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Abstract. We present a framework for formal refutational completeness
proofs of abstract provers that implement saturation calculi, such as or-
dered resolution or superposition. The framework relies on modular ex-
tensions of lifted redundancy criteria. It allows us to extend redundancy
criteria so that they cover subsumption, and also to model entire prover
architectures in such a way that the static refutational completeness of
a calculus immediately implies the dynamic refutational completeness
of a prover implementing the calculus, for instance within an Otter or
DISCOUNT loop. Our framework is mechanized in Isabelle/HOL.

1 Introduction

In their Handbook chapter [5, Sect. 4], Bachmair and Ganzinger remark that
“unfortunately, comparatively little effort has been devoted to a formal analysis
of redundancy and other fundamental concepts of theorem proving strategies,
while more emphasis has been placed on investigating the refutational complete-
ness of a variety of modifications of inference rules, such as resolution.” As a
remedy, they present an abstract framework for saturation up to redundancy.
Briefly, theorem proving derivations take the form N0�N1�· · · , where N0 is the
initial clause set and each step either adds inferred clauses or deletes redundant
clauses. Given a suitable notion of fairness, the limit N∗ of a fair derivation is
saturated up to redundancy. If the calculus is refutationally complete and N∗
does not contain the false clause ⊥, then N0 has a model.

Bachmair and Ganzinger also define a concrete prover, RP, based on a first-
order ordered resolution calculus and the given clause procedure. However, like
all realistic resolution provers, RP implements subsumption deletion. This opera-
tion is not covered by the standard definition of redundancy, according to which
a clause C is redundant w.r.t. a clause set N if all its ground instances Cθ are en-
tailed by strictly smaller ground instances of clauses belonging to N . As a result,
RP-derivations are not �-derivations, and the framework is not applicable.



There are two ways to address this problem. In the Handbook, Bachmair and
Ganzinger start from scratch and prove the dynamic refutational completeness of
RP by relating nonground derivations to ground derivations. This proof, though,
turns out to be rather nonmodular—it refers simultaneously to properties of
the calculus, to properties of the prover, and to the fairness of the derivations.
Extending it to other calculi or prover architectures would be costly. As a result,
most authors stop after proving static refutational completeness of their calculi.

An alternative approach is to extend the redundancy criterion so that sub-
sumed clauses become redundant. As demonstrated by Bachmair and Ganzinger
in 1990 [3], this is possible by redefining redundancy in terms of closures (C, θ)
instead of ground instances Cθ. We show that this approach can be generalized
and modularized: First, any redundancy criterion that is obtained by lifting a
ground criterion can be extended to a redundancy criterion that supports sub-
sumption without affecting static refutational completeness (Sect. 3). Second, by
applying this property to labeled formulas, it becomes possible to give generic
completeness proofs for prover architectures in a straightforward way.

Most saturation provers implement a variant of the given clause procedure.
We present an abstract version of the procedure (Sect. 4) that can be refined to
obtain an Otter [17] or DISCOUNT [1] loop and prove it refutationally complete.
We also present a generalization that decouples scheduling and computation of
inferences, to support orphan deletion [15,24] and dovetailing [9].

When these prover architectures are instantiated with a concrete saturation
calculus, the dynamic refutational completeness of the combination follows in
a modular way from the properties of the prover architecture and the static
refutational completeness proof for the calculus. Thus, the framework is ap-
plicable to a wide range of calculi, including ordered resolution [5], unfailing
completion [2], standard superposition [4], constraint superposition [18], theory
superposition [27], hierarchic superposition [7], and clausal λ-superposition [9].

Detailed proofs are included in a technical report [28], together with more
explanations, examples, and discussions. When Schlichtkrull, Blanchette, Tray-
tel, and Waldmann [23] mechanized Bachmair and Ganzinger’s chapter using
the Isabelle/HOL proof assistant [20], they found quite a few mistakes, including
one that compromised RP’s dynamic refutational completeness. This motivated
us to mechanize our framework as well (Sect. 5).

2 Preliminaries

Inferences and Redundancy. Let A be a set. An A-sequence is a finite se-
quence (ai)

k
i=0 = a0, a1, . . . , ak or an infinite sequence (ai)

∞
i=0 = a0, a1, . . . with

ai ∈ A for all i. We write (ai)i≥0 or (ai)i for both finite and infinite sequences.
Nonempty sequences can be split into a head a0 and a tail (ai)i≥1. Given � ⊆
A×A, a �-derivation is a nonempty A-sequence such that ai � ai+1 for all i.

A set F of formulas is a set with a nonempty subset F⊥ ⊆ F. Elements of
F⊥ represent false. Typically, F⊥ := {⊥}. In Sect. 4, different elements of F⊥
will represent different situations in which a contradiction has been derived.
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A consequence relation |= over F is a relation |= ⊆ P(F) × P(F) with the
following properties for all N1, N2, N3 ⊆ F:

(C1) {⊥} |= N1 for every ⊥ ∈ F⊥;
(C2) N2 ⊆ N1 implies N1 |= N2;
(C3) if N1 |= {C} for every C ∈ N2, then N1 |= N2;
(C4) if N1 |= N2 and N2 |= N3, then N1 |= N3.

Consequence relations are used to discuss soundness (and the addition of
formulas) and to discuss refutational completeness (and the deletion of formulas).
An example that requires this distinction is constraint superposition [18], where
one uses entailment w.r.t. the set of all ground instances, |≈, for soundness, but
entailment w.r.t. a subset of those instances, |=, for refutational completeness.
Some calculus-dependent argument is then necessary to show that refutational
completeness w.r.t. |= implies refutational completeness w.r.t. |≈.

An F-inference ι is a tuple (Cn, . . . , C0) ∈ Fn+1, n ≥ 0. The formulas Cn,
. . . , C1 are called premises of ι; C0 is called the conclusion of ι, denoted by
concl(ι). An F-inference system Inf is a set of F-inferences. If N ⊆ F, we write
Inf (N) for the set of all inferences in Inf whose premises are contained in N ,
and Inf (N,M) := Inf (N ∪M) \ Inf (N \M) for the set of all inferences in Inf
such that one premise is in M and the other premises are contained in N ∪M .

