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ABSTRACT
The memory isolation mechanism plays an essential role to provide

security enforcement in JavaScript programs. Existing secure inter-

action libraries such as Google Caja, SES, and VM2 rely on built-in

memory isolation mechanisms provided by Node.js and browsers,

yet most of the other engines such as JerryScript and Duktape,

which are implementations for IoT devices, do not support such

isolation mechanisms.

In this paper, we report about the design and implementation of

SecureJS, a portable JavaScript-to-JavaScript compiler that enforces

memory isolation. As it only uses standard features, the compiled

code it generates can be used by any JavaScript engine. We vali-

dated empirically the semantics preservation and memory isolation

of SecureJS compiled programs by using 10,490 test programs of

ECMAScript Test262 test suite. We also developed a novel experi-

ment to evaluate memory isolation property of compiled code by

instrumented JavaScript engines.
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1 INTRODUCTION
JavaScript has been growing at a rapid pace over the years due to its

easy manipulation and deployment in development. The dynamic

∗
This research has been partially supported by the ANR17-CE25-0014-01 CISC project,

the Inria Project Lab SPAI, and the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 830892.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SAC’21, March 22-March 26, 2021, Gwangju, South Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00

https://doi.org/10.1145/3412841.3442001

nature of the language provides a smooth environment for the inte-

gration of code, and it contributes to the easy and fast development

of complex applications [10].

Whereas the dynamic features of JavaScript play an essential

role in the language popularity by simplifying application devel-

opments, they also enable malicious JavaScript libraries to exploit

these dynamic features to break the integrity and confidentiality of

the applications [3]. Within a single JavaScript program execution

all components share a global object and intrinsic objects such as

Object and Object.prototype. Due to the idiosyncratic JavaScript

semantics whose primitive operations implicitly access these global

and intrinsic objects, all the components that form an application

are tightly bond together. This gives opportunities to a malicious

third-party code to pervert or extract undue pieces of information

from others execution.

Various researches have been carried out so as to provide security

enforcement achieved by memory isolation [2, 8, 9, 11, 13–16]. Total

isolation is the simplest way to run programs without unintended

interplay. However, more complex programs that need interac-

tions between programs cannot enjoy the benefit of isolation. The

practical secure JavaScript programming solutions such as Google

Caja [9], SES [1], and VM2 [13] rely on such an isolation mechanism

provided by Node.js or browsers and provide secure interactions

between isolated programs by controlling the interactions. Still,

such built-in isolation mechanisms are not supported other popu-

lar JavaScript implementations such as JerryScript
1
and Duktape

2
,

which are JavaScript implementations for micro-controllers, and

thus, it limits the use of these secure interaction solutions in a

practical use. It motivates the need for portable isolated JavaScript

environments independent from JavaScript implementations.

A basic building block for JavaScript memory isolation is a realm
(as it is defined in the latest ECMAScript specification

3
), which

consists of a global object and intrinsic objects. Programs running

in the same realm share the global and intrinsic objects, and isolated

realms initially do not share any references between the realms.

Running programs in different isolated realms guarantees that their

memory accesses do not interfere with each other. However, pro-

grams in a realm are able to interact with programs in another

realm by intentionally exporting a value, and it breaks the isolation.

Thus, isolated realms are a basic and essential unit for secure pro-

gram executions, and they can achieve security enforcement on fur-

ther interactions by combining with the existing secure JavaScript

programming solutions. Unfortunately, JavaScript realms are only

supported by some JavaScript implementations, such as Node.js and

browsers, and it limits the use of the existing secure programming

solutions in other JavaScript implementations.

1
https://jerryscript.net

2
https://duktape.org

3
https://www.ecma-international.org/ecma-262/#sec-code-realms
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Our Approach. In this paper, we propose a novel technique,

based on a JavaScript-to-JavaScript compilation, to run JavaScript

programs in an isolated realm. Our method focuses on rewriting

the semantics of implicit field accesses of the given program and

achieves memory isolation by using revised field access operations.

For that, we define a subset of JavaScript language, JS
explicit

, in

which primitive operations do not involve implicit field accesses.

The translation from JavaScript to JS
explicit

replaces all the im-

plicit field accesses of the source program with explicit operations.

JS
explicit

programs are meant to run in a dedicated secure runtime

environment that creates an isolated virtual realm and provides se-

cure primitive operations that implicitly access the isolated virtual

realm.

We have implemented a secure JavaScript-to-JavaScript compiler,

SecureJS. It transforms programs into equivalent ones, but which

would execute as if they were running inside an isolated memory.

The compilation relies on the translation to JS
explicit

and replaces

primitive operations to secure versions and thus execute in an iso-

lated memory, which simulates a JavaScript realm. The program

running in the isolated memory can interact with others by inten-

tionally exporting a value of the isolated memory to outside. This

compiler is portable and only uses standard features so it can be

used by any JavaScript engine that complies with ECMAScript 5.1

specification. Thus, the compiler provides an isolation mechanism

independently of JavaScript implementation, and it enables us to

use existing secure interaction libraries in any JavaScript engine.

Contributions.

• We propose a subset of the JavaScript language JS
explicit

,

in which primitive operations do not involve implicit field

accesses, and we present a translation from JavaScript to

JS
explicit

(Section 3).

• We provide a secure JavaScript-to-JavaScript compiler, Se-

cureJS, as a tool. This compiler transforms programs into

equivalent ones but which would execute as if they are run-

ning inside an isolated realm without relying on any built-in

mechanisms. This implementation is portable to any EC-

MAScript 5.1 compliant implementations and the isolated

realm supports all features of ECMAScript 5.1
4
(Section 4).

• We provide instrumented JavaScript engines that detect im-

plicit field accesses and field accesses to intrinsic objects. We

have used it to test empirically the semantic preservation

and memory isolation of the SecureJS compiled programs.

