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A Survey on Mixed-Integer Programming
Techniques in Bilevel Optimization

Thomas Kleinert, Martine Labbé, Ivana Ljubić, and Martin Schmidt

Abstract. Bilevel optimization is a field of mathematical programming in
which some variables are constrained to be the solution of another optimization
problem. As a consequence, bilevel optimization is able to model hierarchical
decision processes. This is appealing for modeling real-world problems, but
it also makes the resulting optimization models hard to solve in theory and
practice. The scientific interest in computational bilevel optimization increased
a lot over the last decade and is still growing. Independent of whether the bilevel
problem itself contains integer variables or not, many state-of-the-art solution
approaches for bilevel optimization make use of techniques that originate
from mixed-integer programming. These techniques include branch-and-bound
methods, cutting planes and, thus, branch-and-cut approaches, or problem-
specific decomposition methods. In this survey article, we review bilevel-tailored
approaches that exploit these mixed-integer programming techniques to solve
bilevel optimization problems. To this end, we first consider bilevel problems
with convex or, in particular, linear lower-level problems. The discussed solution
methods in this field stem from original works from the 1980’s but, on the
other hand, are still actively researched today. Second, we review modern
algorithmic approaches to solve mixed-integer bilevel problems that contain
integrality constraints in the lower level. Moreover, we also briefly discuss
the area of mixed-integer nonlinear bilevel problems. Third, we devote some
attention to more specific fields such as pricing or interdiction models that
genuinely contain bilinear and thus nonconvex aspects. Finally, we sketch a
list of open questions from the areas of algorithmic and computational bilevel
optimization, which may lead to interesting future research that will further
propel this fascinating and active field of research.

1. Introduction

In this paper, we consider bilevel optimization problems of the general form

min
x∈X,y

F (x, y) (1a)

s.t. G(x, y) ≥ 0, (1b)
y ∈ S(x), (1c)

where S(x) is the set of optimal solutions of the x-parameterized problem

min
y∈Y

f(x, y) (2a)

s.t. g(x, y) ≥ 0. (2b)

Problem (1) is the so-called upper-level (or the leader’s) problem and Problem (2) is
the so-called lower-level (or the follower’s) problem. Moreover, the variables x ∈ Rnx

are the upper-level variables (or leader’s decisions) and y ∈ Rny are lower-level
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variables (or follower’s decisions). The objective functions are given by F, f :
Rnx × Rny → R and the constraint functions by G : Rnx × Rny → Rm as well
as g : Rnx × Rny → R`. The sets X ⊆ Rnx and Y ⊆ Rny are typically used to
denote integrality constraints. For instance, Y = Zny makes the lower-level problem
an integer program. In what follows, we call upper-level constraints Gi(x, y) ≥ 0,
i ∈ {1, . . . ,m}, coupling constraints if they explicitly depend on the lower-level
variable vector y. Moreover, all upper-level variables that appear in the lower-level
constraints are called linking variables.

We use the nomenclature that the bilevel problem (1) is called an “UL-LL problem”
where UL and LL can be LP, QP, MILP, MIQP, etc. if the upper-/lower-level
problem is a linear, a quadratic, a mixed-integer linear, a mixed-integer quadratic,
etc. program in both the variables of the leader and the follower. If the concrete
specification of both levels is not required, we also use a shorter nomenclature and
say, e.g., that the problem is a bilevel LP, if both levels are LPs.

Most of the time, we will consider the optimistic version of the bilevel problem
as it is given in (1). In this case, the leader also optimizes over the lower-level
outcome y ∈ S(x) if the lower-level solution set S(x) is not a singleton. On the
contrary, the pessimistic version is given by

min
x∈X

max
y∈S(x)

F (x, y) s.t. G(x, y) ≥ 0 for all y ∈ S(x).

For the general pessimistic setting, we refer to Wiesemann et al. (2013) and the
recent surveys on pessimistic bilevel optimization in Liu et al. (2018) and Liu et al.
(2020a).

Instead of using the point-to-set mapping S one can also use the so-called optimal
value function

ϕ(x) := min
y∈Y
{f(x, y) : g(x, y) ≥ 0} (3)

and re-write Problem (1) as

min
x∈X,y∈Y

F (x, y) (4a)

s.t. G(x, y) ≥ 0, g(x, y) ≥ 0, (4b)
f(x, y) ≤ ϕ(x), (4c)

to which we will refer as the value-function reformulation. This reformulation
indicates that for the optimistic version of the problem, we can assume without loss
of generality that all upper-level variables are linking variables; see Bolusani and
Ralphs (2020).

Bilevel optimization problems date back to the seminal publications on leader-
follower games of von Stackelberg (1934, 1952). The introduced formulation was first
used in Bracken and McGill (1973) in the context of a military application regarding
the cost-minimal mix of weapons. Another very early discussion of multilevel, or, in
particular, two-level problems can be found in Candler and Norton (1977). Over the
years, bilevel optimization has been recognized as an important modeling tool since
it allows to formalize hierarchical decision processes that often appear in application
areas such as energy, security, or revenue management. We postpone the discussion
of selected applied literature to the following sections.

The ability to model hierarchical decision processes also makes bilevel optimization
problems notoriously hard to solve. For instance, already their easiest instantiation
with a linear upper- and lower-level problem is strongly NP-hard; see Section 3 for the
details. Thus, efficient, i.e., polynomial-time, algorithms cannot be expected unless
P = NP. This also makes the development of solution algorithms a difficult task on
the one hand—but on the other hand “allows” for enumeration-based algorithms
such as branch-and-bound. During the last years and decades it turned out that
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the development of solution algorithms for bilevel optimization problems strongly
depends on the structure and properties of the lower-level problem as well as on
the coupling between the upper and the lower level. For instance, the solution
techniques are very much different depending on whether the lower-level problem
is continuous and convex or whether it is nonconvex, e.g., due to the presence of
integer variables.

In this survey, we focus on algorithmic techniques to actually solve bilevel prob-
lems. In particular, we discuss techniques from mixed-integer linear or nonlinear
optimization that are applied in the field of bilevel optimization. These basic and
well-studied techniques include branch-and-bound (Land and Doig 1960) or cutting
planes (Kelley 1960) as well as decomposition techniques such as (generalized) Ben-
ders decomposition (Benders 1962; Geoffrion 1972); see the books by Conforti et al.
(2014), Jünger et al. (2010), and Wolsey (1998) for a comprehensive overview about
mixed-integer linear programming techniques. Moreover, also specific techniques
from mixed-integer nonlinear programming such as outer approximation (Bonami
et al. 2008; Duran and Grossmann 1986; Fletcher and Leyffer 1994) or spatial
branching (Horst and Tuy 2013) are covered; see Belotti et al. (2013) and Lee and
Leyffer (2012) for recent overviews on mixed-integer nonlinear optimization. For
the more theoretical aspects of bilevel optimization we refer to Dempe (2002) and
the references therein.

Obviously, the entire field of bilevel optimization is much broader and we thus
are not able to cover everything. For instance, we do not cover the fields of bilevel
optimization under uncertainty (Besançon et al. 2019, 2020; Burtscheidt and Claus
2020; Burtscheidt et al. 2020; Dempe et al. 2017; Ivanov 2018; Jain et al. 2008; Pita
et al. 2010; Yanikoglu and Kuhn 2018), fractional bilevel optimization (Calvete and
Galé 1999, 2004), or purely continuous nonconvex bilevel problems (Dempe et al.
2019; Fliege et al. 2020).

Finally, let us mention already existing surveys (Colson et al. 2007; Colson et al.
2005) and books (Bard 2013; Dempe 2002; Dempe et al. 2015) in the field of bilevel
optimization. Other very early survey articles include Anandalingam and Friesz
(1992), Ben-Ayed (1993), Kolstad (1985), and Vicente and Calamai (1994) as well as
Wen and Hsu (1991) regarding the field of linear bilevel optimization. Last but not
least, Dempe (2020) contains, to the best of our knowledge, the largest annotated
list of references in the field of bilevel optimization.

The remainder of this survey is structured as follows. In Section 2, we collect
selected applications from various different fields to motivate the study of bilevel
problems. Afterward, in Section 3, we discuss bilevel optimization problems with
linear or, at least, convex lower-level problems. For this problem class, we study
important general properties, derive classical single-level reformulations, and give a
comprehensive overview of the algorithms used to solve these problems. The case
of bilinear bilevel problems is discussed in Section 4, where we focus on pricing
problems and Stackelberg games. In Section 5, we then turn to bilevel problems
with mixed-integer (non)linear lower-level problems. Also for these problems, we
first focus on general properties before we then turn to generic approaches for
solving bilevel MILPs and bilevel MINLPs. Section 6 is then devoted to interdiction
problems. Here, we discuss both discrete as well as continuous interdiction problems,
different fields of applications, and different classes of algorithms to tackle these
problems. The survey closes with a collection of possible directions for future
research in Section 7.
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2. Selected Applications

In this section, we present a selection of the vast literature on applications of
bilevel optimization. Due to the enormous number of publications, this review will
be far from being comprehensive. Many other application-oriented papers can, e.g.,
be found in the survey by Dempe (2020).

Early Applications. Among the first, bilevel optimization has been applied to
military defense problems in Bracken and McGill (1973) and to agricultural planning;
see Candler et al. (1981) and Fortuny-Amat and McCarl (1981). The latter topic
is also picked up in Bard et al. (2000). Recent references concerning the defense
of critical infrastructure (Alguacil et al. 2014; Borrero et al. 2019; Caprara et al.
2016; DeNegre 2011; Fioretto et al. 2019; Scaparra and Church 2008; Wood 2011)
are related to the mentioned early military applications. We discuss such problems
in more detail in Sections 4.2 and 6, in which we cover Stackelberg games and
interdiction problems, respectively.

Other early applications can be found in chemical process design that involves ther-
modynamic equilibria; see, e.g., Clark and Westerberg (1983), Clark and Westerberg
(1990), Clark (1990), and Gümüş and Ciric (1997).

Traffic and Transportation. Bilevel traffic and transportation planning problems
are covered, among others, in LeBlanc and Boyce (1986), Marcotte (1986), Ben-Ayed
et al. (1988), Ben-Ayed et al. (1992), and Migdalas (1995), as well as more recently in
Fontaine and Minner (2014), Gairing et al. (2017) or Basciftci and Van Hentenryck
(2020). Additionally, bilevel optimization is also used for the detection and solution
of aircraft conflicts (Cerulli et al. 2019, 2020), for which tailored cutting planes are
proposed.

Management Science. In the context of management science, in Bard (1983),
bilevel optimization is used to coordinate multi-divisional firms. Further, Ryu et al.
(2004) address bilevel decision-making problems under uncertainty in the context of
enterprise-wide supply chain optimization, Garcia-Herreros et al. (2016) consider
bilevel capacity expansion planning problems, and Reisi et al. (2019) and Yue and
You (2017) consider supply chain problems. In Dan et al. (2020) and Dan and
Marcotte (2019), the authors consider service firms deciding on the location and
service levels of its facilities, taking into account the behavior of the user. This
results in mixed-integer nonlinear bilevel problems, for which tailored approaches
are provided. Finally, bilevel portfolio optimization problems are considered in, e.g.,
González-Díaz et al. (2020) and Leal et al. (2020).

Machine Learning. Bilevel problems are also discussed in the context of statistics
and machine learning. In Bennett et al. (2006) and Bennett et al. (2008), bilevel
optimization is applied to hyper-parameter selection for statistical learning methods.
An evolutionary bilevel algorithm for the same purpose is given in Sinha et al.
(2014). Very recently, Franceschi et al. (2018) introduce a framework based on
bilevel programming that unifies gradient-based hyper-parameter optimization and
meta-learning.

