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Abstract. The complete blood count (CBC) performed by automated
haematology analysers is the most common clinical procedure in the
world. Used for health checkup, diagnosis and patient follow-up, the CBC
impacts the majority of medical decisions. If the analysis does not fit an
expected setting, the laboratory staff manually reviews a blood smear,
which is highly time-consuming. Criteria for reviewing CBCs are based
on international consensus guidelines and locally adjusted to account
for laboratory resources and populations characteristics. Our objective
is to provide a clinical laboratory decision support tool to identify which
CBC variables are linked to an increased risk of abnormal manual smear
and at which threshold values. Thus, we treat criteria adjustment as a
feature selection problem. We propose a cost-sensitive Lasso-penalised
additive logistic regression combined with stability selection, adapted to
the peculiarities of data and context: class-imbalance, categorisation of
continuous predictors, required stability and enhanced interpretability.
Using simulated and real CBC data, we show that our proposal is com-
petitive in terms of predictive performance (compared to deep neural
networks) and model selection performance (provided that there is suf-
ficient data in the neighbourhood of the true thresholds). The R code is
publicly available as an open source project.

Keywords: Machine Learning for Healthcare Applications · Data min-
ing · Feature selection · Interpretability · Categorisation of continuous
variables · Lasso · GAM.

1 Introduction

The complete blood count (CBC) with leukocyte differential count obtained by
automated haematology analysers is often included as part of a routine checkup.
It is one of the most ordered laboratory tests used to monitor overall health,
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medical condition or medical treatment and to help detect a variety of disor-
ders. When the analysis does not fit an expected setting, the machine triggers
a warning flag. Then, laboratory staff manually prepares and reviews a blood
smear using a microscope. The International Consensus Group for Haematology
Review published in 2005 criteria for reviewing CBCs [3]. In general, adjust-
ments are needed to account for local populations characteristics and laboratory
resources [21, 6, 15, 2]. While the manual technique is more effective identifying
nuances in cell shapes, it incurs a substantial time and cost burden on laboratory
staff. Also, it requires a high degree of technical skill. There is great interest in
optimising human and financial resources (i.e. minimising the number of useless
reviews) whilst ensuring the quality of patient care (i.e. minimising the number
of omitted useful reviews).

1.1 Motivation example

The manual smear is also used as a quality control tool to evaluate and calibrate
the automated haematology analysers. Routinely, all samples (with or without
a warning flag) analysed in a given period of time are reviewed to evaluate the
need for adjustments in criteria for manual smear review. As a secondary use of
these large-scale data we propose to train machine learning algorithms.

CBCs and corresponding blood smear reviews for 10 000 patients were per-
formed at the clinical laboratory of the Pontificia Universidad Catolica de Chile
in 2016 in the framework of the quality control procedure. After excluding hos-
pitalised patients and patients with a non-consensual smear result, a total of
9 594 data were available. The response variable, normal/abnormal smear, is
imbalanced: only 7% of the smears were abnormal.

CBC data consisted in haemoglobin (g/dL), haematocrit (%), mean cor-
puscular haemoglobin (pg/cell), mean corpuscular volume (fL), erythrocytes
(106/µL), red blood cell distribution width (%), platelets (103/µL), leukocytes
(103/µL), immature granulocytes (%) and the leukocyte differential count which
includes neutrophils, basophils, eosinophils, monocytes and lymphocytes (103/µL
and %). The presence or absence of alarms of suspected alterations of blood cells
(binary), sex (binary) and age (years) were also reported.

1.2 Objective

Machine learning tools for decision support have already been applied in the
field of haematology [20, 19, 17]. However, they are essentially limited to predict
a given disease onset from CBC data. We aimed to provide a machine learning
based-decision support tool for adjusting abnormal levels in the CBC tests for
use at laboratory level. We treated criteria adjustment as a feature selection
problem, thus the objective was to identify which CBC variables are linked to
an increased risk of abnormal manual smear and at which threshold values.

