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Abstract 
Electronic Health Records (EHRs) often lack reliable annotation of patient medical conditions. Phenorm, an 

automated unsupervised algorithm to identify patient medical conditions from EHR data, has been developed. 

PheVis extends PheNorm at the visit resolution. PheVis combines diagnosis codes together with medical concepts 

extracted from medical notes, incorporating past history in a machine learning approach to provide an 

interpretable “white box” predictor of the occurrence probability for a given medical condition at each visit. 

PheVis is applied to two real-world use-cases using the datawarehouse of the University Hospital of Bordeaux: 

i) rheumatoid arthritis, a chronic condition; ii) tuberculosis, an acute condition (cross-validated AUROC were 

respectively 0.943 [0.940 ; 0.945] and 0.987 [0.983 ; 0.990]). PheVis performs well for chronic conditions, though 

absence of exclusion of past medical history by natural language processing tools limits its performance in French 

for acute conditions. It achieves significantly better performance than state-of-the-art methods especially for 

chronic diseases.  



1. Introduction 
As the amount of data collected on a daily basis from hospital health care system keeps increasing,[1] the appeal 

for leveraging the full potential of these data for research purposes and to investigate clinical questions is also 

becoming stronger than ever.[2–5] Yet, EHR data are quite different from research oriented data (e.g. cohort or 

trial data): i) they are less structured, more heterogeneous, ii) they present finer granularity, iii) data collection is 

done for health care purpose.[1,6–8] Currently, one of the main barriers to use such data for studying disease risk 

factors is the necessity to first identify patients having diseases of interest, a task that we will denote as 

phenotyping. 

Several approaches have been recently proposed to phenotype patients.[9–13] They often rely on either 

rule-based algorithms specifically designed with clinicians, or on supervised models trained on annotated patient 

datasets. Such algorithms are limited because their development is disease specific, must be (re-)started from 

scratch for every new disease and demand a lot of clinician expertise time. In addition, portability and 

generalization to new databases (e.g. different hospitals) can often fail, requiring once again the process to be 

reiterated in the new institution. Hripcsak and Albers defined high-throughput phenotyping as an approach that 

“should generate thousands of phenotypes with minimal human intervention”.[8] In this perspective, multiple 

methods have been developed for automatic phenotyping. Agarwal et al. proposed XPRESS which learns on 

noisy labels.[10] Halpern et al proposed Anchor which learns on so-called “anchor patients”, i.e. patients with 

highly disease-specific features.[11] Wagholikar et al developed Polar, which learns on so called “polar 

patients”, i.e extreme patients which are almost certain to either have or not have the disease.[12] Finally Yu et 

al. developed PheNorm which learns the phenotype as a continuous score.[13] And they also developed SAFE 

which selects relevant features for phenotyping in an automated manner.[14] All these frameworks are 

unsupervised, in the sense that they require neither manual chart review nor complex rule definitions to classify 

phenotypes, and thus allow automated high-throughput phenotyping.  

While those frameworks are appealing, they only consider phenotyping at the patient level and neglect 

the timing of illness onset and cure. Yet, we need increased resolution for phenotyping, especially for studying 

acute diseases (that can occur repeatedly) or for answering epidemiological questions (where temporal sequence 

is important): phenotyping at the visit level would allow to precisely take into account the dynamic evolution of 

patient’s conditions. Besides, those frameworks were developed using English databases, leveraging advanced 

NLP tools and relying on rich terminologies not necessarily available in other languages.[15,16] Portability to 

other languages is not straightforward, as they still often lack resources of matching quality. 

We propose a new, portable, approach for unsupervised algorithm extending PheNorm at the visit level: 

PheVis. This new PheVis method accumulates past information to provide an up-to-date estimation of a 

phenotype probability at any given visit. This accumulation of previous information from EHR can be tuned to 



match the disease length, making PheVis a versatile tool suitable for both chronic and acute conditions. Section 

2 presents the PheVis analysis and modeling strategy. Section 3 demonstrates PheVis performance for rheumatoid 

arthritis (RA) and tuberculosis (TB), a chronic and an acute condition respectively, using French EHRs from 

Bordeaux University Hospital. The method is compared to other state-of-the-art methods. Finally Section 4 

discusses these findings, the limits of the approach, and offers a conclusion. 

2. Materials and Methods 
PheVis combines ICD10 (international classification of diseases 10th revision) billing codes together with medical 

concepts extracted from clinical notes, incorporating past information through a user-tunable exponential decay. 

This creates a silver-standard surrogate of the medical condition of interest. Then variable selection (through 

elastic-net logistic regression) and pseudo-labelling (using random-forest) are performed, leveraging extreme 

values of this silver-standard. Finally, a logistic regression model is estimated on those noisy labels to provide 

an interpretable “white box” predictor of the occurrence probability for a given medical condition at each visit. 

The different steps of PheVis are outlined in Figure 1 and are described below. 

1. Input	data	
The input data of the PheVis approach are the clinical notes and the ICD10 codes from an EHR datawarehouse. 

