
HAL Id: hal-03113221
https://hal.inria.fr/hal-03113221

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Analysis of Hybrid Public Key Encryption
Benjamin Lipp

To cite this version:
Benjamin Lipp. An Analysis of Hybrid Public Key Encryption. [Research Report] IACR Cryptology
ePrint Archive. 2020. �hal-03113221�

https://hal.inria.fr/hal-03113221
https://hal.archives-ouvertes.fr

An Analysis of Hybrid
Public Key Encryption

Benjamin Lipp∗

INRIA Paris

February 23, 2020

Abstract. Hybrid Public Key Encryption (HPKE) is a cryptographic
primitive being standardized by the Crypto Forum Research Group (CFRG)
within the Internet Research Task Force (IRTF). HPKE schemes combine
asymmetric and symmetric cryptographic primitives for efficient authenti-
cated encryption of arbitrary-sized plaintexts under a given recipient public
key. This document presents a mechanized cryptographic analysis done with
CryptoVerif, of all four HPKE modes, instantiated with a prime-order-group
Diffie-Hellman Key Encapsulation Mechanism (KEM).

Contents
1. Introduction 2

2. Background and Motivation 2

3. Hybrid Public Key Encryption 5

4. Cryptographic Assumptions 10

5. Modeling HPKE 12

6. Verification Results 16

7. Discussion 16

A. Figures for remaining modes 21

∗benjamin.lipp@inria.fr

1

1. Introduction
Classical public key encryption often operates on algebraic structures. For
example, textbook RSA encryption proceeds by computing me mod n, for
message m ∈ Zn, and n = p · q, where p and q are large primes. Limiting
messages to such structure makes such encryption schemes difficult to
apply directly in practice. Thus, it is common to combine an asymmetric
public key encryption scheme with symmetric cryptography, in a hybrid
way, to allow for more efficient encryption with arbitrary-sized plaintext.
For example, one might generate a random symmetric key of size 128 bits,
encrypt arbitrarily-sized plaintext under said key, and then encrypt the
key with traditional public key encryption. The recipient of this message
ciphertext and encrypted key can then decrypt the key and, with the result,
decrypt the ciphertext. Such schemes are called hybrid public-key encryption
(HPKE), and have numerous applications in modern technologies and
protocols, including: PGP message encryption, Messaging Layer Security [7],
TLS Encrypted SNI [27], and even protection of 5G subscriber identities [4].

Hybrid public key encryption is neither a new nor well-defined con-
struction. Currently, there are numerous competing and non-interoperable
standards and variants for hybrid encryption, mostly based on the Elliptic
Curve Integrated Encryption System (ECIES) [29], including ANSI X9.63
(ECIES) [6], IEEE 1363a [19], ISO/IEC 18033-2 [30], and SECG SEC 1 [15].
See [16] for a thorough comparison. All of these existing schemes have
problems, e. g., because they rely on outdated primitives and cannot easily
migrate to newer algorithms, lack proofs of IND-CCA2 security, or fail to
provide test vectors.
HPKE [8] is a recent variant of hybrid public key encryption currently

being standardized by the Crypto Forum Research Group (CFRG) within
the Internet Research Task Force (IRTF). It aims to provide a single,
extensible, and future-proof public key encryption scheme that does not have
the pitfalls previously mentioned. This document presents a mechanized
cryptographic analysis of this new primitive. For this work, we rely on the
CryptoVerif protocol verifier [13], [12]. CryptoVerif relies on a computational
model of cryptography, and generates machine-checkable proofs by sequences
of games, like those manually written by cryptographers. It supports secrecy
properties and correspondence properties like authentication.

2. Background and Motivation
RSA, ElGamal, and ECIES are classic examples of public key encryp-
tion. Variants of each are standardized in some way. RSA with Optional
Asymmetric Encryption Padding (RSA-OAEP) is part of the PKCS#1 stan-
dard [17], the DHAES variant of ElGamal encryption is part of the IEEE
1363a standard [19], and ECIES is part of the ANSI X9.63 (ECIES) [6],

2

IEEE 1363a [19], ISO/IEC 18033-2 [30], and SECG SEC 1 [15] standards.
ECIES is arguably the more popular variant, for two primary reasons:

• Size. Elliptic curve elements are substantially smaller than, say, RSA-
based equivalent group elements.

• Simplicity. ECIES requires one scalar multiplication to derive shared
secrets. In contrast, classical ElGamal requires at least two scalar
multiplications.