Energy Networks and Markets. Arguably, energy networks and markets are two
of the largest areas of application; see, e.g., the book of Gabriel et al. (2012) with very
many applications and models. Some selected contributions that particularly consider
electricity networks and markets are given in the following. Arroyo (2010) analyze
the vulnerability of power systems and Motto et al. (2005) analyze the security
of power grids under disruptive threats. Problems of generation and transmission
expansion planning are studied in Garcés et al. (2009), Jenabi et al. (2013), or Jin
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and Ryan (2011). See also Bylling et al. (2020) for a stochastic bilevel model in this
context. In Grimm et al. (2016), the authors propose a problem-tailored solution
approach based on binary search to solve a similar problem. Further, Baringo
and Conejo (2012) deal with transmission and wind power investment. Optimal
placement of measurement devices in an electrical network has been modeled as a
bilevel MILP in Poirion et al. (2020). The authors develop a generic branch-and-cut
procedure that can be applied to problems with a similar type of bilevel constraints.
Grimm et al. (2019a) and Kleinert and Schmidt (2019b) develop a Benders-like
decomposition approach to compute optimal price zones of electricity markets. The
approach is applied to the German electricity market in Ambrosius et al. (2020).
Ruiz and Conejo (2009) consider a strategic power producer that trades electric
energy in an electricity pool. Similarly, the equilibria reached by strategic producers
in a pool-based network-constrained electricity market are studied in Ruiz et al.
(2012) and Fampa et al. (2008) analyze strategic pricing in competitive electricity
markets. Other works consider demand-side management (Aussel et al. 2020; Grimm
et al. 2020), the scheduling of maintenance outages of a set of transmission lines
(Pandzic et al. 2012), or how to economically exploit wind resources at a given
location from a transmission-cost perspective (Morales et al. 2012). For a recent
survey on bilevel optimization in energy and electricity markets see Wogrin et al.
(2020). Besides electricity, gas markets are addressed by bilevel optimization as well;
see, e.g., Böttger et al. (2020), Grimm et al. (2019b), and Schewe et al. (2020) for
models of the European entry-exit gas market.

3. Continuous Linear and/or Convex Lower-Level Problems

The general form of an LP-LP bilevel problem, i.e., a bilevel problem in which
all constraints and objective functions are linear, is as follows:

min
x,y

c>x x+ c>y y (5a)

s.t. Ax+By ≥ a, (5b)

y ∈ arg min
ȳ

{
d>ȳ : Cx+Dȳ ≥ b

}
(5c)

with cx ∈ Rnx , cy, d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , and a ∈ Rm as well as
C ∈ R`×nx , D ∈ R`×ny , and b ∈ R`. Note that we already omitted a linear term
depending on the upper-level variables x in the lower-level objective function since
this term would not have any influence on the optimal solutions of the lower level.
Moreover, for the ease of presentation, we always use linear lower-level problems
if this is suitable to describe the general ideas and only use nonlinear but convex
lower-level problems if this is required.

3.1. General Properties. We introduce two concepts that are useful to derive
solution algorithms since they lead to bounds on the optimal value of bilevel
problems. First, we consider the feasible region H of the so-called high-point
relaxation (HPR), which is defined as the set of points (x, y) satisfying the leader
and follower constraints, i.e., for Problem (5) it is given by

H := {(x, y) ∈ Rnx × Rny : Ax+By ≥ a, Cx+Dy ≥ b} .
Clearly, the solution of the HPR

min
x,y

{
c>x x+ c>y y : (x, y) ∈ H

}
(6)

provides a lower bound on the optimal objective value of the bilevel problem, because
it relaxes the optimality of the lower-level problem (5c). Second, we consider the
bilevel feasible region F , which is also denoted as the “inducible region” of the
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Figure 1. Illustration of the example in Section 3.1.

bilevel problem. This set particularly takes the optimal response of the follower into
account and is given by

F := {(x, y) ∈ H : y satisfies (5c)} .
Having this notion at hand, we can write the bilevel LP (5) as

min
x,y

{
c>x x+ c>y y : (x, y) ∈ F

}
.

This implies that any bilevel feasible point provides an upper bound on the optimal
value of the bilevel LP.

To better understand the special features and properties of bilevel LPs, we
illustrate them with some graphical examples involving one variable at each level.
The problem

min
x,y

{
y : y ∈ arg min

ȳ
{−ȳ : (x, ȳ) ∈ P}

}
,

with the lower level’s feasible region given by

P = {(x, y) : y ≥ 0, y ≤ 1 + x, y ≤ 3− x, 0 ≤ x ≤ 1},
is depicted in Figure 1 (left). The feasible points of the HPR coincide with the
lower-level feasible region P since there are no upper-level constraint. The horizontal
segment linking the origin and point (1, 0) constitutes the set of solutions of the
high-point relaxation, i.e., those points in H that minimize the upper-level objective
function. Since the corresponding upper-level objective function is 0 on this segment,
this leads to a lower bound of 0 for the entire bilevel LP. The bilevel feasible
region F is given by the union of the two segments in thick green. Interestingly, F
is nonconvex although both levels are linear optimization problems. The problem
has the two optimal solutions (0, 1) and (1, 1) with value 1.

Now, if we add the constraint y ≤ a with 1 < a < 2 to the upper level, the bilevel
feasible region is reduced to two disjoint segments as depicted in Figure 1 (right).
Nonetheless, these segments constitute faces of the high-point relaxation. An even
worse situation may happen if the right-hand side of the constraint added to the
upper level is set to a ∈ (0, 1). Then, the bilevel feasible region is empty, i.e., the
bilevel LP has no feasible point, although the high-point relaxation is feasible. This
last example is also useful to illustrate the effect of moving coupling constraints,
i.e., upper-level constraints involving variables of the lower level, between the two
levels. If, e.g., the constraint y ≤ 1/2 is added to the lower level, then the problem
becomes feasible and all points (x, 1/2) with 0 ≤ x ≤ 1 are bilevel optimal. The
two facts that (i) coupling constraints of a bilevel LP may lead to a disconnected
bilevel feasible region and that (ii) they cannot be moved to the lower level without
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changing the set of optimal solutions have been discussed by Audet et al. (2006)
and Mersha and Dempe (2006).

Another interesting property is that the unboundedness of the HPR (6) does not
allow to conclude about the optimal solution of the bilevel problem. An illustrative
example, borrowed from Xu (2012) and Xu and Wang (2014) and slightly simplified
here, demonstrates three different situations, in each of which the HPR solution is
unbounded, but, depending on the objective function of the lower-level problem,
the bilevel problem is either unbounded, infeasible, or admits an optimal solution.
To this end, consider the bilevel problem

max
x,y

x+ y

s.t. 0 ≤ x ≤ 2,

y ∈ arg max
y′

{dy′ : y′ ≥ x}

and its high-point relaxation

max
x,y

x+ y

s.t. 0 ≤ x ≤ 2,

y ≥ x.
For d = 0, the bilevel problem is unbounded as the lower-level problem is feasible
for all y. For d = 1, the bilevel problem is infeasible, as ϕ(x) = ∞. Finally, for
d = −1, the problem admits a unique optimal solution (x, y) = (2, 2).

Despite the rather complicating properties of H and F that we described above,
the two sets can be exploited algorithmically. The groundwork for this is laid in
Bialas and Karwan (1984) and Bard (1984). For the ease of exposition, let us
assume that H is bounded and nonempty for what follows. In the following, we will
explain that the bilevel feasible region is a union of faces of the high-point relaxation
and that a bilevel optimal solution is attained at one of the vertices of this union.
This is already illustrated in the previous example. A point (x, y) belonging to the
bilevel feasible region F must satisfy all constraints defining the polyhedron H and
must be an optimal solution of the lower-level LP. Thus, (x, y) must satisfy the
Karush–Kuhn–Tucker (KKT; see, e.g., Nocedal and Wright (2006)) conditions of
the lower-level LP, which imply that each constraint is either active at (x, y) or
that the corresponding dual variable is equal to 0. Consider now the face F of the
polyhedron H obtained by setting all constraints active at point (x, y) at equality.
All points on F also satisfy the KKT conditions for a dual solution corresponding
to (x, y) implying that F ⊆ F . This property implies that a bilevel LP possesses an
optimal solution that is a vertex of H and that it can be found by solving an LP
whose objective function is given by (5a) over each (maximal) face of H included in
the bilevel feasible region.

The so-called Kth-Best algorithm proposed by Bialas and Karwan (1984) searches
for a vertex of H that is optimal for the bilevel LP by starting with a vertex that
minimizes (5a) and then iteratively generates adjacent vertices with nondecreasing
value for (5a) until a vertex belonging to the bilevel feasible region is found. In
the worst case, the Kth-Best algorithm requests to visit an exponential number
of vertices of H (remember that the bilevel feasible region may be empty even
though H is not). This is not surprising as Hansen et al. (1992) have shown that
bilevel LPs are strongly NP-hard (see also Jeroslow (1985) for NP-hardness) by
reducing the graph problem KERNEL and Vicente et al. (1994) have shown that even
checking local optimality of a given point is NP-hard. In the same vein, Audet et al.
(1997) remark that a binary constraint, say x ∈ {0, 1}, appearing in a single-level
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optimization problem can be modeled by an additional variable y and the constraints
y = 0 and

y = arg max
ȳ

{ȳ : ȳ ≤ x, ȳ ≤ 1− x} .

As a consequence, linear optimization problems with binary variables are a special
case of bilevel LPs. Further hardness results are also stated in Bard (1991), where
some general properties of bilevel LPs are discussed as well. A survey about
complexity results for bilevel LP problems can be found in Deng (1998). The
strongest complexity result was obtained by Jeroslow (1985), who proved hardness
of multilevel LP problems. Specifically, he showed that a k-level LP problem belongs
to the complexity class Σpk−1.

Finally, given that the objective functions of both levels play a role in a bilevel
problem, it would be tempting to conclude that the optimal solution of a bilevel LP
is Pareto-optimal with respect to these objectives. However, Marcotte and Savard
(1991) have shown that this is not true unless cy and d are parallel.

3.2. Single-Level Reformulations. If the lower-level problem of the bilevel opti-
mization model at hand is convex and satisfies a suitable constraint qualification
(which, in the convex case, usually is Slater’s constraint qualification), then one
can reformulate the bilevel problem into a single-level optimization problem. To
this end, one either uses the KKT conditions of the lower-level problem or a strong
duality theorem applied to the lower-level problem. In this section, we discuss both
approaches and restrict ourselves, for the ease of presentation, to the case of LP-LP
bilevel problems of the type given in (5). The lower-level problem (5c) can be seen
as the x-parameterized linear problem

min
y

d>y s.t. Dy ≥ b− Cx. (7)

Its Lagrangian function is given by

L(y, λ) = d>y − λ>(Cx+Dy − b)
and the KKT conditions are given by dual feasibility

D>λ = d, λ ≥ 0,

primal feasibility
Cx+Dy ≥ b,

and the KKT complementarity conditions

λi(Ci·x+Di·y − bi) = 0 for all i = 1, . . . , `.

Here and in what follows, Ci· denotes the ith row and C·j denotes the jth column
of C. Since the lower-level feasible region is polyhedral, the Abadie constraint
qualification holds and the KKT conditions are both necessary and sufficient. Thus,
the LP-LP bilevel problem can be reformulated as

min
x,y,λ

c>x x+ c>y y (8a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (8b)

D>λ = d, λ ≥ 0, (8c)
λi(Ci·x+Di·y − bi) = 0 for all i = 1, . . . , `. (8d)

Note that we now optimize over an extended space of variables since we additionally
have to include the lower-level dual variables λ. Since we optimize over x, y, and λ si-
multaneously, any global solution of (8) is an optimistic bilevel solution. Problem (8)
is linear except for the KKT complementarity conditions that turn the problem into
a nonconvex and nonlinear optimization problem (NLP). More precisely, Problem (8)
is a mathematical program with complementarity constraints (MPCC); see, e.g., Luo
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et al. (1996). Unfortunately, standard NLP algorithms usually cannot be applied
for such problems since classical constraint qualifications like the Mangasarian–
Fromowitz or the linear independence constraint qualification are violated at every
feasible point; see, e.g., Ye and Zhu (1995). For a primer on constraint qualifications
in nonlinear optimization, see, e.g., the seminal textbook by Nocedal and Wright
(2006). The inherent violation of suitable constraint qualifications for MPCCs lead
to the development of both (i) tailored constraint qualifications and stationarity
concepts (Hoheisel et al. 2013) as well as (ii) special solution techniques. However,
the latter can achieve at most (if at all) local solutions of the MPCC. We refer the
reader to Dempe (1987) and Still (2002), where this is used to solve the underlying
bilevel problem to local optimality.