All the notes and ICD10 codes are collapsed by visit, and IAMsystem, a dictionary-based named entity 

recognition tool, is used to extract relevant Unified Medical Language System (UMLS) concept unique identifiers 

(CUIs, i.e. CUIs associated with  disease to be phenotyped – see Section 2.3 for details).[17,18] CUIs features 

are the number of occurrence of the terms in the UMLS dictionary related to the CUIs. No semantic analysis is 

performed avoiding the distinction between current disease and past disease or negation. ICD10 codes are 

aggregated at the category level (i.e. the first three characters, M05.1 and M05.2 codes are both counted under 

the same category code M05). This results in a matrix 𝑋!!"" of dimension 	𝜑	 × 𝑃 , where 𝜑 is the total number 

of visits and 𝑃 the total number of ICD and CUI concepts. Rows of 𝑋!!"" are indexed by the vector 𝑘#$ ∈ {1,… , 𝜑} 

with 𝑖 ∈ {1,… , 𝑛} the patient index and 𝑗 ∈ {1,… , 𝑣#} the visit index. The 𝑣# notation takes into account the 

variation of number of visits between patients so that 𝜑 = ∑ 𝑣#%
#&' . To facilitate reading, 𝑘#$ will be denoted as 𝑘 

when the patient information is not needed. Columns are indexed by 𝑝 ∈ {1,… , 𝑃} the covariate index. 

2. Build	a	surrogate	of	the	disease	status	
As there are no disease labels for the visits (hence requiring a phenotyping algorithm), a supervised model cannot 

be trained right away. To be able to train our phenotyping algorithm, we first build a surrogate variable expected 

to be close to the true disease status. This surrogate is based on the main ICD and UMLS codes that represent a 

disease. 

We define 𝑚𝐶! the standardized sum of main disease concepts as: 



𝑚𝐶! = 𝑍(𝑚𝑎𝑖𝑛𝐼𝐶𝐷!) + 𝑍(𝑚𝑎𝑖𝑛𝐶𝑈𝐼!) + 𝑚𝑖𝑛>𝑍(𝑚𝑎𝑖𝑛𝐼𝐶𝐷!) + 𝑍(𝑚𝑎𝑖𝑛𝐶𝑈𝐼!)?	and	𝑍(𝑥) =
𝑥 − 𝜇
𝜎 		 (1) 

𝑚𝑎𝑖𝑛𝐼𝐶𝐷 and 𝑚𝑎𝑖𝑛𝐶𝑈𝐼 are main concepts related to the disease. For example, for RA we used: 

- 𝑚𝑎𝑖𝑛𝐼𝐶𝐷! = 𝑀05! +𝑀06! with 𝑀05! the number of times the code M05 Rheumatoid arthritis with 

rheumatoid factor was recorded for observation 𝑘, and similarly for 𝑀06! and M06 Other rheumatoid 

arthritis 

- 𝑚𝑎𝑖𝑛𝐶𝑈𝐼! = 𝐶0003873! with C0003873 Rheumatoid arthritis 

At this stage, standardization (centering and scaling) is critical because CUIs occurrences often largely 

outnumber ICD code occurrences. Without such standardization, the weight of ICD codes in the prediction would 

be negligible. 

To phenotype a given visit, it is necessary to take into account information available from previous visits as well. 

For example, a patient can be diagnosed with RA at the age of 50 and have a visit at 52 for an infectious event 

containing no information about RA. RA being a chronic disease, we want to be able to predict RA in both visits. 

To do so we propose to accumulate past history information with an exponential decay as follow: 

𝑚𝐶𝑢𝑚𝑢𝑙!!" = 𝑚𝐶!!" +𝑚𝐶𝑢𝑚𝑢𝑙!!"#$𝑒𝑥𝑝	(−𝜆𝐷!!")	with	𝑚𝐶𝑢𝑚𝑢𝑙!!$ = 𝑚𝐶!!$ 	and	𝐷!!" = 𝑡!!" − 𝑡!!"#$ 	 (2) 

𝜆 is a constant parameter tuned by the user that controls the “memory loss” of the algorithm. For easier 

interpretation one can prefer to set the value of the half-life equal to 𝑙𝑛(2) 𝜆⁄  . The natural half-life chosen is the 

usual duration of the disease (e.g. 180 days for TB and +∞ for RA — being a chronic disease currently without 

a cure). Setting the half-life to +∞ for RA is equivalent to simply accumulating the information of all previous 

visits. 

The same exponential decay accumulation is applied to each ICD and UMLS codes. We also define five other 

features accumulating the information on the last day, last 5 days, last month and last year: 

- 𝑙𝑎𝑠𝑡𝑣𝑖𝑠!!" = 𝑚𝐶!!"#$ 

- 𝑙𝑎𝑠𝑡5𝑣𝑖𝑠!!" = ∑ 𝑚𝐶!!%
$('
)&$(*  

- 𝑙𝑎𝑠𝑡𝑚𝑜𝑛𝑡ℎ!!" = ∑ 𝑚𝐶!!% × 𝟏+
$('
)&'  with 𝟏+ = 1	if	𝐷!!" − 𝐷!!% ≤ 30𝑑𝑎𝑦𝑠, 0	otherwise 

- 𝑙𝑎𝑠𝑡𝑦𝑒𝑎𝑟!!" = ∑ 𝑚𝐶!!% × 𝟏,
$('
)&'  with 𝟏, = 1	if	𝐷!!" − 𝐷!!% ≤ 365𝑑𝑎𝑦𝑠, 0	otherwise 

- 𝐶𝑢𝑚!!" = ∑ 𝑚𝐶!!"
$
'  

This yields an augmented matrix 𝑋- of 𝜑 × (2𝑃 + 5) dimensions: CUIs and ICDs (P), their accumulate counts 

(P), and 5 new variables. 