A redundancy criterion for an inference system Inf and a consequence rela-
tion |= is a pair Red = (Red I,RedF), where Red I : P(F) → P(Inf ) and RedF :
P(F)→ P(F) are mappings that satisfy the following conditions for all N,N ′:

(R1) if N |= {⊥} for some ⊥ ∈ F⊥, then N \ RedF(N) |= {⊥};
(R2) if N ⊆ N ′, then RedF(N) ⊆ RedF(N ′) and Red I(N) ⊆ Red I(N

′);
(R3) if N ′ ⊆ RedF(N), then RedF(N) ⊆ RedF(N \ N ′) and Red I(N) ⊆

Red I(N \N ′);
(R4) if ι ∈ Inf and concl(ι) ∈ N , then ι ∈ Red I(N).

Inferences in Red I(N) and formulas in RedF(N) are called redundant w.r.t. N .1
Intuitively, (R1) states that deleting redundant formulas preserves inconsistency.
(R2) and (R3) state that formulas or inferences that are redundant w.r.t. a set N
remain redundant if arbitrary formulas are added toN or redundant formulas are
deleted from N . (R4) ensures that computing an inference makes it redundant.

We define the relation �Red ⊆ P(F)×P(F) such that N �Red N
′ if and only

if N \N ′ ⊆ RedF(N ′).

Refutational Completeness. Let |= be a consequence relation, let Inf be an
inference system, and let Red be a redundancy criterion for |= and Inf .

A set N ⊆ F is called saturated w.r.t. Inf and Red if Inf (N) ⊆ Red I(N).
The pair (Inf ,Red) is called statically refutationally complete w.r.t. |= if for
every saturated set N ⊆ F such that N |= {⊥} for some ⊥ ∈ F⊥, there exists a
⊥′ ∈ F⊥ such that ⊥′ ∈ N .
1 One can find several slightly differing definitions for redundancy criteria, fairness, and
saturation in the literature [5,7,27]. However, as shown in the technical report [28],
the differences are typically insignificant as far as static or dynamic refutational
completeness is concerned. Here we mostly follow Waldmann [27].
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Let (Ni)i be a P(F)-sequence. Its limit is the set N∗ :=
⋃
i

⋂
j≥iNj . Its union

is the set N∞ :=
⋃
iNi. A sequence is called fair if Inf (N∗) ⊆

⋃
iRed I(Ni). The

pair (Inf ,Red) is called dynamically refutationally complete w.r.t. |= if for every
fair �Red -derivation (Ni)i such that N0 |= {⊥} for some ⊥ ∈ F⊥, we have
⊥′ ∈ Ni for some i and some ⊥′ ∈ F⊥. Properties (R1)–(R3) allow the passage
from a static set of formulas to a dynamic prover:

Lemma 1. (Inf ,Red) is dynamically refutationally complete w.r.t. |= if and
only if it is statically refutationally complete w.r.t. |=.

Intersections of Redundancy Criteria. In the sequel, it will be useful to de-
fine consequence relations and redundancy criteria as intersections of previously
defined consequence relations or redundancy criteria.

Let Q be an arbitrary set, and let (|=q)q∈Q be a Q-indexed family of con-
sequence relations over F. Then |=∩ :=

⋂
q∈Q |=q qualifies as a consequence

relation. Moreover, let Inf be an inference system, and let (Redq)q∈Q be a
Q-indexed family of redundancy criteria, where each Redq = (RedqI ,Red

q
F) is

a redundancy criterion for Inf and |=q. Let Red∩I (N) :=
⋂
q∈QRedqI (N) and

Red∩F(N) :=
⋂
q∈QRedqF(N). Then Red∩ := (Red∩I ,Red

∩
F) qualifies as a redun-

dancy criterion for |=∩ and Inf .

Lemma 2. A set N ⊆ F is saturated w.r.t. Inf and Red∩ if and only if it is
saturated w.r.t. Inf and Redq for every q ∈ Q.

Often, the consequence relations |=q agree for all q ∈ Q. For calculi where they
disagree, such as constraint superposition [18], one can typically demonstrate the
static refutational completeness of (Inf ,Red∩) in the following form:

Lemma 3. If for every set N ⊆ F that is saturated w.r.t. Inf and Red∩ and
does not contain any ⊥′ ∈ F⊥ there exists some q ∈ Q such that N 6|=q {⊥} for
some ⊥ ∈ F⊥, then (Inf ,Red∩) is statically refutationally complete w.r.t. |=∩.

3 Lifting

A standard approach for establishing the refutational completeness of a calcu-
lus is to first concentrate on the ground case and then lift the results to the
nonground case. In this section, we show how to perform this lifting abstractly,
given a suitable grounding function G. The function maps every formula C ∈ F
to a set G(C) of formulas from a set of formulas G. Depending on the logic and
the calculus, G(C) may be, for example, the set of all ground instances of C or
a subset thereof. Similarly, G maps FInf -inferences to sets of GInf -inferences.

There are calculi where some FInf -inferences ι do not have a counterpart in
GInf , such as the PosExt inferences of higher-order superposition calculi [10].
In these cases, we set G(ι) = undef .

Standard Lifting. Given two sets of formulas F and G, an F-inference system
FInf , a G-inference system GInf , and a redundancy criterion Red for GInf , let G
be a function that maps every formula in F to a subset ofG and every F-inference
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in FInf to undef or to a subset of GInf . G is called a grounding function if

(G1) for every ⊥ ∈ F⊥, ∅ 6= G(⊥) ⊆ G⊥;
(G2) for every C ∈ F, if ⊥ ∈ G(C) and ⊥ ∈ G⊥ then C ∈ F⊥;
(G3) for every ι ∈ FInf , if G(ι) 6= undef , then G(ι) ⊆ Red I(G(concl(ι))).

G is extended to sets N ⊆ F by defining G(N) :=
⋃
C∈N G(C). Analogously, for

a set I ⊆ FInf , G(I) :=
⋃
ι∈I,G(ι) 6=undef G(ι).

Example 4. In standard superposition, F is the set of all universally quantified
first-order clauses over some signature Σ, G is the set of all ground first-order
clauses over Σ, and G maps every clause C to the set of its ground instances Cθ
and every superposition inference ι to the set of its ground instances ιθ.

