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Abstract
The edit distance (a.k.a. the Levenshtein distance) between two words is defined as the minimum
number of insertions, deletions or substitutions of letters needed to transform one word into another.
The Levenshtein k-neighbourhood of a word w is the set of words that are at edit distance at most
k from w. This is perhaps the most important concept underlying BLAST, a widely-used tool for
comparing biological sequences. A natural combinatorial question is to ask for upper and lower
bounds on the size of this set. The answer to this question has important algorithmic implications
as well. Myers notes that ”such bounds would give a tighter characterisation of the running time
of the algorithm” behind BLAST. We show that the size of the Levenshtein k-neighbourhood of
any word of length n over an arbitrary alphabet is not smaller than the size of the Levenshtein
k-neighbourhood of a unary word of length n, thus providing a tight lower bound on the size of the
Levenshtein k-neighbourhood. We remark that this result was posed as a conjecture by Dufresne at
WCTA 2019.
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10:2 Unary Words Have the Smallest Levenshtein k-Neighbourhoods

1 Introduction

BLAST (Basic Local Alignment Search Tool) is a widely-used tool for comparing biological
sequences such as the amino-acid sequences of proteins or the nucleotides of DNA or RNA
sequences. A BLAST search enables to compare a subject sequence, called a query, against a
database of sequences to identify the ones that resemble the query sequence above a certain
threshold. The paper describing BLAST [1] is one of the most highly cited papers in science.

According to Myers [8], the most important algorithmic idea underlying BLAST is that of
searching for exact matches to words in the neighbourhood of fixed-length fragments selected
from the query sequence. We call these fragments words. Let δ be a sequence comparison
measure that given two words v and w returns a numeric measure δ(v, w) of the degree to
which the two words differ. Given a word w, the k-neighbourhood of w with respect to δ
is the set of all words whose best alignment with w under measure δ is no more than k.
The most widely-used case is where δ is the edit distance (a.k.a. the Levenshtein distance),
which is the minimum number of insertions, deletions or substitutions of letters needed
to transform one word into another [6]. When δ is the Levenshtein distance, we call this
neighbourhood the Levenshtein k-neighbourhood of w and we denote it by Nk,Σ(w), where Σ
is the considered alphabet. We provide an example below.
I Example 1 (Levenshtein k-neighbourhood). Let w = baab, k = 1 and Σ = {a, b}. Then
N1,Σ(baab) is:

{bbab, bbaab, babb, bab, babab, baab, baabb, baaba, baa, baaa, baaab, abaab, aab, aaab}.

From an algorithmic point of view, the most natural question is how we can generate the
Levenshtein k-neighbourhood in time that is proportional to the size of the neighbourhood.
In fact, this is the core computational task underlying BLAST. Myers described an algorithm
for generating a condensed version of this neighbourhood efficiently (see [8] for more details).
Another natural question is how we can compute the size of the Levenshtein k-neighbourhood.
Touzet gave an algorithm for computing |Nk,Σ(w)| for a word w of length n over an alphabet
Σ that works in time linear in n but exponential in k [11]. This algorithm is based on a
variant of the so-called Universal Levenshtein Automaton [7], which in turn is based on the
Levenshtein automaton of w: the non-deterministic finite automaton recognising all words
which are at Levenshtein distance at most k from w. For other related works, see [2, 3, 9, 10].

From a combinatorial point of view, the most natural question asks for upper and lower
bounds on the size of the Levenshtein k-neighbourhood. Myers provided recurrences for
counting the number of distinct sequences of k edit operations that one could perform on a
given word and notes that “such bounds would give a tighter characterisation of the running
time of the algorithm” behind BLAST [8]. A word is called unary if it consists of a single
element of Σ. The main result of this work can be formally stated as follows.
I Theorem 2. Let a ∈ Σ be an arbitrary element of alphabet Σ. For any positive integers n
and k, we have |Nk,Σ(an)| < |Nk,Σ(w)|, for any non-unary word w of length n.