Besides this approach based on the lower level’s KKT conditions, one can also
use a strong duality theorem for the lower-level problem. The dual problem to (7)
is given by

max
λ

(b− Cx)>λ s.t. D>λ = d, λ ≥ 0. (9)

For a given decision x of the leader, weak duality of linear optimization states that

d>y ≥ (b− Cx)>λ

holds for every primal and dual feasible pair y and λ. Thus, by strong duality, we
know that every such feasible pair is a pair of optimal solutions if

d>y ≤ (b− Cx)>λ

holds. Consequently, we can reformulate the bilevel problem as

min
x,y,λ

c>x x+ c>y y (10a)

s.t. Ax+By ≥ a, Cx+Dy ≥ b, (10b)

D>λ = d, λ ≥ 0, (10c)

d>y ≤ (b− Cx)>λ. (10d)

Here, the ` KKT complementarity constraints in (8) are replaced with the scalar
inequality in (10d). Note that the general nonconvexity of LP-LP bilevel problems is
reflected in this single-level reformulation due to the bilinear products of the primal
upper-level variables x and the dual lower-level variables λ.

Let us close this section with a remark on single-level reformulations of problems
more general than LP-LP bilevel problems. Both reformulations discussed can
be applied as long as compact global optimality certificates for the lower level
are available. This is, in general, the case if the lower-level problem is convex
and if Slater’s constraint qualification holds. However, both the MPCC (8) and
the nonconvex problem (10) are only equivalent to the original bilevel problem if
globally optimal solutions are considered and if Slater’s constraint qualification
holds. In particular, locally optimal solutions of Problem (8) are not necessarily
locally optimal for the original bilevel problem; see Dempe and Dutta (2012) for
the details.

3.3. Algorithms. The most likely earliest published paper on mixed-integer pro-
gramming techniques for bilevel optimization is the one by Fortuny-Amat and
McCarl (1981). The authors consider a bilevel optimization problem with a qua-
dratic programming problem (QP) in the upper and the lower level. For the ease of
presentation, we explain the core ideas based on the LP-LP bilevel problem (5). The
authors first derive the single-level reformulation (8) based on the lower-level’s KKT
conditions and then linearize the KKT complementarity conditions (8d) by using
additional binary variables. The key idea here is to consider the complementarity
conditions λi(Ci·x+Di·y − bi) = 0, i = 1, . . . , `, as disjunctions stating that either
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λi = 0 or Ci·x + Di·y = bi needs to hold. These two cases can be modeled using
binary variables zi ∈ {0, 1}, i = 1, . . . , `, in the following mixed-integer linear way:

λi ≤Mzi, Ci·x+Di·y − bi ≤M(1− zi),
with a sufficiently large constant M . Consequently, zi = 1 models the case that
the primal inequality is active, whereas zi = 0 models the inactive case in which
the dual variable is zero. The resulting MILP reformulation can then be solved by
general-purpose solvers. Unfortunately, this reformulation has a severe disadvantage
because one needs to determine a big-M constant that both is valid for the primal
constraint as well as for the dual variable. The primal validity is usually ensured
by the assumption that the high-point relaxation is bounded, which is typically
justified in practical applications. However, the dual feasible set is unbounded
for bounded primal feasible sets; see Clark (1961) and Williams (1970). Thus,
it is rather problematic to bound the dual variables of the follower. In practice,
often “standard” values such as 106 are used without any theoretical justification
or heuristics are applied to compute a big-M value, e.g., in Pineda et al. (2018),
big-M values are determined from local solutions of the MPCC (8). In Pineda and
Morales (2019) it is shown by an illustrative counter-example that such heuristics
may deliver invalid values. Moreover, validating the correctness of a given big-M is
shown to be NP-hard in general in Kleinert et al. (2020c).

All the mentioned methods so far solve a certain reformulation of the bilevel
problem with general-purpose solvers. In addition, one can also develop bilevel-
tailored solution techniques. Already in their paper from 1981, Fortuny-Amat
and McCarl briefly discuss the possibility to set up a bilevel-specific branch-and-
bound scheme. In this scheme, Problem (8) without the KKT complementarity
conditions (8d) is solved at the root node. Afterward, it is checked whether all KKT
complementarity conditions are satisfied. If not, the most violated one is chosen
and two subproblems are constructed with either λj = 0 or Cj·x+Dj·y = bj added
as a constraint if j ∈ {1, . . . , `} is the most violated condition. In this manner, the
method proceeds as a usual branch-and-bound method. This method is also used in
Bard and Moore (1990), where it is computationally evaluated for bilevel problems
with LP upper-level problems and lower-level problems that are convex QPs. A very
similar branch-and-bound algorithm for continuous bilevel problems is presented
in Bard (1988). Here, bilevel problems with strictly convex upper-level objective
function, convex quadratic lower-level objective function, polyhedral feasible set
of the upper level, and convex feasible region of the lower level are considered.
Moreover the lower-level problem needs to satisfy a suitable constraint qualification.
Another extension of Bard and Moore (1990) for nonlinear but convex problems is
given in Edmunds and Bard (1991). A branching rule different from most-violated
complementarity is discussed in Hansen et al. (1992). At this point in time, problems
with 250 leader variables, 150 follower variables, and 150 follower constraints were
the largest instances that have been solved. Finally, we note that it is already stated
in Fortuny-Amat and McCarl (1981) that the complementarity conditions can also
be modeled as special ordered sets (SOS) of type 1; see Beale and Tomlin (1970).
Modern mixed-integer solvers can handle SOS1 conditions out-of-the-box such that
it is not necessary to implement the branching on complementarity conditions. The
branching rule is then left to the solver. This approach is also proposed by Siddiqui
and Gabriel (2013) in an MPEC context and by Pineda et al. (2018) in a bilevel
context.

In the history of integer programming, the basic branch-and-bound method has
been extended soon to so-called branch-and-cut (B&C). This means that, besides
branching, additional valid inequalities or cuts are introduced at the nodes of the
branch-and-bound tree to tighten the formulation. Whereas the literature on cutting
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planes in integer programming is huge, there are only a few papers dealing with
valid inequalities in the bilevel case.

In Audet et al. (2007a), the complementarity conditions (8d) have been used to
obtain so called disjunctive cuts that are applied at the root node of the branch-
and-bound tree. For each violated complementarity constraint, solving a linear
optimization problem yields such a cut. In a small example, the usefulness of
the cut is demonstrated. It is also shown that sometimes this cut couples primal
feasibility (8b) and dual feasibility (8c) and sometimes it does not.

In Audet et al. (2007b), three further cuts are presented that can again be derived
from the solution of the root node problem. The first one is a Gomory-like cut. For
each violated complementarity constraint of the lower level, two inequalities can be
derived. One of them is acting on the primal upper- and lower-level variables and
the other one on the dual lower-level variables. The presentation of these inequalities
is rather technical and we thus refer to the paper for the details. At least one of
the two inequalities must be valid and is actually a cut. Since the valid one is not
known, both inequalities are added to the problem and a binary switching variable
is used to select the valid inequality. In this light, the two inequalities add a rather
implicit coupling of the constraints (8b) and (8c). Another variant are so-called
extended cuts that, similar to the Gomory-like cuts, also involve binary switching
variables. However, it is noted that these cuts are deeper than the Gomory-like
cuts. One can also derive two cuts that do not involve a switching variable. These
cuts are called simple cuts in Audet et al. (2007b). Again, the combination of both
cuts implicitly couples the primal upper and lower level with the dual lower level.
In a small numerical study it is shown that applying a cut generation phase at
the root node that adds cuts of either one of the three types, outperforms pure
branch-and-bound. Finally, Wu et al. (1998) propose Tuy’s cut for LP-LP problems
but did not test it in a numerical study.

Very recently, a new valid inequality for LP-LP bilevel optimization based on
strong duality of the lower-level problem has been presented in Kleinert et al. (2020b),
which couples primal bilevel variables as well as dual variables of the lower-level
problem:

λ>b− λ>C+ − d>y ≤ 0,

with C+ being an upper bound on Ci·x. For instance, the bounds C+
i can be

computed with the auxiliary LPs

C+
i := max

x,y,λ

{
Ci·x : (x, y, λ) ∈ H ×

{
λ : D>λ = d, λ ≥ 0

}
, (x, y, λ) ∈ C

}
,

where C is a constraint set containing already added valid inequalities of any type as
well as branching decisions or might be empty. While the inequality can be applied
throughout the entire branch-and-bound tree, it is shown that it is most effective at
the root node. In Kleinert and Schmidt (2020), it is shown that when equipping
both approaches, the classical big-M approach and an SOS1-approach for the KKT
complementarity conditions, with the root node inequality, then the two approaches
perform very competitive—but the SOS1-approach does not suffer from the possible
theoretical issues of invalid big-M values. The computational study in Kleinert and
Schmidt (2020) is based on a LP-LP test set containing 1077 instances; see Table 1.
The table shows relevant problem characteristics such as the number of upper-level
and lower-level variables and constraints for various subsets of the instance set. In
addition, since all LP-LP instances are derived from mixed-integer linear bilevel
problems, the table gives a reference to the original source of each subset. We note
that the approaches tested in Kleinert and Schmidt (2020) are capable of solving
1051 out of the 1077 instances within a time limit of 1 h.
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Table 1. Instance classes with relevant sizes and references.

nx ny m `

Reference Size min max min max min max min max

CLIQUE Fischetti et al. (2018b) 60 546 1593 586 1653 1 1 1326 3363
IMKP Fischetti et al. (2019) 144 10 105 10 105 1 29 11 106
INTER-ASSIG DeNegre (2011) 24 25 25 25 25 1 1 45 45
INTER-CLIQUE Tang et al. (2016) 80 19 94 27 109 1 1 53 280
INTER-KP DeNegre (2011) 99 10 50 10 50 1 1 11 51
KP Fischetti et al. (2018b) 450 100 500 100 500 1 1 101 501
MIPLIB Fischetti et al. (2019) 60 3 78 734 2 78 733 0 0 15 4944
XULARGE Xu and Wang (2014) 60 500 1000 500 1000 200 400 200 400
XUWANG Fischetti et al. (2017a) 100 10 460 10 460 4 184 4 184

So far, most approaches discussed exploit the (structure of the) KKT reformu-
lation (8) of the bilevel problem. On the other hand, there also exist approaches
that are based on reformulation (10). The issues with this reformulation are the
nonconvex bilinear terms involving primal upper- and dual lower-level variables. In
principle, such nonconvex problems can be solved using classical convex envelopes—
like those obtained using McCormick inequalities; see McCormick (1976). These
convex envelopes can be refined by spatial branching to reduce the domain of the
considered part of the nonconvex function. We refer the interested reader to Horst
and Tuy (2013) for details and a convergence analysis of spatial branching methods
in specific as well as for an overview of global optimization in general. Today, also
general-purpose mixed-integer solvers such as Gurobi (Achterberg 2019) and CPLEX
(Klotz 2017) can solve problems including these bilinear nonconvexities.

In bilevel optimization, very often the assumption is made that the linking vari-
ables, i.e., those upper-level variables that also appear in the lower-level constraints,
are bounded integers. In this case, the bilinear terms λ>Cx can be linearized if upper
bounds on λ are available. Note, however, that finding these upper bounds is the
same task as finding big-M values for the KKT reformulation. Nevertheless, if such
a big-M is at hand, in Zare et al. (2019) it is shown that in case of large lower-level
problems (measured in terms of the number of constraints), the strong-duality based
reformulation (10) outperforms the KKT-based approach. The same assumption
and linearization technique is used in Kleinert et al. (2020a), where an outer ap-
proximation algorithm for MIQP-QP bilevel problems with convex-quadratic lower
levels is presented.