The instrumented engines can be used independently of Se-

cureJS to test memory isolation. Our tool and the patch for

the instrumented engine are publicly available
5
(Section 5).

2 OVERVIEW
We give an overview of our approachwith an overly simple example

that only use a field access operation that involves a dynamic type

conversion and prototype chain field lookup.

We demonstrate the evaluation of a JavaScript program construct.

An evaluation of a single JavaScript program construct consists of

4
We intentionally do not provide eval and with constructs.

5
https://gitlab.inria.fr/securejs/sjs-compiler

a series of JavaScript internal primitive operations. We consider the

following code fragment:

1 Boolean.prototype.x = 10;

2 var o = {toString: function () { return "x"; }};

3

4 true[o] === 10;

The evaluation of the field lookup operation true[o] used in the

test at line 4 consists of a series of JavaScript primitive operations

as follows:

(1) It applies ToObject to true to dynamically converts the value

to an object. The semantics of ToObject creates an instance

of Boolean intrinsic object by calling new Boolean(true), and

an internal field [[Prototype]]6 of the created object is set to
the reference of Boolean.prototype.

(2) It applies the internal operation ToString to the field name

designator o to dynamically convert the value to a string. The

semantics of ToString implicitly accesses the field toString of

the object o and calls it. As we defined at line 2, the function

returns a string "x".

(3) The field lookup operation searches a field named "x" from

the instance of Boolean intrinsic object. Since the instance

does not have a field named "x", it implicitly accesses the field
"x" of the object Boolean.prototype, which is the prototype

chain object of the instance. Since the field value of the object

Boolean.prototype is 10 as we defined at line 1, the result of

the field lookup operation is evaluated to 10 and the equality

test succeeds.

The evaluation of a field lookup operation in JavaScript involves

two implicit field accesses, and by one of these field accesses reads

a field value of the intrinsic object Boolean.prototype.

Our goal is to run programs as if they were running in isolated
realms. For that we will actually run them in isolated virtual realms
that rely on two ingredients: i) newly created controlled global and

intrinsic objects, and, ii) a rerouting of the implicit field accesses

from the original intrinsic objects to the controlled intrinsic objects.

In order to reroute field accesses, we use the two steps code trans-

formation. First, we transform programs into equivalent ones but

were implicit operations have be replaced with equivalent explicit

ones. For instance, in the above example, the implicit field accesses

are involved in the dynamic type conversion. For example, the code

true[o] === 10 is converted as follows:

1 // ToObject(true)

2 var r = new Boolean(true);
3 // ToString(o)

4 var s = o.toString ();

5 // actual field lookup

6 function Load(o,s) {

7 if (o.hasOwnProperty(s)) return o[s];

8 o = Object.getPrototypeOf(o);

9 return Load(o,s);

10 }

11 Load(r,s) === 10;

Second, we rewrite the code Load to reroute the field accesses as

follows:

6
In ECMAScript specification, internal field and method names are presented with a

double square brackets [[Name]]. These methods and field names are not allowed to

be called or accessed directly from JavaScript programs but callable or accessible from

other internal methods or operations.
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1 function SJSLoad(o,s) {

2 if (o.hasOwnProperty(s)) return o[s];

3 o = Object.getPrototypeOf(o);

4 if (o === Boolean.prototype)

5 o = isolated.Boolean.prototype;

6 return SJSLoad(o,s);

7 }

8 SJSLoad(r,s) === 10;

This code uses the SJSLoad instead of Load for the field lookup

operation. The crucial point is line 4. When a field access reaches

an intrinsic object Boolean.prototype, it reroutes the field access

to the controlled intrinsic object isolated.Boolean.prototype (line

5). Thus, the rewritten code runs as if the code is running with the

controlled intrinsic object.

In the rest of the paper, we propose a core JavaScript language,

JS
explicit

, that does not involve implicit field accesses, andwe present

a translation from JavaScript to JS
explicit

(Section 3). Then, we im-

plement a secure runtime environment that consists of an isolated

virtual realm and secure primitive operations which reroute field

accesses to the virtual realm (Section 4).

3 JSexplicit, A CORE JAVASCRIPT LANGUAGE
In this section, we define JS

explicit
, a core language for JavaScript,

whose semantics is simpler than that of JavaScript in that its primi-

tive operations do not involve implicit field access.

3.1 Syntax
We use the following formal syntax for JS

explicit
:

e ::= x | xд | v ∈ Vprim | this | e ⊕ e | ⊖ e
| ⋄ hasOwnProperty e1 e2 | ⋄ getPrototypeOf e
| ⋄ toString e | ⋄ toNumber e | ⋄ toBoolean e

i ::= var x | x = e | xд = e | x1 = ⋄alloc(x2)
| e1[e2] = e3 | x = e1[e2]
| x = λ( ®xn ).i | return e
| x = ⋄apply(x1,x2,[ ®yn ])
| while x do i | if (x) i1 else i2
| try i1 catch(x) i2 finally i3
| throw e | {i } | i1;i2 | ϵ
| ⋄defineOwnProperty(x,e1,e2)
| x = ⋄getOwnPropertyDescriptor(e1,e2)

where ⊕ and ⊖ are the binary and unary operators of the JavaScript

language, respectively.

Expressions. An expression e is either a local variable access x ,
a global variable access xд , a constant value v ∈ Vprim, this value
this, binary operators, or unary operators.

Non-standard Expressions. The operators whose name starts

with the ⋄ symbol are non-standard operators. Their semantics

follow those of the corresponding JavaScript built-in functions, but

they do not involve implicit type conversion. The field test operator

⋄hasOwnProperty e1 e2 returns true if an object designated by e1
has a field named e2, and otherwise, returns false. This operator

requires an object value for e1 and a string value for e2. The op-
erator ⋄getPrototypeOf e returns a prototype chain object of the

given object e . The operator requires an object value for e . The
primitive type conversion operators ⋄toString e , ⋄toNumber e , and
⋄toBoolean e take a primitive value e as its argument and return a

string, a number, and a boolean value, respectively.

