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  10 

Abstract 11 

Ecotoxicity data constitute the basic information to support the derivation of ecological benchmark 12 

values, whatever the stressor concerned. However the set of appropriate data may be limited, 13 

especially with regard to chronic exposure conditions. The available data are often biased in favor of 14 

acute data from laboratory controlled conditions, much easier to acquire. To make the best use of the 15 

available knowledge and better inform effects of ionizing radiation chronic exposure on non-human 16 

species, we investigated the transposition to ionizing radiation ecotoxicity of one method proposed for 17 

chemicals to extrapolate chronic information from acute toxicity data. Such a method would contribute 18 

to enrich chronic data sets required for the derivation of benchmark values making them more robust 19 

when used as reference values for ecological risk assessment. We developed accordingly the ACTR 20 

(Acute to Chronic Transformation for Radiotoxicity data) approach which we validated. We 21 

introduced then the new concept of Endpoint Sensitivity Distribution (ESD). This finally allowed us to 22 

compare purely chronic and ACTR-built ESDs for different taxa. For some of them, predicted and 23 

observed distributions looked very similar. This promising ACTR method appeared applicable with a 24 
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reasonable level of confidence, but its generalization asks for improvements, some being already 25 

identified. 26 

1 Introduction 27 

For any ecological risk characterization whatever the exposure situation is, the exposure level(s) of 28 

animals and plants need to be compared with some form of numerical criteria which plays the role of 29 

benchmark or reference value (concept of reference deviation
1,2

).  Several methods are internationally 30 

recommended
3,4

 for the determination of such reference values, usually depending on the number and 31 

nature of available basic ecotoxicity data, such as ECx (Concentration giving x% change in observed 32 

effect in comparison with a control).  Acquisition of this type of information through laboratory testing 33 

has long been subjected to constraints of all kinds, from fundings to ethics. In the field of 34 

ecotoxicological research, this situation led to focus on some few model species exposed to a limited 35 

set of conditions. As a consequence, the majority of existing work mainly deals with laboratory 36 

experiments under a regime of acute exposure to high concentration of toxics, technically much easier 37 

to realize and which guarantees a response from exposed organisms. Anyway, the ecotoxicity data 38 

today available are mainly acute data, while the main operational needs relate to chronic exposure 39 

situations generated by daily human activities. According to this observation, the interest of scientific 40 

journals shifted recently towards long term exposure studies, and afferent results become 41 

progressively more available, at least for some limited taxa.  In the general shared context of resource 42 

optimization, using the knowledge accumulated over years about acute toxicity requires developing 43 

dedicated approaches.  44 

Looking to derive robust reference values from those experimental outputs relies on the availability of 45 

relevant methods. When a chronic ecotoxicity data set is satisfactory in terms of quality and quantity 46 

for a given substance, the Species Sensitivity Distribution (SSD
5
) approach is recommended since 47 

years now as the best method to determine ecological protection criteria such as EQSs (Environmental 48 

Quality Standards
3,4

). However, it can only be used for a small number of substances for which the 49 

minimal data set required to build a chronic SSD is met. Considering that at the opposite the set of 50 

acute data may be relatively large, methods have been proposed to inform chronic ecotoxicity from 51 



acute toxicity data: extrapolation
6,7

, Acute to Chronic Ratio
8,9

 (ACR) or Acute to Chronic 52 

Transformation
10

 (ACT). Such extrapolation methods are currently applied for example in the 53 

framework of Life Cycle Impact Assessments
11, 12

 and were implemented in operational tools for a 54 

long time by regulatory agencies such as the U.S. EPA
13

 to address data gaps in species sensitivity and 55 

reduce reliance on uncertainty factors in ecological risk assessment. Adopting the widely used SSD 56 

approach, the ACT approach was developed to transform a data sample assumed to be representative 57 

of the acute toxicity of a substance into a sample considered to be representative of the chronic toxicity 58 

of the same substance. During the last decade different concepts developed to deal with ecological risk 59 

assessment for chemicals have already been successfully transposed to ionizing radiation and 60 

radioactive substances
14, 15,16,17, 18

.  This work made it possible in particular to begin to address the 61 

issue of effect of stressors mixture on fauna and flora, one key aspect under discussion for regulatory 62 

risk assessment. Dealing purely with radiotoxicity eliminates the problem of mixture of radioactive 63 

substances as radiotoxic effects expressed as radiological doses are additive.    64 