Let G be a grounding function from F and FInf to G and GInf , and let |=
be a consequence relation over G. We define the relation |=G ⊆ P(F) × P(F)
such that N1 |=G N2 if and only if G(N1) |= G(N2). We call |=G the G-lifting of
|=. It qualifies as a consequence relation over F and corresponds to Herbrand
entailment. If Tarski entailment (i.e., N1 |=T N2 if and only if any model of N1

is also a model of N2) is desired, the mismatch can be repaired by showing that
the two notions of entailment are equivalent as far as refutations are concerned.

Let Red = (Red I,RedF) be a redundancy criterion for |= and GInf . We define
functions RedGI : P(F)→ P(FInf ) and RedGF : P(F)→ P(F) by

ι ∈ RedGI (N) if and only if
G(ι) 6= undef and G(ι) ⊆ Red I(G(N))
or G(ι) = undef and G(concl(ι)) ⊆ G(N) ∪ RedF(G(N));

C ∈ RedGF(N) if and only if
G(C) ⊆ RedF(G(N)).

We call RedG := (RedGI ,Red
G
F) the G-lifting of Red . It qualifies as a redundancy

criterion for |=G and FInf . We get the following folklore theorem:

Theorem 5. If (GInf ,Red) is statically refutationally complete w.r.t. |=, and
if we have GInf (G(N)) ⊆ G(FInf (N)) ∪ Red I(G(N)) for every N ⊆ F that is
saturated w.r.t. FInf and RedG , then (FInf ,RedG) is statically refutationally
complete w.r.t. |=G .

Adding Tiebreaker Orderings. We now strengthen the G-lifting of redun-
dancy criteria to also support subsumption deletion. Let = be a well-founded
strict partial ordering on F. We define RedG,=F : P(F)→ P(F) as follows:

C ∈ RedG,=F (N) if and only if
for every D ∈ G(C),
D ∈ RedF(G(N)) or there exists C ′ ∈N such that C = C ′ and D ∈ G(C ′).

Notice how = is used to break ties between C and C ′, possibly making C redun-
dant. We call RedG,= := (RedGI ,Red

G,=
F ) the (G,=)-lifting of Red . We get the

previously defined RedG as a special case of RedG,= by setting = := ∅.
We obtain our first main result:
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Theorem 6. Let Red be a redundancy criterion for |= and GInf , let G be a
grounding function from F and FInf to G and GInf , and let = be a well-
founded strict partial ordering on F. Then the (G,=)-lifting RedG,= of Red is a
redundancy criterion for |=G and FInf .

Observe that = appears only in the second component of RedG,= = (RedGI ,

RedG,=F ) and that the definitions of a saturated set and of static refutational
completeness do not depend on the second component of a redundancy criterion.
The following lemmas are immediate consequences of these observations:

Lemma 7. A set N ⊆ F is saturated w.r.t. FInf and RedG,= if and only if it is
saturated w.r.t. FInf and RedG,∅.

Lemma 8. (FInf ,RedG,=) is statically refutationally complete w.r.t. |=G if and
only if (FInf ,RedG,∅) is statically refutationally complete w.r.t. |=G .

Combining Lemmas 1 and 8, we obtain our second main result:

Theorem 9. Let Red be a redundancy criterion for |= and GInf , let G be a
grounding function from F and FInf to G and GInf , and let = be a well-
founded strict partial ordering on F. If (FInf ,RedG,∅) is statically refutationally
complete w.r.t. |=G , then (FInf ,RedG,=) is dynamically refutationally complete
w.r.t. |=G .

Example 10. For resolution or superposition in standard first-order logic, we
can define the subsumption quasi-ordering ·≥ on clauses by C ·≥ C ′ if and only if
C = C ′σ for some substitution σ. The subsumption ordering ·> := ·≥ \ ·≤ is well
founded. By choosing = := ·>, we obtain a criterion RedG,= that includes stan-
dard redundancy and also supports subsumption deletion. Similarly, for proof
calculi modulo associativity and commutativity, we can let C ·≥ C ′ be true if
there exists a substitution σ such that C equals C ′σ up to the equational theory.

Example 11. Constraint superposition with ordering constraints [18] is an ex-
ample of a calculus where the subsumption ordering ·> is not well founded:
A ground instance of a constrained clause C [[K]] is a ground clause Cθ for
which Kθ evaluates to true. Define ·≥ by stating that C [[K]] ·≥ C ′ [[K ′]] if and
only if every ground instance of C [[K]] is a ground instance of C ′ [[K ′]], and
define ·> := ·≥ \ ·≤. If � is a simplification ordering, then P(x) [[x ≺ b ]] ·>
P(x) [[x ≺ f(b) ]] ·> P(x) [[x ≺ f(f(b)) ]] ·> · · · is an infinite chain.

Example 12. For higher-order calculi such as higher-order resolution [16] and
clausal λ-superposition [9], subsumption is also not well founded, as witnessed
by the chain p x x ·> p (x a) (x b1) ·> p (x a a) (x b1 b2) ·> · · · .

Even if the subsumption ordering for some logic is not well founded, as in the
two examples above, we can always define = as the intersection of the subsump-
tion ordering and an appropriate ordering based on formula sizes or weights.

Conversely, the = relation can be more general than subsumption. In Sect. 4,
we will use it to justify the movement of formulas between sets in the given
clause procedure.
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Example 13. For some superposition-based decision procedures [6], one would
like to define = as the reverse subsumption ordering ·< on first-order clauses.
Even though ·< is not well founded in general, it is well founded on {C ∈ F | D ∈
G(C)} for every D ∈ G. As shown in the technical report [28], our framework
can be extended to support this case by defining RedG,=F using a G-indexed
family (=D)D∈G of well-founded strict partial orderings instead of a single =.

Intersections of Liftings. The above results can be extended in a straight-
forward way to intersections of lifted redundancy criteria. As before, let F and G
be two sets of formulas, and let FInf be an F-inference system. In addition, let
Q be a set. For every q ∈ Q, let |=q be a consequence relation over G, let GInf q

be a G-inference system, let Redq be a redundancy criterion for |=q and GInf q,
and let Gq be a grounding function from F and FInf to G and GInf q. Let = be
a well-founded strict partial ordering on F.

