk} ⊂ N its set of periods. A set
C ⊆ Nd is semilinear if it is a finite union of linear sets. For example, the semilinear set
{(n1, n2, n1 + n2) : n1, n2 ≥ 0} is in fact a linear set (0, 0, 0) + {(1, 0, 1), (0, 1, 1)}∗.

In [13, 20], it is shown that every semilinear set admits an unambiguous presentation. A
presentation c + P ∗ with P = {p1, . . . ,pk} of a linear set L is unambiguous if for all x ∈ L,
the λi’s such that x = c + λ1p1 + · · ·+ λkpk are unique. An unambiguous presentation of a
semilinear set is given by a disjoint union of unambiguous linear sets. A bound on the size
of the equivalent unambiguous presentation is given in [9].

Semilinear sets are ubiquitous in theoretical computer science and admit numerous
characterizations. They are the rational subsets of the commutative monoid (Nd,+), the un-
ambiguous rational subset of (Nd,+) [13, 20], the Parikh images of context-free languages [30],
the sets definable in Presburger arithmetic [31], the sets defined by boolean combinations of
linear inequalities, equalities and equalities modulo constants.

For example, the semilinear set {(2n, 3n, 5n) : n ≥ 0} is equal to (0, 0, 0)+{(2, 3, 5)}∗. It
is also the Parikh image of the regular (hence context-free) language (aabbbccccc)∗. In (N,+),
it is defined by the Presburger formula φ(x, y, z) = ∃w, x = w + w ∧ y = w + w + w ∧ z =
w + w + w + w + w. Finally it is characterized in N3 by the equalities 3x = 2y and 5x = 2z.

For a semilinear set C ⊆ Nd, we consider its characteristic generating series C(x1, . . . , xd)
defined by

∑
(i1,...,id)∈C x

i1
1 · · ·x

id
d . It is well-known [13, 20] that this power series is rational8.

8 The characteristic series of an unambiguous linear set c + P ∗ ⊆ N with P = {p1, . . . ,pk} is
x

c(1)
1 . . . x

c(d)
d

∏k

i=1

(
1 − xpi(1)

1 · · ·xpi(d)
d

)−1 and hence is rational. As an unambiguous semilinear
set is the disjoint union of unambiguous linear sets, its characteristic series is the sum of their series
and it is therefore rational.
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3.2 Weakly-unambiguous PAs and their generating series
We now introduce PA and their weakly-unambiguous variant. We discuss the relationship
with the class of unambiguous PA introduced by Cadilhac et al. in [7] and the closure
properties of this class.

A Parikh automaton of dimension d ≥ 1 is a tuple A = (Σ, Q, qI , F, C,∆) where Σ is the
alphabet, Q is the set of states, qI ∈ Q is the initial state, F ⊆ Q is the set of final states,
C ⊆ Nd is the semilinear constraint and ∆ ⊆ Q× (Σ× Nd)×Q is the transition relation.

A run of the automaton is a sequence q0
a1,v1−−−→ q1

a2,v2−−−→ q2 · · · qn−1
an,vn−−−−→ qn where

for all i ∈ [1, n], (qi−1, (ai,vi), qi) is a transition in ∆. The run is labeled by the pair
(a1 · · · an,v1 + · · · + vn) ∈ Σ∗ × Nd. It is accepting if q0 = qI , the state qn is final and if
the vector v1 + · · ·+ vn belongs to C. The word w is then said to be accepted by A. The
language accepted by A is denoted by L(A).

To define a notion of size for a PA, we assume that the constraint set is given by an
unambiguous presentation ]pi=1ci + P ∗i . We denote by |A| := |Q|+ |∆|+ p+

∑
i |Pi| and by

‖A‖∞ the maximum coordinate of a vector appearing in ∆, the ci’s and the Pi’s.

I Definition 10. A Parikh automaton is said to be weakly-unambiguous if for every word
there is at most one accepting run.