Our proposal is based on cost-sensitive Lasso-penalised additive logistic re-
gression, which represents a trade-off between predictive performance and in-
terpretability. Cost-sensitive learning and data sampling are the main methods
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in imbalanced binary classification [12, 7]. The first is a better choice for large
sample sizes. Weighting individuals’ contributions to account for the degree of
imbalance is one of the simplest cost-sensitive approaches. Categorisation of con-
tinuous variables, though not recommended, is usual in clinical studies since the
analysis and results interpretation are greatly simplified. Thus, we considered
additive functions to belong to the space of piece-wise constant functions. On
the other hand, the natural sparsity encouraged by the Lasso penalty is combined
with a stability selection procedure to enhance model stability.

2 Related work

When no prior knowledge is available to guide the choice of the categories, con-
tinuous variables are typically categorised into quantiles. Also, additive models
fitted by cubic splines are used as an exploratory data analysis tool [4]. Instead
of using piece-wise cubic polynomials which are next transformed into constant
functions, we propose to use directly piece-wise constant polynomials. A cru-
cial question is how to select the optimal number and/or location of threshold
values. That could be viewed as a variable selection problem. Indeed, once the
basis functions have been set, we have moved from a non-linear to a linear space,
so that a variable selection methods for linear settings can be used. Standard
variable selection procedures have already been applied [4, 13], but only when
very few quantitative predictors have to be categorised. Yet, CBC data consist
in more than twenty blood cell measurements.

Penalised methods leading to parsimonious models, such as the Lasso [9],
have emerged as convenient alternative approaches. Extensions to parsimonious
additive models have been proposed based on a reformulation of the estimation
problem in terms of group Lasso [1], sparse group Lasso, overlapping group
Lasso, or fused Lasso [16]. Several R packages have been developed, e.g. COSSO,
GAMBoost, SAM, GAMSEL, hgam, MSGLasso, FLAM [16]. However, these
packages are limited in their capability to support the logistic model or a mixture
of qualitative and quantitative predictors or piece-wise constant basis functions
or to handle large data sets.

3 Method

Let (X1, . . . , Xp, Y ) be a random vector with Y a binary variable, coded 0 for
normal and 1 for abnormal blood smears. Let {(Xi1, . . . , Xip, Yi)}ni=1 be an i.i.d.
sample of size n and {(xi1, . . . , xip, yi)}ni=1 a realization of the sample. Let us
note xj = (x1j , . . . , xnj)

> the vectors of size n×1. Consider the additive logistic
model in terms of the logit function:

logit(P (Yi = 1|xi1, . . . , xip)) = ln
P (Yi = 1|xi1, . . . , xip)

1− P (Yi = 1|xi1, . . . , xip)
= β0 +

p∑
j=1

fj(xij) ,

(1)
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where fj are unknown univariate real (centred) functions and β0 is the unknown
intercept.

Let {χk
j (xj)}

pj

k=1 be a fixed basis of functions and denote χk
j = χk

j (xj). Any

fj can be expanded in terms of these basis functions: fj(xj) =
∑pj

k=1 β
k
j χ

k
j where

{βk
j }

pj

k=1 are unknown parameters. By considering the block matrix (χ1, . . . ,χp)>

and vector β = (β1, . . . ,βp)>, we can write: fj(xj) = χjβj . Consider now the

particular case of piece-wise constant polynomials: χk
ij = 1 if xij > qkj and 0 oth-

erwise, with qkj the k-th value of a collection of Kj fixed values, e.g. the ordered
percentiles of Xj .