The proliferation of ECIES variants highlights its usefulness as a public
key encryption scheme. Most cryptographic libraries provide some variant
of ECIES. For example, NaCl [11] and related software libraries such
as libsodium [2] provide “box” and “seal” APIs for authenticated public
key encryption. The “box” API takes as input a message, nonce, public
encryption key, and private signing key to produce a ciphertext. Internally,
this API performs a non-interactive Diffie-Hellman (DH) key exchange
using Curve25519 and uses the result to encrypt and authenticate the
message with XSalsa20-Poly1305. The “seal” API is similar in that the
sender’s key share is generated ephemerally. The Apple Security library
provides support for the X9.63 standard variant of ECIES [3]. Java’s
Bouncy Castle library [1] provides support for the 18033-2 standard variant.
The Noise protocol framework [5], which supports “one-way” handshakes
for encrypting messages to static public keys, provides a similar flavor of
ECIES, yet one that is not standardized.
These ECIES variants differ in many respects, including, though not

limited to: algorithm composition and dependencies, shared secret and key
derivation, and application domain separation. Such wide-spread adoption
by applications, protocols, and software implementations without a consis-
tent underlying standard makes it difficult to use ECIES in forward-looking
IETF standards. Table 1 lists the underlying cryptographic dependencies
for different variants of ECIES standards, drawn from [16], where KA, KDF,
Hash, Enc, and MAC are the key agreement, key derivation, hash, encryption,
and message authentication code functions for each variant, respectively.
Not only are some dependent algorithms considered deprecated or legacy,
some of them, such as SHA-1 [20], are broken. Moreover, these standards do
not permit extensibility as is required by modern IETF protocols. Examples
of emerging protocols that require such encryption are described below:
1. Messaging Layer Security [7]: Prospective group members publish

short-lived “Initialization Keys,” which are public keys, used by other
members of the group to encrypt group state to the client.

2. TLS Encrypted SNI [27]: Public key encryption protects the TLS SNI
in transit between clients and servers. The key is obtained out of band,
typically through DNS.

HPKE was thus born from the need for a common, extensible, and safe
public key encryption standard. In doing so, HPKE also has several goals,

3

Table 1: Cryptographic algorithm dependencies of various ECIES standard variants [16].
Variant KA KDF Hash Enc MAC

X9.63 DH X9.63 KDF SHA-1 XOR DEA,
ASNI X9.71

1363a DH, DHC X9.63 KDF SHA-1/2,
RIPEMD TDES, AES MAC1

18033-2 DH, DHC KDF1, KDF2 SHA-1/2, WP
RIPEMD

AES, CAST-128
TDES, MISTY1

H-SHA-1, H-SHA-2,
H-RIPEMD

SEC 1 DH, DHC X9.63 KDF,
NIST-800-56 SHA-1/2 XOR, AES H-SHA-1, H-SHA-2,

AES-CMAC

which we enumerate below.

• Modern cryptographic construction. HPKE should support context
and domain separation within the construction and at the API sur-
face. Internally, all static algorithm information, such as ciphersuite
identifiers, and “runtime” information, such as the recipient public
key, should be folded into the construction to prevent cross-protocol
attacks. Externally, applications should be able to further differentiate
invocations of HPKE with an explicit context separation string, similar
to that provided by EdDSA [18].

• Algorithm agility. HPKE should allow for new cryptographic algo-
rithms as needed. For example, it is critical that internal hash functions
are agile given the recent collision [31] and chosen pre-image attacks
on SHA-1 [20].

• Varied authentication properties. Traditional ECIES supports “anony-
mous” public key encryption, wherein the recipient cannot identify the
originator of the message. HPKE should support modes wherein the
sender authenticates itself using previously established secrets, i. e.,
symmetric keys or private/public key pairs.

• Efficiency. HPKE should be minimal in its dependencies and cryp-
tographic operations. Moreover, HPKE should be applicable in a
variety of environments and for a diverse set of use cases without
compromising efficiency. In some environments, for example, public
key operations are significantly more expensive than symmetric key
operations. If applications in such environments require encrypting
multiple messages to a single recipient, HPKE should allow for few
(one) public key operations and many symmetric key operations. Note
that, as post-quantum algorithms are integrated into HPKE, this sort
of amortization will likely become increasingly useful.

4

• Ease of use. HPKE should expose a minimal and intuitive interface
for application developers. For example, encrypting a message m with
associated data h under recipient public key pk should require no
additional information on behalf of the application. Some existing
public key encryption APIs require, among other information, a per-
message nonce, which increases application burden and chance for
misuse.

3. Hybrid Public Key Encryption
This section describes HPKE in detail, including its internal construction,
authentication variants, and the application interface. HPKE is a primitive
for encrypting a message m from sender S to receiver R using the recipient’s
public key pkR. Senders and receivers may share additional state, such as
a pre-shared symmetric key psk. Senders may also possess a private/public
key pair (skS , pkS). Given this information, HPKE supports four modes of
operation:
1. Base: Unauthenticated public key encryption from S to R, wherein S

generates an ephemeral key pair and uses it in conjunction with pkR
to derive a symmetric key.