A language is inherently weakly-ambiguous if it cannot be accepted by any weakly-
unambiguous PA. The language S (defined in Section 4.1) is an example9 of a language
accepted by a non-deterministic PA which is inherently weakly-ambiguous.
I Remark 11. We consider here the standard notion of unambiguity for finite state machines.
However we decided to use the name weakly-unambiguous to avoid the confusion with the
class of unambiguous PA which appears in the literature. This class was introduced by
Cadilhac et al. in [7] for constraint automata, a model equivalent to PA and was latter
defined directly on PAs. This notion of unambiguity is more restrictive than ours: they
call a Parikh automaton unambiguous if the underlying automaton on letters, where the
vectors have been erased, is unambiguous. Clearly such automata are weakly-unambiguous.
However the converse is not true. Consider the language L = {cnw : w = x1x2 · · ·xm ∈
{a, b}∗ ∧ m ≥ n > 0 ∧ |x1x2 · · ·xn|a < |x1x2 · · ·xn|b} over the alphabet {a, b, c}. Using
results from [7], one can show that it is not recognized by any unambiguous Parikh automata.
However, it is accepted by the weakly-unambiguous automaton depicted in Fig. 1 below with
the semilinear {(n1, n2, n3) : n1 = n2 + n3 and n2 < n3}.

The lack of expressivity of unambiguous PAs is counter-balanced by their closure under
boolean operations, which is explained by their link with a class of deterministic PA [7, 14].
It was pointed out to us by a reviewer that the class of weakly-unambiguous PA is briefly
considered, under the name OneCA, in Cadilhac’s PhD thesis [5, p. 117], where only basic
properties are established, in particular the strict inclusion of unambiguous PA in this class.

Using a standard product construction when the vectors are concatenated and using the
concatenation of the constraints, it is easy to show that weakly-unambiguous PA are closed
under intersection. In [8], the authors claim that the class10 is closed under union. However
their construction has an irrecoverable flaw and we do not know if weakly-unambiguous PA
are closed under union or under complementation.

9 Using the equivalences between weakly-unambiguous PA and RCM established in Proposition 13 and PA
and RBCM [23, 6], it also gives an example of a language accepted by a RBCM with a non-holonomic
generating series (strengthening Theorem 12 of [8]) and a witness for the strict inclusion of RCM in
RBCM announced in Theorem 11 of [8]. Remark that their proof of this theorem only shows that there
exists no recursive translation from RBCM to RCM.

10Actually, their claim is for the class RCM, which we will show to be equivalent in Section 3.4.
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Figure 1 A weakly-unambiguous Parikh automaton accepting the language L = {cnw : w =
x1x2 · · ·xm ∈ {a, b}∗ ∧ m ≥ n > 0∧ |x1x2 · · ·xn|a < |x1x2 · · ·xn|b} over the alphabet {a, b, c} with
the semilinear constraint {(n1, n2, n3) : n1 = n2 + n3 and n2 < n3}.

We now give a very short proof of the fact that weakly-unambiguous languages in PA
have holonomic generating series. The idea of the proof can be traced back to [25]. A similar
proof was given in [27] for languages in the class RCM but using the closure under algebraic
substitutions instead of specialization (see Remark 25).

Our approach puts into light a different multivariate power series associated with a
weakly-unambiguous PA A of dimension d. The multivariate weighted generating series
G(x, y1, . . . , yd) of A is such that for all indices (n, i1, . . . , id), [xnyi11 . . . yidd ]G counts the
number of words of length n accepted by A with a run labeled by the vector (i1, . . . , id).

I Proposition 12. The generating series of the language recognized by a weakly-unambiguous
Parikh automaton is holonomic.

Proof. Let A be a weakly-unambiguous PA with a constraint set C ⊆ Nd. We first prove
that its weighted series G(x, y1, . . . , yd) is holonomic. As holonomic series are closed under
Hadamard product (see Theorem 8), it suffices to express G as the Hadamard product of
two rational series A and C in the variables x, y1, . . . , yd.

The first series A(x, y1, . . . , yd) is such that for all n, i1, . . . , id ≥ 0, [xnyi11 . . . yidd ]A counts
the number of runs of A starting in qI , ending in a final state and labeled with a word of
length n and the vector (i1, . . . , id). Note that we do not require that (i1, . . . , id) belongs to
C. As this series simply counts the number of runs in an automaton, its rationality is proved
via the standard translation of the automaton into a linear system of equations.