Instructions. JSexplicit uses non-standard semantics for the field

lookup and update operations. The field update operation e1[e2] =

e3 updates a field designated by the value of e2 of an object e1 to
the value of e3. Note that the update operation does not access a

prototype chain of the given object and does not involve a dynamic

type conversion. Thus, e1 must be evaluated to an object, and e2
must be evaluated to a string value. The field lookup operation x
= e1[e2] reads a field designated by e2 of an object e1 and assigns

the result to the local variable x . Like the field update operation,

the field lookup operation does not access a prototype chain object

and does not involve a dynamic type conversion. Thus, e1 must be

evaluated to an object, and e2 must be evaluated to a string value.

The semantics of the rest of the instructions follow the standard

semantics but these instructions do not involve dynamic type con-

versions. The variable declaration var x declares a variable in a

local scope. The assignment instructions x = e and xд = e assign
the value of expression e to the local variable x and the global

variable xд , respectively. When the instruction assigns a value to a

global variable, it updates to the new value if its writable property

is true; otherwise, it ignores the update operation. The object allo-

cation x1 = ⋄alloc(x2) allocates an object whose a prototype chain

designates x2, and it assigns the newly allocated location to x1. The
function declaration x = λ( ®xn ).i allocates a new function object

with its argument names ®xn and the function body instruction i . We

assume that all the program flows in the function body i end with a

return instruction return e . The return instruction return e returns
the value of the expression e to its caller site. The function call x =

⋄apply(x1,x2,[ ®yn ]) calls a function x1 with a this value x2 and its

arguments ®yn , and it assigns the return value of the function to the

variable x . The loop while x do i iterates its body i while the value
of its condition x is true. The branch instruction if (x) i1 else i2
executes the instruction i1 or i2 depending on the value of variable

x . The instruction try i1 catch(x) i2 finally i3 executes the in-
struction i1, and if there is an exception from the instruction i1, it
catches the exception value, bind it to a local variable x , and run

the instruction i2. Then, it executes the instruction i3. The throw
instruction throw e throws an exception with an exception value e .
Once an exception is thrown, it ignores instructions until it reaches

to the catch clause. The sequence i1;i2 executes the instructions i1
and i2 in order. The no-op instruction ϵ does nothing.

Non-standard Instructions. JSexplicit uses non-standard instruc-
tions: ⋄defineOwnProperty and ⋄getOwnPropertyDescriptor. In Java-

Script, they are supported by built-in functions Object.defineProperty

and Object.getOwnPropertyDescriptor. The immediate field update

operation with attributes ⋄defineOwnProperty(x,e1,e2) assigns the
value of the expression e2 to an object x of a field e1. The value of
expression e2 is either a data descriptor object that has fields value,
enumerable, configurable, and writable attributes or a accessor de-
scriptor object that has fields get, set, enumerable, and configurable.
The immediate field lookup x = ⋄getOwnPropertyDescriptor(e1,e2)
reads a field e2 of an object e1 and assigns the field value record as

an object to the variable x .
For the sake of simplicity, we use the following notations in the

rest of the section: x = f (y1,...,yn) denotes x = ⋄apply(f , null,

®yn), and we use a function isObject defined as follows:

1 isObject = λ[x]. {
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2 return (typeof x === "object" && x !== null) ||
3 typeof x === "function";

4 }

We omit else branches of if statements when empty.

3.2 Semantics
We define the semantics of a program by the means of a big-step

semantics. The semantics of the JS
explicit

follows the semantics of

JavaScript language, but they do not involve dynamic type conver-

sion and implicit field access. The configurations have the form

µ, ls , i, t ⇓ µ ′, t ′, where µ, µ ′ ∈ M are memories, ls ∈ Vloc is a

current scope object location, i is an instruction, and t is either
a normal state or an exception state with a value exc(v) where
v ∈ V. The state tag normal denote that the program state is in

a normal state, and the state tag exc(v) denote that the program
state is in an exception state with an exception value v . A memory

M = Vloc → O is a map from locations to objects and an object

o ∈ O = Vfld → R is a map from field names to field values where

Vfld = Vstr ∪Vi and Vstr are strings and Vi are special values used
to name internal JavaScript fields such as @env and @proto, and
R = Vstr → V is a map from record names to values and we write

{name1 : v1,name2 : v2} to denote a record that has two elements

of names name1 and name2 respectively with its values v1 and v2.
The evaluation of an expression e has the form µ, ls , e ⇓E v ,

where µ ∈ M is a program memory, v is a value of the expression

in the memory.

The auxiliary function Put(ls ,x ,v) either updates the current

scope object with x = v or walks the scope chain designated by

the outer scope @env to update the value of a local variable x as

defined by:

µ′ = µ[ls 7→ µ(ls )[x 7→ v]]
µ, Put(ls , x, v) ⇓A µ′

x ∈ dom(µ(ls ))

µ, Put(µ(ls )(@env).1, x, v) ⇓A µ′

µ, Put(ls , x, v) ⇓A µ′
x < dom(µ(ls ))

Figure 1 presents an excerpt of the formal semantics containing

only the essential rules. It shows the semantics of object allocation,

field lookup, and update operations. Unlike the standard JavaScript

semantics, the field lookup and update operations only accept that a

receiver is an object and a field name designator evaluates to a string

value, and the operations do not search a field in a prototype-chain

of the given receiver object.

• Alloc rule. The instruction x1 = ⋄alloc(x2) evaluates the
argument x2 to a value v , allocates a new object in a new

location ln with a prototype chain value v , and assigns the

allocated object reference to the local variablex1. The instruc-
tion requires the prototype value x2 to either be a location

value or a null value.