Adapting and applying such ACT method for radiotoxicity data treatment (ACTR) would expand the 65 

chronic dataset from the knowledge related to acute effects, and thereby lead to obtain sufficiently 66 

large and qualitative dataset to allow a proper use of statistical extrapolation method such as SSD. 67 

This ACT method aims not only to increase the number of available chronic data, but also to enrich 68 

qualitatively these data sets. As such, regarding ionizing radiation or radioactive substances, it would 69 

make it possible to inform chronic ecotoxicity for species for which there are no experimental chronic 70 

data (but only acute ones). The expected increase in the number of data but also in the number of 71 

species would give more robustness in the derivation of protection criteria for non-human species 72 

exposed to ionizing radiation, the paucity of chronic datasets in terms of quantity and species diversity 73 

being identified for a long time as a major weakness of the process.  74 

In this publication, we explore if and how the ACT method may be applied to radionuclides. The 75 

related two-phase study is described hereafter, firstly explaining the methodological aspect of the 76 

ACTR approach, introducing the concept of Endpoint Sensitivity Distribution (ESD), and then 77 

comparing purely chronic and ACTR-built ESDs.  78 



The ACT for chemicals was developed to establish a relationship between several stressors of the 79 

same nature for a single organism. Its transposition to radionuclides implies somewhere a conceptual 80 

shift, looking to establish a parallel between multiple taxa for a single stressor, ionizing radiation. 81 

Validating the ACTR method will allow to generate new (i.e.predicted) radiotoxicological data from a 82 

purely desk study. Such approaches make the best use of already available knowledge and fully 83 

comply with the growing demand on ethical and responsible experimentation on living organisms. 84 

This is a process in line with the optimization of resources, including the reduction in costs, today 85 

expected from all scientist.                86 

2 Material and methods 87 

ACT type methods are based on ecotoxicity data acquired for both acute and chronic exposure to a 88 

given chemical. In both cases, chemotoxicity is expressed with regard to the chemical concentration in 89 

the exposure medium.  Biological effects of ionizing radiation, or radiotoxicity, are expressed in terms 90 

of dose (rate) that is to say with regard to the energy deposited into the exposed organisms
19, 20, 21

.  91 

Corresponding units are Gy (dose, acute exposure) and Gy per unit of time (dose rate, chronic 92 

exposure), that implies significant changes in the methodological approach to convert data from acute 93 

to chronic ones, as described later.   94 

2.1 Radiotoxicity data 95 

The FREDERICA database (www.frederica-online.org) in its 2014 updated version
22

 constitutes the 96 

primary source of basic radiobiological data for non-human species. Garnier-Laplace et al. (2010) 97 

proposed the process of a meta-analysis of these data to build dose (rate)-effect relationships (i.e. dose-98 

response curves).  These curves gave access to parameters analogue to the EC10  (EDR10, dose rate 99 

giving 10% change in observed effect in comparison with a control - chronic exposure) and EC50 100 

(ED50, dose giving 50% change in observed effect in comparison with a control - acute exposure).  101 

Their standard errors were also determined.  102 

In order to have  internally consistent data sets,  data from literature reporting observed effects were 103 

restricted to external gamma irradiation of non-human species under controlled conditions (either 104 
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laboratory or controlled field) and categorized into acute (high-dose, short term) and chronic (low 105 

dose, long term) exposure situations since these exposure regimes lead to different biological or health 106 

consequences
23

. This data treatment allowed building a total of about 800 and 240 dose-response 107 

relationships for respectively the acute (ca. 135 species) and chronic (ca. 30 species) exposure regime, 108 

confirming the large predominance of acute toxicity information. 109 

For comparison, the ACT method is based on three data sources (AQUIRE, the US-EPA database - 110 

http:/www.epa.gov/ecotox/; a European database - http://www.ecetoc.org/  and a Dutch report
24 