For each q ∈ Q, we know by Theorem 6 that the (Gq, ∅)-lifting Redq,G
q,∅ =

(Redq,G
q

I ,Redq,G
q,∅

F ) and the (Gq,=)-lifting Redq,G
q,= = (Redq,G

q

I ,Redq,G
q,=

F ) of
Redq are redundancy criteria for |=q

Gq and FInf . Consequently, the intersections

Red∩G := (Red∩GI ,Red∩GF ) :=
(⋂

q∈QRedq,G
q

I ,
⋂
q∈QRedq,G

q,∅
F

)
and

Red∩G,= := (Red∩G,=I ,Red∩G,=F ) :=
(⋂

q∈QRedq,G
q

I ,
⋂
q∈QRedq,G

q,=
F

)
are redundancy criteria for |=∩G :=

⋂
q∈Q |=

q
Gq and FInf .

Theorem 14. If (GInf q,Redq) is statically refutationally complete w.r.t. |=q

for every q ∈ Q, and if for every N ⊆ F that is saturated w.r.t. FInf and Red∩G

there exists a q such that GInf q(Gq(N)) ⊆ Gq(FInf (N)) ∪ RedqI (Gq(N)), then
(FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G .

Lemma 15. A set N ⊆ F is saturated w.r.t. FInf and Red∩G,= if and only if it
is saturated w.r.t. FInf and Red∩G .

Lemma 16. (FInf ,Red∩G,=) is statically refutationally complete w.r.t. |=∩G if
and only if (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G .

Theorem 17. If (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G ,
then (FInf ,Red∩G,=) is dynamically refutationally complete w.r.t. |=∩G .

Example 18. Intersections of liftings are needed to support selection functions
in superposition [4]. The calculus FInf is parameterized by a function fsel on
the set F of first-order clauses that selects a subset of the negative literals in
each C ∈ F. There are several ways to extend fsel to a selection function gsel
on the set G of ground clauses such that for every D ∈ G there exists some
C ∈ F such that D = Cθ and D and C have corresponding selected literals.
For every such gsel , |=gsel is first-order entailment, GInf gsel is the set of ground
inferences satisfying gsel , and Redgsel is the redundancy criterion for GInf gsel .
The grounding function Ggsel maps C ∈ F to {Cθ ∈ G | θ is a substitution}
and ι ∈ FInf to the set of ground instances of ι in GInf gsel with corresponding
literals selected in the premises. In the static refutational completeness proof,
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only one gsel is needed, but this gsel is not known during a derivation, so fairness
must be guaranteed w.r.t. Redgsel,Ggsel

I for every possible extension gsel of fsel .
Thus, checking Red∩GI amounts to a worst-case analysis, where we must assume
that every ground instance Cθ of a premise C ∈ F inherits the selection of C.

Example 19. Intersections of liftings are also necessary for constraint super-
position calculi [18]. Here the calculus FInf operates on the set F of first-order
clauses with constraints. For a convergent rewrite system R, |=R is first-order
entailment up to R on the set G of unconstrained ground clauses, GInfR is the
set of ground superposition inferences, and RedR is redundancy up to R. The
grounding function GR maps C [[K]] ∈ F to {D ∈ G | D = Cθ, Kθ = true,
xθ is R-irreducible for all x}2 and ι ∈ FInf to the set of ground instances of ι
where the premises and conclusion of GR(ι) are the GR-ground instances of the
premises and conclusion of ι. In the static refutational completeness proof, only
one particular R is needed, but this R is not known during a derivation, so fair-
ness must be guaranteed w.r.t. RedR,G

R

I for every convergent rewrite system R.

Almost every redundancy criterion for a nonground inference system FInf
that can be found in the literature can be written as RedG,∅ for some grounding
function G from F and FInf to G and GInf , and some redundancy criterion Red
forGInf , or as an intersection Red∩G of such criteria. By Theorem 17, every static
refutational completeness result for FInf and Red∩G—which does not permit the
deletion of subsumed formulas during a run—yields immediately a dynamic refu-
tational completeness result for FInf and Red∩G,=—which permits the deletion
of subsumed formulas during a run, provided that they are larger w.r.t. =.

Adding Labels. In practice, the ordering = used in (G,=)-lifting often depends
on meta-information about a formula, such as its age or the way in which it has
been processed so far during a derivation. To capture this meta-information, we
extend formulas and inference systems in a rather trivial way with labels.

As before, let F and G be two sets of formulas, let FInf be an F-inference
system, letGInf be aG-inference system, let |= ⊆ P(G)×P(G) be a consequence
relation over G, let Red be a redundancy criterion for |= and GInf , and let G be
a grounding function from F and FInf to G and GInf .

Let L be a nonempty set of labels. Define FL := F×L and FL⊥ := F⊥×L.
Notice that there are at least as many false values in FL as there are labels in L.
We useM,N to denote labeled formula sets. Given a set N ⊆ FL, let bNc :=
{C | (C, l) ∈ N } denote the set of formulas without their labels. We call an FL-
inference system FLInf a labeled version of FInf if it has the following properties:

(L1) for every inference (Cn, . . . , C0) ∈ FInf and every tuple (l1, . . . , ln) ∈ Ln,
there exists an l0 ∈ L and an inference ((Cn, ln), . . . , (C0, l0)) ∈ FLInf ;

(L2) if ι = ((Cn, ln), . . . , (C0, l0)) is an inference in FLInf , then (Cn, . . . , C0)
is an inference in FInf , denoted by bιc.

2 For a variable x that occurs only in positive literals x ≈ t, the condition is slightly
more complicated.
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Let FLInf be a labeled version of FInf . Define GL by GL((C, l)) := G(C) for
every (C, l) ∈ FL and by GL(ι) := G(bιc) for every ι ∈ FLInf . It qualifies as a
grounding function from FL and FLInf toG and GInf . Let |=GL be the GL-lifting
of |=. Let RedGL,∅ be the (GL, ∅)-lifting of Red . The following lemmas are obvious:

Lemma 20. If a set N ⊆ FL is saturated w.r.t. FLInf and RedGL,∅, then
bNc ⊆ F is saturated w.r.t. FInf and RedG,∅.