Let us close this section with some brief pointers to local methods. Recently,
classical MPCC regularization techniques such as the famous regularization proposed
by Scholtes (2001) have been used to compute C-stationary solutions of the KKT
reformulation in Dempe and Franke (2019). In Dempe (2019), even locally optimal
solutions of the linear bilevel problem are obtained based on the KKT reformulation.
Stationary points of (10) are computed in Kleinert and Schmidt (2019a) by using
a penalty alternating direction method. The quality of this method as a primal
heuristic for the bilevel problem at hand is evaluated in an extensive computational
study. It demonstrates that the approach is capable of computing feasible points
for large instances, including all instances in Table 1 with thousands of variables
and constraints, often in a fraction of a second. Related penalty methods for the
linear bilevel problem are discussed in Anandalingam and White (1990), Campelo
et al. (2000), and Lv et al. (2007).

Last but not last, let us refer to the recent survey chapter by Calvete and Galé
(2020) on algorithms for linear bilevel problems.
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4. Bilinear Lower Levels

A bilevel problem for which the lower level contains bilinearities but which is a
linear problem when the upper-level variables x are fixed can also be reformulated
as a single-level optimization problem by using any of the two techniques described
in Section 3.2. Pricing problems and Stackelberg bimatrix games constitute two
classes of bilevel problems that present this feature.

4.1. Pricing Problems. A first bilevel pricing problem with linear constraints,
linear upper-level objective and bilinear lower-level objective has been proposed by
Bialas and Karwan (1984). The following problem considered in Labbé et al. (1998)
provides a general framework for pricing:

max
x,y=(y1,y2)

x>y1 (11a)

s.t. Ax ≤ a, (11b)

y ∈ arg min
ȳ

{
(x+ d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 +D2ȳ2 ≥ b

}
. (11c)

The vector y of lower-level variables is partitioned into two sub-vectors y1 and y2,
called plans, that specify the levels of some activities such as goods or services. The
upper level influences the activities from plan y1 through a price vector x it charges
to the lower level and maximizes its revenue given by x>y1. The price vector x
is subject to linear constraints that may, among others, impose lower and upper
bounds on the prices. Vectors d1 and d2 represent linear disutilities faced by the
lower level when executing the activity plans y1 as well as y2. Note that d2 may also
encompass the price for executing the activities not influenced by the upper level.
These activities may, e.g., be substitutes offered by competitors for which prices are
known and fixed. The lower level determines its activity plans y1 and y2 to minimize
the sum of total disutility and the price paid for plan y1 subject to linear constraints.
Remark that if the model allows negative prices then it implicitly permits subsidies,
which may be appropriate, e.g., in the context of a central agency determining taxes.
In order to avoid the situation in which the upper level would maximize its profit by
setting prices to infinity for these activities y1 that are essential, one may assume
that the set {y2 : D2y2 ≥ b} is nonempty. Indeed, in this case, there exists a feasible
point for the lower level that does not use any activity influenced by the upper level.

We now discuss some interesting geometrical properties of the bilevel pricing
problem. First, remark that the feasible region of the lower level (11c) is independent
of the upper-level variables x, which is in contrast to the lower level (7) of the
LP-LP problem. Assuming that the feasible region of the lower level is bounded,
i.e., a polytope, allows us to conclude that for every upper-level decision the optimal
solution of the lower level is attained at a vertex of the feasible polytope of the lower
level. In addition, strong duality holds for every parametric lower level problem (11c).
Second, we look at the single-level reformulation of Problem (11) obtained by using
the KKT conditions of the lower-level problem (11c):

max
x,y=(y1,y2),λ

x>y1 (12a)

s.t. Ax ≤ a, D1y1 +D2y2 ≥ b, (12b)

D>1 λ = x+ d1, D
>
2 λ = d2, λ ≥ 0, (12c)

λ>(D1y1 +D2y2 − b) = 0. (12d)

Let (ȳ1, ȳ2) be a fixed vertex of the feasible polytope of the lower level. Then, the
constraints of (12) are linear in x and λ, i.e., they constitute a polyhedral set for
fixed (ȳ1, ȳ2). By considering all vertices of the lower level, we determine a partition
of the feasible set of Problem (12) into a (possibly exponential) number of polyhedral
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cells with the property that all price vectors x belonging to a cell share the same
lower-level optimal solution. Some of these cells may be empty. As a consequence,
the objective function of the bilevel pricing problem is neither convex nor continuous
in x but is linear in each cell.

Formulation (12) contains nonlinear terms both in its objective function (12a)
and in constraints (12d). To circumvent the nonlinearity of the latter one might
use the approach proposed by Fortuny-Amat and McCarl (1981) that is described
in Section 3.3 but to do so, again one needs to bound the dual variables, which is
NP-hard in general as mentioned earlier. Another approach consists of replacing
the complementarity constraints by the strong duality condition

(x+ d1)>y1 + d>2 y2 ≤ b>λ.
that involve the same bilinear term as the objective function (12a). Grimm et al.
(2020) use the latter kind of reformulation for the lower-level problem for particular
cases of the above bilevel pricing problem (11) that correspond to different electricity
retailer pricing schemes. Zugno et al. (2013), on the other hand, consider a similar
electricity pricing problem but use the KKT optimality conditions and the single-level
reformulation à la Fortuny-Amat and McCarl (1981).

If all vertices of the feasible polytope of the lower level are binary, bilinear terms
can be linearized more efficiently when using the approach proposed by McCormick
(1976). This particularly applies to lower-level problems that are polynomial graph
problems. Van Hoesel (2008) and Labbé and Violin (2013) present surveys about
such so-called network pricing problems that we briefly sketch in the following.
Consider a graph whose arc weights represent travel costs. In the toll setting
problem, the upper level determines the prices (or tolls) of a subset of arcs of a
network in order to maximize its revenue obtained by collecting tolls paid by the
lower level that consists in a given number of users, each one being an independent
follower. Each user selects a path from her origin to her destination that minimizes
her disutility given by the sum of the prices of the arcs in the path that are controlled
by the upper level plus the total travel costs.

Labbé et al. (1998) show that the toll setting problem with (possibly negative)
lower bounds on the prices is NP-hard even for a single user and that it is polynomial
in the special case that one single arc is to be priced. Roch et al. (2005) strengthen
the complexity result by showing that the single-user toll setting problem is already
strongly NP-hard if all lower bounds on the prices are equal to 0. Joret (2011)
shows that the problem is also APX-hard. Labbé et al. (1998) propose an MILP
reformulation of the toll setting problem that involves big-M values. Dewez et
al. (2008) show how to derive efficient big-Ms and propose valid inequalities that
strengthen the MILP model. Brotcorne et al. (2001) propose heuristics and Bouhtou
et al. (2007) present a preprocessing method to reduce the graph size. Didi-Biha
et al. (2006) and Brotcorne et al. (2011) exploit the fact that revenue maximizing
prices that are compatible with a given lower-level solution can be easily determined.
They propose exact algorithms as well as heuristics based on multi-path generation.

Heilporn et al. (2010b) and Heilporn et al. (2011) study the particular case in
which each follower uses at most one arc priced by the leader. Heilporn et al. (2010b)
show that the problem is strongly NP-hard. Further, exploiting the fact that there
exists a limited number of feasible solutions for each follower, they provide an
MILP formulation based on the optimal value function, a polyhedral study of this
formulation, and provide a complete description of the convex hull of feasible points
for the special case of one single follower. In Heilporn et al. (2011), a branch-and-cut
procedure is proposed.

Heilporn et al. (2010a) show the equivalence of this problem with the so-called
product line pricing problem. In the upper level of this problem, prices of products
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must be determined to maximize total revenue. In the lower level, customers choose
the product that maximizes their welfare given by the difference of their reservation
price (also called willingness to pay) for the product and its price. The product
line design and pricing was originally introduced by Dobson and Kalish (1988).
Guruswami et al. (2005) show that it is APX-hard. MILP formulations different
than the one used in Heilporn et al. (2010b) are presented in Shioda et al. (2011),
Myklebust et al. (2016), and Fernandes et al. (2016). Moreover, heuristics are
proposed in Dobson and Kalish (1993), Shioda et al. (2011) as well as Myklebust et
al. (2016). Instance generators that are publicly available are described in Fernandes
et al. (2016).

Castelli et al. (2017) show that the special case in which the price of all arcs
controlled by the leader must be equal is polynomial. Furthermore, they also show
that the problem is pseudo-polynomial when arc prices must be proportional to
their length and they also consider a robust variant of these problems. Castelli
et al. (2013) apply the model with proportional prices in the context of air traffic
management to determine how much Air Navigation Service Providers (ANSPs)
should charge airlines to use their airspace.

Marcotte et al. (2009) use the toll setting problem to determine road tolls to
regulate the use of roads for hazardous shipments and show that an optimal toll policy
is more efficient then a network design approach that determines road segments to
be closed to dangerous materials.

Brotcorne et al. (2008) consider the more general problem in which the leader
faces a joint design and pricing problem. Here, in the upper-level objective, a fixed
cost is incurred for each arc that is installed (and priced) by the leader. The lower
level is the same as in the toll setting problems. They show that the coupling
constraints linking the design variables and the user arc choice variables appearing
in the lower level can be moved to the upper level. These constraints forbid the
followers to use arcs that are not installed. Moving them to the upper level is
allowed because the leader can prevent the followers to use them by setting their
price very high. Finally, they suggest a single-level MILP formulation as well as
heuristics.

Network pricing problems with different lower-level problems have also been
studied. Brotcorne et al. (2000) consider a lower level given by an uncapacitated
transshipment problem and provide an MILP formulation as well as some heuristics.
Another variant is obtained by assuming that the lower level selects a minimum
spanning tree. Cardinal et al. (2011) show that this problem is APX-hard, whereas
Morais et al. (2016) and Labbé et al. (2021) propose different MILP formulations.

4.2. Stackelberg Games. The determination of optimal Stackelberg mixed strate-
gies in a two-player normal-form game constitutes another typical bilevel problem in
which both objectives are bilinear (in both the upper- and lower-level variables) and
all constraints are linear. In such a game, two players, say A and B are endowed
with a set of pure strategies I and J with |I| = n, |I| = m. The matrices R = [Rij ]
and C = [Cij ] encode the respective utilities when A plays strategy i and B plays
strategy j. A mixed strategy for player A (B) is a probability distribution x (y)
over her pure strategy set I (J). Both players want to maximize their respective
expected utility given by x>Ry and x>Cy. Now assume that the players choose their
mixed strategy sequentially: A is the leader and plays first, then B, informed of A’s
decision, reacts optimally with respect to her own objective. This is called a general
Stackelberg game and the solution, called Strong Stackelberg Equilibrium (SSE), is
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given by an optimal solution of the bilevel problem

max
x,y

x>Ry (13a)

s.t. 1
>x = 1, x ≥ 0, (13b)

y ∈ arg max
ȳ

{
x>Cȳ : 1>ȳ = 1, ȳ ≥ 0

}
, (13c)

in which 1 denotes the vector of all ones in appropriate dimension. The term “strong”
stands for the fact that the optimistic version of the problem is considered.

Problem (13) can be solved using linear programming. First notice that for a
given leader’s solution x, the lower level is an LP on the unit simplex. In other
words, there always exists an optimal solution for the follower that is one of the
n vertices of the unit simplex. Second, a solution x that maximizes the leader’s
utility and for which some solution ȳ, with ȳj = 1 for some j ∈ J , is optimal for the
follower can be found by solving problem (13) whose objective function is x>R·j
and in which the lower-level problem (13c) is replaced with

x>C.·j′ ≤ x>C·j for all j′ ∈ J.
Hence, solving this LP for every possible pure strategy of the follower and retaining
the one that yields the highest utility for the leader provides an SSE; see Conitzer
and Sandholm (2006).