• Lookup rule. The instruction x1 = x2[e] first evaluates the
receiver object x2 and field name designator e respectively to
a location l and a string value k . The semantics do not search

a prototype chain, but merely read a field of the receiver

object µ(l)(k). In this rule, the field must be a record, which

has four fields value, enumerable, configurable, and writable,
and it assigns the value of the field value to the left-hand

side variable x1 by calling the auxiliary function Put.

• Update rule. The instruction x[e1] = e2 also evaluates

the receiver object x to a location l , the field name e1 to

a string value k . It evaluates the expression e2 to a value

v , and it assigns the value v as a record with enumerable,

configurable, and writable fields to the field k of the receiver

object designated by the location l . This rule is applied when
there was no field named k in the receiver object, and it

creates a new field.

The semantics of non-standard instructions and operators fol-

lows the semantics of the corresponding JavaScript built-in func-

tions, but they do not apply dynamic type conversion.

Figure 2 shows three additional semantics rules:

• hasOwnProp1 and hasOwnProp2 rules. The binary op-

eration ⋄hasOwnProperty tests whether the object e1 has a

field designated by the string name e2 or not.
• getPrototypeOf rule. The unary operation⋄getPrototypeOf e
returns the internal prototype chain value of the given object.

The unary operations ⋄toString, ⋄toNumber, and ⋄toBoolean take a

primitive value as an argument and returns their corresponding

typed value. The conversion algorithm is defined in the ECMAScript

specification
7
[4], and these conversion algorithm do not involve

implicit field access.

3.3 JavaScript Primitive Operations in JSexplicit

In this section, we present JavaScript primitive operations written

in JS
explicit

. Each primitive operation is devised by a corresponding

internal method or operation defined in ECMAScript specification.

We write [[A]] and B to denote an internal field or method named

A and an operation named B, respectively.

Figure 3a shows the [[Get]] internal method of ECMAScript

specification that defines the essential semantics of a field lookup

operation in JavaScript. For a given code is o[s], o is passed as

base and s is passed as P in the specification. Figure 3b shows

the code of Get function which mimics the semantics of [[Get]]
internal method in JS

explicit
. Each step of the auxiliary function Get

is designed with the specification and written in JS
explicit

.

First, the [[Get]] internalmethod of the specification converts the

receiver value base to an object by calling the ToObject operation
(step 1). In the Get function, it calls the function ToObject which

mimics the semantics of the operation ToObject in the specification.

This operation returns the input value if a type of the input value

is already an object. Otherwise, it allocates a typed object if a type

of the input value is one of string, number, and boolean types. This

semantics is defined by the auxiliary function ToString written in

JS
explicit

. Then, it calls [[GetProperty]] internal method to search

the field named P from the object base and its prototype chain (step

2). The result is either undefined value when it fails to find a field or

a descriptor object. If the result is undefined, it returns undefined

value (step 3). The descriptor object has value field if the field is an

ordinary value field. Otherwise, the descriptor object has to have

the get field and it is the getter value. Thus, it first checks whether

the descriptor object has a field "value", and it returns the value of

the field "value" when the descriptor object has the field (step 4).

7
ToBoolean: https://www.ecma-international.org/ecma-262/5.1/#sec-9.2,

ToNumber: https://www.ecma-international.org/ecma-262/5.1/#sec-9.3,

ToString: https://www.ecma-international.org/ecma-262/5.1/#sec-9.8
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Alloc

µ, ls , x2 ⇓E v ln fresh in Vloc µ′ = µ[ln 7→ {@proto 7→ {value : v }}] µ′, Put(ls , x1, ln ) ⇓A µ′′

µ, ls , x1 = ⋄alloc(x2), normal ⇓ µ′′, normal

Lookup

µ, ls , x2 ⇓E l µ, ls , e ⇓E k v = µ(l )(k ).value µ, Put(ls , x1, v) ⇓A µ′

µ, ls , x1 = x2[e], normal ⇓ µ′, normal

Update

µ, ls , x ⇓E l µ, ls , e1 ⇓E k µ, ls , e2 ⇓E v µ′ = µ[l 7→ µ(l )[k 7→ {value : v, enumerable : true, configurable : true, writable : true}]]

µ, ls , x[e1] = e2, normal ⇓ µ′, normal
where k < dom(µ(l ))

Figure 1: An excerpt from semantics rules for instructions

hasOwnProp1

µ, ls , e1 ⇓E l µ, ls , e2 ⇓E k k ∈ dom(µ(l ))
µ, ls , ⋄hasOwnProperty e1 e2 ⇓E true

hasOwnProp2

µ, ls , e1 ⇓E l µ, ls , e2 ⇓E k k < dom(µ(l ))
µ, ls , ⋄hasOwnProperty e1 e2 ⇓E false

getPrototypeOf

µ, ls , e ⇓E l v = µ(l )(@proto).value

µ, ls , ⋄getPrototypeOf e ⇓E v

Figure 2: An excerpt from semantics rules for expressions

When the [[Get]] internal method is called using base as its this value and
with property name P, the following steps are taken:

(1) Let O be ToObject(base).
(2) Let desc be the result of calling the [[GetProperty]] internal method

of O with property name P.
(3) If desc is undefined, return undefined.
(4) If IsDataDescriptor(desc) is true, return desc.[[Value]].
(5) Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be

desc.[[Get]] (see 8.10).
(6) If getter is undefined, return undefined.
(7) Return the result calling the [[Call]] internal method of getter pro-

viding base as the this value and providing no arguments.

(a) [[Get]] internal method

1 Get = λ(O,P). {

2 var result , getter;

3 O = ToObject(O); /* (1) */

4 var desc = GetProperty(O,P); /* (2) */

5 if (desc === undefined) return undefined; /* (3) */

6 if (⋄hasOwnProperty desc "value") { /* (4) */

7 result = desc["value"];

8 return result

9 } else {

10 getter = desc["get"]; /* (5) */

11 if (getter === undefined) return undefined; /* (6) */

12 result = ⋄apply(getter , O, []); /* (7) */

13 return result

14 }

15 }

(b) The function Get written in JSexplicit

Figure 3: The specification of [[Get]] internal method and its meaning written in JSexplicit

Otherwise, it loads the field "get" (step 5). If the getter function is

undefined, it just returns undefined value (step 6). Otherwise, the

getter function is a function value, and it calls the getter function

with base as its this value and returns the result (step 7).