).  For 111 

the 25 substances considered, the number of documented species per substance varied from 5 (12 data) 112 

to 133 (977 data) and from 3 (6 data) to 45 (102 data), respectively for acute and chronic exposure 113 

regime. These numbers as well as the ratio between acute and chronic information appeared very 114 

similar to those characterizing the radiotoxicity data set used to develop the ACTR method.  115 

2.2 Principles of data transformation 116 

The proposed ACTR method is intended to infer the parameters of the statistical distribution of 117 

chronic radiotoxicity data for a given taxonomic group of organisms (taxon) from the set of observed 118 

acute radiotoxicity data available for the same group. More precisely, this statistical approach aims at 119 

empirically transforming observed data of acute radiotoxicity (ED50) into predicted data of chronic 120 

radiotoxicity (EDR10) for any given couple (species, endpoint). The method is inspired from the one 121 

published by Duboudin et al. (2004) for chemical substances where ecotoxicity data sets are suffering 122 

from similar bias in favor of acute effects data. 123 

The ACTR method consists of a four-step process of statistical modelling. Basically, all observed data 124 

(EDR10  and ED50 ) are first log-transformed to deal with the classical skewness of radiotoxicity data. 125 

Mean and standard deviation of the distributions of the two sets of transformed data are determined by 126 

taxon (at the class level). Secondly different linear models are tested to predict average chronic 127 

distribution parameters from the acute distribution parameters, including simultaneously all the taxa. 128 

The best linear models (one model for the mean and one for the standard deviation) are selected. This 129 

is performed as part of a process combining a bootstrap with a cross-validation. Thirdly the best 130 
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models are fitted for each taxon to the corresponding observed acute data (ED50). Applying the fitted 131 

models allows finally generating predicted EDR10 from the ED50 observed for a given taxon. 132 

In details, the taxonomic level of interest is fixed by the identification of sets of observed radiotoxicity 133 

data that contain a sufficient number of acute (ED50) and chronic (EDR10) data for same groups of 134 

organisms (arbitrarily fixed at six data of each type at least to ensure the robustness of the predictions, 135 

without constraint on the species number). The level of grouping needed is the taxonomic level to 136 

adopt for applying the method. The robustness of the method relies also on the use of consistent 137 

radiotoxicity data within each of such a taxon.  EDR10 and ED50 values from the FREDERICA 138 

database span several orders of magnitude (respectively nine and height) due to the huge variety of 139 

effects reported.  For each taxon, extreme values of ED50 and EDR10 may be assimilated to potential 140 

outliers which could bias our analysis. In this context, an outlier is defined as any data which value is 141 

outside the range defined by one and a half time the Inter Quartile Interval (note that this factor of 1.5 142 

is usually applied
25

). We used a classical univariate detection process, e.g. based on boxplots, to 143 

identify outliers in order to eliminate them for the rest of our work.  144 

For each taxon, distribution parameters (mean and standard deviation) of the two sets of observed data 145 

are estimated after their log-transformation. The transformation is also convenient for the validation 146 

process, allowing the use of the log-normal distribution which is weighted according to species 147 

importance. Some species are more or less commonly used for radiotoxicity testing under controlled 148 

conditions although no standardized laboratory tests exist, leading to unequal number of observed data 149 

per species. To give each species its deserved weight in the data sets, the procedure considered the 150 

number of data per species in the data set (acute or chronic) related to a given class. The corresponding 151 

weight was calculated applying the equation 1 (SI) to each class. Once observed EDR10 and ED50 data 152 

selected, class distribution parameters are estimated according to the transformation and weighting 153 

procedures using equations 2 to 5 (SI). 154 

Chronic distribution parameters (mean wMuC.lg  and standard deviation wSigmaC.lg)  are assumed to 155 

be predictable from a linear combination of the acute parameters (mean wMuA.lg and standard 156 



deviation wSigmaA.lg). The best model is selected among six, what we arbitrarily considered a 157 

reasonable number with regard to the number of parameters to be estimated (equations 6 to 11 for the 158 