Problem (13) can be adapted to the case in which the leader does not know the
follower’s preferences over the outcomes of the game with certainty. This is done
by considering different types k ∈ K of followers. In this case, the game is called
Bayesian. Utility matrices Rk and Ck are then given for each follower type k as well
as a probability πk that the type of the follower is indeed k. The leader’s expected
utility is then equal to

∑
k∈K π

kx>Rkyk and a lower-level problem

yk ∈ arg max
ȳk

{
x>Ckȳk : 1>ȳk = 1, ȳk ≥ 0

}
is introduced for each follower type. A Bayesian Stackelberg game can be seen as
a regular Stackelberg game in which the set of pure strategies of the follower is
composed of all n|K| possible combined choices of pure strategies of the different
follower types; see Harsanyi and Selten (1972). As a consequence, an SSE in a
Bayesian Stackelberg game can be determined in polynomial time when the number
of types is fixed. If not, the problem is NP-hard; see again Conitzer and Sandholm
(2006).

The bilevel optimization problem that determines an SSE of a general Bayesian
Stackelberg game can be reformulated as a single-level MILP. In fact any of the
three approaches consisting in using KKT conditions, strong duality, or the optimal
value function leads to an equivalent single-level reformulation. Then, to circumvent
the bilinearities in the objective functions of both levels, one may exploit the fact
that there always exists an optimal follower’s response that is binary, i.e., it is
a pure strategy. Paruchuri et al. (2008), Kiekintveld et al. (2009), and Yin and
Tambe (2012) propose models based on these principles. The LP relaxation of the
formulation proposed by Yin and Tambe (2012) is the strongest and provides a
complete description of the convex hull of feasible points in the case of a single
follower. See Casorrán et al. (2019) for comparison of the three above mentioned
formulations from both theoretical and computational point of views. On the other
hand, decomposition methods scale better when the problem involves many resources
and/or follower types. In this perspective, Paruchuri et al. (2008) propose a solution
approach involving Benders decomposition and Jain et al. (2010) and Lagos et al.
(2017) use column generation.
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Stackelberg games have been shown to be useful for many real-world applications
in security domains. In these so-called Stackelberg security games, the leader (de-
fender) places security resources (e.g., guards) at various potential targets (possibly
in a randomized manner), and then the follower (attacker) chooses a target to attack;
see e.g. Jain et al. (2013). Examples of such applications include disrupting drug
trafficking networks (Washburn and Wood 1995), assigning Federal Air Marshals to
transatlantic flights (Pita et al. 2008), determining randomized port and waterways
patrols for the U.S. Coast Guard (Shieh et al. 2012), preventing fare evasion in
public transport systems (Yin et al. 2012), protecting endangered wildlife (Yang
et al. 2014), or coordinating resources to organize patrols of the Chilean national
police force (Bucarey et al. 2019). See also the book edited by Tambe (2011) that
describes many applications and the survey by Sinha et al. (2018) that presents
recent advances in Stackelberg security games. In these security games, playing
a mixed strategy of the defender is particularly appropriate because even if the
attacker is aware of this mixed strategy, she does not know which pure strategy will
actually be put in action when she attacks. This is especially relevant when the
game is played in a repeated way, e.g., every day.

A common feature of Stackelberg security games is that pure strategies of the
leader consist in allocating several resources to protect targets, leading to an
exponential number of such pure strategies. In the simplest case, J represents a
set of targets that may be attacked and each target attack corresponds to a pure
strategy of the attacker. Further, assume that the defender has a set of m < n
(identical) resources available to cover these targets. The possible pure strategies of
the defender consist in all subsets of J of cardinality at most m. As a consequence,
any of the formulations proposed for finding an SSE in a general Stackelberg game
becomes rapidly intractable when the number of targets and/or resources increase.

To alleviate this situation, Kiekintveld et al. (2009) propose to encode a leader’s
mixed strategy by a vector x whose entries xj represent the marginal probabilities
of covering each target j in this mixed strategy. The marginal probability of a
target is equal to the sum of the probabilities of the pure strategies covering the
said target. In other words, a vector x of marginal probabilities is a point belonging
to the convex hull of the binary vectors corresponding to all possible pure strategies,
i.e., all binary vectors with at most m entries equal to 1. It can be readily seen
that this convex hull is

{
x : 1>x ≤ m, 0 ≤ x ≤ 1

}
. Indeed, the constraint matrix

is totally unimodular so that all the vertices of this polytope are binary vectors.
Further, as explained in Kiekintveld et al. (2009), the mixed strategy corresponding
to a given vector of marginal probabilities can be retrieved in polynomial time since
it amounts to solve a linear system with a polynomial number of constraints. In the
context of a scheduling problem, McNaughton (1959) proposes an alternative and
faster polynomial procedure.

Another common feature of Stackelberg security games is that the utility of both
the defender and the attacker depend only on whether the target that is attacked is
protected or not. There are two cases, depending on whether or not the target is
covered by the defender. The defender’s utility for an uncovered attack of type k
on target j is denoted Dk(j|u) and for a covered attack of type k it is denoted as
Dk(j|c). Similarly, Ak(j|u) and Ak(j|c) represent the type k attacker’s utilities.
With these new notations at hand, one can formulate the following bilevel problem
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that determines an SSE in a Bayesian Stackelberg security game:

max
x,y

∑
k∈K

πk
∑
j∈J

(xjD
k(j|c) + (1− xj)Dk(j|u))ykj

s.t. 1
>x ≤ m, 0 ≤ x ≤ 1,

yk ∈ arg max
ȳk

∑
j∈J

(xjA
k(j|c) + (1− xj)Ak(j|u))ȳkj : 1>ȳ = 1, ȳ ≥ 0

 .

Three single-level MILP reformulations similar to the ones proposed for general
Stackelberg games can be derived for this problem; see Casorrán et al. (2019). The
authors also compare them with extended formulations that involve all possible
mixed strategies, i.e., formulations of the general Stackelberg game version of such
security games.

Other variants of Stackelberg security games involve more sophisticated pure
strategies of the leader. Resources can be heterogeneous meaning that each resource
can only cover a subset of targets. Resources can cover at once a subset of targets,
called schedule. Korzhyk et al. (2010) investigate the complexity of such variants
with one type of follower. They show that a Stackelberg security game with
homogeneous resources is polynomial if the schedules have size at most 2 and is
NP-hard otherwise. When resources are heterogeneous, they show that the problem
is polynomial when schedules have size 1 and NP-hard otherwise. Jain et al. (2010)
propose a branch-and-price approach for such variants by iteratively generating
columns representing pure strategies of the leader. Finally, Letchford and Conitzer
(2013) study the complexity of the case of Stackelberg security games in which
the targets are vertices of a graph and schedules are subgraphs with a particular
structure such as path or tree.

5. Mixed-Integer (Non)Linear Lower Levels

In this section, we focus on a general bilevel MILPs, which are defined as

min
x∈X,y

c>x x+ c>y y (14a)

s.t. Ax+By ≥ a, (14b)

y ∈ arg min
ȳ∈Y

{
d>ȳ : Cx+Dȳ ≥ b

}
, (14c)

where the vectors cx, cy, d, a, b and matrices A,B,C,D are defined as in Section 3.
The sets X and Y specify integrality constraints on a subset of x- and y-variables,
respectively.

The HPR’s feasible region of this bilevel MILP is, as usual, defined as the set of
points (x, y) ∈ X × Y satisfying all constraints of the upper and lower level, i.e.,

H := {(x, y) ∈ X × Y : Ax+By ≥ a, Cx+Dy ≥ b} .
The inducible region of a bilevel MILP consists of all bilevel feasible points, i.e., all
points (x, y) ∈ H for which for a given x, the vector y is an optimal solution of the
lower-level problem. This means,

d>y ≤ ϕ(x),

holds. Here, ϕ(x) again is the optimal value of the lower-level problem, which is
defined as

ϕ(x) = min
y∈Y

{
d>y : Dy ≥ b− Cx

}
. (15)

The value function ϕ(x) thus corresponds to a parametric MILP, and hence it is
nonconvex, not continuous, and in general very difficult to describe. Moreover, in
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contrast to bilevel LPs, it is NP-hard to check whether a given point (x, y) is a
feasible solution of the bilevel MILP. Jeroslow (1985) showed that k-level discrete
optimization problems are Σp

k-hard, even when the variables are binary and all
constraints are linear. This means that, e.g., a discrete bilevel optimization problem
can be solved in nondeterministic polynomial time, provided that there exists an
oracle that solves problems that are in NP in constant time.

The inducible region of the bilevel MILP is contained in the set H, and therefore,
minimizing the objective function of the upper level over the set H (which represents
another MILP) provides a valid lower bound for the bilevel MILP. Consequently,
solving the LP-relaxation of the HPR provides another (and usually much weaker)
lower bound of the bilevel MILP.

Moore and Bard (1990) initiated the studies of bilevel optimization problems
involving discrete variables. Their illustrative example (cf. Figure 2) is frequently
used in the literature to highlight the major differences and pitfalls arising in discrete
bilevel optimization. Since then, studies have been carried out considering only
special cases, e.g., by assuming binary variables at both levels or by considering
purely linear problems at the lower level. Exact MILP-based procedures for the
general case in which both the upper and the lower level are MILPs have been
mainly studied in the last decade.

5.1. General Properties. The following example is provided by Moore and Bard
(1990):

min
x∈Z,y∈Z

{
−x− 10y : y ∈ arg min

ȳ∈Z
{ȳ : (x, ȳ) ∈ P}

}
,

where P is a polytope defined by

−25x+ 20ȳ ≤ 30, x+ 2ȳ ≤ 10, 2x− ȳ ≤ 15, 2x+ 10ȳ ≥ 15.

The HPR of this problem is an integer linear problem, whose feasible region is
depicted in Figure 2. The unique optimal solution for this example is the point
(2, 2), which is in the interior of the convex hull of the HPR. This is in contrast to
bilevel LPs, whose optimal solution is always a vertex of the HPR; see Section 3.
The example also shows that relaxing the integrality constraints for the lower-level
problem does not provide neither lower nor upper bounds for the bilevel MILP.
Dashed lines in Figure 2 correspond to the inducible region of the problem in which
the integrality constraints for both the upper-level and the lower-level variables are
relaxed. In general, such obtained set does not even have to contain a single bilevel
feasible point.

Attainability of Optimal Solutions. In Vicente et al. (1996), the authors con-
sider three cases of bilevel MILPs and study the following different assumptions:

(i) only upper-level variables are discrete,
(ii) all upper- and lower-level variables are discrete, and
(iii) only lower-level variables can take discrete values.

Assuming that all discrete variables are bounded and that the inducible region is
nonempty, they show that for Case (i) and (ii), an optimal solution always exists
and that (i) can be reduced to a linear bilevel program (cf. Section 3), whereas (ii)
can be reduced to a linear trilevel problem. However, for Case (iii), Moore and Bard
(1990) and also Vicente et al. (1996) provided examples that demonstrate that the
bilevel feasible region may not be closed, and hence, the optimal solution may not
be attainable. The following simpler example (see Figure 3) is due to Köppe et al.
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Figure 2. Example of a bilevel MILP: Discrete points are feasible
for the high-point relaxation. The point (2, 4) is the optimal solution
of the high-point relaxation and (2, 2) is the optimal solution of
the bilevel MILP. Triangles represent bilevel feasible solutions and
dashed lines represent the feasible region of the bilevel LP in which
the integrality constraints on the upper- and lower-level variables
are relaxed.
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Figure 3. The attainability counterexample by Köppe et al. (2010)

(2010):

inf
0≤x≤1,y

{
x− y : y ∈ arg min

y′∈Z
{ȳ : ȳ ≥ x, 0 ≤ ȳ ≤ 1}

}
,

which is equivalent to
inf
x
{x− dxe : 0 ≤ x ≤ 1} .