Figures 4a and 4b show the [[GetProperty]] internal method

specification and its meaning written in JS
explicit

. The [[GetProp-
erty]] method defines the field search in a prototype chain. It first

tries to access the field P from the given object O (step 1). If the

object O has a field named P, it just returns the field record (step

2). Otherwise, it loads the value of a prototype chain object of the

object O (step 3). If the given object does not have a prototype chain

object, it fails to find a field and returns undefined value (step 4).

Otherwise, it recursively searches the field named P from the pro-

totype chain object of the object O (step 5). The auxiliary function

GetProperty implements the semantics in JS
explicit

.

Figures 5a and 5b show the [[DefaultValue]] internal method

specification with hint String and its meaning written in JS
explicit

.

The [[DefaultValue]] method defines the dynamic type conversion

when a given value is an object. In a field lookup operation o[s],

when the given field name designator s is an object, it converts

the field name value s to a string typed value by calling the [[De-
faultValue]] method. In the [[DefaultValue]] method, it first calls

[[Get]] internal method with the argument toString and we de-

fine its corresponding auxiliary function in Figure 3a (step 1). If

the result is a callable, that is, if the value is a function (step 2), it

calls the result function with O as the this value (step 2a). If the

result of toString is a primitive value, it returns the result (step

2b). Otherwise, it calls [[Get]] internal method with an argument

valueOf (step 3). If the result is a callable (step 4), it calls the result

function with O as the this value (step 4a). If the result of valueOf

is a primitive value, it returns the result (step 4b). If both result

values of toString and valueOf are not a primitive value, it throws

a TypeError exception (step 5). In the auxiliary function written

JS
explicit

, it creates an instance of TypeError, which designates a

built-in function of TypeError object.

Figure 6 presents the semantics of ToString and ToNumber op-
erations defined in ECMAScript specification. If the value is not an

object, it converts the primitive value respectively to a string value

and a number value by ⋄toString and ⋄toNumber operations. Other-

wise, it calls DefaultValue with a hint "String" or "Number", which

mimics the semantics of [[DefaultValue]]. Then, it again calls the

function itself ToString or ToNumberwith the result of DefaultValue.

Since the auxiliary function DefaultValue always returns a primi-

tive value, this recursion does not create a loop, and the auxiliary
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When the [[GetProperty]] internal method of O is called with property name

P, the following steps are taken:
(1) Let prop be the result of calling the [[GetOwnProperty]] internal

method of O with property name P.
(2) If prop is not undefined, return prop.
(3) Let proto be the value of the [[Prototype]] internal property of O.
(4) If proto is null, return undefined.
(5) Return the result of calling the [[GetProperty]] internal method of

proto with argument P.

(a) [[GetProperty]] internal method

1 GetProperty = λ(O,P). {

2 var prop , proto , result;

3 prop = ⋄getOwnPropertyDescriptor(O,P); /* (1) */

4 if (prop !== undefined) { return prop } /* (2) */

5 else {

6 proto = ⋄getPrototypeOf(O); /* (3) */

7 if (proto === null) { return undefined } /* (4) */

8 else {

9 result = GetProperty(proto , P); /* (5) */

10 return result

11 }

12 }

13 }

(b) The function GetProperty written in JSexplicit

Figure 4: The specification of [[GetProperty]] internal method and its meaning written in JSexplicit

When the [[DefaultValue]] internal method of O is called with hint String,

the following steps are taken:

(1) Let toString be the result of calling the [[Get]] internal method of

object O with argument "toString".

(2) If IsCallable(toString) is true then,
(a) Let str be the result of calling the [[Call]] internal method of

toString, with O as the this value and an empty argument list.

(b) If str is a primitive value, return str.
(3) Let valueOf be the result of calling the [[Get]] internal method of

object O with argument "valueOf".

(4) If IsCallable(valueOf ) is true then,
(a) Let val be the result of calling the [[Call]] internal method of

valueOf, with O as the this value and an empty argument list.

(b) If val is a primitive value, return val.
(5) Throw a TypeError exception.

(a) [[DefaultValue]] internal method

1 DefaultValue = λ(O,hint). {

2 var str , val , toString , valueOf;

3 if (hint === "String") {

4 toString = Get(O, "toString"); /* (1) */

5 if (typeof toString === "function") { /* (2) */

6 str = ⋄apply(toString , O, []); /* (2a) */

7 if (! isObject(str)) return str else { } /* (2b) */

8 } else { }

9 valueOf = Get(O, "valueOf"); /* (3) */

10 if (typeof valueOf === "function") { /* (4) */

11 val = ⋄apply(valueOf , O, []); /* (4a) */

12 if (! isObject(val)) return val else { } /* (4b) */

13 } else { }

14 throw TypeError (); /* (5) */

15 } else { /* hint === "Number" */

16 /* it calls "valueOf" and "toString" in order. */

17 }

18 }

(b) The function DefaultValue written in JSexplicit

Figure 5: The specification of [[DefaultValue]] internal method and its meaning written in JSexplicit

1 ToString = λ(x). {

2 if (! isObject(x)) { return ⋄toString(x) }

3 else {

4 x = DefaultValue(x, "String");

5 x = ToString(x);

6 return x

7 }

8 }
(a) The auxiliary function ToString

1 ToNumber = λ(x). {

2 if (! isObject(x)) { return ⋄toNumber(x) }

3 else {

4 x = DefaultValue(x, "Number");

5 x = ToNumber(x);

6 return x

7 }

8 }
(b) The auxiliary function ToNumber

Figure 6: The ToString and ToNumber in JSexplicit

functions ToString and ToNumber return a string and number value,

respectively.