We consider the problem of estimating a high-dimensional additive model
using sparse methods. The number of candidate explanatory variables could
be large but only a small set of them contribute to the response. In addition,
the relationships between explanatory variables and the outcome are possibly
non linear. Through the logistic likelihood function, we can write the weighted
penalised optimisation problem:

max
β

{
n∑

i=1

ωi ln
eyi

∑p
j=1 χijβj

1 + e
∑p

j=1 χijβj

− λ‖β‖1

}
, (2)

where to simplify, the intercept is omitted, λ > 0 controls the amount of regu-
larisation, the weights ωi = ω > 1 if yi = 1 and 1 if yi = 0 are used to account
for the degree of imbalance in the minority class. Indeed, when facing with an
imbalanced learning problem, a simple strategy consists in weighting individuals’
contributions to the likelihood function [12, 7].

3.1 Practical implementation

The lasso estimator β̂ that maximises (2) depends on λ and ω. When the pri-
mary goal of the study is prediction, K-fold cross-validation (e.g. based on the
area under the receiver operating characteristic curve - ROC AUC) is routinely
applied to estimate λ. When the primary goal is to infer the set of truly rele-
vant variables, the combination of cross-validation with stability selection [14]
is a better option [23]. The stability selection procedure calculates the empirical
selection probability for each χk

j , that we use as a continuous measure of the
stability associated to the Lasso estimates.

Class weighting can be determined on the basis of expert judgement, using
the inverse of the empirical class distribution in the learning data, or evaluating
a performance criterion on a grid of ω-values with test data. We applied the
following heuristic as a previous step: we determined a grid of ω-values around
the inverse of the observed class distribution, the optimal value of ω was that
maximising the cross-validated ROC AUC under the constraint that recall can-
not be inferior to a given fixed value (to be determined by laboratory clinicians,
0.85 here).

To avoid overoptimistic results, we implement cross-validation with stratified
folds (i.e. each fold contains roughly the same proportion of abnormal smears as
in the whole sample) and using weights only in the training step [11].
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Fig. 1. Retained NN architecture.

We developed a simple R function to construct features based on percentiles
for each variable. Equation (2) and ROC AUC cross-validation can be resolved
by calling the R glmnet package [8]. Another R function allows to visualise the
Lasso estimates and corresponding selection probabilities represented by a light
to dark gradient of grey.

4 Evaluation

The purpose of this evaluation was manifold, we aimed to answer the following
questions:

– Is the predictive performance of our model comparable to that of powerful
models such as deep neural networks (NN), which explore a larger nonlinear
feature space?

– Is our procedure able to detect relevant predictors and relevant thresholds?
– Could our procedure provide sound and informative findings?

To answer these questions we used real CBC data which also served as the core
of a simulation study.

4.1 Predictive performance: Lasso VS NN

We developed a NN (Fig. 1). The 22 predictor variables were the input vari-
ables and it returned the probability of abnormal smear as output. Continuous
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variables were previously standardised and non-linearly transformed into the
network. To account for class imbalance, we adopted again the weighting strat-
egy [10]. The NN was trained in 100 epochs using cross entropy as loss function.
Other options were evaluated but only the architecture providing the best per-
formance is presented. The NN model was implemented in Python with Keras.

We split the real data into 20 stratified folds. We iteratively fitted the weighted
logistic Lasso and NN with the data from 19 folds and calculated precision, recall,
specificity, ROC AUC and the area under the precision-recall curve (PR AUC)
on the remainder fold. The weight ω was set to 20 for both of the methods.

4.2 Detection of relevant predictors and thresholds

We performed a simulation study: the input data matrix and the features χj ,
were those defined by the original CBC data, ensuring the same structure. Y
was generated from the features, assuming the logistic model. We considered 4
scenarios. In scenarios #1 and #2, among 19 blood cell measurements, two were
relevant. They showed low correlation. In scenarios #3 and #4, five predictors
were relevant. They showed moderate to high correlation between them and low
correlation with all the other variables.

One βk
j per relevant variable was non-zero (all set to 1.4). They were chosen

such that thresholds were located: at the extreme percentiles (in #1 and #4),
where observations are sparse or at not-extreme percentiles (in #2 and #3),
where observations are frequent. β0 was calibrated such that 7% of smears were
abnormal.

For each scenario, Y was generated 100 times, then selection probabilities
were estimated by the Lasso with stability selection.