2. PSK: Same as the Base mode, except that psk is mixed into the shared
secret as the sender authentication mechanism.

3. Auth: Same as the Base mode, except that S uses skS in conjunction
with pkR as the sender authentication mechanism.

4. AuthPSK: Combination of PSK and Auth modes.
HPKE is built on a number of simple cryptographic primitives, including

a Key Encapsulation Mechanism (KEM), a Key Derivation Function (KDF),
and an Authenticated Encryption with Associated Data algorithm (AEAD).
HPKE is designed to permit any combination of KEM, KDF, and AEAD
algorithm, as specified by a ciphersuite. (Some combinations may not
be safe, so this flexibility must be restrained in practice.) We define the
primitives and their interfaces for each of these primitives below. The
complete HPKE construction using these interfaces follows.

3.1. Cryptographic Primitives
Key Encapsulation Mechanism (KEM). A KEM generally is a tuple
of algorithms (KeyGen,Encap,Decap) and corresponding key space KKEM .

• KeyGen(): A probabilistic algorithm which produces a private/public
key pair (sk, pk).

• Encap(pk): Given input pk, probabilistically output a ciphertext enc
and key zz ∈ KKEM .

5

• Decap(enc, sk): Given an encapsulated key enc and a private key sk,
deterministically output a key zz ∈ KKEM or ⊥ upon failure.

We say a KEM is ε-correct if for all (sk, pk)← KeyGen() and (enc, zz)←
Encap(pk) it holds that Pr[Decap(enc, sk) 6= zz] ≤ ε.

For authenticated modes, we also require that a KEM provides a AuthEncap(pkR, skS)
and AuthDecap(skR, pkS) interface. These are similar to Encap and Decap
except that the outputs (and inputs) encode assurance that the owner of
the corresponding private key skS produced the encapsulated key.
We also require the KEM to provide utility functions Marshal and

Unmarshal. Marshal takes as input a public key pk and produces a unique
encoding of key of length Npk bytes. Unmarshal reverses this process, i. e.,
Unmarshal(Marshal(pk)) = pk.

In this analysis, we focus on the instantiation by a Diffie-Hellman KEM
with ε = 0, defined below.1

• KeyGen(): produces a private/public Diffie-Hellman key pair (sk, pk).
• Encap(pkR): Given input pkR, probabilistically output a ciphertext

enc of size Nenc bytes and key zz of size Npk bytes:

(skE , pkE)←$ KeyGen()
zz ← DH(skE , pkR)

enc ← Marshal(pkE)

• AuthEncap(pkR, skS): Given input pkR and skS , probabilistically out-
put a ciphertext enc of size Nenc bytes and key zz of size 2Npk bytes:

(skE , pkE)←$ KeyGen()
zz ← DH(skE , pkR) ||DH(skS , pkR)

enc ← Marshal(pkE)

Key Derivation Function (KDF). A KDF is a tuple of deterministic
algorithms (Hash,Extract,Expand) used for secret derivation and expan-
sion. It is parameterized by a concrete hash function such as SHA-2 and,
consequently, an output length Nh.

• Hash(m): Compute the Nh-byte hash of m using the underlying KDF
hash algorithm.

• Extract(salt, IKM): Extract input keying material IKM with optional
salt string salt to a pseudorandom key PRK of length Nh bytes.

• Expand(PRK , info, L): Expand a pseudorandom key PRK using the
optional byte string info to a string of L pseudorandom bytes.

1We leave analysis of non-DH-based KEMs to future work.

6

Sender S Receiver R

knows skS ,
pkR, psk

knows skR,
pkS , pskenc, ct

– – – – – – – – – – – Encap – – – – –

(skE , pkE)←$ KeyGen()
zz ← DH(skE , pkR)||DH(skS , pkR)

enc ← Marshal(pkE)
– – – – – – – – – – – KeySchedule – –

s← Extract(psk, zz)
k ← Expand(s, “hpke key”||ctx, Nk)
n← Expand(s, “hpke nonce”||ctx, Nn)

sexp ← Expand(s, “hpke exp”||ctx, Nh)
– – – – – – – – – – – Seal – – – – –

ct ← Seal(k, n⊕ 0, aad, pt)
– – – – – – – – – – – Export – – – –

kexp,1 ← Expand(sexp, “exp key”||ctx, L)

Figure 1a Figure 1b

Figure 1: (a) An overview of HPKE’s protocol flow in mode AuthPSK; (b) the crypto-
graphic computations used to create these messages on the sender’s side; they
need to be adapted accordingly for the receiving side. The computations are
split up into parts like in the specification. For a detailed description of ctx
and other variables, please see Section 3. Flow diagram and computations
for the other three modes can be found in Appendix A.