mean and 12 to 17 for the standard deviation, SI). The selection is made by coupling a bootstrap 159 

process with a cross validation procedure, and the selected model is the one with the smallest 160 

prediction error, averaged at the taxonomic level of interest. The model is used to calculate the chronic 161 

distribution parameters predicted for each taxon of this taxonomic level (as illustrated by equations 28 162 

and 29, SI). 163 

Knowing the predicted mean and standard deviation of the chronic distribution, EDR10 data can be 164 

predicted from observed ED50 data. This step requires translating ED50 values in units of EDR10 values, 165 

a procedure called standardization. Observed ED50 data are made dimensionless (Equation 18) and 166 

transposed into the chronic dimension (Equation 19). The last step consists in the back-transformation 167 

of the result (Equation 20) to obtain the predicted EDR10 value. 168 

2.3 Validation of the ACTR method 169 

The validation of such a method is typically done by splitting the used data into two subsets, a training 170 

one and a testing one. This is possible for sufficiently large data sets, but not for the generally smaller 171 

sets usually available for radiotoxicity. The problem may be solved using the same coupling of 172 

bootstrap and cross validation previously mentioned, an approach that will allow limiting overfitting. 173 

A first evaluation of the ACTR performances may be obtained visually by comparing for each taxon 174 

the ESDs of observed and predicted EDR10 data. The ESD is a new concept that corresponds to the so-175 

called SSD
5
 model restricted to a given taxonomic level and integrating all quality-assessed relevant 176 

endpoints per species (those that could lead to changes in population size or structure, i.e. those 177 

directly relevant to population demography - mortality, morbidity, reproductive success). It is 178 

suggested to build both log-empirical and log-normal ESDs as classically applied to construct SSDs. 179 

The log-empirical model is the graphical representation of the empirical cumulative probability of 180 

weighted data that implies to weight also this distribution. A modified version of the Hazen method is 181 

proposed (Equations 21 to 23, SI). Fitting a log-normal distribution is very common when looking to 182 



express the statistical distribution of ecological data.  The log-normal ESD of predicted EDR10  may be 183 

plotted by using either the predicted distribution parameters previously defined or, as it was decided 184 

here, more accurately recalculating parameters from the predicted EDR10 data (Equations 2 to 4, SI). 185 

Even giving an immediate trend, a visual comparison is always somewhat subjective. A 186 

complementary validation procedure is proposed, based on numerical comparisons. HDR5 values are 187 

estimated per taxon from observed and predicted ESDs using EDR10 data. Agreement between these 188 

values is estimated from the overlap of their 95% confidence intervals (see SI, §.4 for calculation 189 

details), before to analyze their ratio.   190 

2.4 Statistics 191 

All calculations and graphics were done using the version 3.3.2 of the R language
26

 and already 192 

available packages: dplyr 0.7.6
27

; sampling 2.8
28

; boot 1.3.20
29

 and ggplot2 3.0.0
30

 for the graphs. 193 

4 Results and discussion 194 

The Acute to Chronic Transformation proposed for chemicals has been successfully transposed to 195 

ionizing radiation and radioactive substances, taking into account some specificities of the stressor. 196 

The ACTR method deals with a single stressor when the context of the development and application of 197 

the original ACT is that of multiple stressors. Additionally the conversion of acute radiotoxicity data 198 

into chronic ones implies a change in units (Gy to µGy h
-1

). When the ACT for chemicals established a 199 

parallel between stressors for a single organism, the innovative aspect of the ACTR method is to look 200 

for a parallel between taxa for a single stressor. 201 

4.1 Data analysis: taxonomic level of interest and identification of outliers  202 

Applying the size criterion (at least 6 ED50 and EDR10 data per taxon) to the metadata issued from the 203 

FREDERICA database (SI) led to identify the class as the lowest taxonomic level for the ACTR 204 

implementation (Table 1). From these data, 22 EDR10 and 20 ED50 data were identified as outliers 205 