3. Variable	selection	and	pseudo-labelling	
We use the SAFE algorithm to select predictive variables of interest and reduce the dimensionality of the 

optimization problem. First we use IAM system to extract ICD10 and UMLS concepts in external resources: 

medical text books and Wikipedia disease specific chapter or page.[19–22] A concept and its accumulate count 

are kept in the model only if it is found in the two resources. As the true phenotype is not available, we categorize 

𝑚𝐶𝑢𝑚𝑢𝑙! into 𝑆! = {0, 0.5, 1} to provide a surrogate to train models. Those three categories distinguish visits 

for which phenotype is really unlikely (i.e 𝑆! = 0), really likely (i.e 𝑆! = 1) or uncertain (i.e 𝑆! = 0.5) based on 

𝑚𝐶𝑢𝑚𝑢𝑙!. To define the two thresholds separating the three categories of 𝑆!, we used  𝑚𝑎𝑖𝑛𝐼𝐶𝐷! which takes 

into account prevalence variability depending on the disease and the cohort. We first count the proportion of 

visits with at least one occurrence of mainICD code (i.e the mainICD ≥ 1 prevalence) that we denote 

𝑞𝑢𝑎𝑛𝑡+-#%./0 as : 

𝑞𝑢𝑎𝑛𝑡+-#%./0 =
1
𝜑k𝑚𝑎𝑖𝑛𝐼𝐶𝐷! ≥ 1

!

				with	𝑞𝑢𝑎𝑛𝑡+-#%./0 	 ∈ [0; 1] (3) 

We divide this quantity by a constant 𝜔 that we set to 5 to define 𝑞𝑢𝑎𝑛𝑡12341+1 as : 

𝑞𝑢𝑎𝑛𝑡12341+1 =
𝑞𝑢𝑎𝑛𝑡+-#%./0

𝜔 	with	𝜔	a	constant (4) 

This 𝑞𝑢𝑎𝑛𝑡12341+1 proportion allows to define three categories: [0; 𝑞𝑢𝑎𝑛𝑡12341+1], (𝑞𝑢𝑎𝑛𝑡12341+1; 1 −

𝑞𝑢𝑎𝑛𝑡12341+1), [1 − 𝑞𝑢𝑎𝑛𝑡12341+1; 1]	and we define the surrogate 𝑆! as: 

𝑆! = r
0,	if	visit	belongs	to	the	𝑞𝑢𝑎𝑛𝑡12341+1	percentile	of	visits	with	the	lowest	𝑚𝐶𝑢𝑚𝑢𝑙!
1,	if	visit	belongs	to	the	𝑞𝑢𝑎𝑛𝑡12341+1	percentile	of	visits	with	the	highest 𝑚𝐶𝑢𝑚𝑢𝑙!			

0.5	otherwise																																																																																																											
	 (5) 

For instance, if 20% of visits have at least one occurrence of main ICD codes, then, given 𝜔 = 5, 𝑆! is set to 1 

for visits belonging to the 4% percentile with the highest 𝑚𝐶𝑢𝑚𝑢𝑙!, 𝑆! is set to 0 for visits belonging to the 4% 

percentile with the lowest 𝑚𝐶𝑢𝑚𝑢𝑙! and set to 0.5 otherwise. One can note that the higher the 𝜔 constant (i.e 

the extreme patients are more extreme), the more confident we are in the specificity of 𝑆! in {0,1}  toward the 

true phenotype but the smaller training size is for next steps. We found 𝜔 = 5 to work well in our setting. 

Then we train a logistic regression with elastic-net penalization to select a subset 𝑋5 of relevant predictors from 

the 𝑋- matrix using only the visits for which 𝑆! is either 0 or 1. 𝑋5 is a 𝜑 × 𝑃′ matrix with the subset of predictors 

with non-zero estimated coefficients. Of note, 𝑚𝑎𝑖𝑛𝐼𝐶𝐷 and 𝑚𝑎𝑖𝑛𝐶𝑈𝐼 are always forced into the set of selected 

variables in 𝑋5, while 𝐶𝑢𝑚! is systematically removed for acute conditions. 

We then assign a pseudo-label {0,1} to all visits. This increases the number of visits available to train the final 

logistic regression, and also adds visits with more uncertain phenotype status which overall results in smoother 



predicted probabilities and better performance. To perform this pseudo-labelling, we train a random-forest with 

majority vote for trees aggregation for which 𝑆! is either 0 or 1. The trained model is then used to predict the 

pseudo-label 𝑃𝐿! ∈ {0,1} status for each visit. Disease probability can be estimated at this step. However, random 

forest variable importance is hard to interpret in a clinical perspective which is particularly annoying for 

unsupervised learning without gold standard label to evaluate the accuracy of the model. To ease the 

understanding of the disease representation, probabilities are estimated through a logistic regression. 