4.3 Applicability of the procedure

Finally, we illustrate how the proposed procedure could help laboratory clinicians
to make decisions about fine-tuning abnormal levels. The Lasso estimates are
graphically presented. A light to dark gradient of grey represent the selection
probability estimated from stability selection: the more the estimation is dark,
the more stable the results are. Clinicians could explore at which values the
data show a probable change in the risk of abnormal smear compared to the
recommended threshold values and thus adjust the local criteria.

5 Results

Figures (2)-(3) present predictive performance results of the Lasso compared
to Deep neural network. NN presented very high recall values and performed
slightly better than the Lasso. Inversely, the Lasso presented the best precision
and specificity values. As a consequence, ROC and PR AUC were comparable
and high in both cases. The consensus criterion led to inferior results in terms
of precision and recall.
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Fig. 2. Predictive performance. The boxplots represent distributions over the 20 vali-
dations sets from real CBC data. Dashed horizontal lines are plotted at median values.

Table (1) shows simulation study results. When the true features were cor-
related and located at the extreme percentiles (#4), targets were often missed.
The five true values were correctly identified in 14%-57% of the cases. Indeed,
the relevant predictors, being redundant, may not be simultaneously selected.
When the true thresholds have to be learn from sparse observations but rel-
evant predictors are not correlated, neither among themselves nor with noisy
variables (#1), the true values were were correctly identified in 52%-68% of the
cases. In scenarios #2 and #3, relevant predictors were very frequently selected
(more than 90% on average). Interestingly, values surrounding the true thresh-
olds are more often selected than distant values. This could explain that the true
threshold is not selected more often than about 90%. Noisy variables were rarely
selected.

Figure (4) shows Lasso estimates in terms of variation of OR. By convention,
we choose the reference category as the one with lowest coefficient estimate.
The variations of OR can thus be interpreted as OR increments. The selection
probability estimated from stability selection is represented by the intensity of

Table 1. Selection probability (%) obtained by stability selection combined with the
Lasso in the four scenario simulations. Values correspond to the range of mean proba-
bilities (over 100 simulations) for relevant and irrelevant predictors and thresholds.

Scenarios
Predictors and thresholds #1 #2 #3 #4

Relevant 52%-68% 90%-91% 91%-92% 14%-57%
Noisy 1%-15% 0%-3% 0%-11% 0%-4%
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Fig. 3. Predictive performance. The boxplots represent distributions over the 20 vali-
dations sets from real CBC data. Dashed horizontal lines are plotted at median values.

the grey colour. Green lines (with arrows indicating the direction) indicate new
thresholds suggested by the Lasso estimates.

The consensus recommendation (in blue) is sometimes close to those sug-
gested by the Lasso, e.g. mean corpuscular volume, or this seems to be enough,
given the incertitude around the lasso estimates, e.g. neutrophils as counts and
the superior threshold of lymphocytes as counts. Other times, the Lasso esti-
mates suggest thresholds more conservative (i.e. leading to more smear reviews)
than those of the consensus, e.g. haemoglobin, mean corpuscular haemoglobin,
platelets, red blood cell distribution width and basophils as counts (for the later,
the recommended threshold is greater than the observed values). In addition, a
threshold seems to be relevant in some cases in which no recommendation exists,
e.g. immature granulocytes, lymphocytes as percentage and the inferior limit of
lymphocytes as counts. Inversely, some consensus thresholds seems to be useless,
e.g. monocytes as counts and the inferior thresholds of leukocytes.

The presence of a machine alarm as well as mean corpuscular volume higher
than 106fL appear to be stable strong predictors of abnormal smear. Red blood
cell distribution width-CV higher than 16% and lymphocytes higher than 51%
appears to be strongly associated with the presence of abnormal smear. In the
case of lymphocytes this association is stronger and stable for values higher than
71%.