Lemma 21. If (FInf ,RedG,∅) is statically refutationally complete w.r.t. |=G ,
then (FLInf ,RedGL,∅) is statically refutationally complete w.r.t. |=GL .

The extension to intersections of redundancy criteria is also straightforward.
Let F and G be two sets of formulas, and let FInf be an F-inference system.
Let Q be a set. For every q ∈ Q, let |=q be a consequence relation over G, let
GInf q be a G-inference system, let Redq be a redundancy criterion for |=q and
GInf q, and let Gq be a grounding function from F and FInf to G and GInf q.
Then for every q ∈ Q, the (Gq, ∅)-lifting Redq,G

q,∅ is a redundancy criterion for
the Gq-lifting |=q

Gq , and so Red∩G is a redundancy criterion for |=∩G and FInf .
Now let L be a nonempty set of labels, and define FL, FL⊥, and FLInf

as above. For every q ∈ Q, define the function GqL by GqL((C, l)) := Gq(C) for
every (C, l) ∈ FL and by GqL(ι) := Gq(bιc) for every ι ∈ FLInf . Then for every
q ∈ Q, the (GqL, ∅)-lifting Redq,G

q
L = (Red

q,Gq
L

I ,Red
q,Gq

L,∅
F ) of Redq is a redundancy

criterion for the GqL-lifting |=
q
Gq
L
of |=q and FLInf , and so

Red∩GL := (Red∩GLI ,Red∩GLF ) :=
(⋂

q∈QRed
q,Gq

L

I ,
⋂
q∈QRed

q,Gq
L,∅

F

)
is a redundancy criterion for |=∩GL :=

⋂
q∈Q |=

q
Gq
L
and FLInf .

Lemma 22. If a set N ⊆ FL is saturated w.r.t. FLInf and Red∩GL , then bNc ⊆
F is saturated w.r.t. FInf and Red∩G .

Theorem 23. If (FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G ,
then (FLInf ,Red∩GL) is statically refutationally complete w.r.t. |=∩GL .

4 Prover Architectures

We now use the above results to prove the refutational completeness of a popular
prover architecture: the given clause procedure [17]. The architecture is param-
eterized by an inference system and a redundancy criterion. A generalization of
the architecture decouples scheduling and computation of inferences.

Given Clause Procedure. Let F and G be two sets of formulas, and let
FInf be an F-inference system without premise-free inferences. Let Q be a set.
For every q ∈ Q, let |=q be a consequence relation over G, let GInf q be a G-
inference system, let Redq be a redundancy criterion for |=q and GInf q, and
let Gq be a grounding function from F and FInf to G and GInf q. Assume
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(FInf ,Red∩G) is statically refutationally complete w.r.t. |=∩G . Furthermore, let L
be a nonempty set of labels, let FL := F × L, and let the FL-inference system
FLInf be a labeled version of FInf . By Theorem 23, (FLInf ,Red∩GL) is statically
refutationally complete w.r.t. |=∩GL .

Let ·= be an equivalence relation on F, let ·� be a well-founded strict partial
ordering on F such that ·� is compatible with ·= (i.e., C ·� D, C ·= C ′, D ·= D′

implies C ′ ·� D′), such that C ·= D implies Gq(C) = Gq(D) for all q ∈ Q, and
such that C ·� D implies Gq(C) ⊆ Gq(D) for all q ∈ Q. We define ·� := ·� ∪ ·=.
In practice, ·= is typically α-renaming, ·� is either the subsumption ordering ·>
(provided it is well founded) or some well-founded ordering included in ·>, and
for every q ∈ Q, Gq maps every formula C ∈ F to the set of ground instances
of C, possibly modulo some theory.

Let == be a well-founded strict partial ordering on L. We define the ordering
= on FL by (C, l) = (C ′, l′) if either C ·� C ′ or else C ·= C ′ and l == l′.
By Lemma 16, the static refutational completeness of (FLInf ,Red∩GL) w.r.t.
|=∩GL implies the static refutational completeness of (FLInf ,Red∩GL,=), which by
Lemma 1 implies the dynamic refutational completeness of (FLInf ,Red∩GL,=).

This result may look intimidating, so let us unroll it. The FL-inference system
FLInf is a labeled version of FInf , which means that we get an FLInf -inference
by first omitting the labels of the premises (Cn, ln), . . . , (C1, l1), then performing
an FInf -inference (Cn, . . . , C0), and finally attaching an arbitrary label l0 to the
conclusion C0. Since GqL differs from Gq only by the omission of the labels and
the first components of Red∩GL,= and Red∩GL agree, we get this result:

Lemma 24. An FLInf -inference ι is redundant w.r.t. Red∩GL,= and N if and
only if the underlying FInf -inference bιc is redundant w.r.t. Red∩G and bNc.

Lemma 25. Let N ⊆ FL, and let (C, l) be a labeled formula. Then (C, l) ∈
Red∩GL,=F (N ) if (i) C ∈ Red∩GF (bNc), or (ii) C ·� C ′ for some C ′ ∈ bNc, or
(iii) C ·� C ′ for some (C ′, l′) ∈ N with l == l′.

The given clause procedure that lies at the heart of saturation provers can be
presented and studied abstractly. We assume that the set of labels L contains at
least two values, including a distinguished ==-smallest value denoted by active,
and that the labeled version FLInf of FInf never assigns active to a conclusion.

The state of a prover is a set of labeled formulas. The label identifies to which
formula set each formula belongs. The active label identifies the active formula
set from the familiar given clause procedure. The other, unspecified formula sets
are considered passive. Given a set N and a label l, we define the projection N↓l
as consisting only of the formulas labeled by l.