4. Probability	estimation	
To estimate the disease occurrence probability, we used a noising-denoising logistic regression with random 

intercept similarly to PheNorm. First, 𝑚𝑎𝑥	(10*, 𝜑) visits are randomly sampled with replacement with inverse 

probability weighting defined as '
6(68&&')68&:('(6(68&&'))('(68&)

 in order to balance the training set. This new 

𝑚𝑎𝑥(10*, 𝜑) × 𝑃′ matrix is denoted 𝑋;. Then we perform a noising-denoising step to force the algorithm to use 

other variables than the main ICD and UMLS concepts (and thus avoid overfitting with respect to the surrogate 

construction). Every value of explanatory variables has a probability of 𝑝;14% = 0.3	 to be replaced by the mean 

of the explanatory variable as in PheNorm.[13] For instance if M05 ICD10 code mean occurrence is 0.2 then 

each visit has a probability of 0.3 to have its true M05 value replaced by 0.2. This noisy matrix of dimension 

𝑚𝑎𝑥(10*, 𝜑) × 𝑃′ is denoted X!"< : 

X!"< = r
𝑚𝑒𝑎𝑛>𝑋;"?,	if	𝑟;14%&' = 1	

X!"= 	,	if	𝑟;14%&' = 0													
					with	𝑟;14% ∼ 𝐵𝑒𝑟𝑛(𝑝;14%)	 (6) 

For the denoising step a logistic regression with random intercept is used: 

𝑙𝑜𝑔𝑖𝑡 ~𝑃 �𝑃𝐿!!" = 1�� = 𝑋!!""
% >𝛽" + 𝑏?# 	with	𝑏?# 	~	𝑁(0, 𝜎?@)	 (7) 

And finally the probability of having the disease is estimated on the noise free matrix as: 

𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒! = 1) =
𝑒AB&'

( C
)
D'

1 +	𝑒EB&'
( F

)
D'

(8) 

This final probability illustrates the level of confidence of the estimated phenotype based on the used variables. 

  



INPUT 

 matICD: ICD codes matrix, one column per ICD10 code and one row by visit. ICD10 codes are 
aggregated at three characters (e.g M05.1 -> M05) 

matText: medical text matrix, one column and one row per visit 

mainICD: sum of the disease of interest ICD10 codes by visit 

mainCUI: sum of the disease of interest CUI codes by visit 

matextRessources: the external resources text matrix, one column, each row is a text related to the disease 
of interest from a different resource 

BEGIN 

 (1) /* DATA STRUCTURATION */ 

matCUIs := extract CUIs from matText with IAM system, one column per CUIs code and one row per 
visit 

matStructExt := extract CUIs and ICD10 codes from matextRessources with IAM system (or other name 
entity recognition algorithm), one column per CUIs code and one row per resource 

𝑋- := matCUIs + matICD 

 (2) /* BUILD SURROGATE */     

mC := Standardised sum of mainICD and mainCUI 

mCumul := accumulate mC with exponential decay 

S := categorise mCumul in three categories (0: do not have the disease, 1: has the disease, 0.5: uncertain 
disease status). Thresholds depend on mainICD prevalence. We denote 𝑣234 visits where 𝑆 ∈ {0,1}. 

 (3) /* VARIABLE SELECTION AND PSEUDO-LABEL */ 

Xfilt: = filter 𝑋- where CUI and ICD is in majority of matStructExt rows 

ENmodel := train (model = elastic-net, predictors = Xfilt[𝑣234,], outcome = S[𝑣234]) 

X’ := select concepts of interest as non-zero beta in ENmodel 

 RFmodel := train (model = random-forest, predictors = 𝑋5[𝑣234,], outcome = S[𝑣234]) 

 PL := predict (model = RFmodel, new.data = X’) for all observation (S = {0, 0.5, 1}) 

 (4) /* PROBABILITY ESTIMATION */ 

𝑋;GG3 := weighted bootstrap of X’, weight is inverse probability from PL 

𝑋%G#H1 := replace 30% of matrix cells by the corresponding mean of the column variable (noising step) 

LRmodel := train (model = logistic regression with random intercept, predictors = 𝑋%G#H1, outcome = PL) 

Return FinalProba := predict (model = LRmodel with fixed coefficient only, new.data = X’) 

END 

Figure 1: Pseudo-code of PheVis. 