Support for ECMAScript built-in functions. The ECMAScript built-

in functions also rely on the primitive operations defined above,

and the semantics involves implicit field access. For instance, let

us consider the slice method of the String API. According to the

specification [4], when this method is invoked, the this argument

must be converted into a string and the arguments into integers.

These conversions have to be protected too. For that, the original

slice function (String_prototype_slice) is protected by a JS
explicit

wrapper defined as:

1 wrap = λ(old_slice). {

2 var new_slice = λ[start ,end].{
3 var s;

4 CheckObjectCoercible(this);
5 s = ToString(this);
6 start = ToInteger(start);

7 if (end !== undefined)
8 end = ToInteger(end);

9 return ⋄apply(old_slice , s, [start ,end]);

10 }

11 };

12 /* wrapped String.prototype.slice */

13 slice = wrap(String_prototype_slice);

All JavaScript functions involving conversion and field accesses are

wrapped similarly.

3.4 Translation to JSexplicit

We present translation function compile⟦P⟧ that takes JavaScript
code P and translates it into JS

explicit
.

First, we consider explicit references to global variables, e.g.,

Object, Function, or String. These explicit references are replaced



SecureJS Compiler: Portable Memory Isolation in JavaScript SAC’21, March 22-March 26, 2021, Gwangju, South Korea

with accesses to the global object, and later on, we will present

a revised operation to reroute these accesses to a virtual global

object. When an identifier expression does not have a correspond-

ing variable declaration binding, the expression is considered as a

global variable access. compile⟦x_g⟧ transforms a global variable

access x_g into an auxiliary function call Loadvar("x_g") defined

as follows:

1 Loadvar = λ(id).{
2 Get(global , id);

3 }

The variable global designates the global object. Note that the

semantics of a global variable read searches the global object and

its prototype chain.

We consider a translation of a field lookup operation compile⟦x
= e1[e2]⟧where x is a local variable. The translated code to JSexplicit
is as follows:

1 fn = λ(o,s).{
2 if (o === null || o === undefined)
3 throw TypeError ();

4 s = ToString(s);

5 x = Get(o, s);

6 };

7 fn(compile⟦e1⟧, compile⟦e2⟧)
A field lookup operation first ensures that the given receiver o is a

coercible value. If the receiver object is null or undefined, it throws
a TypeError exception. Otherwise, the value is either an object value

or able to be converted to an object value in the auxiliary function

Get. Then, it converts the field name designator s to a string value

by calling an operation ToString, and we use corresponding auxil-

iary function ToString presented in 6a. At last, it uses an auxiliary

function for a field lookup operation Get and assigns the result to

the local variable x.

Rewriting explicit field accesses is not enough to prevent im-

plicit field accesses as JavaScript accesses fields implicitly in many

situations. For instance, let us consider the binary operation e1-e2.

According to the JavaScript semantics, e1 and e2 have to be con-

verted to a number before applying the subtraction. How to make

the conversion depends on the type of e1 and e2. If it is an object,

its valueOf field is used, That is, if one of e1 and e2 is an object,

the subtraction operation involves implicit access to the valueOf

field. This access has to be intercepted and replaced as explicit field

accesses. For that, a translation of compile⟦e1-e2⟧ to JS
explicit

is

defined as follows:

1 fn = λ(lhs ,rhs).{
2 lhs = ToNumber(lhs);

3 rhs = ToNumber(rhs);

4 return lhs - rhs;

5 };

6 fn(compile⟦e1⟧, compile⟦e2⟧)
The auxiliary function ToNumber presented in Figure 6b guarantees

that the result is a number value. Thus, the actual subtract operation

lhs - rhs at line 4 of the translated code does not involve implicit

field access.

In JavaScript, a function invocation is considered as a method

invocation if and only if the syntactic form of the function is an

object field access. That is, “obj.met(arg)” is a method invocation

and the pseudo argument this will be bound to obj in the body of

obj.met. On the other hand, in “var f=obj.met; f(arg)” is not a

method invocation but as a regular function call and this will not

be bound to obj. This difference between function invocation and

method invocation demands the JS
explicit

compilation to specially

treat method invocation. We consider a translation of a method call

expression compile⟦x = e1[e2](e3)⟧ where x is a local variable as

follows:

1 fn = λ(o,s).{
2 var f;

3 f = compile⟦o[s]⟧;
4 return ⋄apply(f, o, compile⟦e3⟧);
5 };

6 x = fn(compile⟦e1⟧, compile⟦e2⟧);
First, the syntactic part e1[e2] is transformed as regular field lookup

operation. Second, when the function is found in the object, the

function is invoked in such a way that e1 (the first argument o) is

bound to this and e3 as the argument.

4 IMPLEMENTATION: SecureJS
In this section, we present the SecureJS implementation. SecureJS

compiled programs execute as if they were in isolated realms, which

do not share any references with other realms. Thus, if a compiled

program does not export value to others, executions of the compiled

program preserve total memory isolation, and it guarantees that

running a compiled program with other uncompiled programs does

not interfere with each other.

This isolation relies on a secure runtime environment, which

consists of an isolated virtual global object and intrinsic objects,

and secure primitive operations, which reroute field accesses for

the global and intrinsic objects to corresponding virtual ones. This

section details the implementation the secure primitive operations

and the runtime environment.

4.1 Secure Primitive Operations
The SecureJS compiler rewrites JavaScript programs in such a way

that no expression can ever access, explicitly or implicitly, objects

created by uncompiled code. For that, the compiled code replaces

normal object field access and normal prototype chain lookups with

custom operations that enforcememory isolation. Let us detail these

operations.

First of all, explicit references to global variables must be replaced

with accesses to secure objects that proxy these global plain objects.