The given clause prover GC is defined as the following transition system:

Process N ]M =⇒GC N ∪M′
whereM⊆ Red∩GL,=F (N ∪M′) andM′↓active = ∅

Infer N ] {(C, l)} =⇒GC N ∪ {(C, active)} ∪M
where l 6= active,M↓active = ∅, and
FInf (bN↓activec, {C}) ⊆ Red∩GI (bNc ∪ {C} ∪ bMc)
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The Process rule covers most operations performed in a theorem prover.
By Lemma 25, this includes deleting Red∩GF -redundant formulas with arbitrary
labels and adding formulas that make other formulas Red∩GF -redundant (i.e.,
simplifying w.r.t. Red∩GF ), by (i); deleting formulas that are ·�-subsumed by other
formulas with arbitrary labels, by (ii); deleting formulas that are ·�-subsumed by
other formulas with smaller labels, by (iii); and replacing the label of a formula
by a smaller label different from active, also by (iii).

Infer is the only rule that puts a formula in the active set. It relabels a
passive formula C to active and ensures that all inferences between C and the
active formulas, including C itself, become redundant. Recall that by Lemma 24,
FLInf (N↓active, {(C, active)}) ⊆ Red∩GLI (N ∪ {(C, active)} ∪ M) if and only if
FInf (bN↓activec, {C}) ⊆ Red∩GI (bNc ∪ {C} ∪ bMc). By property (R4), every
inference is redundant if its conclusion is contained in the set of formulas, and
typically, inferences are in fact made redundant by adding their conclusions to
any of the passive sets. Then, bMc equals concl(FInf (bN↓activec, {C})).

Since every =⇒GC-derivation is also a �Red∩GL,= -derivation and (FLInf ,
Red∩GL,=) is dynamically refutationally complete, it now suffices to show fairness
to prove the refutational completeness of GC.

Lemma 26. Let (Ni)i be a =⇒GC-derivation. If N0↓active = ∅ and N∗↓l = ∅ for
all l 6= active, then (Ni)i is a fair �Red∩GL,= -derivation.

Theorem 27. Let (Ni)i be a =⇒GC-derivation, where N0↓active = ∅ and N∗↓l =
∅ for all l 6= active. If bN0c |=∩G {⊥} for some ⊥ ∈ F⊥, then some Ni contains
(⊥′, l) for some ⊥′ ∈ F⊥ and l ∈ L.

Example 28. The following Otter loop [17, Sect. 2.3.1] prover OL is an instance
of the given clause prover GC. This loop design is inspired byWeidenbach’s prover
without splitting from his Handbook chapter [29, Tables 4–6]. The prover’s state
is a five-tuple N | X | P | Y | A of formula sets. The N , P , and A sets store the
new, passive, and active formulas. The X and Y sets are subsingletons (i.e., sets
of at most one element) that can store a chosen new or passive formula. Initial
states are of the form N | ∅ | ∅ | ∅ | ∅.

ChooseN N ] {C} | ∅ | P | ∅ | A =⇒OL N | {C} | P | ∅ | A
DeleteFwd N | {C} | P | ∅ | A =⇒OL N | ∅ | P | ∅ | A

if C ∈ Red∩GF (P ∪A) or C ·� C ′ for some C ′ ∈ P ∪A
SimplifyFwd N | {C} | P | ∅ | A =⇒OL N | {C ′} | P | ∅ | A

if C ∈ Red∩GF (P ∪A ∪ {C ′})
DeleteBwdP N | {C} | P ] {C ′} | ∅ | A =⇒OL N | {C} | P | ∅ | A

if C ′ ∈ Red∩GF ({C}) or C ′ ·� C
SimplifyBwdP N | {C} | P ] {C ′} | ∅ | A =⇒OL N ∪ {C ′′} | {C} | P | ∅ | A

if C ′ ∈ Red∩GF ({C,C ′′})
DeleteBwdA N | {C} | P | ∅ | A ] {C ′} =⇒OL N | {C} | P | ∅ | A

if C ′ ∈ Red∩GF ({C}) or C ′ ·� C
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SimplifyBwdA N | {C} | P | ∅ | A ] {C ′} =⇒OL N ∪ {C ′′} | {C} | P | ∅ | A
if C ′ ∈ Red∩GF ({C,C ′′})

Transfer N | {C} | P | ∅ | A =⇒OL N | ∅ | P ∪ {C} | ∅ | A
ChooseP ∅ | ∅ | P ] {C} | ∅ | A =⇒OL ∅ | ∅ | P | {C} | A
Infer ∅ | ∅ | P | {C} | A =⇒OL M | ∅ | P | ∅ | A ∪ {C}

if FInf (A, {C}) ⊆ Red∩GI (A ∪ {C} ∪M)

A reasonable strategy for applying the OL rules is presented below. It relies
on a well-founded ordering � on formulas to ensure that the backward simpli-
fication rules actually “simplify” their target, preventing nontermination of the
inner loop. It also assumes that FInf (N, {C}) is finite if N is finite. Briefly, the
strategy corresponds to the regular expression

((
ChooseN; SimplifyFwd∗;

(DeleteFwd | (DeleteBwdP∗; DeleteBwdA∗; SimplifyBwdP∗; Simpli-
fyBwdA∗; Transfer))

)∗
; (ChooseP; Infer)?

)∗, where ; denotes concatena-
tion and ∗ and ? are given an eager semantics. Simplifications are applicable only
if the result is �-smaller than the original formula. Moreover, ChooseC always
chooses the oldest formula in N , and the choice of C in ChooseP must be fair.

The instantiation of GC relies on five labels l1 == · · · == l5 = active represent-
ing N,X,P, Y,A. Let (Ni |Xi |Pi |Yi |Ai)i be a derivation following the strategy,
where N0 is finite and X0 =P0 =Y0 =A0 = ∅. We can show that N∗=X∗=P∗ =
Y∗ = ∅. Therefore, by Theorem 27, OL is dynamically refutationally complete.

In most calculi, Red is defined in terms of some total and well-founded or-
dering �G on G. We can then define � so that C � C ′ if the smallest element
of Gq(C) is greater than the smallest element of Gq(C ′) w.r.t. �G, for some
arbitrary fixed q ∈ Q. This allows a wide range of simplifications typically im-
plemented in superposition provers. To ensure fairness when applying ChooseP,
one approach is to use an N-valued weight function that is strictly antimonotone
in the age of the formula [21, Sect. 4]. Another option is to alternate between
heuristically choosing n formulas and taking the oldest formula [17, Sect. 2.3.1].