Authenticated Encryption with Associated Data (AEAD). An
AEAD algorithm is a tuple of two algorithms (Seal,Open) defined over
key, nonce, and message space Kaead = {0, 1}8×Nk , N = {0, 1}8×Nn ,M =
{0, 1}∗, respectively.

• Seal(k, n, h,m): Given key k ∈ Kaead, nonce n ∈ N , optional associ-
ated data h, and plaintext message m, produces ciphertext (including
tag) c.

• Open(k, n, h, c): Given key k ∈ Kaead, nonce n ∈ N , optional associ-
ated data h, and ciphertext c, produces the corresponding plaintext
m or error ⊥ if decryption fails.

7

3.2. Key Schedule
The key zz returned by the KEM is used in the following key schedule:

ciphersuite ← kem_id || kdf_id || aead_id
ctx ← mode || ciphersuite || enc || pkRm || pkSm || pskID_hash || info_hash
s← Extract(psk, zz)
k ← Expand(s, “hpke key”||ctx, Nk)
n← Expand(s, “hpke nonce”||ctx, Nn)

sexp ← Expand(s, “hpke exp”||ctx, Nh)

The key schedule function returns an encryption context containing the
symmetric key k, nonce n, and the exporter secret sexp. This encryption
context can then be used through different interfaces which HPKE exposes.

3.3. Application Interface
HPKE exposes a simple interface to developers. Namely, it allows one
to provide: recipient public key, application auxiliary information, and a
message to encrypt with additional authenticated data. Python code for
mode Base is shown below. (Utility functions such as concat are not shown.
See [8] for their definition.)

Listing 1: HPKE Base mode APIs.

1 def Context.Nonce(seq):
2 encSeq = encode_big_endian(seq, len(self.nonce))
3 return xor(self.nonce, encSeq)
4
5 def Context.IncrementSeq():
6 if self.seq >= (1 << Nn) − 1:
7 return NonceOverflowError
8 self.seq += 1
9

10 def Context.Seal(aad, pt):
11 ct = Seal(self.key, self.Nonce(self.seq), aad, pt)
12 self.IncrementSeq()
13 return ct
14
15 def KeySchedule(mode, pkR, zz, enc, info, psk, pskID, pkSm):
16 VerifyMode(mode, psk, pskID, pkSm)
17
18 pkRm = Marshal(pkR)
19 ciphersuite = concat(kem_id, kdf_id, aead_id)
20 pskID_hash = Hash(pskID)

8

21 info_hash = Hash(info)
22 context = concat(mode, ciphersuite, enc, pkRm, pkSm,
23 pskID_hash, info_hash)
24
25 secret = Extract(psk, zz)
26 key = Expand(secret, concat("hpke key", context), Nk)
27 nonce = Expand(secret, concat("hpke nonce", context), Nn)
28 exporter_secret = Expand(secret,
29 concat("hpke exp", context), Nh)
30
31 return Context(key, nonce, exporter_secret)
32
33 def SetupBaseS(pkR, info):
34 zz, enc = Encap(pkR)
35 return enc, KeySchedule(mode_base, pkR, zz, enc, info,
36 default_psk, default_pskID,
37 default_pkRm)
38
39 def SetupBaseR(enc, skR, info):
40 zz = Decap(enc, skR)
41 return KeySchedule(mode_base, pk(skR), zz, enc, info,
42 default_psk, default_pskID,
43 default_pkRm)

The “default” parameters for marshalled public keys, PSKs, and PSK
IDs are empty strings of length Npk, Nh, and 0, respectively.

Usage of this API is shown below. As illustrated, applications perform an
initial setup phase (SetupBaseS) and then encrypt their message using the
output (ctx.Seal). Applications may invoke the encryption function mul-
tiple times for more than a single message without repeating the underlying
KEM operation or key derivation steps.

Listing 2: HPKE single-shot Base mode encryption example.

1 message_aad = ...
2 message = ...
3 enc, ctx = SetupBaseS(pkR, "application info")
4 ct = ctx.Seal(message_aad, message)
5 # emit (ct, enc)

HPKE also supports an Export interface, similar to that of TLS 1.3 [26].
This interface takes as input a context string exporter_context and desired
length L in bytes and produces a secret derived from the internal exporter
secret using the corresponding KDF Expand function.

Listing 3: HPKE Export interface.