For that, the compiler transforms a global variable access x into a

library function call SJS.Loadvar("x") defined as:

1 SJS.Loadvar = function SJSloadvar(id) {

2 return Get(SJS.global , id);

3 }

The object SJS.global is a secure version of the global object. It

ensures that all the interactions with the global object will not be

exposed to the uncompiled code.

Second, object field accesses have to be intercepted in order to

prevent the normal prototype chain inspection to access objects of

the uncompiled environment. For that, we provide a secure version

of GetProperty auxiliary function defined as:

1 SJS.GetProperty = function SJSGetProperty(O, P) {

2 var prop;

3 prop = SJS.getOwnPropertyDescriptor(O,P); /* (1) */

4 if (prop !== undefined) return prop; /* (2) */
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5 else {

6 O = SJS.getPrototypeOf(O); /* (3) */

7 if (O === null) return undefined; /* (4) */

8 if (SJS.securePrototypeOf(O) !== undefined)
9 O = SJS.securePrototypeOf(O)

10 return SJSGetProperty(O,P); /* (5) */

11 }

12 }

The crucial point is line 8. It ensures that the field lookup will never

escape the memory controlled by the compiled environment. If

the search for the field hits the global object that belongs to the

uncompiled code, it reroutes the search to another object (line 9)

under the control of SecureJS.

For compatibilitywith current IoT platforms such as JerryScript [5],

SecureJS compiles and targets ECMAScript 5 but it also supports a

restricted version of the ECMAScript 6 module export form. The

export instruction to establish communication channels between

compiled and uncompiled code. The compiler transforms a declara-

tion “export id” into:

id = SJS.Loadvar("id")

where the left-hand side id designates the global variable id outside

the realm.

The last role of the compiler is to create a secure execution

context for the compiled code. For that, the compiled code will be

embedded into an anonymous function that will start creating the

secure environment and that will then execute client code. That is,

all compiled programs have the following shape:

(function () {

var SJS = SJSbootstrap ();

... client compiled code ...
})();

SecureJS compiled code guarantees that any uncompiled expres-

sion cannot ever access objects created by compiled code. The

variable SJS is hidden in the local scope of the compiled code, and

the function SJSbootstrap is immutable and returns a new isolated

realm whenever it is called.

4.2 Secure Runtime Environment
SecureJS compiled code initializes a secure environment by invok-

ing the SJSbootstrap (see Figure 7, line 42) function at the very

beginning of the execution. This function is defined in a library

sjs.js that captures native built-in objects and provides secure

interfaces for compiled programs. In this section, we present the

implementation of that library.

The sjs.js library executes before any other computation. It

captures the standard JavaScript functions (line 2-5) and stores them

in a function local variables so that they cannot be tampered from

outside the library. It creates an immutable field @call to SJScall

with the built-in value of Function.prototype.call (line 6) so that

the semantics of the call expression SJScall[’@call’] also cannot

be tampered, and the SJScall[’@call’](f,obj,args) implements

⋄apply(f,obj,args) in JS
explicit

. The library defines the function

SJSbootstrap (line 9) that is bound to the global JavaScript variable

SJSbootstrap (line 42). The function definition requires two steps,

as this is the only way ECMAScript 5 proposes to define read-only

variables.

1 (function () {

2 var SJScreate = Object.create;

3 var SJScall = Function.prototype.call;

4 var SJSObjProto = Object.prototype;

5 var SJSFunProto = Function.prototype; ...

6 Object.defineProperty(SJScall , '@call ',

7 { value: SJScall , configurable: false ,
8 writable: false , enumerable: false });

9 function SJSbootstrap () {

10 function securePrototypeOf(obj) {

11 if(obj === SJSObjProto)

12 return SecureObjP;

13 if(obj === SJSFunProto)

14 return SecureFunP;

15 ...

16 return false;
17 }

18 var global = SJScreate(null);
19 var SJS = SJScreate(null);
20 SJS.global = global;

21 function CheckObjectCoercible(o) {...};

22 function Get(x) {...};

23 function DefaultValue_S(x) {...};

24 function ToString(o) {...};

25 function ToNumber(o) {...};

26 function ToInteger(o) {...};

27 SJS.Loadvar = function (id) {...};

28 SJS.GetProperty = function (O, P) {...};

29 global.Object = function (v) {...};

30 ...

31 global.String.prototype.slice =

32 function(v) {...};

33 var SecureObjP =

34 global.Object.prototype =

35 SJScreate(null);
36 var SecureFunP =

37 global.Function.prototype =

38 SJScreate(SecureObjP);

39 ...

40 return SJS;

41 };

42 Object.defineProperty(this ,
43 "SJSbootstrap", {

44 value:SJSbootstrap , configurable:false ,
45 writable:false , enumerable:false });

46 })();

Figure 7: An excerpt of sjs.js.

The function SJSbootstrap creates a regular JavaScript object

(line 18) that will act as a replacement of the standard JavaScript

global object inside the secure code.

5 EVALUATION
This section seeks for an experimental validation that the SecureJS

compiler preserves the semantics of the original program and the

compiled code complies with memory isolation. First, we test that

SecureJS compilation preserves the semantics of the original pro-

gram in practical JavaScript engines V8 [6], Hop [12], and Jer-

ryScript [5] using the Test262 test suite. Second, we test that a

SecureJS compiled program complies with memory isolation by

testing that execution of the compiled program does not cause im-

plicit field accesses. For this, we used the Test262 test suite in Hop

and JerryScript JavaScript engines.
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5.1 Experimentation Settings
We implemented SecureJS on top of the front-end of the open-source

JavaScript engine Hop compiler [12]. SecureJS takes a JavaScript

program and generates an ECMAScript 5th specification compati-

ble JavaScript program. Executions are done with state-of-the-art

JavaScript engines V8, Hop, and JerryScript.