The course of our proof is to construct, for every word u ∈ Nk,Σ(an), a distinct word
u′ ∈ Nk,Σ(w) that can be obtained by a similar sequence of edit operations. In particular,
we show that, for any n, k, and Σ,

|Nk,Σ(an)| =
k∑

i=0

k∑
j=i−k

(
n+ j

i

)
(σ − 1)i

is the size of the smallest Levenshtein k-neighbourhood of a word of length n, where a ∈ Σ
and σ = |Σ|. We remark that our main result was posed as a conjecture by Dufresne in [5].
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Organisation of the Paper. The basic definitions and notation used throughout are in-
troduced in Section 2. In Section 3, we present the main result of this work for binary
alphabets – apart from the strictness of the inequality. We then generalise this result to
arbitrary alphabets in Section 4 and prove the strictness of the inequality directly in this
more general case. We conclude this paper in Section 5 with some final remarks.

2 Preliminaries

An alphabet Σ is a finite non-empty set of size σ = |Σ| whose elements are called letters. A
word over Σ is a sequence of letters from Σ. We call a word w unary if it consists of a single
letter of Σ and non-unary if it consists of at least two letters of Σ. Σn denotes the set of
words of length n over Σ and Σ∗ denotes the set of finite words over Σ. For a word w, by |w|
we denote its length, and by w[i], for i = 1, . . . , |w|, we denote its subsequent letters. The
word of length 0 is the empty word, which we denote by ε.

We consider the following elementary edit operations: insertion, deletion, and substitution.
For two words x and y, we define the edit distance (a.k.a. the Levenshtein distance) as the
minimum number of edit operations that transform x to y, and we denote it by Lev(x, y).
The function Lev is then a metric on Σ∗ [4].

Given a word w, an alphabet Σ, and a positive integer k, we define Nk,Σ(w) as the set of
all words in Σ∗ that are at Levenshtein distance at most k from w. Formally, we have that

Nk,Σ(w) = {v ∈ Σ∗ : Lev(v, w) ≤ k}.

We call Nk,Σ(w) the Levenshtein (k,Σ)-neighbourhood of w.
For any binary alphabet Σ, we define the complement of a word w over Σ as the word

obtained by substituting w[i] for letter a 6= w[i], with a ∈ Σ, for all i = 1, . . . , |w|. We denote
the complement of w by w and we call a single such substitution operation a flip.

3 Main Result for Binary Alphabets

In this section we consider Σ = {a, b}, write Nk(w) and refer to Levenshtein k-neighbourhood
for simplicity. We present the main result but do not show the strictness of the inequality.
We generalise this result to an arbitrary alphabet Σ and show the strictness in Section 4.

Let N j
k(w) = {u ∈ Nk(w) : |u| = j}. Further let #a(u) denote the number of a’s in word

u. We illustrate the main ideas of our approach on a simple case and first consider the words
of the neighbourhood that are of length at most n.

I Observation 3. Any u ∈ Nk(an) with |u| ≤ n can be obtained from an by the following
sequence of at most k edit operations: n− |u| deletions of a’s in the beginning of an followed
by a sequence of |u| −#a(u) flips.

I Example 4. Let w = aaaa and k = 2. Then u = aba ∈ N2(aaaa) can be obtained from
aaaa by deleting n− |u| = 1 letter a to obtain aaa and then by |u| −#a(u) = 1 flip to obtain
aba.

Intuitively, the size of the set N j
k(an) is equal to the number of subsets of {1, . . . , j} of

size at most k− (n− j); n− j is the number of deletions and k− (n− j) the number of flips.

I Lemma 5. If j ≤ n, then |N j
k(an)| ≤ |N j

k(w)| for all w ∈ Σn.