For the second series, we take C(x, y1, . . . , yd) := 1
1−x C̃(y1, . . . , yd) where C̃ is the

support series of C, which is rational (see [13, 20]). A direct computation yields that for all
n, i1, . . . , id ≥ 0, [xnyi11 . . . yidd ]C is equal to 1 if (i1, . . . , id) belongs to C and 0 otherwise.

The Hadamard product of A and C counts the number of runs accepting a word of
length n with the vector (i1, . . . , id). As A is weakly-unambiguous, this quantity is equal to
the number of words of length n accepted with this vector. Hence G = Ā� C̄.

The univariate series A(x) of A is equal to G(x, 1, . . . , 1). Indeed, for all n ≥ 0,
[xn]G(x, 1, . . . , 1) =

∑
i=(i1,...,id)[xny

i1
1 . . . yidd ]G(x, y1, . . . , yd) is the sum over all vectors

i ∈ Nd of the number of words of length n accepted with the vector i. As A is weakly-
unambiguous, each word is accepted with at most one vector and this sum is therefore
equal to the total number of accepted words of length n. Thanks to Proposition 7,
A(x) = G(x, 1, . . . , 1) is holonomic. J

3.3 Equivalence with unambiguous reversal bounded counter machines
A k-counter machine [19] is informally a Turing machine with one read-only tape that contains
the input word, and k counters. Reading a letter a on the input tape, in a state q, the
machine can check which of its counters are zero, increment or decrement its counters, change
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its state, and move its read head one step to the left or right, or stay on its current position.
Note that the machine does not have access to the exact value of its counters. A k-counter
machine is said (m,n)-reversal bounded if its reading head can change direction between left
and right at most m times, and if every counter can alternate between incrementing and
decrementing at most n times each. Finally, a reversal bounded counter machine (RBCM)
is a k-counter machine which is (m,n)-reversal bounded for some m and n. A RBCM is
unambiguous if for every word there is at most one accepting computation.

RBCM are known11 to recognize the same languages as Parikh automata (see [24, 23, 6]).
This equality does not hold anymore for their deterministic versions [6, Prop. 3.14]. However,
the proof of the equivalence for the general case can be slightly modified to preserve
unambiguity.

I Proposition 13. The class of languages accepted by unambiguous RBCM and weakly-
unambiguous PA coincide.

Proof sketch. Unambiguous RBCMs are shown to be equivalent to one-way unambiguous
RBCMs. In turn these are shown to be equivalent to weakly-unambiguous PA with ε-
transitions, which in turn are equivalent to weakly-unambiguous PA. This ε-removal step
needs to be adapted to preserve weak-unambiguity. J

3.4 Equivalence with RCM
If we fix an alphabet Γ = {a1, . . . , ad} with the ordering a1 < · · · < ad on the letters, we
can associate with every semilinear set C of dimension d, the language [C] = {w ∈ Γ∗ :
(|w|a1 , . . . , |w|ad

) ∈ C} of words whose numbers of occurrences of each letter satisfy the
constraint expressed by C. For instance, if we take the semilinear set C0 = {(n,m, n,m) :
n,m ≥ 0} and the alphabet {a, b, c, d} ordered by a < b < c < d, [C0] consists of all words
having as many a’s as c’s and as many b’s as d’s.

A language L over Σ belongs to RCM if there exist a regular language R over Γ =
{a1, . . . , ad}, a semilinear set12 C ⊆ Nd and a length preserving morphism µ : Γ∗ −→ Σ∗, that
is injective overR∩[C], so that L = µ(R∩[C]). For example, Labab = {anbmanbm : n,m ∈ N}
can be shown to be in RCM by taking Γ = {a, b, c, d},Σ = {a, b}, µ(a) = µ(c) = a, µ(b) =
µ(d) = b, R = a∗b∗c∗d∗ and the semilinear set C0 defined in the previous paragraph.

I Theorem 14. L ∈ RCM iff L is recognized by a weakly-unambiguous Parikh automaton.