To guarantee soundness, we can require that the formulas added by sim-
plification and Infer are |≈-entailed by the formulas in the state before the
transition. This can be relaxed to consistency-preservation, e.g., for calculi that
perform skolemization.

Example 29. Bachmair and Ganzinger’s resolution prover RP [5, Sect. 4.3] is
another instance of GC. It embodies both a concrete prover architecture and
a concrete inference system: ordered resolution with selection (O�S ). States are
triples N | P | O of finite clause sets. The instantiation relies on three labels
l1 == l2 == l3 = active. Subsumption can be supported as described in Example 10.

Delayed Inferences. An orphan is a passive formula that was generated by
an inference for which at least one premise is no longer active. The given clause
prover GC presented above is sufficient to describe a prover based on an Otter
loop as well as a basic DISCOUNT loop prover, but to describe a DISCOUNT loop
prover with orphan deletion, we need to decouple the scheduling of inferences
and their computation. The same scheme can be used for inference systems that
contain premise-free inferences or that may generate infinitely many conclusions

12



from finitely many premises. Yet another use of the scheme is to save memory: A
delayed inference can be stored more compactly than a new formula, as a tuple
of premises together with instructions on how to compute the conclusion.

The lazy given clause prover LGC generalizes GC. It is defined as the following
transition system on pairs (T,N ), where T (“to do”) is a set of inferences and
N is a set of labeled formulas. We use the same assumptions as for GC except
that we now permit premise-free inferences in FInf . Initially, T consists of all
premise-free inferences of FInf .

Process (T,N ]M) =⇒LGC (T,N ∪M′)
whereM⊆ Red∩GL,=F (N ∪M′) andM′↓active = ∅

ScheduleInfer (T,N ] {(C, l)}) =⇒LGC (T ∪ T ′,N ∪ {(C, active)})
where l 6= active and T ′ = FInf (bN↓activec, {C})

ComputeInfer (T ] {ι},N ) =⇒LGC (T,N ∪M)
whereM↓active = ∅ and ι ∈ Red∩GI (bN ∪Mc)

DeleteOrphans (T ] T ′,N ) =⇒LGC (T,N )
where T ′ ∩ FInf (bN↓activec) = ∅

ScheduleInfer relabels a passive formula C to active and puts all inferences
between C and the active formulas, including C itself, into the set T . Compute-
Infer removes an inference from T and makes it redundant by adding appropri-
ate labeled formulas to N (typically the conclusion of the inference). Delete-
Orphans can delete scheduled inferences from T if some of their premises have
been deleted from N↓active in the meantime. Note that the rule cannot delete
premise-free inferences, since the side condition is then vacuously false.

Abstractly, the T component of the state is a set of inferences (Cn, . . . , C0).
In an actual implementation, it can be represented in different ways: as a set of
compactly encoded recipes for computing the conclusion C0 from the premises
(Cn, . . . , C1) as in Waldmeister [15], or as a set of explicit formulas C0 with
information about their parents (Cn, . . . , C1) as in E [24]. In the latter case,
some presimplifications may be performed on C0; this could be modeled more
faithfully by defining T as a set of pairs (ι, simp(C0)).

Lemma 30. If (Ti,Ni)i is a =⇒LGC-derivation, then (Ni)i is a �Red∩GL,= -
derivation.

Lemma 31. Let (Ti,Ni)i be a =⇒LGC-derivation. If N0↓active = ∅, N∗↓l = ∅ for
all l 6= active, T0 is the set of all premise-free inferences of FInf , and T∗ = ∅,
then (Ni)i is a fair �Red∩GL,= -derivation.

Theorem 32. Let (Ti,Ni)i be a =⇒LGC-derivation, where N0↓active = ∅, N∗↓l =
∅ for all l 6= active, T0 is the set of all premise-free inferences of FInf , and
T∗ = ∅. If bN0c |=∩G {⊥} for some ⊥ ∈ F⊥, then some Ni contains (⊥′, l) for
some ⊥′ ∈ F⊥ and l ∈ L.

Example 33. The following DISCOUNT loop [1] prover DL is an instance of
the lazy given clause prover LGC. This loop design is inspired by the description
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of E [24]. The prover’s state is a four-tuple T | P | Y | A, where T is a set of
inferences and P , Y , A are sets of formulas. The T , P , and A sets correspond to
the scheduled inferences, the passive formulas, and the active formulas. The Y
set is a subsingleton that can store a chosen passive formula. Initial states have
the form T | P | ∅ | ∅, where T is the set of all premise-free inferences of FInf .

ComputeInfer T ] {ι} | P | ∅ | A =⇒DL T | P | {C} | A
if ι ∈ Red∩GI (A ∪ {C})

ChooseP T | P ] {C} | ∅ | A =⇒DL T | P | {C} | A
DeleteFwd T | P | {C} | A =⇒DL T | P | ∅ | A

if C ∈ Red∩GF (A) or C ·� C ′ for some C ′ ∈ A
SimplifyFwd T | P | {C} | A =⇒DL T | P | {C ′} | A

if C ∈ Red∩GF (A ∪ {C ′})
DeleteBwd T | P | {C} | A ] {C ′} =⇒DL T | P | {C} | A

if C ′ ∈ Red∩GF ({C}) or C ′ ·� C
SimplifyBwd T | P | {C} | A ] {C ′} =⇒DL T | P ∪ {C ′′} | {C} | A

if C ′ ∈ Red∩GF ({C,C ′′})
ScheduleInfer T | P | {C} | A =⇒DL T ∪ T ′ | P | ∅ | A ∪ {C}

if T ′ = FInf (A, {C})
DeleteOrphans T ] T ′ | P | Y | A =⇒DL T | P | Y | A

if T ′ ∩ FInf (A) = ∅

A reasonable strategy for applying the DL rules along the lines of that for
OL and with the same assumptions follows:

(
(ComputeInfer | ChooseP);

SimplifyFwd∗; (DeleteFwd | (DeleteBwd∗; SimplifyBwd∗; Delete-
Orphans; ScheduleInfer))

)∗. In ComputeInfer, the first formula from
T ∪P , organized as a single queue, is chosen. The instantiation of LGC relies on
three labels l1 == · · · == l3 = active corresponding to the sets P, Y,A.