9

1 def Context.Export(exporter_context, L):
2 return Expand(exporter_secret, exporter_context, L)

4. Cryptographic Assumptions
In this section, we present on which cryptographic assumptions we base our
analysis. HPKE is specified for a variety of cryptographic primitives; each
instantiation must respect the following assumptions for our analysis to be
applicable.
Collision Résistance. We assume that Hash is a collision-resistant hash

function. This influences how pskID can be chosen. The draft calls it a
“non-private parameter”, “that is used to identify which PSK should be
used”. It might be tempting to choose pskID to be the hash of the psk.
However, as pskID serves as identification of the psk it might be sent in the
clear over the network. A collision-resistant hash function does not protect
its inputs (e. g. the identity function is collision resistant, too), and thus
the psk would leak. If users would like to use the hash of psk as pskID,
Hash must be assumed to be a random oracle. (The PRF assumption is not
useful because Hash is also used to hash the application’s info value which
should be assumed to be known by the adversary. Otherwise, the psk could
just be a PRF’s key because it is assumed to be a fresh random value.)
Random Oracle. We assume that Extract is a random oracle. This

is justified by Theorem 4.4 in [14]. The theorem’s prerequisites are met
for all three variants SHA-256, SHA-384, and SHA-512 for which HPKE
is specified: the key to Extract is the psk which has a size of Nh bytes,
and (block size minus one) is strictly larger than that for all three hash
functions.
Pseudo-Random Function Family. We assume that HKDF-Expand

(Expand) is a PRF. This is justified by [14]. Nk and Nn are ≤ 32 bytes for
the AEAD schemes allowed in the specification. Nh ≥ 32 bytes for allowed
hash functions. This means Expand will use one hmac call only, internally.
Because Extract is also just one hmac call, we are now using two different
assumptions for the same primitive. Therefore, we need to establish that
the hmac call inside Extract operates on a different input domain than the
ones inside Expand:

The first argument to Extract’s hmac call is the psk which has length Nh.
The first argument to all hmac calls inside Expand is the result of Extract;
and this has length Nh as well. Thus, the first argument does not directly
separate the input domains. The second argument to Extract’s hmac call is
the result from the DH operation. This has either length Npk or 2Npk . The
second argument to all hmac calls inside Expand has at least the length of

10

the ctx variable, which is defined as:

ciphersuite =concat(
2 bytes︷ ︸︸ ︷

kem_id,
2 bytes︷ ︸︸ ︷

kdf_id,
2 bytes︷ ︸︸ ︷

aead_id)
ctx =concat(mode︸ ︷︷ ︸

1 byte

, ciphersuite︸ ︷︷ ︸
6 bytes

, enc︸︷︷︸
Nenc

, pkRm︸ ︷︷ ︸
Npk

, pkSm︸ ︷︷ ︸
Npk

, (1)

pskID_hash︸ ︷︷ ︸
Nh

, info_hash︸ ︷︷ ︸
Nh

)

With this, we conclude that for all modes of HPKE, the length of ctx
is strictly greater than the length of zz. In turn, the input domain of
Extract’s hmac call is different from the input domains to the hmac calls
inside Expand.
IND-CPA and INT-CTXT for AEAD. We assume that the AEAD

scheme used is IND-CPA (indistinguishable under chosen plaintext attacks)
and INT-CTXT (ciphertext integrity) [9], provided the same nonce is never
used twice with the same key. IND-CPA means that the adversary has a
negligible probability of distinguishing encryptions of two distinct messages
of the same length that it has chosen. INT-CTXT means that an adversary
with access to encryption and decryption oracles has a negligible probability
of forging a ciphertext that decrypts successfully and has not been returned
by the encryption oracle.
For the ChaCha20Poly1305 AEAD scheme [23], these properties are

justified in [25], assuming ChaCha20 is a PRF (pseudo-random function)
and Poly1305 is an ε-almost-∆-universal hash function. The latter property
is shown to hold in [10]. For AES-GCM, these properties are justified
in [22,28].
Prime-Order Group and Gap Diffie-Hellman. We assume that the

DH scheme uses a prime-order group that satisfies the gap Diffie-Hellman
(GDH) assumption [24]. This assumption means that given a generator
g, ga, and gb for random a, b, the adversary has negligible probability to
compute gab, even when the adversary has access to a decisional Diffie-
Hellman oracle, which, when given G,X, Y, Z outputs whether or not there
exist x, y such that X = Gx, Y = Gy, and Z = Gxy. We also assume
the the implementation of HPKE validates public keys before usage and
validates the shared secret returned by Diffie-Hellman operations.

We leave for future work the refinement of our model to use CryptoVerif’s
detailed model of Curve25519 and Curve448 that was first established
in [21].
On the Choice of Gap Diffie-Hellman and the Random Oracle

Model. We use the gap Diffie-Hellman assumption because the adversary
has access to a DDH oracle. This means we will not, in the proof, make
a game hop to substitute the result of a scalar multiplication by a fresh
random value, as this would be using the DDH assumption.