Proof sketch. Every language in RCM can be accepted by a weakly-unambiguous PA that
guesses the underlying word over Γ: the weak-unambiguity is guaranteed by the injectivity
of the morphism. Conversely a language accepted by a weakly-unambiguous PA is in RCM
by taking for R the set of runs of the PA and translating the constraint: the injectivity of
the morphism is guaranteed by the weak-unambiguity of the PA. J

In [8], the authors conjectured that the class RCM contains the one-way deterministic
RBCM. From Theorem 14 and Proposition 13 we get a stronger result:

I Corollary 15. The languages in RCM are the languages accepted by unambiguous RBCM.

11The proof in [23] contains a patchable error, that was corrected in [6].
12Our definition may seem a little more general than Massazza’s, which only uses semilinear defined

without modulo constraints, but it can be shown that the classes are equivalent.
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3.5 Weakly-unambiguous pushdown Parikh automata
A pushdown Parikh automaton (PA for short) is a PA where the finite automaton is replaced
by a pushdown automaton. A weakly-unambiguous PA has at most one accepting run for
each word. Most results obtained previously can be adapted for weakly-unambiguous PA.
However, unsurprisingly, the class of languages accepted by weakly-unambiguous PA is not
closed under union and intersection. This can be shown using the inherent weak-ambiguity
of the language D proved in Section 4.1. The closure under complementation is left open.

I Proposition 16. The generating series of a weakly-unambiguous PA is holonomic.

Proof. The proof is almost identical to the proof of Proposition 12. The only difference is
that the series A is algebraic and not rational. Indeed it counts the number of runs in a
pushdown automaton and the language of runs is a deterministic context-free language even
if the pushdown automaton is not deterministic. J

Remark that using the same techniques, we can prove that the generating series of
weakly-unambiguous Parikh tree automata are holonomic. As we proved that all these series
are also generating series of PAs, we do not elaborate on this model in this extended abstract.

RBCMs can be extended with a pushdown storage to obtain a RBCM with a stack [19].

I Theorem 17. Weakly-unambiguous PA are equivalent to unambiguous one-way RBCM
with a stack.

Proof sketch. We first establish that unambiguous one-way RBCM with a stack are equival-
ent to weakly-unambiguous PA with ε-transitions. Contrarily to the PA case, the removal of
ε-transitions is quite involved and uses weighted context-free grammars. J

The class LCL of [27] is defined13 as RCM is, except that the regular language is replaced
by an unambiguous context-free14 language. Similarly to the PA case, one can prove:

I Proposition 18. LCL is the set of languages accepted by weakly-unambiguous PA.

4 Examples of inherently weakly-ambiguous languages

There is a polynomial-time algorithm to decide whether a given PA is weakly-unambiguous.
But inherent weak-unambiguity is undecidable, as a direct application of a general theorem
from [18]. This emphasizes that inherent weak-ambiguity is a difficult problem in general.

4.1 Two examples using an analytic criterion
Following an idea from Flajolet [15] for context-free languages, the link between weakly-
unambiguous PA and holonomic series yields sufficient criteria to establish inherent weak-
ambiguity, of analytic flavor: the contraposition of Proposition 12 indicates that if L is
recognized by a PA but its generating series is not holonomic, then L is inherently weakly-
ambiguous. Hence, any criterion of non-holonomicity can be used to establish the inherent
weak-ambiguity. Many such criteria can be obtained when considering the generating series
as analytic functions (of complex variables). See [15, 16] for several examples. For the
presentation of this method in this extended abstract, we only rely on the following property:

13 In [27], LCL is defined without the injective morphism but we adapt it following [8].
14Using deterministic context-free languages instead of unambiguous ones in the definition of LCL would

result in the same class.
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I Proposition 19 ([33]). A holonomic function in one variable has finitely many singularities.

Our first example is the language D, defined over the alphabet {a, b} as follows:

D = {n1 n2 . . . nk : k > 0, n1 = 1 and ∃j < k, nj+1 6= 2nj}, where n = anb.