In this problem, the infimum is -1, which is never attained. In the existing literature
on bilevel MILPs, it is therefore frequently assumed that the linking variables are
discrete. We recall that nonlinking upper level variables can be moved to the lower
level (Bolusani and Ralphs 2020; Tahernejad et al. 2020), which effectively translates
the latter assumption into “all upper-level variables are discrete”. Alternatively, for
bilevel MILPs with continuous linking variables, methods that achieve ε-optimal
solutions are considered if the optimal solution cannot be attained; see, e.g., Zeng
and An (2014).

Unboundedness of the Lower-Level Problem. A common assumption for
algorithms dealing with bilevel MILPs is that the feasible region of the HPR is
compact. Sometimes, this condition is relaxed and it is only assumed that discrete
variables are bounded. For the latter case, Xu and Wang (2014) demonstrate that
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the unboudedness of the optimal HPR value does not reveal the nature of the
underlying bilevel problem. It can happen that the underlying bilevel MILP is
infeasible, unbounded, or admits an optimal solution; see also Section 3 for an
illustrative example. Xu and Wang (2014) (cf. Lemma 2) also show that if the lower
level MILP (15) is unbounded (i.e., ϕ(x) = −∞ for a certain x from the HPR’s
feasible region), then the bilevel MILP (14) is infeasible. Later, Fischetti et al.
(2018a) showed that for any bilevel MILP whose HPR value is unbounded, one can
detect upfront whether the lower-level problem is unbounded or not. To this end,
it is sufficient to solve a single LP (not depending on x) in a presolve phase. The
solution of this LP, cf. Theorem 1 of Fischetti et al. (2018a), provides a direction
(if such exists) in which the lower-level problem defined by (15) is unbounded—no
matter the choice of the vector x from the HPR’s feasible region.

5.2. Generic Approaches for Bilevel MILPs. Most of the exact methods stud-
ied in the literature start with solving the high-point relaxation, i.e., min{c>x x +
c>y y : (x, y) ∈ H}, and continue by discarding bilevel infeasible solutions by branch-
ing, by adding cutting planes, by approximating the value function ϕ(x) given
in (15), or by a combination of all of them. In the following, we review these
methods and point out to their differences.

Branch-and-Bound Methods. In their seminal paper, Moore and Bard (1990)
develop the first branch-and-bound method for discrete bilevel optimization. Their
algorithm terminates after a finite number of iterations if all upper-level variables
are integer or all lower-level variables are continuous (assuming an optimum exists).
In addition, the authors assume that the HPR’s feasible region is compact and
that there are no coupling constraints at the upper level. The authors point out
that two of the three standard B&B fathoming rules for mixed-integer optimization
are not valid in the bilevel context and discuss further computational challenges
of solving discrete bilevel problems. Bard and Moore (1992) then propose another
exact algorithm for bilevel MILPs assuming that all variables (x, y) are binary.

Fischetti et al. (2018a) developed another branch-and-bound method that works
for mixed-integer upper- and lower-level problems and allows coupling constraints at
the upper level. The major assumption is that the discrete variables are bounded and
that the linking variables are discrete. Necessary modifications of a standard B&B-
based MILP solver are introduced to properly handle branching, node evaluation,
and fathoming rules. The method checks unboundedness of the lower-level problem
in a presolve phase; see Section 5.1. Together with Xu and Wang (2014), see below,
the proposed B&B algorithm is one of the few methods that return a provably
optimal solution (if such exists) within a finite number of iterations without assuming
that the HPR’s feasible region is compact. Instead, only the discrete variables need
to be bounded.

Parametric Integer Programming Methods. Faísca et al. (2007) assume that
discrete variables of the bilevel MILP are binary and use parametric programming
to develop an exact method that works in two phases. In the first phase, all K
lower-level solutions are enumerated using parametric integer programming. Then,
each solution is plugged into the upper-level problem, yielding K single-level MILP
problem reformulations, from which the best one represents the global optimum.
The approach is picked up and extended to bilevel MIQPs in Avraamidou and
Pistikopoulos (2019a). The authors also provide a computational study for bilevel
MILPs and bilevel MIQPs. A more detailed description of the implementation can
be found in Avraamidou and Pistikopoulos (2019b).

Köppe et al. (2010) also approach bilevel MILPs from the parametric programming
perspective. They view the lower-level problem as a parametric (integer) program
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whose right-hand side is parameterized by x. The authors propose an algorithm that
runs in polynomial time for a fixed dimension ny of the lower-level problem and for
the case that the linking variables are continuous. In case the linking variables are
discrete, the authors show that there exists an algorithm that runs in polynomial
time for a fixed dimension nx+ny. The algorithm applies binary search by targeting
the optimal value of the bilevel MILP.

Multi-Way Branching. Xu and Wang (2014), see also the PhD thesis by Xu
(2012), apply a multi-way branching method to solve bilevel MILPs in which all
leader variables are required to be integer and bounded. The algorithm solves a
series of MILPs obtained by restricting the values of slack variables of the lower-level
constraints. Another enhanced version of this method, which provides a heuristic
solution in the case that the lower-level problem has multiple optimal solutions, is
given by Liu et al. (2020b).

In their “watermelon algorithm”, Wang and Xu (2017) exploit multi-way branching
to “carve out” bilevel infeasible points from the feasible region of the HPR. Whenever
a bilevel infeasible point (together with a polyhedron around it that contains no
bilevel feasible points) is discovered, it is discarded by decomposing the search space
into a family of smaller polyhedra, which are then solved in a recursive fashion. Two
different ways to determine the bilevel-free polyhedron around a given infeasible
point are proposed along with MILP-based procedures for their determination.

Branch-and-Cut Methods. By extending the ideas from Moore and Bard (1990),
DeNegre and Ralphs (2009), see also the dissertation by DeNegre (2011), develop
an MILP-based branch-and-cut approach. Their method does not allow for any
continuous variables and coupling constraints at the upper level. Bilevel infeasible
solutions are cut off on the fly by adding “integer no-good cuts” that exploit the
integrality property of the upper- and lower-level variables. These cuts are guaran-
teed to separate bilevel infeasible points from the convex hull of the bilevel feasible
region. An extension of this method that allows for a mixed-integer setting at both
levels is given by Tahernejad et al. (2020). The authors provide a comprehensive im-
plementation that integrates many computational and algorithmic features proposed
in the recent literature on bilevel MILPs.

A cutting plane method for bilevel MILPs in which all variables are discrete is
given by Caramia and Mari (2015). The authors solve the HPR and utilize a variant
of “no-good” constraints (involving big-Ms and `∞-norms) to cut off nonoptimal
responses from the follower on the fly. They also propose a B&C method with a
specific branching rule derived from rounding the value of the optimal follower’s
response.

Dempe and Kue (2017) consider two special cases of bilevel MILPs: (i) both
levels contain discrete variables only and the leader influences the objective of the
follower (i.e., the objective function is bilinear), and (ii) only the lower level contains
discrete variables and the leader influences the right-hand-side of the follower. For
the former case, the authors propose a B&C algorithm based on covering-type valid
inequalities. For the latter case, the authors exploit the structural properties of the
value function and derive an iterative MILP-based procedure in which the value
function is refined. The methods have been illustrated on two small examples.

To enhance the performance of their basic B&B method, Fischetti et al. (2018a)
introduce intersection cuts to separate integer bilevel infeasible points, thus obtaining
a B&C approach for bilevel MILPs. These cuts, which are traditionally used for
mixed-integer programming (see, e.g., Balas (1971)) are used here for the first time
to solve bilevel MILPs: LP-optimal solutions (being integer but bilevel infeasible)
are cut off by deriving a cut in which the LP-cone of this solution is intersected with
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a convex set that contains no bilevel feasible points. In a follow-up article, Fischetti
et al. (2017a) provide additional computational techniques to further improve their
B&C method. These techniques include new ways to derive intersection cuts, follower
upper-bound cuts and variable fixing based on the properties of the lower-level
problem. The results also include hypercube intersection cuts, which can deal with
lower levels with continuous variables. The authors conducted a computational
study on a set of benchmark instances shown in Table 1 (except CLIQUE and
IMKP) and optimal solutions have been reported for 822 out of 874 instances. The
code of Fischetti et al. (2017a) is publicly available (Fischetti et al. 2017b), and
represents the current state-of-the-art exact method for general bilevel MILPs. The
code is integrated within the commercial solver CPLEX. An alternative open-source
implementation that includes features of Fischetti et al. (2017a), but also many
additional ones, has been developed by Tahernejad et al. (2020) and is available
online (Ralphs 2018). Unsurprisingly, specialized approaches for solving particular
interdiction problems, like those of Fischetti et al. (2019) and Furini et al. (2020b),
are outperforming the generic approaches by Fischetti et al. (2017a) and Tahernejad
et al. (2020) on interdiction instances such as INTER-KP, KP, INTER-CLIQUE, and
CLIQUE; see Table 1.

Benders-like Decomposition. A Benders-like decomposition scheme for general
bilevel MILPs is given in Saharidis and Ierapetritou (2009), assuming that the HPR’s
feasible region is compact. Valid Benders-like cuts are derived by fixing the value
of integer variables at the master level and using the active-set strategy together
with the KKT reformulation of the resulting continuous lower-level problem. The
algorithm terminates when an ε-optimal solution is achieved.

In a recent article by Bolusani et al. (2020), the authors make a parallel between
bilevel MILPs and two-stage stochastic MILPs with recourse. By exploiting their
common mathematical structure given by the value-function reformulation and using
the MILP-duality theory, a unified algorithmic framework is provided. In Bolusani
and Ralphs (2020), a Benders-like decomposition to approximate the value function
and a cutting-plane method are discussed as two possible solution strategies.

Other Approaches. Zeng and An (2014) proposed a single-level reformulation
and a decomposition algorithm based on a column-and-constraint generation scheme
for general bilevel MILPs. The authors even allow the linking variables of the leader
to be continuous. Under the assumption that the optimal solution is attainable, the
algorithm finds an optimal solution. Otherwise, it finds an ε-solution. Their idea
is picked up by Yue et al. (2019) who propose to project out integer variables of
the lower-level problem and work with KKT conditions of the remaining continuous
lower-level problem.

Another alternative approach for binary lower-level problems is recently proposed
by Shi et al. (2020). The authors consider bilevel MILPs in which the lower-level
variables are all binary. The method is based on the k-optimality of the lower-
level solution: It is a relaxation of the lower-level problem in which the follower’s
response is accepted by the leader as long as it is within the k-Hamming distance
neighborhood of any bilevel feasible solution. This way, it is possible to model not
completely rational decisions of the follower. The authors provide a hierarchy of
decisions linked with the value of k, along with a hierarchy of upper and lower
bounds of the original bilevel problem, which corresponds to k = 0.

5.3. Bilevel MINLPs. For single-level nonconvex mixed-integer optimization prob-
lems, one can only expect to compute ε-optimal solutions. Thus, the same also
holds for nonconvex mixed-integer bilevel problems. We refer to Definition 3 in
Mitsos et al. (2008) for a formal definition of ε-optimality in the bilevel context and
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discuss some approaches for bilevel problems with general nonconvex mixed-integer
lower-level problems in the following.

In Mitsos (2010), general bilevel MINLPs with continuity assumptions on all
functions are considered. In addition, all variables are assumed to be bounded. The
stated approach is an extension of the method proposed in Mitsos et al. (2008) that
dealt with purely continuous bilevel problems. In turn, the latter paper builds on
theoretical developments in Mitsos and Barton (2006). The key idea is to exploit
estimates on the optimal value function of the lower level, which requires the global
solution of MINLPs as subproblems. The approach is shown to terminate in finite
time and an implementation of the approach is evaluated on a small test set.