11

In mode PSK and mode AuthPSK, we could model Extract as a PRF and
use the psk as its key. Then, the result of DH is just an input to this PRF.
Indeed we would not even use the gap Diffie-Hellman assumption for these
proofs, as the participants already have a shared secret. However, we want
to handle scenarios in which the psk is compromised. To do so, we must
rely on gap Diffie-Hellman to proceed. If the psk is compromised, and if
we modeled Extract as a PRF, we would not be able to apply the PRF
assumption. This is because PRF does not give any guarantees if the key
is compromised, i. .e not a fresh random value. Because we want to cover
compromise of psk in our analysis, we use the random oracle model even
for the modes using a psk. In any scenario in which we can prove security
properties, the output of Extract is a fresh random value; this means there
is always a key for Expand modeled as PRF.
Using an HPKE Recipient as DDH Oracle. As said above, HPKE

exposes a DDH oracle to the adversary. In the following we sketch how
the adversary can use an HPKE recipient to build a DDH oracle. Let
the adversary receive a DDH triple (ge, gr, gc). It uses ge as ephemeral
(pkE), creating enc = Marshal(ge) from it. It uses gc as zz. With that, the
adversary constructed a possible return value of Encap. The adversary uses
gr as the recipient’s static key, creating pkRm = Marshal(gr). With this,
the adversary can call KeySchedule(. . .) to derive an encryption context;
all the constants needed for KeySchedule are supposed to be known to
the adversary, and we suppose there is no psk used or that the adversary
shares a psk with the recipient. The adversary uses the encryption context
to send a message to the recipient. If it gets a reply, the DDH triple was
good, meaning gc = ger, and the adversary returns True as result of the
DDH oracle. This only works if gr is the actual static key of a party the
adversary can send messages to. In case of mode Auth, the procedure works
the same just that the adversary needs a static key pair it can use as pkS
to calculate DH(pkR, skS).

5. Modeling HPKE
5.1. Execution Environment
In our model, we consider two honest entities S and R. In the initial setup,
we generate the static key pairs for these two entities and publish their
public keys, such that the adversary can use them. After this setup, we
run parallel processes that represent a number of executions of S and R
polynomial in the security parameter.

The entities S and R can play both the sender and recipient role. These
two entities can send HPKE messages between each other, but also with
any number of dishonest entities included in the adversary: for each session,
the adversary sends to the sender its partner public key, that is, the public

12

key under which the sender should encrypt the message. The recipient can
also receive messages from any other entity besides S.
This setting allows us to prove security for any messages between two

honest entities, in a system that may contain any number of (honest or
dishonest) other entities. We prove security for messages where S is the
sender and R is the recipient. We do not explicitly prove security for
sessions in which R is the sender and S is the recipient, but the same
security properties hold by symmetry.

The processes for the entities S and R model the entire protocol, including
the secret export interface. Currently, we let the sender only encrypt one
message with an HPKE key. Modeling multiple encryptions is left for
future work. We allow the adversary to call the random oracle that we use
for Extract, and provide an oracle to access the key that defines the hash
function used for Hash.

5.2. Variants
For each of HPKE’s four modes, we consider two variants:

oneshot The sender uses the oneshot API to use the key once to encrypt a
plaintext.

export The same as oneshot, and the sender additionally exports two inde-
pendent secrets using the secret export interface.

We leave it for future work to model a variant where the sender uses the
key several times to encrypt multiple plaintexts – this model needs to cover
the incrementation of the counter to produce unique nonces.

5.3. Compromise Scenarios
We consider compromises of skS , skR, and psk. We do not consider com-
promise of skE , or bad randomness. Depending on the mode, we analyze
different compromise scenarios by either statically compromising keys from
the start or by exposing an oracle through which the adversary can learn a
key. As presented later in this section, we prove message and key secrecy,
and sender authentication. We do not consider scenarios in which none
of these properties can be guaranteed by HPKE. However, we do consider
scenarios in which only some of the properties are preserved. In the model,
we use functions has_secrecy and has_auth to return a Boolean value that
specifies if we should attempt a proof of the corresponding property. In the
following we summarize the scenarios we consider, for each mode, and what
security properties we expect for them. They correspond to the scenarios
listed in Table 2.

Base. The only key involved is skR, thus there is no sender authentication.
Secrecy relies only on skR, which means we cannot allow its compromise.

13

PSK. The keys skR and psk are involved. Secrecy needs at least one
of them, so we do not allow compromise of both. We use two scenarios,
compromising one of the keys dynamically:

• skR (dyn): The psk guarantees both secrecy and sender authentica-
tion.

• psk (dyn): skR guarantees secrecy. Sender authentication is guaran-
teed for messages before the compromise.