This language is recognized by a weakly-ambiguous Parikh automaton, which guesses the
correct j, and then verifies that nj+1 6= 2nj . Let D = ab(a∗b)∗ \ D, and suppose by
contradiction that D can be recognized by a weakly-unambiguous PA. Then its generating
series should be holonomic by Proposition 12. Since the generating series of D is D(xa, xb) =
xaxb

1− xb
1−xa

−D(xa, xb), it should be holonomic too. Looking closely at the form of the words of

D, we get that its generating series is
∑
k≥1 x

2k−1
a xkb . It is not holonomic as xD(x, 1) + x

has infinitely many singularities, see [15, p. 296–297].
Our second example is Shamir’s language S = {anbv1a

nv2 : n ≥ 1, v1, v2 ∈ {a, b}∗}. One
can easily design a PA recognizing S, where one coordinate stands for the length of the
first run of a’s and the other one for the second run of a’s, the automaton guessing when
the second run starts. Flajolet proved that S is inherently ambiguous as a context-free
language, since its generating series S(z) = z(1−z)

1−2z
∑
n>1

z2n

1−2z+zn+1 has an infinite number of
singularities [15, p. 296–297]. This also yields its inherent weak-ambiguity as a PA language.

4.2 Limit of the method: an example using pumping techniques
As already mentioned, the analytic method presented is not always sufficient to prove inherent
ambiguity. In this section, we develop an example where it does not apply. We consider the
following language Leven , which is accepted both by a deterministic pushdown automaton
and a non-deterministic PA (where n = anb as in Section 4.1):

Leven =
{
n1 n2 . . . n2k : k ∈ N, ∀i ≤ 2k, ni > 0, and ∃j ≤ k, n2j = n2j−1

}
.

In other words, Leven is the language of sequences of encoded numbers having two consecutive
equal values, the first one being at an odd position. This language is accepted by a non-
deterministic PA but is also deterministic context-free. This means that its generating series
is algebraic and hence holonomic. This puts it out of the reach of our analytic method.

In this section we establish the following result:

I Theorem 20. The language Leven is inherently weakly-ambiguous as a PA language.

The remainder of this section is devoted to sketch the proof of this proposition. By
contradiction, we suppose that Leven is recognized by a weakly-unambiguous PA A.

An a-piece ω of A is a non-empty simple path of a-edges in A, starting and ending at
the same state: the states of the path are pairwise distinct, except for its extremities. The
origin of w is its starting (and ending) state. Let Π(A) be the (finite) set of a-pieces in A.

We see a run in A as a sequence of transitions forming a path in A. An a-subpath of a
run R in A is a maximal consecutive subsequence of R whose transitions are all labeled by
a’s, that is, it cannot be extended further to the left nor to the right in R using a’s.

Let R be an accepting run in A. One can show that every a-subpath S of R can be
decomposed as S = w1σ

s1
1 w2σ

s2
2 · · ·wfσ

sf

f wf+1, where the σi’s are a-pieces of Π(A), the si’s
are positive integers, and the wi’s are paths not using twice the same state. Moreover, this
decomposition is unique if we add the condition that if wi = ε, then σi 6= σi−1 and the only
state in common in wi and σi is the origin of σi. This is done by repeatedly following the
path until a state q is met twice, factorizing this segment of the form wσ, where σ is an
a-piece of origin q. We call this decomposition the canonical form of S, and the signature of
S is the tuple (w1, σ1, w2, . . . , wf , σf , wf+1), i.e., we dropped the si’s of the canonical form.
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From the weak-unambiguity of A we can prove that there are at most c distinct possible
signatures, where c only depends on A, and that f is always at most |QA|.