3. Results 

3.1. Application design 
We illustrate the PheVis method on RA, a chronic disease which cannot be cured, and active TB, an acute disease 

which usually last between 6 to 12 months.[19–22] The model performance was evaluated on an imperfect gold 

standard for both diseases: for RA we used the presence of at least one rheumatoid arthritis form, a form 

specifically used by rheumatologists at the University Hospital of Bordeaux in usual RA care, for tuberculosis 

we manually reviewed patients with at least one mention of tuberculosis treatment while other patients were 

considered not having the disease. Latent tuberculosis was labelled as tuberculosis negative because, even if the 

bacterium is the same, symptoms, diagnosis and treatment are different. Patients were included in the study cohort 

if i) they had been hospitalized at the University Hospital of Bordeaux at least once since 2010 and ii) if they had 

either one primary or secondary ICD code of RA (M05 or M06), or one biological measurement of Anti-

Citrullinated Peptide Antibody. The cohort was split into training and test datasets at the patient level with a 70% 

to 30% ratio. The cohort is described in Table 1, highlighting the discrepancy between ICD, CUI and gold-

standard justifying the need for automated phenotyping algorithms. 

Table 1 Description of phenotyping cohort. University Hospital of Bordeaux. 

 Train set  Test set 
 
 Patients Visits  Patients Visits 

n 9,102 237,875  2,359 62,004 
      
Gold standard RA (%) 953 (10.5) 27,077 (11.4)  274 (11.6) 7,883 (12.7) 
ICD RA1 ≥ 1 (%) 3,682 (40.5) 21,448 (9.0)  901 (38.2) 5,823 (9.4) 
CUI RA ≥ 1 (%) 3,703 (40.7) 32,775 (13.8)  952 (40.4) 8,632 (13.9) 
      
Gold standard TB (%) 49 (0.5) 618 (0.3)  5 (0.2) 90 (0.1) 
ICD TB2 ≥ 1 (%) 88 (1.0) 277 (0.1)  15 (0.6) 50 (0.1) 
CUI TB ≥ 1 (%) 647 (7.1) 2,393 (1.0)  147 (6.2) 439 (0.7) 
1: ICD RA: M05, M06 
2: ICD TB: A15, A16, A17, A18, A19 

 

Ten different prediction models were evaluated for each disease: (i) our proposed PheVis approach, for which 

we set 𝜆IJ =
K%	(@)
.%M

= 0 and 𝜆>N =
K%	(@)
'O?

 (tuberculosis typically lasting around 6 months), (ii) XPRESS for which 

we defined the silver standard as the main ICD code presence, (iii) ANCHOR for which we defined the anchor 

visits as the one with at least one main ICD and main CUI code, (iv) the elastic-net and (v) the random forest 

POLAR algorithms for which we adapted the polar patient definition to our setting (negative polar visits neither 

main ICD codes and neither main CUI codes, whereas the positive polar visits had both), (vi) PheNorm, (vii) a 

supervised elastic-net with accumulate variables (denoted as ENET_CUM) and also viii) without accumulate 



variables (ENET_NOCUM), (ix) a supervised random forest with accumulate variables (RF_CUM) and (x) 

without cumulated variables (RF_NOCUM). Of note, supervised models (ENET_NOCUM, RF_NOCUM, 

ENET_CUM and RF_CUM) used the gold-standard labels for training. We used SAFE to select variables used 

for prediction by each algorithm in order to ease their comparison. 

3.2. Application results 
Figure 2 shows individual PheVis and other state-of-the-art methods predictions for four patients. For RA, as the 

information is accumulated over time in PheVis, the model is able to maintain relatively stable predictions over 

time even if there is not much information about RA in a visit. Without this feature, other approaches display 

highly variables predictions oscillating over time. For TB, the advantage of accumulating information confronts 

the problem of accumulating too much. This problem is increased in French because the majority of natural 

language processing tools and terminological systems were developed for the English language. Tools to detect 

negation and past history are not yet implemented in Bordeaux University Hospital datawarehouse.[23] 

Prediction of PheNorm is really close to 0.5 for all visits. This can be explained by the final step of the PheNorm 

algorithm which is a mixture model on the predicted sum of main ICD and main CUI. As our dataset is largely 

imbalanced, with many more negative patients than positive ones, both normal distributions of the mixture model 

are concentrated on the negative class. Because they are close to each other, the probability of belonging to each 

class (positive or negative phenotype) is really close. However, as shown on figure 3, those probabilities are not 

constant and still give good prediction performance according to AUROC and AUPRC, in spite of being poorly 

interpretable. Other methods do not have this problem, as they mainly learn on binary silver standard. 

Figure 3 shows the performance of PheVis and the other methods on the test set for both TB and RA. 

For RA, PheVis significantly outperforms any other unsupervised method, both in term of AUROC (RA: 0.943 

[0.940 ; 0.945], TB: 0.987 [0.983 ; 0.990]) and AUPRC (RA: 0.754 [0.744 ; 0.763], TB: 0.299 [0.198 ; 0.403]). 

Table 3 details the performances of the algorithm in the train and test sets compared to other methods and with 

different hyperparameters (half-life, 𝜔 and pseudo-labels). More elements justifying pseudo-labels are available 

in the supplementary material. As expected, for TB the advantage of PheVis is less important because the 

information is accumulated over a shorter time period, still it performs well especially in term of AUROC 

compared to other unsupervised methods. Supervised methods worked significantly better with accumulated 

variables supporting the importance of taking into account past history to predict actual phenotype. Among the 

other unsupervised methods, we can denote that PheNorm and the random forest POLAR seem to be the best 

methods, however, as shown on figure 2 PheNorm has serious calibration problem on unbalanced datasets. 