In a series of papers, the so-called branch-and-sandwich approach for bilevel
MINLPs is developed. The main idea is to subsequently compute tightened bounds
on the optimal value function (3) and on the upper-level objective function value.
Starting with continuous but nonconvex lower-level problems in Kleniati and Adjiman
(2014b) and a numerical evaluation thereof in Kleniati and Adjiman (2014a), the
approach is extended to the mixed-integer case in Kleniati and Adjiman (2015). The
approach stated in the latter paper is applicable to problems with twice continuously
differentiable functions F , f , G, and g and requires bounds on all variables. In
this setting, the branch-and-sandwich approach terminates in finite time. Recently,
novel bounding schemes for this approach have been published in Paulavičius and
Adjiman (2020) and further implementation details can be found in Paulavičius
et al. (2020). Due to the general hardness of the problems under consideration,
the computational study in Kleniati and Adjiman (2015) deals with rather small
problems with up to 12 variables and 7 constraints.

A different setting is considered in Lozano and Smith (2017a). All functions F ,
f , G, and g are continuous but possibly nonconvex. In addition, the constraint
functions G and g need to be separable in x and y, i.e., they have to be of the form
G(x, y) = G1(x)+G2(y) and g(x, y) = g1(x)+g2(y). Under the assumptions that (i)
the upper- and lower-level feasible regions are compact, (ii) g1(x) is integer-valued
for all x, and (iii) all upper-level variables x are integers, the authors derive a finite
solution approach based on the value-function reformulation (4). In particular, this
approach is also capable of solving the pessimistic variant.

6. Interdiction Problems

Interdiction games are a special class of bilevel problems that aim at monitoring
or halting an adversary’s activity in a given environment. They are used to model
defender-attacker settings in which the attacker (the follower) optimizes some
objective such as a shortest path or a maximum flow in a network (see, e.g., Israeli
and Wood (2002)), or maximizes the profit of the items that can be packed in
a knapsack (Caprara et al. 2014; Fischetti et al. 2019). The defender, who acts
as the leader, has limited resources to protect the environment, e.g., by disabling
the vertices/edges in a network or by changing their capacity, or by removing the
knapsack items, to achieve the worst possible outcome for the attacker. Besides
military applications, interdiction problems are extremely important in controlling
the spread of infectious diseases (Assimakopoulos 1987; Furini et al. 2021; Shen
et al. 2012), spread of fake news in social networks (Baggio et al. 2021), in counter-
terrorism and in monitoring of communication networks (Wang et al. 2016).

Interdiction problems follow the common structure of bilevel problems without
coupling constraints,

min
x∈X,y∈S(x)

{F (x, y) : G(x) ≥ 0} ,
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where constraints G(x) describe some restrictions on the solution of the leader,
typically including some budget or resource constraints, and S(x) represents the
set of optimal solutions of the x-parameterized lower-level problem. Interdiction
problems model zero-sum Stackelberg games, i.e., they correspond to a competitive
setting in which the leader and the follower have diametrically opposed objective
functions:

F (x, y) = −f(x, y).

This is why interdiction problems can be alternatively stated as

min
x∈X
{ϕ(x) : G(x) ≥ 0} , (16)

where the follower’s problem is stated in its maximization form:

ϕ(x) = max
y∈Y
{f(x, y) : g(x, y) ≥ 0} . (17)

The leader prevents certain activities of the follower by reducing the availability
of some objects or resources—for example, items or nodes/edges in a network. Based
on the relationships between the functions f and g and the nature of the leader’s
variables x, we make the following distinction.

Discrete Interdiction. In the discrete interdiction setting given below, the linking
variables xi are binary, and they are set to one if and only if the respective object i is
unavailable for the follower. Thus, the objective function f(x, y) = d>y is typically
linear and the constraints g(x, y) ≥ 0 in (17) are replaced by:

yi ≤ Ui(1− xi), i ∈ Nx, (18a)
g̃(y) ≥ 0, (18b)

where Ui represents the default upper bound for the follower variable yi (modeling
the availability of object i at the lower level), Nx ⊆ {1, . . . , nx} is the index set of
the binary linking variables of the leader, and g̃ : Rny → R` are constraints that
impose further restrictions on the follower’s solution. To simplify the exposition, in
the remainder of this section we assume that ny = |Nx|.

Continuous Interdiction. In the continuous interdiction setting, the linking
variables xi are continuous (i.e., 0 ≤ xi ≤ 1 for i ∈ Nx) and they model a continuous
increase of costs (or reduction of available capacities) imposed on the interdicted
objects. For example, in max-flow interdiction settings, the leader is given a limited
budget to reduce the available capacity of arcs/vertices, while the follower tries to
maximize the flow in the resulting network; see, e.g., Lim and Smith (2007) and
Wood (1993) and the further references therein. Alternatively, in the shortest-path
interdiction (see, e.g., Israeli and Wood (2002)), the leader can increase the cost of
arcs traversed by the follower and in this case, the constraints g(x, y) ≥ 0 in (17)
are replaced by g̃(y) ≥ 0 and the objective function of the follower f(x, y) becomes
bilinear, i.e.,

f(x, y) =
∑
i∈Nx

yi(di + δixi), (19)

as it now encodes the increase of arc costs (modeled by δ) caused by the leader.
Finally, one can also consider discrete interdiction problems with bilinear objective
functions.

By the nature of the objective function, there is no distinction between optimistic
and pessimistic solutions. It is also commonly assumed that the available budget of
the leader is limited, so that the follower’s problem (17) stays feasible.

In some very special cases, when the interdiction problem can be modeled as a
bilevel LP, the problem is polynomially solvable; see, e.g., Fulkerson and Harding
(1977), where it is shown that continuous interdiction of the shortest-path problem
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can be equivalently stated as a minimum cost flow problem. However, discrete
interdiction of the shortest-path problem in which the leader chooses k arcs to
interdict (i.e., G(x) ≥ 0 translates into 1>x ≤ k), already is NP-hard (Ball et al.
1989). The latter problem is frequently referred to as the k-most-vital arcs problem.
Just like for general bilevel MILPs, if the follower solves an NP-hard problem (e.g.,
the maximum knapsack problem or the maximum clique problem), the corresponding
interdiction problem turns out to be Σp2-hard (Caprara et al. 2014; Rutenburg 1994).

6.1. Commonly Studied Interdiction Problems. We provide below a classifica-
tion of interdiction problems based on the structures of the encompassed lower-level
problems.

Network Interdiction with Polynomial Lower-Level Problems. These prob-
lems model some of the most traditional and oldest applications arising in the areas
of military or homeland security. Besides interdiction of shortest paths (Israeli and
Wood 2002) or maximum flows (Akgün et al. 2011; Cormican et al. 1998; Janjarassuk
and Linderoth 2008; Wood 1993), problems also have been studied in which the
follower solves the spanning tree (Bazgan et al. 2013; Lin and Chern 1993) or the
maximum matching problem (Zenklusen 2010).

Mixed-Integer Linear System Interdiction Problems. These are interdiction
problems in which the lower level is an MILP. They were first studied in the PhD
thesis of Israeli (1999) and later in the PhD thesis of DeNegre (2011). One of
the most studied (and structurally easiest) variants is discrete interdiction of the
maximum knapsack problem, in which the leader and the follower have a knapsack
of their own, and the follower can only choose from those items that are not taken
by the leader. Complexity results for this problem are given in Caprara et al.
(2014), whereas tailored exact methods have been developed in Caprara et al. (2016),
Della Croce and Scatamacchia (2019), and Fischetti et al. (2019); see also PhD
thesis by Silva Carvalho (2016). The problem’s extension in which the leader and the
follower solve a multidimensional knapsack problem has been addressed in Fischetti
et al. (2019). For other variants of more general bilevel knapsack problems (that do
not belong to the interdiction setting) see the PhD thesis by Silva Carvalho (2016)
and the further references therein.

Facility location with interdiction has been studied as well. Scaparra and Church
(2008) investigate the problem in which the leader is concerned with protecting a
limited number of facilities, assuming the follower will attack a fixed number of them
in order to maximize the transportation cost between the clients and the remaining
operational facilities. In Zhang et al. (2016), the leader locates a fixed number of
facilities first, followed by the follower, who is prohibited to use the same location as
the leader. Both players face disruption risks while trying to maximize the market
share, assuming that each customer patronizes the nearest open facility.

Interdiction problems on networks in which the follower solves an NP-hard
problem also fall into this category. These problems include interdiction of the clique
number (Furini et al. 2019, 2020b; Rutenburg 1994), or interdiction of independent
sets and vertex covers (Bazgan et al. 2011).

Blocking Problems. Closely related to interdiction problems are the so-called
blocking problems in which the leader wishes to minimize the cost of blocking the
activities of the follower, while ensuring the optimal follower’s response will be
bounded by a user-defined threshold r ∈ R:

min
x∈X

{
c>x x : ϕ(x) ≤ r, G(x) ≥ 0

}
.
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When blocking the maximum number of cliques, e.g., the leader minimizes the
(un)weighted sum of vertices/edges to remove from the graph, so that the maximum
(weighted) clique in the remaining graph is bounded from above by a given integer
(Pajouh 2020; Pajouh et al. 2014). The blocking of vertices or edges has been studied
with respect to other graph optimization problems such as the maximum matchings
(Zenklusen et al. 2009), shortest paths (Golden 1978), spanning trees (Bazgan et al.
2013), or dominating sets (Pajouh et al. 2015).

Most exact methods for blocker problems share similarities with the methods
derived for interdiction problems, which is why we focus on the latter ones in the
remainder of this section.

6.2. Methods. The specific structure of interdiction problems can be exploited in
different ways to derive problem-tailored exact approaches. We summarize generic
strategies used to solve interdiction problems to optimality.

Dualization. When the follower’s problem corresponds to a linear optimization
problem, duality theory can be exploited to derive a single-level reformulation. If the
leader influences the objective function of the follower, like in the bilinear objective
function (19), we first dualize the lower-level problem for a given value of x. That
way, we get rid of the bilinear terms and obtain a single-level formulation (see, e.g.,
Israeli and Wood (2002) for the shortest path interdiction) involving variables x of
the leader and dual variables associated to constraints of the follower’s problem (17).

If the feasible region of the lower level is influenced by the leader, such as in (18),
after dualizing the lower-level problem, the resulting single-level reformulation again
optimizes over x and dual variables associated to each constraint of the follower’s
problem. However, its objective function involves bilinear terms in which x-variables
are multiplied with continuous variables of the follower’s dual problem. When dealing
with discrete interdiction problems, these bilinear terms are typically linearized
using McCormick’s inequalities (McCormick 1976), resulting in a single-level MILP
problem reformulation; see, e.g., the seminal work by Wood (1993) where this
technique is applied for the maximum-flow interdiction problem. For continuous
x-variables, a specialized exact method has been proposed by Lim and Smith (2007)
assuming that G(x) ≥ 0 models a budget constraint, exploiting the fact that at
most one of the x-components will be fractional in an optimal interdiction strategy.

Penalization. An alternative way to deal with constraints of Type (18a) in a
discrete interdiction setting is to relax them into

yi ≤ Ui, i ∈ Nx, (20)

and penalize the use of the object i, whenever xi = 1 for an i ∈ Nx. This can
be achieved by introducing coefficients Mi, i ∈ Nx, and by replacing the linear
objective function d>y of the follower by∑

i∈Nx

yi(di −Mixi).

Due to the fact that xi ∈ {0, 1}, the coefficients Mi have to be sufficiently large
to ensure that there always exists an optimal solution of the modified follower’s
problem in which xi = 1 implies yi = 0 for all i ∈ Nx; see, e.g., Smith and Song
(2020) and Wood (2011) and further references therein.

When the lower-level problem is linear, this transformation allows one to use
duality theory and reformulate the problem as a single-level problem, following
the same approach as for the bilinear objective function (19) described above. If
the lower-level problem is discrete (and NP-hard), one can apply a Benders-like
decomposition approach instead.
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Benders-like Decomposition. For linear lower-level problems, the value of Mi

in the penalization approach is chosen as an upper bound of the dual variable
associated to constraint (18a); see, e.g., Brown et al. (2006), Lim and Smith (2007),
and Wood (2011).