Ramsey’s Theorem [32] guarantees that there exists an integer r such that any complete
undirected graph with at least r vertices, whose edges are colored using c2 different colors,
admits a monochromatic triangle. We fix two positive integers n and k sufficiently large,
which will be chosen later on, depending on A only. For ` ∈ {1, . . . , r}, let w` be the word
w` = n1 n2 . . . n2r, where ni = n for odd i and n2i = n+ k if i 6= ` and n2` = n. Each w` is
in Leven , with a match at position 2` only. By weak-unambiguity, each w` has a unique
accepting run R` in A, each such run having 2r a-subpaths by construction. For i 6= j in
{1, . . . , r}, let λij be the signature of the 2j-th a-subpath of Ri, which is a path of length
n+ k by definition. The complete undirected graph of vertex set {1, . . . , r} where each edge
ij, with i < j, is colored by the pair (λij , λji) admits a monochromatic triangle of vertices
α < β < γ. In particular, λαβ = λαγ and λγα = λγβ .

We choose k = lcm({|σ| : σ ∈ Π(A)}), and n sufficiently large so that any a-subpath of
an accepting run contains an a-piece σ repeated at least k + 1 times. This is possible as
the wi’s have bounded length, and there are at most |QA|+ 1 of them. Hence, the 2γ-th
a-subpath of wα contains a a-piece σ that is repeated more than s times, where s = k/|σ|. As
λαβ = λαγ , the piece σ is also in the 2β-th a-subpath of wα. If we alter the accepting path
Rα into R′α by looping s more times in σ in the a-subpath at position 2β and s less times
in σ at position 2γ, we obtain a run for the word w = · · ·nn

2α
· · ·nn+ 2k

2β
· · ·nn

2γ
· · · . This

run is accepting as the PA computes the same vector as for wα, by commutativity of vectors
addition. And the signatures remain unchanged, as there are sufficiently many repetitions of
σ at position 2γ in wα. Similarly, as λγα = λγβ , we can alter the accepting path Rγ into an
accepting path R′γ of same signatures as Rγ for the same word w, by removing s′ = k/|σ′|
iterations of an a-piece σ′ at position 2α and adding them at position 2β.

We have built two paths R′α and R′γ that both accept the same word w. Therefore, as A
is weakly-unambiguous, they are equal. As the signatures have not changed, this implies
that the signature at position 2α in R′α is λγα, which is equal to λγβ (monochromaticity),
which is equal to λαβ (R′α and R′γ have same signatures). This is a contradiction as we
could remove one a-piece at position 2α in wα and add it at position 2β, while computing
the same vector with the same starting and ending states: but this word is not in Leven.

I Remark 21. The proof relies on manipulations of paths in the automaton, and we only
use the commutativity of the addition for the vector part. Thus, it still holds if we consider
automata where we use a recursively enumerable set instead of a semilinear set for acceptance.

5 Algorithmic consequence of holonomicity

Generating series of languages have already been used to obtain efficient algorithms on
unambiguous models of automata. For instance, they were used by Stearns and Hunt as a
basic tool to obtain bounds on the length of a word witnessing the non-inclusion between two
unambiguous word automata [35]. More precisely, the proof in [35] relies on the recurrence
equation satisfied by the coefficients of the generating series (which is guaranteed to exist by
holonomicity in one variable). In the rational case, this recurrence relation can be derived
from the automaton and does not require advanced results on holonomic series. In this section,
our aim is to obtain a similar bound for the inclusion problem for weakly-unambiguous
Parikh automata. The inclusion problem for RCM (and hence for weakly-unambiguous PA)
is shown to be decidable in [8] but no complexity bound is provided. Note that this problem
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is known to be undecidable for non-deterministic PA [19]. We follow the same approach as
for the rational case [35] and for RCM [8]. In stark contrast with the rational case, it is
necessary to closely inspect holonomic closure properties in order to give concrete bounds.

Fix A and B two weakly-unambiguous PA. We can construct a weakly-unambiguous PA
C accepting L(A)∩L(B). We rely on the key fact that the series D(x) = A(x)−C(x) counts
the number of words of length n in L(A) \ L(B). In particular, L(A) ⊆ L(B) if and only if
D(x) = 0.

As D(x) is the difference of two holonomic series, it is holonomic. As equality between
holonomic series is decidable, [8] concludes that the problem is decidable. But without further
analysis, no complexity upper-bound can be derived. The coefficients of D(x) =

∑
n≥0 dnx

n

satisfy a recurrence equation of the form p0(n)dn =
∑r
k=1 pk(n)dn−k for n ≥ r with p0(x) 6= 0.