XPRESS failed to reach convergence in our setting possibly because it uses lasso penalization instead of elastic-

net as in SAFE or PheVis, or ridge as in ANCHOR or POLAR. Both for POLAR and the supervised methods, 

random forest was able to significantly improve the performance of the model, probably because it is able to 

learn more complex structure than penalized linear regression. 



Table 3 shows point performance for two arbitrary phenotyping decision rules: i) a predicted probability 

above 0.5 ii) a probability above the threshold maximizing the sum of the precision and the recall. Specificity 

and negative predictive values are good partly because the diseases are rare at the visit level. Matching the results 

from figure 3, the sensitivity/positive predictive values trade-off is better for RA than for TB. 

We investigated the lack of performance for TB phenotyping by comparing the number of visits with at 

least one occurrence of main TB CUI among patients with at least one visit labelled TB positive by chart-review. 

Visits labelled TB negative by chart-review with TB positive past history were significantly more likely to have 

at least one occurrence of main TB CUI compared to visits labelled TB negative without TB past history (31.0% 

vs 4.4%, chi-2 p-value = 2.13 x 10-62). Also there was no signifant difference compared to visits with current TB 

(31.0% vs 29.1%, chi-2 p-value = 0.43). 

  



 

Figure 2 : Individual prediction of rheumatoid arthritis (RA) and tuberculosis (TB). Each column 
corresponds to a disease, each row to a patient. Yellow areas corresponds to visits having the disease, 
white areas corresponds to visits without disease. Each vertical bar corresponds to a visit. Patient 1 has 
no disease. Patient 2 has RA which is well estimated by PheVis, other algorithms have high variability in 
their prediction. Patient 3 and 4 have tuberculosis. For patient 3, that information is still trailing behind 
after the patient is cured for PheVis, partly because of the lack of advanced natural language processing 
tool hindering the distinction between past and actual disease history. PheNorm predictions are close to 
0.5 because the mixture model fails to learn meaningful probabilities in this extremely imbalanced setting. 
XPRESS fails to estimate any probability higher than 0 for TB because of convergence failure and RA 
probabilities are either almost 0 or 1 providing a binary interpretation of the disease status rather than a 
continuous one. Both PL_RF and Anchor are too volatile to provide a trusted interpretation of their output 
probability.  



 

Figure 3: Phenotyping unsupervised and supervised methods performances comparison on the test set. 
University Hospital of Bordeaux. Confidence Intervals for AUROC and AUPRC are represented by 
horizontal and vertical segments respectively. PL_RIDGE: POLAR method with ridge logistic 
regression. PL_RF: POLAR method with random forest. ENET: Supervised elastic-net logistic 
regression with (CUM) or without (NOCUM) accumulate variables. RF: Supervised random forest with 
or without accumulate variables. 

  