We use the Test262 test suite and use the es5-tests branch from

the github repository. Since the test programs of the Test262 test

suites check the program states and flows by means of the assert

function, the comparison of the resulting state confirms the equiva-

lent execution of the programs. The Test262 programs also test the

semantics of all the ECMAScript built-in functions and the seman-

tics of the strict mode functions. We consider 10490 numbers of the

test programs as our target test programs of the Test262 test suite

and exclude 1082 numbers of the test programs from the target

programs. In particular, we excluded tests using the eval function,

the with statement. SecureJS does not support eval and with. Ad-

ditionally, we excluded tests checking syntactic errors. The latest

version of ECMAScript specifies less strict syntactic rules than the

syntactic rules specified in ECMAScript 5th. Since the front-end

parser of SecureJS supports the latest ECMAScript specification

for compatibility, it parses the program that follows the latest EC-

MAScript specification and translates it into an ECMAScript 5th

compatible program when possible.

5.2 Testing Semantic preservation
The goal of this experiment is to show that SecureJS compiler pre-

serves the semantics of an original program. For that, we compiled

target test programs of the Test262 suites and ran them on V8, Hop,

and JerryScript JavaScript engines, and we checked whether the re-

sulting states of both the program and the corresponding compiled

program are equivalent.

Among 10490 numbers of the test programs, V8 passed 10386

successfully. 104 failed because of the semantics differences between

the source language test 262 assumed and the latest JavaScript

evolutions V8 supports. SecureJS preserves this result. That is, the

10386 successful tests remain successful after SecureJS compilation,

and the 104 failed tests remain failed. Hop passed 10414 numbers

of the test programs and failed in 76 tests, and JerryScript passed

10474 numbers of the test programs and failed in 16 tests. SecureJS

also preserves these results.

5.3 Testing Memory Isolation
The SecureJS compiled programs run as if they were running in

an isolated realm. If the compiled programs do not intentionally

export values for interaction with others, the compiled and other

uncompiled programs cannot reference each other. In this section,

we test that such SecureJS compiled programs that do not use export

comply with this isolation property. For that, we empirically verify

that compiled programs ever access objects outside the controlled

realm.

For the experiment, we modified the Hop and JerryScript im-

plementations to log all accesses to the [[Prototype]] field that

is needed to walk prototype chains. We have used two radically

different JavaScript implementations in order to reduce the proba-

bility of unnoticed [[Prototype]] accesses that would be removed

by the JavaScript engine’s optimizer, independently of SecureJS. In

addition, we modified the JerryScript engine also to log all accesses

to global and intrinsic objects, which are outside of the controlled

realm.

We executed all the 10490 programs from the Test262 suite with

the instrumented JavaScript engines. We confirmed that there is

no field access attempt to global and intrinsic objects. We observed

a single situation where [[Prototype]] is implicitly accessed by

the programs compiled by SecureJS. During the initialization of

a program, an empty object is created with an empty prototype

chain by the expression Object.create(null). Later on, this object

is used to optimized SecureJS field accesses. Since this object has

no prototype chain, the accesses are harmless but are logged by the

instrumented engines.

6 RELATEDWORK
A number of studies have been carried out so as to provide memory

isolation in JavaScript.

Bhargavan et al. [2] proposes defensive JavaScript (DJS), which
is a small subset of the JavaScript language satisfying static typing

constraints. DJS achieves memory isolation by the use of a small

subset of the JavaScript language that does not involve dynamic

features. The main limitation of DJS is that legacy code needs to

be manually rewritten in the DJS subset and be typable in order to

achieve memory isolation. A program written in DJS does not rely

on a realm and cannot use built-in functions defined in ECMAScript

specification.

Swamy et al. [14] proposes JS⋆, which is a programming lan-

guage supporting various dynamic features of JavaScript, while

ensuring type safety in the presence of an untrusted JavaScript

program. As it requires type-annotations for the trusted programs,

legacy code needs to be manually rewritten in the JS
⋆
, and it sup-

ports only a small subset of JavaScript language in terms of the

support of built-in functions. It implements a limited form of in-

terfaces for inter-communication since the interface requires type-

annotations and must implement the interface functions with the

compiled interpreter programs.

Terrace et al. [15] implements a JavaScript interpreter written in

JavaScript. It supports interactions that use primitive values, typed

objects, and functions that has typed argument and return values,

and it does not work on the JerryScript engine. For these reasons,

it cannot be applied to IoT environments in particular.

Vasilakis et al. [16] proposes BreakApp, which provides isolation

and interaction policies between programs. It relies on various

levels of built-in isolation primitives, yet the isolation mechanisms

strongly depends on Node.js. One of the isolation mechanisms

BreakApp relies on is the isolated realm supported by Node.js.

Guha et al. [7] proposes a formal semantics of a core calculus, λ J S ,
and provides a reduction step of JavaScript to λ J S . This reduction

step is similar to our translation to JS
explicit

, but our translation to

JS
explicit

focuses on rewriting primitive operations to their secure

versions in order to simulate a JavaScript realm.

7 CONCLUSION
We presented SecureJS, a secure JavaScript-to-JavaScript compiler.

It transforms programs into equivalent ones but that would execute
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as if they were running inside an isolated realm. This compiler is

portable and only uses standard features so it can be used by any

JavaScript engine. In order to rewrite the semantics of dynamic

features of JavaScript language, we presented JS
explicit

, which does

not involve implicit field accesses, and presented translation from

JavaScript to JS
explicit

. In the evaluation, we showed that the com-

pilation preserves the semantics of the original programs that use

full-features of ECMAScript 5.1 and achieves memory isolation if

a given program does not export a value. In order to show that

executions of the compiled programs preserve memory isolation,

we use instrumented JavaScript engines, and to the best of our

knowledge, no one has attempted to test such properties before

by JavaScript engine instrumentation. SecureJS compiler provides

an essential building block to use JavaScript security enforcement

libraries that rely on isolated realms, in particular, it enables us to

use such libraries in JerryScript JavaScript implementation, which

does not support a built-in isolation mechanism.
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