CPM 2020



10:4 Unary Words Have the Smallest Levenshtein k-Neighbourhoods

Proof. We use the characterisation of Observation 3. Let us argue why |N j
k(w)|, for any

word w of length n, is at least as big as |N j
k(an)|. Consider the following procedure applied

on word w: the deletion of the first n − j letters of w followed by the flipping of at most
k− (n− j) letters. Clearly all words obtained by this procedure are distinct. This procedure
thus gives us a subset of N j

k(w) that is of size equal to |N j
k(an)|. J

Let us now consider the case of the words of the neighbourhood that have length greater
than n. In particular, we denote the neighbourhood

⋃
j>n

N j
k(w) of these words by N>n

k (w)

and thus N≤n
k (w) = Nk(w) \N>n

k (w). For a word u ∈ N>n
k (an), we distinguish between two

cases depending on the number of a’s in u:

Case 1: #a(u) ≥ n,
Case 2: #a(u) < n.

The following observation states that in each case the word u ∈ N>n
k (an) can be obtained

by a restricted sequence of edit operations.

I Observation 6.
(1) Any u ∈ N>n

k (an) with #a(u) ≥ n can be obtained from an by the following sequence of
at most k edit operations: #a(u)− n insertions of a’s in the beginning of an followed by
a sequence of |u| −#a(u) insertions of b’s.

(2) Any u ∈ N>n
k (an) with #a(u) < n can be obtained from an by the following sequence of

at most k edit operations: n−#a(u) flips followed by a sequence of |u| − n insertions of
b’s. The insertions can be restricted to the part of the word after the rightmost flip.

I Example 7. Let w = aaaa and k = 2. For Case 1, u = aaaaba ∈ N>n
2 (aaaa) with

#a(u) = 5 ≥ n = 4 can be obtained by #a(u)−n = 1 insertion of a in the beginning of aaaa
to obtain aaaaa and then by |u| −#a(u) = 1 insertion of b to obtain aaaaba. For Case 2,
u = aabab ∈ N>n

2 (aaaa) with #a(u) = 3 < n = 4 can be obtained by n−#a(u) = 1 flip to
obtain aaba and then by |u| − n = 1 insertion of b to the right of the flip to obtain aabab.

Intuitively, in Case 1, we insert the relevant number of a’s to reach #a(u) because we
have fewer a’s than needed, and then insert the relevant number of b’s. In Case 2, we flip the
relevant number of a’s to go down to #a(u) because we have more a’s than what is needed,
and then insert the remaining b’s to the right of the rightmost flip.

Proof Strategy. Let u be an arbitrary element of Nk(an), for some positive integers n and
k. We define a function fu : Σn → Σ∗, such that:
1. fu(w) ∈ Nk(w), for all w ∈ Σn; and
2. Given w and fu(w) we can retrieve u.
Such an fu directly yields the desired bound (apart from the strictness) since it implies that
for any word w we cannot have fu(w) = fu′(w) for u, u′ ∈ Nk(an), u 6= u′. In particular, we
have that |Nk(an)| ≤ |Nk(w)| for any w ∈ Σn; see Table 1 for a complete example.

Note that for |u| ≤ n we already used the same idea to lower bound |N≤n
k (w)| by

|N≤n
k (an)|. Indeed, we implicitly defined fu(w) for u ∈ N≤n

k (an) that consists in removing
the first n − |u| letters of w, resulting in a word w′, and then flipping the letters of w′ at
positions j where u[j] = b (see Lemma 5).
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Table 1 Let n = 3, w = aab and k = 2. The table presents an assignment fu from every word in
N2(a3) to a different word in N2(aab) that is used in the proof of the main result. Note, however,
that as per Theorem 2 there is at least one more word in N2(aab), namely, the word a.

(a) fu for u ∈ N≤3
2 (a3).

u ∈ N≤3
2 (a3) fu(aab)

a b

aa ab

ab aa

ba bb

aaa aab

aab aaa

aba abb

abb aba

baa bab

bab baa

bba bbb

(b) fu for #a(u) < 3 (Case 2).

u ∈ N>3
2 (a3) fu(aab)

aabb aaaa

abab abba

abba abbb

baab baba

baba babb

bbaa bbab

(c) fu for #a(u) ≥ 3 (Case 1).