6 Discussion

In this paper we propose an machine learning tool to fine-tune abnormal levels
in the CBC tests from data routinely produced in the internal laboratory quality
control. This procedure, tailored to the particularities of the data, represents a
non-linear baseline for a variety of tasks and could be of high importance for
resource constrained environments. Offsetting imbalance by a weight appears to
be an intuitive solution. In addition, the automatic choice of variables, as well as
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Fig. 4. Lasso estimates of the real CBC data in terms of variation of the OR. The
light to dark gradient of grey indicates the selection probability estimated by stability
selection: the darker, the more stable. Normal observations are indicated in black and
the abnormal ones in red. The recommended thresholds [3] are indicated by blue lines).
Green lines indicate new thresholds suggested by the Lasso estimates.
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their functional form, can be managed by additive models with a penalty encour-
aging sparsity. Indeed, this corresponds to automatising the common practice of
categorisation in the biomedical field. On the other hand, the practical imple-
mentation is simplified since standard efficient R packages that resolve the plain
Lasso could be applied. Our proposal is close to existing approaches [1, 16]. Nev-
ertheless, by choosing the piece-wise constant function basis, that conveniently
categorises CBC data, interpretation, estimation, and computational issues are
substantially simplified. This simplicity allows us to consider the extension to
more complex models as a perspective, for instance, by including pairwise inter-
actions between blood cell measures and age and sex.

As expected, deep neural network outperformed the Lasso in terms of recall.
Indeed, the Lasso explores a reduced feature space compared to neural networks.
Both approaches showed high values, though (the median (SD) recall values were
0.91 (0.04) and 0.87 (0.06) for deep neural network and the Lasso, respectively).
This is all the more important since errors inherent to the subjectivity of manual
blood smear tend to be biased: in case of doubt, the result of the worst case is
assumed. Thus, a fraction of manual smears labelled as abnormal may actually
be normal, potentially inflating false negative results. The Lasso presented the
best precision and specificity. The weighting may have a greater impact on the
neural network to the detriment of its specificity and its precision (by overes-
timating positives). The consensus criterion led to inferior results in terms of
both, precision and recall.

AUC scores, balancing recall and precision/specificity, were comparable for
NN and the Lasso. By means of recall and specificity, ROC AUC accounts for
both true positives and true negatives, while PR AUC focuses on positives i.e. the
minority class. Thus, PR AUC is recommended for predictive performance eval-
uation in imbalanced classification [18]. However ROC AUC is well-established
in biomedical and other disciplines since easier to interpret [5]. We used ROC
and PR AUC for evaluation but only ROC AUC to tune hyperparameters. A
future perspective is the exploration of the PR AUC for hyperparameter tuning.

A wide variety of methods whose non-linearity/complexity lies somewhere
between Deep neural networks and logistic regression exists. However, our goal
was not to find the best prediction method, but to show that the proposed
simple approach doesn’t imply an important deterioration of the predictive per-
formance.

The simulation study showed that our procedure was able to detect true
thresholds with high probability provided that enough data are available in the
thresholds’ neighbourhood. On the other hand, the conclusions arisen from the
visualisation of Lasso estimates and their relative importance are sound and
relevant for a particular clinical laboratory [22]. They generalise neither to other
machines nor to other populations. However, the procedure itself appears to be
an useful tool for decision support at laboratory-level. Our R code to implement
it is publicly available on request from the corresponding author.

More standard measures of uncertainty are confidence intervals and p-values.
Some R packages allow to compute these measures for high-dimensional data
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with binary response. However, we failed to use them with our CBC data. Al-
ternatively, we implemented resampling-based percentile confidence intervals.
Nevertheless, their coverage rate was poor and thus we don’t recommend their
use.

From the perspective of an extended decision-making tool, it would be in-
teresting to provide a deeper analysis of errors, for example using as outcome
the agreement/disagreement between manual smear and CBC results accord-
ing to the locally fine-tuned thresholds. This approach would allow to directly
deal with the question of how to decrease laboratory burden by reducing useless
microscopic reviews.
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