Example 34. Higher-order unification can give rise to infinitely many incompa-
rable unifiers. As a result, in clausal λ-superposition [9], performing all inferences
between two clauses can lead to infinitely many conclusions, which need to be
enumerated fairly. The Zipperposition prover [9] performs this enumeration in
an extended DISCOUNT loop. Another instance of infinitary inferences is the
n-ary Acycl and Uniq rules of superposition with (co)datatypes [13].

Abstractly, a Zipperposition loop prover ZL operates on states T | P | Y | A,
where T is organized as a finite set of possibly infinite sequences (ιi)i of infer-
ences, and P, Y,A are as in DL. The ChooseP, DeleteFwd, SimplifyFwd,
DeleteBwd, and SimplifyBwd rules are as in DL. The other rules follow:

ComputeInfer T ] {(ιi)i} | P | ∅ | A =⇒ZL T ∪ {(ιi)i≥1} | P ∪ {C} | ∅ | A
if ι0 ∈ Red∩GI (A ∪ {C})

ScheduleInfer T | P | {C} | A =⇒ZL T ∪ T ′ | P | ∅ | A ∪ {C}
if T ′ is a finite set of sequences (ιji )i of inferences such that the set of all ιji
equals FInf (A, {C})
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DeleteOrphan T ] {(ιi)i} | P | Y | A =⇒ZL T | P | Y | A
if ιi /∈ FInf (A) for all i

ComputeInfer works on the first element of sequences. ScheduleInfer
adds new sequences to T . Typically, these sequences store FInf (A, {C}), which
may be countably infinite, in such a way that all inferences in one sequence have
identical premises and can be removed together by DeleteOrphan. To produce
fair derivations, a prover needs to choose the sequence in ComputeInfer fairly
and to choose the formula in ChooseP fairly, thereby achieving dovetailing.

Example 35. The prover architectures described above can be instantiated
with saturation calculi that use a redundancy criterion obtained as an inter-
section of lifted redundancy criteria. Most calculi are defined in such a way that
this requirement is obviously satisfied. The outlier is unfailing completion [2].

Although unfailing completion predates the introduction of Bachmair–Ganz-
inger-style redundancy, it can be incorporated into that framework by defining
that formulas (i.e., rewrite rules and equations) and inferences (i.e., orientation
and critical pair computation) are redundant if for every rewrite proof using that
rewrite rule, equation, or critical peak, there exists a smaller rewrite proof. The
requirement that the redundancy criterion must be obtained by lifting (which
is necessary to introduce the labeling) can then be trivially fulfilled by “self-
lifting”—i.e., by defining G := F and ·� := ∅ and by taking G as the function
that maps every formula or inference to the set of its α-renamings.

5 Isabelle Development

The framework described in the previous sections has been formalized in Isa-
belle/HOL [19,20], including all the theorems and lemmas and the prover archi-
tectures GC and LGC but excluding the examples. The Isabelle theory files are
available in the Archive of Formal Proofs [25]. The development is also part of
the IsaFoL (Isabelle Formalization of Logic) [11] effort, which aims at developing
a reusable computer-checked library of results about automated reasoning.

The development relies heavily on Isabelle’s locales [8]. These are contexts
that fix variables and make assumptions about these. With locales, the defini-
tions and lemmas look similar to how they are stated on paper, but the proofs
often become more complicated: Layers of locales may hide definitions, and often
these need to be manually unfolded before the desired lemma can be proved.

We chose to represent basic nonempty sets such as F and L by types. It
relieved us from having to thread through nonemptiness conditions. Moreover,
objects are automatically typed, meaning that lemmas could be stated without
explicit hypotheses that given objects are formulas, labels, or indices. On the
other hand, for sets such as F⊥ and FInf that are subsets of other sets, it was
natural to use simply typed sets. Derivations, which are used to describe the
dynamic behavior of a calculus, are represented by the same lazy list codatatype
[12] and auxiliary definitions that were used in the mechanization of the ordered
resolution prover RP (Example 29) by Schlichtkrull et al. [22, 23].
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The framework’s design and its mechanization were carried out largely in
parallel. This resulted in more work on the mechanization side, but it also helped
shape the theory itself. In particular, an attempt at verifying RP in Isabelle using
an earlier version of the framework made it clear that the theory was not general
enough yet to support selection functions (Example 18). In ongoing work, we are
completing the RP proof and are developing a verified superposition prover.

6 Conclusion

We presented a formal framework for saturation theorem proving inspired by
Bachmair and Ganzinger’s Handbook chapter [5]. Users can conveniently derive
a dynamic refutational completeness result for a concrete prover based on a stat-
ically refutationally complete calculus. The key was to strengthen the standard
redundancy criterion so that all prover operations, including subsumption dele-
tion, can be justified by inference or redundancy. The framework is mechanized
in Isabelle/HOL, where it can be instantiated to verify concrete provers.

To employ the framework, the starting point is a statically complete satura-
tion calculus that can be expressed as the lifting (FInf ,RedG) or (FInf ,Red∩G)
of a ground calculus (GInf ,Red), where Red qualifies as a redundancy crite-
rion and G qualifies as a grounding function or grounding function family. The
framework can be used to derive two main results:

1. After defining a well-founded ordering = that captures subsumption, invoke
Theorem 17 to show (FInf ,Red∩G,=) dynamically complete.

2. Based on the previous step, invoke Theorem 27 or 32 to derive the dynamic
completeness of a prover architecture building on the given clause procedure,
such as the Otter loop, the DISCOUNT loop, or the Zipperposition loop.

The framework can also help establish the static completeness of the nonground
calculus. For many calculi (with the notable exceptions of constraint superposi-
tion and hierarchic superposition), Theorem 5 or 14 can be used to lift the static
completeness of (GInf ,Red) to (FInf ,RedG) or (FInf ,Red∩G).

The main missing piece of the framework is a generic treatment of clause
splitting. The only formal treatment of splitting we are aware of, by Fietzke and
Weidenbach [14], hard-codes both the underlying calculus and the splitting strat-
egy. Voronkov’s AVATAR architecture [26] is more flexible and yields impressive
empirical results, but it offers no dynamic completeness guarantees.
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