Israeli (1999) proposes to use the penalty function to reformulate interdiction
problems whose lower-level problem is an MILP. The lower-level problem is then
convexified using the fact that its feasible region does not depend on x anymore
and, hence, the value function can be restated as

ϕ(x) = max

{∑
i∈Nx

ȳi(di −Mixi) : ȳ ∈ Ȳ

}
, (21)

where Ȳ represents the set of extreme points of the polytope described by (18b)
and (20). Recall that we assume that the lower-level problem is well defined, so
that the set Ȳ is nonempty. Hence, the function ϕ(x), described as the maximum of
a set of affine functions given in (21), is convex and the starting problem, given in
the Form (16), can be now reformulated by projecting out the follower’s variables y
and by introducing an auxiliary variable θ as

min
x∈X

{
θ : θ ≥

∑
i∈Nx

ȳi(di −Mixi), ȳ ∈ Ȳ , G(x) ≥ 0

}
. (22)

Recall that when the follower solves an NP-hard problem, the resulting inter-
diction problems are typically Σp

2-hard, which implies that there is no way of
formulating such problems as single-level integer programs of polynomial size unless
the polynomial hierarchy collapses. This, in particular, means that separating
Benders-like constraints

θ ≥
∑
i∈Nx

ȳi(di −Mixi) (23)

in (22) for any given solution (θ̄, x̄) of the leader requires solving the NP-hard
follower’s problem defined by ϕ(x̄) in (21). Nevertheless, when effective algorithms
are available for solving these lower-level problems (rather than formulating them
as MILPs and using general-purpose solvers), some recent results show that tight
canonical single-level reformulations can be obtained. Fischetti et al. (2019) use
dynamic programming for the maximum knapsack interdiction and Furini et al.
(2019, 2020b) use tailored branch-and-bound solvers for two variants of the maximum
clique interdiction problems. Moreover, any heuristic solution of the lower-level
problem also provides a valid Benders-like constraint (23) and standard stabilization
techniques for improving the convergence can be applied.

The choice of the coefficients Mi is crucial for the computational efficiency of the
derived single-level reformulation. In some particular cases in which the follower
solves an LP, such bounds can be very tight—for example, Cormican et al. (1998)
show that Mi = 1 for the interdiction of the maximum flow problem. Recently,
Fischetti et al. (2019) show that tight Mi coefficients (i.e., Mi = di for i ∈ Nx)
can also be derived for lower-level problems which are NP-hard, provided that
lower-level constraints satisfy the so-called downward monotonicity property. The
latter property assumes that if ȳ is a feasible lower-level solution for a given x,
then any ŷ such that 0 ≤ ŷ ≤ ȳ is also feasible. This condition is, for example,
satisfied if the follower solves a variant of a set-packing problem (Dinitz and Gupta
2013), including the maximum knapsack, multidimensional knapsack, or a graph
optimization problem that satisfies the hereditary property with respect to inter-
dicted objects; e.g., the maximum matching problem if edges are interdicted or
the maximum clique problem if vertices are interdicted. Furini et al. (2019) show
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that for the maximum clique interdiction problem in which the leader removes
the vertices of the graph, Constraints (23) are facet-defining with Mi = 1 under
some mild conditions. Finally, Fischetti et al. (2019) provide further generalizations
of their result that include settings in which the follower’s MILP is an extended
formulation, involving other variables that are not influenced by the leader (i.e.,
ny > |Nx|) showing that interdiction of some facility location problems and variants
of the Steiner tree problem fall into this category.

Other Approaches. Tang et al. (2016) propose a generic exact method for solving
discrete interdiction problems in which the feasible region of the lower-level MILP is
influenced by the leader. The authors show that valid lower bounds are obtained by
progressively building a convex inner approximation of the feasible solutions of the
lower-level MILP. This inner approximation is modeled as an LP, and dualized to
obtain a single-level MILP formulation. The solution of this formulation provides a
valid lower bound and a feasible solution x for the leader, which can be plugged in
into ϕ(x) to calculate a valid upper bound. The algorithm terminates when the lower
and upper bound coincide or when all feasible solutions from {x ∈ X : G(x) ≥ 0}
have been exhaustively searched.

Salmeron et al. (2009) propose a global Benders decomposition method for discrete
interdiction problems. The method alternates between solving the master problem
(containing discrete interdiction variables) and LP subproblem(s), building a convex
piecewise-linear approximation of the function ϕ(x). The method is more general
in the sense that it can be applied to interdiction problems for which the function
ϕ(x) is not convex. A sequence of lower-bounding piecewise-linear approximations
of ϕ(x) is built, which is tight for any given discrete choice of x, which guarantees
that in a finite number of iterations the optimal solution can be found. Salmeron
and Wood (2015) generalize this method for solving an interdiction problem of a
power system whose lower-level problem is an MILP.

Lozano and Smith (2017b) introduce a backward-sampling approach for solving
discrete interdiction problems. Sampling is used to create a subset of the follower’s
solutions—optimizing over this subset gives the maximum perceived damage made
by the leader and, hence, a valid lower bound. Similarly as in the method by
Tang et al. (2016), the authors carefully extend the sampling set, while alternating
between the calculations of the lower and upper bound, until the two values meet.

Finally, a combined column-and-row generation method, which relies on Benders
decomposition, has been proposed by Zhao and Zeng (2013). The MILP model is
dynamically extended by new variables that correspond to the follower’s response
given a fixed leader’s decision x and the newly added constraints ensure the optimality
condition for the follower’s response.

6.3. Critical Vertex/Edge Detection Problems in Graphs Seen Through
the Lens of Bilevel Optimization. Most of the existing literature dealing with
detection of most vital arcs/vertices, with respect to some given graph-functionality
measures, rely on extended MILP formulations; see, e.g., the recent survey by Lalou
et al. (2018). Interesting applications include the maximization of the total number
of pair-wise connected vertices while removing a limited number of arcs/vertices
from the network (Arulselvan et al. 2009; Di Summa et al. 2012), the maximization
of the number of connected components or the minimization of the size of the largest
connected component (Shen and Smith 2012; Shen et al. 2012). Only recently, a
connection between critical vertex/edge problems in graphs and Stackelberg games
has been exploited by Furini et al. (2020a) and Furini et al. (2021), where the authors
derive canonical formulations in the natural space of variables for the k-vertex cut
and the capacitated vertex separator problem, respectively. The authors propose
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efficient B&C methods that beat the state-of-the-art thanks to the bilevel-like
problem interpretation.

Finally, we point out that an up-to-date survey on network interdiction models
and algorithms can be found in Smith and Song (2020). The survey also includes
other aspects not covered in our survey such as interdiction under uncertainty,
multilevel interdiction also known as defender-attacker-defender games (Baggio et al.
2021), as well as interesting problem extensions including situations in which both
players act simultaneously, or problems with information asymmetry or information
incompleteness (for either the leader or the follower).

7. Possible Directions for Future Research

The variety of aspects discussed in this survey show the required broadness of
techniques that have to be exploited to solve bilevel optimization problems effectively.
Despite the large amount of research carried out in the recent years, there are still
very many aspects that need further investigation. In this section, we sketch a few
of the many possible directions for future research in the field of computational
bilevel optimization and begin with those aspects that are rather close to what is
discussed in this paper.

(1) The incorporation of integer variables in models is known to make the
problem harder to solve. However, it is often easier to design provably
correct algorithms for solving bilevel problems if all linking variables are
integer. If this assumption does not hold, we have discussed in Section 5.1
that optimal solutions may not be attainable. This is the reason why more
methods exist for ILP-ILP bilevel problems compared to what is published
for the mixed-integer, i.e., the MILP-MILP, case. In this setting, solution
methods need to deal with ε-optimality of solutions. This might be one
reason why the performance of these methods is usually not comparable
with the performance of methods that rely on the assumption of integer
linking variables.

(2) In this survey, we mainly discussed branch-and-bound as well as branch-
and-cut methods for solving bilevel problems. We also mentioned a few
primal heuristics. If one, however, compares the richness of cutting planes
used in the field of single-level mixed-integer optimization with the number
of known valid inequalities for bilevel optimization, it is obvious that many
branch-and-cut algorithms would benefit from a larger set of bilevel-specific
cutting planes. Moreover, the entire field of presolve techniques is almost
completely unexplored in bilevel optimization, whereas the performance of
state-of-the-art MILP solvers heavily relies on them.

(3) If one compares the number of approaches for specific bilevel problems such
as pricing problems as well as Stackelberg or interdiction games with the
number of general-purpose approaches for bilevel LPs or bilevel MI(N)LPs,
it becomes obvious that there still is a lot to do with respect to developing
general-purpose algorithms for larger classes of bilevel problems. Of course,
both previously mentioned aspects will also play a key role in developing
further general-purpose methods.

(4) In addition to the mathematical aspects mentioned so far, computational
bilevel optimization still suffers from the absence of a broad variety of
well-curated instance libraries that can be used to test and tune specific
implementations of newly developed algorithms. Although some instance
sets are already publicly available (Paulavičius and Adjiman 2019; Ralphs
2020; Sinnl 2020; Zhou et al. 2020), see also Table 1, the community of
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computational bilevel optimization would greatly benefit from more, and in
particular more diverse, instance sets.

(5) In addition, the development of novel algorithmic techniques would also
very much benefit from more mature open-source realizations of “classical”
methods in the field. Today, new ideas, e.g., for a novel valid inequality
or a new presolve technique can usually only be tested if a lot of other
techniques have been implemented on top of a basic branch-and-bound
scheme. Obviously, availability of such open-source codes (of which MibS,
see Ralphs (2018), is a notable example) would push the field significantly.

There are also many sub-areas of bilevel optimization that need to be developed
further—especially when it comes to algorithmic and computational aspects. Let us
exemplarily discuss two of them.

(6) Most of the methods discussed in this survey tackle optimistic bilevel
optimization problems. Although some important theoretical advances have
been made in the field of pessimistic problems, the algorithmic treatment of
these models is still in its infancy.

(7) Another field worth to be mentioned is bilevel optimization under
uncertainty—let it be stochastic or robust optimization problems embed-
ded in a bilevel context. This problem class obviously is of tremendous
importance for practice but, on the other hand, is also very hard to solve.
The main reason is that the incorporation of uncertainty usually introduces
another level in the problem, which then directly leads to tri- or general
multilevel models that we will also comment on below again.

To sum up, there are many important and insufficiently explored topics in the field
of bilevel optimization that lead to open research questions and, thus, to possible
topics of future work. The focus of this survey is on mixed-integer programming
techniques for solving challenging bilevel optimization problems. In this context,
many interesting topics and questions arise that are at the interface of bilevel
optimization and combinatorial optimization problems, problems from graph theory,
algorithmic design, complexity theory, operations research, and applications. We
are convinced that these connections can help us to derive tighter models, faster
exact or approximation algorithms, or new structural properties. We sketch two
exemplary problems at the interface of bilevel optimization as well as combinatorial
optimization or graph theory:

(8) The problem of generating a maximally violated valid inequality, i.e., the
separation problem in a branch-and-cut context, can often be interpreted
as a bilevel problem; see Lodi et al. (2014). In some cases, a compact
single-level reformulation is not possible, and hence, any advancement in
solving bilevel programs may have a significant impact on improving the
performance of branch-and-cut based methods for difficult combinatorial
optimization problems.

(9) In graph theory, the families of critical vertex/edge detection problems,
minimum d-blockers, or d-transversals in graphs can be formulated as bilevel
(interdiction-like) optimization problems; see, e.g., Costa et al. (2011). This
allows to look at some of the classical problems from graph theory from
a different and fresh perspective and to possibly derive new mixed-integer
formulations, which “live” in the canonical space of variables.

Moreover, many applications need to go beyond bilevel modeling and require tri- or
even general multilevel models. This is, e.g., the case for interdiction problems with
fortification (Lozano and Smith 2017b), stochastic interdiction problems (Cormican
et al. 1998), or for problems from energy market design (Grimm et al. 2016). In this
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context, rather small scale instances are usually solved by exploiting hand-crafted
and highly problem-specific solution methods. Thus, applied bilevel optimization
would very much benefit from algorithmic enhancements for general tri- or multilevel
problems.
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