(Fig.1) and removed. The Mollusc class, having only four EDR10 values (Table 2), was eliminated 206 

which finally left nine classes to implement the ACTR method. 207 



Radiotoxicity data were obtained on species grouped into taxa identified according to their scientific 208 

name, following the taxonomic habits. At the opposite, uses in the field of ecological risk 209 

characterization are to use common names, which additionally may differ from one to the other 210 

reference consulted. We decided to establish a link between the scientific name of the classes we 211 

considered and common names adapted from those currently employed by the IAEA
31

 and in the 212 

Wildlife Transfer Database. This correspondence has been adopted in order to facilitate to any user 213 

aggregation of data at higher levels of taxonomy.  214 

Table 1. the ten classes of potential use for the implementation of the ACTR method 215 

Scientific name Common name  

Actinopterygii Fish 

Aves Birds 

Branchiopoda Small crustaceans 

Gastropoda Molluscs 

Magnoliopsida Fruits and vegetables 

Malacostraca Large crustaceans 

Mammalia Mammals 

Monocots Cereals and grasses 

Pinopsida Trees 

Polychaeta Worms 

 216 

 217 
Fig.1. Identification of outliers (data outside the 1.5xInter Quartile Interval) per class in the data set of 218 

observed data (ED50 data on the left, EDR10 data on the right – x-axis: log of dose or dose rate)  219 
 220 

 Table 2. Number of radiotoxicity data per class (before outlier detection/after outlier elimination) 221 

 ED50 EDR10 

Class Data number Species number Data number Species number 

Fish 74/73 11/11 31/28 4/4 

Birds 37/33 11/11 27/23 2/2 

Small crustaceans 15/15 1/1 9/8 2/2 

Molluscs 20/20 5/5 6/4 1/1 

Fruits and vegetables 48/45 11/10 13/13 4/4 

Worms 

Trees 

Cereals and grasses 

Mammals 

Large crustaceans 

Fruits and vegetables 

Molluscs 

Small crustaceans 

Birds 

Fish 



Large crustaceans 19/18 6/6 7/7 2/2 

Mammals 80/76 4/4 63/56 5/5 

Cereals and grasses  17/14 6/4 30/28 2/2 

Trees 35/33 5/5 8/8 3/3 

Worms 13/11 1/1 27/24 2/2 

Grey line: class eliminated from the selection  after removing outliers due to the too small number of 222 
remaining data (below 6) 223 

4.2 Selection and fit of the model to predict chronic distribution parameters  224 

Distribution parameters were calculated for the nine classes on observed data, for both acute and 225 

chronic data sets (Table SI.1).  The best models for predicting the chronic mean and standard deviation 226 

were respectively identified as Equations 7 and 12 (SI). Coefficients of these equations were fitted on 227 

the whole set of observed acute and chronic distribution parameters, resulting in Equations 28 and 29. 228 

Their application to each class generated the parameters of the predicted chronic distribution (Table 229 

SI.2). 230 

4.3 Prediction of EDR10 values from ED50 data 231 

The ACTR method has no other ambition than to offer a pragmatic way of transforming acute data 232 

into chronic data, with the most “fit for purpose” approach. Therefore we only discuss the quality of 233 

the mathematical representativeness of the results obtained. 234 

The EDR10 values predicted by applying the ACTR method to the observed ED50 data available per 235 

class are presented as all other data in the attached Excel file (SI). The whole set of EDR10 data was 236 

used to build ESDs per class, fitting both a log-empirical and a log-normal distribution to the observed 237 

and predicted data (Fig.2). Parameters of the log-normal distribution were re-calculated, to improve 238 

the accuracy of the fitting process (Table SI.3).  239 



 240 

Fig.2. Log-empirical (symbols) and log-normal (lines) ESDs at the class level for observed (black) and 241 
predicted (grey) EDR10 data (x-axis: µGy h

-1
, y-axis: dimensionless)  242 

Predicted and observed ESDs look very similar for some classes (Fish, Mammals, Worms) but much 243 

less for others (cereals and grasses, crustaceans).   244 

To deeper analyze the ACTR results, HDR5 values from observed and predicted ESDs were calculated 245 