Auth. The keys skS and skR are involved. Secrecy relies only on skR,
which means we cannot allow its compromise. We allow dynamic compro-
mise of skS . Sender authentication is guaranteed before the compromise.

AuthPSK. This mode has the keys skS , skR, and psk. We expect sender
authentication to hold if:

psk secure ∨ (skS secure ∧ skR secure)

The necessity of skR being secure for sender authentication is due to HPKE
being vulnerable to key-compromise impersonation. Sender authentication
is based on a Diffie-Hellman shared secret established between skS and skR.
If skR is compromised, the adversary can compute the shared secret using
pkS and skR – with no need to know skS . We expect secrecy to hold if:

psk secure ∨ skR secure

We cover all possible combinations by a set of three scenarios with dynamic
compromises and a set of three scenarios with static compromises. Either
of the sets cover all combinations on its own; the proofs in the dynamic
scenarios tend to be longer which is why we include the static scenarios
with shorter proofs. The dynamic scenarios are as follows:

• skS (dyn), skR (dyn): Two individual compromise oracles.
• skS and psk (dyn): One compromise oracle for both at the same

time. As skR is never compromised, secrecy always holds. Sender
authentication holds for messages received before the corruption.

• psk (dyn): One individual compromise oracle. Without the psk, the
mode is reduced to mode Auth without compromise.

The static scenarios are as follows:
• skS and skR (static)
• skS and psk (static)
• psk (static).

5.4. Public Key Validation
As mentioned in Section 4, we assume that the implementation validates
public keys before usage. This is reflected in the model by having the

14

honest participants receive values that already have the correct type; this
means participants receive already validated public keys (an element of the
prime-order group). Receiving a bitstring, validating it and continue only
if it represents a valid public key would be an equivalent modeling.

The point in infinity is not a valid public key. In CryptoVerif’s modeling
of a prime-order group, is is not part of the group, and nor is zero part of
the allowed scalars. Thus, the result of a scalar multiplication cannot be the
point in infinity, which matches our assumption that the implementation
validates the result and aborts in case the neutral element is obtained.

5.5. Cryptographic Properties
Secrecy. We model message secrecy of an HPKE message’s payload by a
left-or-right message indistinguishability game, and secrecy of the exported
secrets by real-or-random key indistinguishability. For message indistin-
guishability, the environment chooses a random bit b during setup. The ad-
versary provides two same-length plaintexts pt0 and pt1 to sender processes,
which chose ptb as payload for the HPKE ciphertext. The according secrecy
query for CryptoVerif is query secret b. For key indistinguishability, we
rely on CryptoVerif’s built-in support for real-or-random indistinguishability.
In the model, senders use the export interface to export two secrets. If the
session is clean, the secrets are assigned to variables export_1_secr and
export_2_secr, otherwise they are given to the adversary. The secrecy
query in CryptoVerif then is

query secret export_1_secr public_vars export_2_secr.
query secret export_2_secr public_vars export_1_secr.

This proves that one exported key is secret even if the other one is known
to the adversary, by using the public_vars declaration.
Authentication. For the modes Auth and AuthPSK, we prove sender

authentication by proving a correspondence property between two events
sent and rcvd, which are emitted just before the sender sends a message
and just after the recipient receives a message. We prove the following
correspondence:

event(rcvd(true,mode, pkR, pkS , pskID, info, aad, pt, kexp,1, kexp,2)
⇒event(sent(mode, pkR, pkS , pskID, info, aad, pt, kexp,1, kexp,2)

We only prove a non-injective correspondence, which means that we do not
prove that each rcvd event has a unique corresponding sent event. Instead,
a single sent event can satisfy the condition for arbitrary many matching
rcvd events. This is because HPKE does not provide protection against
replay.
The last two parameters are only used in the export variants of the

model and absent in the oneshot variants. The first parameter is true only

15

in scenarios where sender authentication is possible; in others we do not
attempt the proof.

6. Verification Results
Table 2 summarizes the results of our analysis. We conducted the analysis
with the hash function both modeled as random oracle and as collision resis-
tant hash function. We provide proofs for all scenarios, modes, and variants
and were able to confirm the expected secrecy and sender authentication
properties of HPKE. One exception are the proofs for the export variant in
mode AuthPSK for a collision-resistant hash functions, which we were not
able to complete by the time of this writing.

7. Discussion
We presented an analysis of HPKE with respect to the most important
security properties message secrecy, key secrecy, and authentication. We
analyze all four modes of HPKE including the interface for secret export.
The proofs we provide are currently only valid for a simplified model of
Diffie-Hellman that only covers prime-order groups. However, we prepared
the model for extension to more fine-grained models of Diffie-Hellman.
CryptoVerif ships with detailed models of Curve25519 and Curve448 which
we plan to use in a further analysis. Other limitations left for future work
are: creation of an HPKE ciphertext in an authenticated mode for the
sender’s own public key, e. g. to cover the use-case of local file encryption;
encryption of multiple plaintexts using the incremented nonces.