Table 2: Phenotyping unsupervised and supervised methods comparison. University Hospital of Bordeaux.  
   Test set  Train set 
 Algorithm   AUROC AUPRC  AUROC AUPRC 
Rheumatoid Arthritis 
 ANCHOR   0.845 [0.839 ; 0.850]  0.578 [0.565 ; 0.590]   0.827 [0.824 ; 0.830]  0.481 [0.476 ; 0.487]  
 ENET_CUM   0.957 [0.954 ; 0.961]  0.913 [0.908 ; 0.918]   0.986 [0.985 ; 0.987]  0.953 [0.951 ; 0.955]  
 ENET_NOCUM   0.875 [0.871 ; 0.880]  0.717 [0.706 ; 0.728]   0.865 [0.862 ; 0.867]  0.687 [0.682 ; 0.692]  
 PHENORM   0.870 [0.865 ; 0.875]  0.625 [0.612 ; 0.637]   0.855 [0.852 ; 0.857]  0.577 [0.571 ; 0.584]  
 PHEVIS F/5/D   0.942 [0.939 ; 0.944]  0.759 [0.750 ; 0.768]   0.659 [0.656 ; 0.662]  0.424 [0.418 ; 0.429]  
 PHEVIS T/1/D   0.929 [0.926 ; 0.932]  0.708 [0.698 ; 0.718]   0.933 [0.932 ; 0.934]  0.676 [0.671 ; 0.681]  
 PHEVIS T/10/D   0.951 [0.948 ; 0.953]  0.772 [0.762 ; 0.782]   0.951 [0.950 ; 0.952]  0.745 [0.739 ; 0.750]  
 PHEVIS T/2/D   0.946 [0.944 ; 0.948]  0.736 [0.727 ; 0.746]   0.944 [0.943 ; 0.945]  0.689 [0.684 ; 0.694]  
 PHEVIS T/20/D   0.957 [0.955 ; 0.959]  0.798 [0.789 ; 0.806]   0.951 [0.950 ; 0.952]  0.765 [0.760 ; 0.770]  
 PHEVIS T/5/0   0.900 [0.896 ; 0.904]  0.571 [0.559 ; 0.582]   0.898 [0.896 ; 0.900]  0.524 [0.518 ; 0.529]  
 PHEVIS T/5/D   0.943 [0.940 ; 0.945]  0.754 [0.744 ; 0.763]   0.943 [0.942 ; 0.944]  0.717 [0.712 ; 0.722]  
 PL_RF   0.825 [0.819 ; 0.831]  0.616 [0.605 ; 0.626]   0.813 [0.810 ; 0.816]  0.546 [0.540 ; 0.552]  
 PL_RIDGE   0.832 [0.826 ; 0.837]  0.533 [0.521 ; 0.544]   0.821 [0.818 ; 0.824]  0.496 [0.490 ; 0.502]  
 RF_CUM   0.994 [0.993 ; 0.995]  0.975 [0.973 ; 0.977]   0.999 [0.999 ; 1.000]  0.999 [0.998 ; 0.999]  
 RF_NOCUM   0.849 [0.844 ; 0.855]  0.742 [0.733 ; 0.750]   0.845 [0.843 ; 0.848]  0.729 [0.724 ; 0.734]  
 XPRESS   0.700 [0.695 ; 0.705]  0.387 [0.376 ; 0.397]   0.693 [0.690 ; 0.695]  0.345 [0.339 ; 0.350]  
Tuberculosis 
 ANCHOR   0.745 [0.687 ; 0.798]  0.075 [0.037 ; 0.134]   0.635 [0.608 ; 0.660]  0.128 [0.100 ; 0.155]  
 ENET_CUM   0.910 [0.873 ; 0.944]  0.262 [0.163 ; 0.356]   0.928 [0.914 ; 0.941]  0.451 [0.405 ; 0.488]  
 ENET_NOCUM   0.677 [0.631 ; 0.725]  0.225 [0.136 ; 0.319]   0.667 [0.650 ; 0.685]  0.188 [0.152 ; 0.222]  
 PHENORM   0.722 [0.663 ; 0.789]  0.209 [0.124 ; 0.304]   0.682 [0.658 ; 0.707]  0.097 [0.075 ; 0.122]  
 PHEVIS F/5/D   0.987 [0.983 ; 0.991]  0.309 [0.204 ; 0.411]   0.729 [0.711 ; 0.747]  0.157 [0.131 ; 0.185]  
 PHEVIS T/1/D   0.986 [0.982 ; 0.990]  0.248 [0.167 ; 0.334]   0.951 [0.940 ; 0.960]  0.191 [0.164 ; 0.220]  
 PHEVIS T/10/D   0.987 [0.984 ; 0.991]  0.282 [0.185 ; 0.382]   0.844 [0.823 ; 0.862]  0.153 [0.128 ; 0.176]  
 PHEVIS T/2/D   0.987 [0.983 ; 0.991]  0.249 [0.168 ; 0.335]   0.847 [0.827 ; 0.865]  0.177 [0.149 ; 0.205]  
 PHEVIS T/20/D   0.697 [0.651 ; 0.751]  0.158 [0.084 ; 0.254]   0.646 [0.628 ; 0.662]  0.069 [0.052 ; 0.089]  
 PHEVIS T/5/0   0.757 [0.704 ; 0.806]  0.139 [0.080 ; 0.218]   0.506 [0.485 ; 0.526]  0.003 [0.002 ; 0.003]  
 PHEVIS T/5/D   0.987 [0.983 ; 0.990]  0.299 [0.198 ; 0.403]   0.853 [0.834 ; 0.870]  0.191 [0.164 ; 0.216]  
 PL_RF   0.710 [0.646 ; 0.768]  0.249 [0.160 ; 0.338]   0.634 [0.609 ; 0.661]  0.149 [0.120 ; 0.179]  
 PL_RIDGE   0.681 [0.622 ; 0.737]  0.011 [0.006 ; 0.021]   0.598 [0.573 ; 0.627]  0.013 [0.010 ; 0.018]  
 RF_CUM   0.856 [0.807 ; 0.898]  0.475 [0.366 ; 0.576]   0.985 [0.977 ; 0.991]  0.942 [0.923 ; 0.958]  
 RF_NOCUM   0.690 [0.640 ; 0.744]  0.278 [0.183 ; 0.374]   0.672 [0.656 ; 0.690]  0.232 [0.198 ; 0.269]  
 XPRESS   0.500 [0.500 ; 0.500]  0.001 [0.001 ; 0.002]   0.500 [0.500 ; 0.500]  0.003 [0.002 ; 0.003]  

 

Bold: median AUROC or AUPRC superior to PHEVIS T/5/D 
PHEVIS Pseudo-labels/ ω /Half-life. Pseudo-labels is True (T) or False (F). ω is the constant defining 𝑞𝑢𝑎𝑛𝑡!"#$!%!. Half-life is 0 
or the disease duration (D), 180 for TB and +∞ for RA 
PL_RIDGE: POLAR method with ridge logistic regression.  PL_RF: POLAR method with random forest. 
ENET: Supervised elastic-net logistic regression with (CUM) or without (NOCUM) cumulated accumulate variables. 
RF: Supervised random forest with or without cumulated accumulate variables. 

  



Table 3 PheVis performance on the test set for different thresholds of the output probabilities. 