u ∈ N>3
2 (a3) fu(aab)

aaaa aaab

aaab aaba

aaba aabb

abaa abab

baaa baab

aaaaa aaaab

aaaab aaaba

aaaba aaabb

aaabb aabaa

aabaa aabab

aabab aabba

aabba aabbb

abaaa abaab

abaab ababa

ababa ababb

abbaa abbab

baaaa baaab

baaab baaba

baaba baabb

babaa babab

bbaaa bbaab

Definition of fu. Let us start by introducing the following edit operation on a non-empty
word w. It takes as input parameters an integer j ∈ [1, |w|] and a positive integer t.

ins-diff(w, j, t) : inserts a block of length t of letters equal to w[j] after the letter w[j] (1)

See Figure 1 for an illustration of operation ins-diff(w, j, t).

b b b a a b b

a a a b b a a

Figure 1 For every position j of w = aaabbaa (bottom), the letter (top) of which a block inserted
by ins-diff(w, j, 1) after position j would comprise.

In what follows, we assume that all insertions are with respect to the original indices of
w. This can be achieved, for example, by performing insertions in a right-to-left manner
when they are given as an ordered batch. Before providing the definition of fu, we define
two auxiliary operators gx and hx, for a word x.

Let us start with gx. For any word x starting with a, we define an operator gx that can be
applied to any word y such that |y| = #a(x). Intuitively, to construct word gx(y), the letters

CPM 2020



10:6 Unary Words Have the Smallest Levenshtein k-Neighbourhoods

of y get in gx(y) the positions that letters a possess in x, and for every maximal block of b’s
in between in x, i.e. a block consisting of only b’s that is neither preceded nor succeeded by
a b, we apply an ins-diff operation on y. Specifically, we define gx(y) = v as follows: starting
with v = y, for each maximal block x[r . . r + t− 1] of b’s in x, with #a(x[1 . . r − 1]) = m,
perform ins-diff(v,m, t). Note that |gx(y)| = |x|; see Example 8.

I Example 8. Let x = aababbababaab and y = aaabbaa; note that #a(x) = 7 = |y|. We
have gx(y) = v = aababbbabaaab; see also the figure below and recall that we perform this
procedure from right to left. Starting from v = y, for the first maximal block x[r . . r+ t−1] =
x[13 . . 13] = b with #a(x[1 . . r − 1]) = #a(x[1 . . 12]) = m = 7, we perform ins-diff(v, 7, 1),
which constructs aaabbaab. For the next maximal block x[r . . r + t − 1] = x[10 . . 10] = b

with #a(x[1 . . r − 1]) = #a(x[1 . . 9]) = m = 5, we perform ins-diff(v, 5, 1), which constructs
aaabbaaab. For the next maximal block x[r . . r+ t−1] = x[8 . . 8] = b with #a(x[1 . . r−1]) =
#a(x[1 . . 7]) = m = 4, we perform ins-diff(v, 4, 1), which constructs aaababaaab, and so on.

x : a a b a b b a b a b a a b

y : a a a b b a a

gx(y) : a a b a b b b a b a a a b

For any word x, we also define an operator hx that takes as input a word y of length |x|
and flips its letters on positions in which x has b’s.

We are now in a position to define fu(w), for all w ∈ Σn. Recall that u ∈ N>n
k (an). We

have the following two cases for fu.
Case 1: #a(u) ≥ n. Let us split u in its shortest suffix s that contains n a’s and the

remaining (possibly empty) prefix p. We then define fu(w) for words u and w in this case as
follows (see Example 9):

fu(w) = p · gs(w). (2)

I Example 9. Let w = aaabbaa and k = 4; note that n = 7. If u = abaaaaaabaa, then
#a(u) = 9 ≥ n, so we are in Case 1. We have p = aba and s = aaaaabaa is the shortest suffix
that contains n = 7 occurrences of the letter a. Then fu(w) is constructed by concatenating
p with the word gs(w) as shown in the figure below.

u : a b a a a a a a b a a

w : a a a b b a a

fu(w) : a b a a a a b b a a a

Case 2: #a(u) < n. In this case we split u in its shortest suffix s′ that contains |u| − n
b’s and the remaining prefix p′. Note that p′ is always non-empty. We then define fu(w) for
words u and w in this case as follows (see Example 10):

fu(w) = hp′(w′) · gx(w)[|p′|+ 1 . . |u|], where x = a|p
′|s′ and w′ = w[1 . . |p′|]. (3)

In particular, #a(x) = |x| −#b(x) = |u| − (|u| − n) = n, and so applying gx is well-defined.