This equation fully determines dn in terms of its r previous values dn−1, . . . , dn−r, provided
that p0(n) 6= 0. In particular, if the r previous values are all equal to 0, then dn = 0.
Consequently, if dn is equal to 0 for all n ≤ r +R where R denotes the largest positive root
of p0 (which is bounded from above by its ∞-norm, as a polynomial on Z) then15 D(x) = 0.

Taking W := r + R, we have that if L(A) 6⊆ L(B) then there exists a word witnessing
this non-inclusion of length at most W . We now aim at computing an upper-bound on W
on the size of the inputs A and B.

For this, we first bound the order of the linear recurrence satisfied by A(x) and C(x), as
well as the degrees and norm of the polynomials involved. This is stated in Proposition 22,
whose proof follows the one of Proposition 12, while establishing such bounds for the
multivariate Hadamard product and the specialization to 1.

I Proposition 22. The generating series A(x) of a weakly-unambiguous PA A of dimension
d ≥ 1 satisfies a non-trivial linear differential equation qs(x)∂sxA(x) + · · ·+ q0(x)A(x) = 0,
with s ≤ ((d+ 1)|A| ‖A‖∞)O(d) and for all i ∈ [0, s], deg(qi) ≤ ((d+ 1)|A| ‖A‖∞)O(d) and
log ‖qi‖∞ ≤ ((d+ 1)|A| ‖A‖∞)O(d2) using the notations of Section 3.2.

Finally, we transfer these bounds to the series D(x) of L(A) \ L(B) using the analysis of
[22] for the sum of holonomic series in one variable.

I Theorem 23. Given two weakly-unambiguous PA A and B of respective dimensions dA
and dB, if L(A) is not included in L(B) then there exists a word in L(A) \ L(B) of length at
most 22O(d2 log(dM)) where d = dA + dB and M = |A| |B| ‖A‖∞ ‖B‖∞.

Using the bound of Theorem 23, the inclusion problem can be solved in triply exponential
time by a naive counting of all words up to the bound. Using dynamic programming to
compute the number of accepted words, we can decide inclusion in doubly exponential time.

I Corollary 24. Given two weakly-unambiguous PA A and B of dimensions dA and dB,
we can decide if L(A) is included in L(B) in time 22O(d2 log(dM)) where d = dA + dB and
M = |A| |B| ‖A‖∞ ‖B‖∞.

I Remark 25. In [8], the authors propose a different construction to prove the holonomicity
of the generating series of languages in RCM. This proof uses the closure of holonomic
series under Hadamard product and algebraic substitution x1 = x2 = · · · = xn = x. It is
natural to wonder if this approach would lead to better bounds in Proposition 22 (using the

15The proof of Theorem 7 in [8] wrongly suggests that we can take the order of the differential equation
for D as a bound on the length of a witness for non-inclusion. In general, this is not the case. For instance
consider D(x) = x1000 which satisfies the first-order differential equation 1000D(x)− x∂xD(x) = 0. It
is clear that the coefficients D0 = 0 and D1 = 0 are not enough to decide that D is not zero.
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equivalence between weakly-unambiguous PA and RCM). It turns out that the operation
x1 = x2 = · · · = xn = x is more complicated than it seems at a first glance. Indeed, to our
knowledge, no proof of the closure under algebraic substitution explains what happens if,
during the substitution process, the equations become trivial. This issue can be overcome
by doing the substitution step by step: x2 = x1, then x3 = x1, etc. However, this naive
approach would produce worse bounds.

6 Perspectives

The bounds obtained in Section 5 are derived directly from constructions given in the proofs
of the closure properties. In particular, we did not use any information on the special form
of our series. The bounds are certainly perfectible using more advanced tools from computer
algebra. Also it seems that the complexity of the closure under the algebraic substitution
deserves more investigation, as discussed in Remark 25.

A more ambitious perspective is to find larger classes of automata whose generating series
are holonomic. This would certainly require new ideas, as for instance any holonomic power
series with coefficients in {0, 1} is known to be the characteristic series of some semilinear
set [1].
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