Disease Threshold SE SP PPV NPV 

Rheumatoid arthritis 0.5 0.740  0.942  0.651  0.961 

 Optimal P-R* 
(0.322) 0.761  0.936  0.633  0.964  

Tuberculosis 0.5 0.300  1.000  0.519  0.999  

 Optimal P-R* 
(1.30 10-9) 0.989  0.945  0.025  1.000 

* Threshold maximizing the precision recall sum. 
Se: sensitivity – Sp: specificity – PPV: positive predictive value – NPV: negative predictive value 

4. Conclusions 
We developed PheVis as an unsupervised automatic phenotyping algorithm at the visit level. Our 

innovative approach resembles the human medical probabilistic approach of diagnosis as the output is a 

probability taking into account the uncertainty of the information inside EHR.[24] It is able to achieve interesting 

performances for RA, which is promising for other chronic conditions. While PheVis represent a significant 

improvement over the current state-of-the-art thanks to its versatile and tunable information accumulating feature, 

it also suffers from limitations when it comes to acute conditions such as TB. The algorithm is fully automated, 

not requiring any (time-consuming and expensive) manual chart review, and can in theory be used for different 

kinds of medical conditions (either acute or chronic). However, the optimal values of hyperparameters might 

vary depending on the disease of interest and the EHR. In our setting, even if 𝜔 = 5 worked well for both 

diseases, setting it to 10 or 20 would have increase RA phenotyping performances. 

PheVis adds many innovations to the previous PheNorm algorithm it builds upon: the needs for 

standardizing the information from medical notes and ICD codes, the accumulation of past history with 

exponential decay, the definition of silver standard using ICD codes to take into account prevalence of the disease, 

and pseudo-labelling to improve performance and increase stability of predicted probabilities. Also we 

demonstrated the portability (and limitations) of those methods in French and in a different datawarehouse than 

the one used to develop PheNorm, with consistent performances for phenotyping RA compared to Yu et al.[13]  

Our application setting is different from the other methods original paper, mainly because there is intra-

patient correlation between visits phenotype. This is not accounted for in Phenorm, XPRESS or POLAR where 

the learning is at patient level, nor in ANCHOR because it learns on acute diseases.[10–13] As in POLAR or 

ANCHOR, our dataset is largely unbalanced towards the negative class (e.g 1.1% epilepsy prevalence in POLAR, 

2.0% septic shock prevalence in ANCHOR) contrary to PheNorm (lowest disease prevalence was RA with 

22.5%). This unbalanced setting seems to favor unsupervised learning with silver standard (PheVis, POLAR, 

ANCHOR, XPRESS) in terms of calibration. In terms of performance, PheVis performed better for both diseases 



on both AUROC and AUPRC. Random forest POLAR and PheNorm have close performances. As those three 

methods rely on different approaches, future developments might be able to leverage and combine each of their 

strengths. 

These phenotyping algorithms are highly sensitive to the input features, which emphasizes the need for 

finer natural language processing tools able to perform semantic analysis. The use of other features such as 

biological test results or treatment should also be considered, as they should be highly predictive of the phenotype, 

but further works is needed to define how they could be integrated into the silver-standard surrogate strategy 

used in PheVis. Also, instead of providing raw variables as input of the algorithm, PheVis could benefit from 

embedding or tensor factorization approaches that might provide more informative variables but would also 

increase the complexity for non-expert users.[25–27] 

Our performance evaluation is made against an imperfect gold standard, mainly due to the lack of large 

annotated patient reference sets. For TB, the gold standard was manually curated, while for RA, we used a highly 

specific form but which might lack sensitivity: interestingly, upon manual inspection it appeared that PheVis was 

able to accurately recover RA patients visits of 5 patients who were not treated in the Rheumatology department 

of the University Hospital of Bordeaux and thus had no record of this specific form, resulting in a failure of the 

gold standard. Such phenomena might underestimate the algorithm performance. 

PheVis can provide a probability for a large set of diseases and medical conditions with little effort. The 

performances might vary depending on the disease of interest, the database quality and the EHR language but 

were better than state-of-the-art method in our study. The use of those estimated probabilities opens new horizon 

for the use of EHR for medical and epidemiological research purposes. 

  



Supplementary material 

ICD10 codes 
Table S1: Main ICD codes of rheumatoid arthritis and tuberculosis used by PheVis. 

Tuberculosis A15, A16, A17, A18, A19 

Rheumatoid Arthritis M05, M06 



Algorithm performance 

 

Figure S1: ROC and PR curve of PheVis predicted probabilities with and without pseudo-labels. University 

Hospital of Bordeaux. 

As shown in figure S1, pseudo-labels have little effect on the performances on the test set. However, on the 

train set, it provides more intermediate probabilities leading to better AUROC and AUPRC. As PheVis is 



unsupervised, users might want to use the predicted probabilities on the training set. For this reason, pseudo-

labels are kept in the algorithm. 
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Highlights 
• Electronic Health Record phenotyping is challenging especially at the visit level. 

• PheVis is a new unsupervised approach extending PheNorm to visit level. 

• Incorporating accumulated features to take into account disease dynamic increase model performances. 

• PheVis outperforms other phenotyping algorithms at the visit level. 
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