I Example 10. Let w = aaabbaa and k = 4; note that n = 7. If u = aababbaab, then
#a(u) = 5 < n, so we are in Case 2. We have p′ = aabab and s′ = baab is the shortest suffix
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that contains |u| −n = 2 occurrences of letter b. Then fu(w) is constructed by concatenating
two words: the first one is hp′(w′), where w′ = w[1 . . |p′|]; and the second one is composed
of the final |s′| letters of gx(w), where x is the word obtained from u by changing the first
n−#a(u) = 2 occurrences of b to a as shown in the figure below.

u : a a b a b b a a b

x : a a a a a b a a b

w : a a a b b a a

gx(w) : a a a ba a a b b

hp′(w′) : a a b b a

fu(w) : a a b b a a a a b

In Table 1 we provide a complete example of applying fu, for each u ∈ Nk(a3), to w = aab.
Let us now show the following fact.

I Fact 11. |fu(w)| = |u| and Lev(w, fu(w)) ≤ Lev(an, u).

Proof. The first part can be readily verified. As for the second part, one can obtain fu(w)
from w by the same sequence of edit operations (types and positions) that yield u from an,
according to Observation 6. J

We next prove the main lemma on which our main result relies. A pseudocode imple-
menting the algorithm used in the proof of this lemma can be found as Algorithm 1. Note
that by considering a’s as 0’s and b’s as 1’s, we have that hx(y)⊗ y = x, where ⊗ denotes
the XOR operation. Consider, for instance, x = aabab, y = aaabb and hx(y) = aabba.

Algorithm 1 Retrieve(w, fu(w)) for Σ = {a, b}.
Input: Two words w and fu(w).
Output: A word u.
1: u← ε

2: k1 ← |w|
3: k2 ← |fu(w)|
4: while k2 > k1 and k1 > 0 do
5: if w[k1] = fu(w)[k2] then
6: k1 ← k1 − 1
7: prepend(a, u)
8: else
9: prepend(b, u)

10: k2 ← k2 − 1
11: if k1 = 0 then \\ k2 > 0; Case 1 with p 6= ε

12: prepend(fu(w)[1 . . k2], u)
13: else \\ k1 = k2; Case 2 (or Case 1 with p = ε)
14: prepend(w[1 . . k1]⊗ fu(w)[1 . . k2], u)
15: return u

I Lemma 12. Let u be an arbitrary element of N>n
k (an), for some positive integers n and

k. Given w and fu(w), for any w ∈ Σn, we can retrieve u.

CPM 2020



10:8 Unary Words Have the Smallest Levenshtein k-Neighbourhoods

Proof. Let us note that, as we only had insertions and flips of letters, conceptually for each
position in w there is a corresponding position in fu(w). The correspondence is given by
ignoring the letters of fu(w) that were inserted by operation ins-diff. Our aim is to find all
such pairs of corresponding positions in order to retrieve u.

To this end, we will swipe both w and fu(w) from right to left and prepend letters to an
initially empty word u, which in the end will be equal to u ∈ N>n

k (an). We will maintain a
position in each of the words, k1 initiated as |w| and k2 initiated as |fu(w)|.

Intuitively, we are first processing the part of fu(w) that comes from an application of
operator g to w or to a suffix of w, depending on which case we are in. While processing this
part, we maintain the invariant that the letter of fu(w) corresponding to w[k1] is the rightmost
occurrence of w[k1] in fu(w)[1 . . k2], relying on the definition of g. Then we can apply the
following procedure repeatedly; see Lines 4-10 in Algorithm 1. We compute the rightmost
occurrence of w[k1] in fu(w)[1 . . k2]; let it be at position j. We have that u[j . . k2] = abk2−j .
We prepend abk2−j to u, decrement k1 and set k2 to j − 1; see Example 13.