(Table SI.4).  Error values added to predicted parameters were obtained from the log-normal 246 

distributions fitted with a mean of zero and the standard deviation of residuals, i.e. 0.371 for the mean 247 

and 0.377 for the standard deviation. There is a good overlap of 95% confidence intervals of observed 248 

and predicted HDR5 values (Fig.3). For most classes of organisms, the range of predicted values 249 

encompasses the variation of observed data. For six of the classes (i.e. 67%), the predicted HDR5value 250 

(HDR5_actr) is included in the 95% confidence interval of the observed one (HDR5_obs). For the classes 251 

Worms Trees Cereals and grasses 

Mammals Large crustaceans Fruits and vegetables 

Small crustaceans Birds Fish 



Cereals and grasses as well as Birds, the predicted HDR5 value is lower than the lower bound of the 252 

interval of observed data, which shows that the ACTR approach is conservative. There is finally only 253 

one case for which the comparison does not meet the expectation. The HDR5_actr value predicted for 254 

Fish is close to, but higher, the upper bound of the observed data. However, the ratio HDR5_actr 255 

/HDR5_obs is about 4 for Fish as for the small crustaceans (Table SI.4), for which the ACTR method 256 

seems to give good results. The uncertainty introduced by the prediction is similar, whatever the 257 

relative location of the predicted value with regard to the interval of observed data. It should be 258 

acknowledged that this ratio for HDR5 (i.e. the prediction is 4 times higher than the observation) is the 259 

highest of all those calculated.  260 

 261 

Fig. 3. Overlap between 95% confidence intervals (lines) of observed (black triangle) and predicted 262 
(grey dot) HDR5 with their confidence intervals 263 

Both validation processes gave the same general trend. The numerical comparisons of HDR5_actr  and 264 

HDR5_obs values confirm the visual comparison of the EDR10 distributions (Fig.2) and argue in favor of 265 

the ACTR method.  266 

Worms 

Trees 

Cereals and grasses 

Mammals 

Large crustaceans 

Fruits and vegetables 

Small crustaceans 

Birds 

Fish 

HDR5 

1e-01           1e+00          1e+01          1e+02         1e+03          1e+04         1e+05 
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The ACTR method appeared promising and seemed to be applicable with a reasonable level of 267 

confidence. More precisely, the application of this method to radiotoxicity data led to enrich the 268 

observed chronic data set by a factor of two at least for Fish and Mammals. Even more interesting, it 269 

allowed increasing also the number of species represented in these enlarged data sets. Such a gain is 270 

highly valuable for example to derive protection criteria, as it may permit to move from the very 271 

conservative safety factor method to a more realistic statistical approach like the ESD and SSD. In 272 

addition to the realism brought by these approaches, the associated transparency should be 273 

emphasized. All the available data can be visualized, those taken into account as those identified as 274 

outliers and consequently discarded from the treatment. A third benefit of using transparent statistical 275 

treatments is the possibility of a continued improvement of their results by introducing new data as 276 

they become available. Nevertheless, its generalization comes up against three limitations. Firstly, 277 

removing radiotoxicity data identified as outliers leads to ignore the information they contain and can 278 

skew the relationship formalizing the ACTR approach. Secondly, the choice of fitting a log-normal 279 

distribution as the “right” cumulated probability function was made a priori, without posterior testing. 280 

Lastly, distribution parameters had been estimated from small data sets (less than 10) that could be 281 

considered insufficient to obtain unbiased estimates. 282 

Our study provided a first brick in the demonstration of the concept of ACT-R that deserves to 283 

be more robustly supported. The empirical relationship established here relies on sets of data that 284 

could be improved by more research. The ideal data set would include both acute and chronic 285 

radiotoxicity data acquired on a same species in the same experimental conditions and, in a perfect 286 

world, by the same research team for a sufficient number of representative species.  This will certainly 287 

not happen, due to too many obstacles on this path (ethic, economic, logistic…). But any new 288 

complementary radiotoxicity data will help at least to strengthen the predictive power of our empirical 289 

approach that, as any palliative method, will never totally replace experimental acquisition of 290 

knowledge.       291 
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