Let us now focus on the stopping condition of this procedure, i.e. the point where the
remaining prefix of fu(w) does not originate from an application of g. If we are in Case 1,
while k1 > 0 we must have that k2 ≥ k1 + |p|. If we are in Case 2, while k2 > k1 we must
have that k1 ≥ |p′|. Overall, while 0 < k1 < k2, we must have that k2 > |p| if we are in Case
1 or k2 > |p′| if we are in Case 2.

If at some point k1 reaches 0, i.e. we have consumed all of w, then we are in Case 1. Thus,
fu(w)[1 . . k2] = p and we prepend this prefix to u; see Lines 11-12 in Algorithm 1.

Else, if at some point k1 = k2, i.e. we are left with equal-length prefixes of w and
fu(w), then we are either in Case 2 or in Case 1 with p = ε. By using the XOR operation
w[1 . . k1]⊗ fu(w)[1 . . k2] in the former case we retrieve p′ and in the latter case we get ak1

which is the missing prefix of s. In either case we prepend the result to u; see Lines 13-14
in Algorithm 1. J

I Example 13. Let u = abba ∈ N2(a3), w = aab, and fu(w) = abbb. We have k1 = 3 and
k2 = 4. At the first iteration of the while loop in Algorithm 1 we have w[3] = fu(w)[4] = b and
so we set k1 = 2, u = a and k2 = 3. At the second iteration we have w[2] = a 6= fu(w)[3] = b

and so we get u = ba and k2 = 2. At this point we exit the while loop (because k1 = k2),
and since we are at Case 2 we prepend w[1 . . 2] ⊗ fu(w)[1 . . 2] = aa ⊗ ab = ab to u = ba,
which gives us u = abba. At this point we have retrieved u = abba ∈ N2(a3).

By combining Lemmas 5 and 12 and Fact 11 we get |N j
k(an)| ≤ |N j

k(w)| for every j. This
implies our main result for binary alphabets, apart from the strictness of the inequality. We
leave the latter for the next section.

4 Generalisation to Arbitrary Alphabets and Strictness

For an arbitrary alphabet Σ = {0, . . . , σ− 1} we only need to make minor adjustments in the
definition of function fu and in the algorithm for retrieving u from w and fu(w). Specifically,
we replace the XOR operation by addition/subtraction modulo σ. Intuitively, one can think
of 0’s as a’s in the binary case, and of non-0’s as b’s in the binary case.

Definition of fu. Let u and v be two words of equal length. Let us denote by u⊕ v the
position-wise sum of words u and v modulo σ, e.g. for σ = 4 we have 1312⊕ 1112 = 2020.
We analogously denote by u	 v the position-wise subtraction of words u and v modulo σ.
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We adapt operation ins-diff as follows, with z being a word containing only positive letters:

ins-diff(w, j, z) = insert word z ⊕ (w[j])|z| after the letter at position j in word w. (4)

Operator gx can now be applied to any word y such that |y| = #0(x). gx considers
maximal blocks of letters in x not containing 0’s instead of maximal blocks of b’s (in the
binary case). For such a block z, it performs an ins-diff(y, j, z) operation on a word y.

The definition of fu becomes as follows.
Case 1: #0(u) ≥ n. We split the word u into p and s exactly as in the binary case and

define fu(w) = p · gs(w); see Example 14.

I Example 14. Let Σ = {0, 1, 2}, w = 201120 and k = 7; note that n = 6. If u =
0210001200210, then #0(u) = 7 ≥ n, so we are in Case 1. We have p = 021 and s =
0001200210 is the shortest suffix that contains n = 6 occurrences of the letter 0. Then fu(w)
is constructed by concatenating p with the word gs(w) as shown in the figure below.

u : 0 2 1 0 0 0 1 2 0 0 2 1 0
w : 2 0 1 1 2 0

fu(w) : 0 2 1 2 0 1 2 0 1 2 1 0 0

Case 2: #0(u) < n. The split of u into p′ and s′ is the same as in the binary case,
but instead of s′ containing n − #a(u) b’s it now contains n − #0(u) non-0’s. fu(w) =
(p′ ⊕ w[1 . . |p′|]) · gx(w)[|p′|+ 1 . . |u|], where x = 0|p′|s′; see Example 15.

I Example 15. Let Σ = {0, 1, 2}, w = 201120 and k = 5; note that n = 6. If u = 21021020,
then #0(u) = 3 < n, so we are in Case 2. We have p′ = 2102 and s′ = 1020 is the shortest
suffix that contains |u| − n = 2 occurrences of letters different than 0. Then fu(w) is
constructed by concatenating two words: the first one is hp′(w′), where w′ = w[1 . . |p′|]; and
the second one is composed of the final |s′| letters of gx(w), where x is the word obtained
from u by changing the first n−#0(u) = 3 occurrences of non-0 letters to 0 as shown in the
figure below.

u : 2 1 0 2 1 0 2 0
x : 0 0 0 0 1 0 2 0
w : 2 0 1 1 2 0

gx(w) : 2 2 1 02 0 1 1
hp′(w′) : 1 1 1 0
fu(w) : 1 1 1 0 2 2 1 0

Algorithm 2 is an adaptation of Algorithm 1 for Σ = {0, . . . , σ − 1}. Note that the two
constructions are identical for |Σ| = 2, a = 0 and b = 1.

The proof of Lemma 5 that considers words of length at most n in Nk(w) can be directly
generalised for arbitrary alphabets, by allowing substitutions of letters instead of flips. This
concludes the description of the generalisation.

The following theorem summarises all the results and introduces strictness in the inequality.

I Theorem 2. Let a ∈ Σ be an arbitrary element of alphabet Σ. For any positive integers n
and k, we have |Nk,Σ(an)| < |Nk,Σ(w)|, for any non-unary word w of length n.

CPM 2020
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Algorithm 2 Retrieve(w, fu(w)) for Σ = {0, . . . , σ − 1}.
Input: Two words w and fu(w).
Output: A word u.
1: u← ε

2: k1 ← |w|
3: k2 ← |fu(w)|
4: while k2 > k1 and k1 ≥ 1 do
5: prepend(fu(w)[k2]	 w[k1], u)
6: if w[k1] = fu(w)[k2] then
7: k1 ← k1 − 1
8: k2 ← k2 − 1
9: if k1 = 0 then \\ k2 > 0; Case 1 with p 6= ε

10: prepend(fu(w)[1 . . k2], u)
11: else \\ k1 = k2; Case 2 (or Case 1 with p = ε)
12: prepend(fu(w)[1 . . k2]	 w[1 . . k1], u)
13: return u

Proof. We have |N j
k,Σ(an)| ≤ |N j

k,Σ(w)| for every j by combining the counterparts of Lem-
mas 5 and 12 and Fact 11 for an arbitrary alphabet. It thus suffices to find some value of j
for which this inequality is strict.

Let us first consider the case that k < n, in which we claim that

|Nn−k
k,Σ (w)| > |Nn−k

k,Σ (an)| = 1.

Note that in this case words of length n− k can be obtained only by performing k deletions,
i.e. no insertions or substitutions are allowed. Hence |Nn−k

k,Σ (an)| = 1. For a non-unary w,
we can, for instance, delete letters in lexicographic or reverse lexicographic order, breaking
ties arbitrarily, obtaining words with different multiplicities for some letter.

Let us now proceed to the complementary case that k ≥ n.
Then, each word u ∈ Nk+1

k,Σ (an) can be obtained by exactly k+1−n insertions and at most
n− 1 substitutions. Let us restrict ourselves to determining the size of N ′(w) ⊆ Nk+1

k,Σ (w),
defined as the set of elements of Nk+1

k,Σ (w) that can be obtained from w using exactly k+1−n
insertions and at most n−1 substitutions. In particular, one letter from w remains unchanged
and gets shifted to the right by at most k + 1 − n positions – possibly not shifted at all.
Thus, each word u ∈ N ′(w) can be obtained as follows. We first choose the position i in
u where the shifted letter has landed. For such a position i, it is a letter c occurring in
w[max(1, i− (k + 1− n)) . .min(i, n)] – any of those letters can be chosen by picking a right
layout of insertions. We then put c at position i and fill the remaining k positions arbitrarily;
see Example 16.

Let us do the above process once for each position i, with a fixed letter λ(i), arbitrarily
chosen from the possible ones. In total, we obtain all words from Σk+1 apart from the
ones which differ from λ(i) on every position i. In particular, the total number of words
that we get for this specific choice of λ(i)’s is σk+1 − (σ − 1)k+1 and this is equal to
|N ′(an)| = |Nk+1

k,Σ (an)|. Then, at some position j, since w is non-unary we can actually
choose a letter c 6= λ(j) instead; for instance any position j such that w[j − 1] 6= w[j] will
work. Let us now pick this letter c and fill each other position i with a letter different from
λ(i). This way we obtain a word that was not obtained with the previous choice of λ(i)’s
and hence |Nk+1

k,Σ (w)| ≥ |N ′(w)| > |Nk+1
k,Σ (an)|. J
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I Example 16. Let us consider word w = abc and k = 5. Every word u ∈ N ′(w) is obtained
by 3 insertions and up to 2 substitutions. If the letter a from w is not substituted for, it can
land at any of the positions from 1 to 4 in u; similarly, b and c can land at positions from 2
to 5 and from 3 to 6, respectively. This is shown schematically in the following table.

position in u 1 2 3 4 5 6
landing positions of a a a a a

landing positions of b b b b b

landing positions of c c c c c

Then the i–th column specifies the possible choices for λ(i), e.g., λ(2) ∈ {a, b}. Note that
if w was unary, then all those sets would be singletons.

One possible choice of λ(1), . . . , λ(6) is a, a, c, a, b, c. For it, we generate all the words
but the 26 words that have no positions in common with aacabc. For a different choice of
λ(i)’s, say, a, b, c, a, b, c, we obtain a word that was not generated before, e.g., bbabca that
has exactly one position in common with abcabc.

Let us now complete the picture by showing a closed formula for obtaining the tight lower
bound implied by Theorem 2 and thus an efficient way to compute this bound.

I Fact 17.

|Nk,Σ(an)| =
k∑

i=0

k∑
j=i−k

(
n+ j

i

)
(σ − 1)i.

Proof. We first choose the number i of letters that are different from a in some u ∈ Nk,Σ(an)
and then the length n+ j of the word. Note that j ≥ i− k since we can have at most k − i
deletions as we need at least i insertions or substitutions to have i letters different from a.
We then have

(
n+j

i

)
options to choose the positions where the letter is not a and (σ − 1)

letters to choose from for each such position. J

I Remark 18. |Nk,Σ(an)| can be computed with O(k2) arithmetic operations.

5 Final Remarks

We showed a tight lower bound on the size of the Levenshtein k-neighbourhood. In particular,
we defined a function fu for each word u ∈ Nk,Σ(an), such that, for any given w ∈ Σn, we
have that fu(w) ∈ Nk,Σ(w) and fu(w) 6= fu′(w) for u 6= u′. Our construction is not the only
one possible. For example, in Case 1 of our construction, one could take fu(w) = q · gs(w),
where q = p⊕ 1|p| (for the binary case, this corresponds to the negation of p). However, our
construction has a neat property that fu(an) = u, for any u ∈ Nk,Σ(an).

The following two questions remain unanswered:

1. Can a similar approach be employed for showing a tight upper bound on |Nk,Σ(w)|?
2. Touzet gave an algorithm for computing |Nk,Σ(w)| for a word w of length n over an

alphabet Σ that works in time linear in n but exponential in k [11]. Can this computation
be done in polynomial time or is this problem #P -hard?

CPM 2020
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