The model files of this analysis can be accessed at https://github.com/
blipp/hpke-analysis-material.

Acknowledgements
The author thanks Karthik Bhargavan, Christopher A. Wood, and Benjamin
Beurdouche for helpful discussions on HPKE. The author thanks Bruno
Blanchet for his advice with regards to CryptoVerif. The author thanks
Christopher A. Wood for his extensive contributions to Sections 1, 2, and
3, and editorial feedback on the entire paper. The author thanks Natalia
Kulatova and Benjamin Beurdouche for helpful discussions on elliptic curve
point validation. This research was partly funded by the European Union’s
ERC CIRCUS (grant agreement nº 683032), and ANR TECAP (decision
number ANR-17-CE39-0004-03).

16

https://github.com/blipp/hpke-analysis-material
https://github.com/blipp/hpke-analysis-material

Table 2: Cryptographic properties of HPKE modes in different corruption scenarios.

mode
corruption
scenario variant

message
secrecy

export key
secrecy

sender
auth.

time
(ROM)

time
(coll.)

base none oneshot X n. a. n. a. 3.1 s 2.5 s
export X X n. a. 4.5 s 3.5 s

psk skR (dyn) oneshot X n. a. X 9.9 s 7.3 s
export X X X 567.5 s 541.6 s

psk (dyn) oneshot X n. a. XU 28.4 s 20.3 s
export X X XU 60.9 s 47.6 s

auth skS (dyn) oneshot X n. a. XU 15.3 s 12.6 s
export X X XU 171.6 s 153.9 s

auth_psk skS , skR (dyn) oneshot X n. a. X 33.0 s 28.0 s
export X X X 4.6 s1 . . . 2

skS + psk (dyn) oneshot X n. a. XU 44.1 s 37.6 s
export X X XU 41.7 s . . . 2

psk (dyn) oneshot X n. a. X 36.1 s 31.8 s
export X X X 1182.5 s . . . 2

skS , skR (static) oneshot X n. a. X 33.6 s 26.9 s
export X X X 5.2 s1 . . . 2

skS , psk (static) oneshot X n. a. n. a. 13.8 s 9.1 s
export X X n. a. 18.9 s . . . 2

psk (static) oneshot X n. a. X 34.2 s 29.1 s
export X X X 1233.7 s . . . 2

Compromises: for dynamic (dyn) compromises separated by comma, the adversary can call the
oracles separately; when separated by +, the adversary has access to one oracle that compro-
mises both keys. For static compromises, the keys are compromised directly at the beginning of
execution.
For mode auth_psk, the three scenarios with dynamic compromises cover the same cases than
the three scenarios with static compromises.
X= proven, n. a.= not applicable either because not provided by the mode, or because trivially
broken in the scenario.
U = If the message is received before the adversary uses the corruption oracle available in this
scenario.
1 = It is remarkable that the proof for the export sub mode concludes faster than for the oneshot
mode.
2 = By the time of writing, we were not able to conclude these proofs.

17

References
[1] Bouncy Castle Cryptography Library. https://people.eecs.

berkeley.edu/~jonah/bc/org/bouncycastle/jce/provider/
JCEIESCipher.ECIES.html. Accessed: 2020-02-19.

[2] libsodium. https://libsodium.gitbook.io/doc/. Accessed: 2020-
02-19.

[3] SecKeyAlgorithm documentation. https://developer.apple.com/
documentation/security/seckeyalgorithm?language=objc. Ac-
cessed: 2020-02-19.

[4] Security architecture and procedures for 5G System.
[5] The Noise Protocol Framework. https://noiseprotocol.org/noise.

html#one-way-handshake-patterns. Accessed: 2020-02-19.
[6] A. B. Association et al. Ansi x9. 63 elliptic curve key agreement and

key transport protocols.[on-line], 1999.
[7] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-Gordon, and

R. Robert. The Messaging Layer Security (MLS) Protocol. Internet-
Draft draft-ietf-mls-protocol-08, Internet Engineering Task Force, Nov.
2019. Work in Progress.

[8] R. Barnes and K. Bhargavan. Hybrid Public Key Encryption. Internet-
Draft draft-irtf-cfrg-hpke-03, Internet Engineering Task Force, Nov.
2019. Work in Progress.

[9] M. Bellare and C. Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In
T. Okamoto, editor, Advances in Cryptology – ASIACRYPT’00, volume
1976 of LNCS, pages 531–545, Berlin, Heidelberg, Dec. 2000. Springer.

[10] D. J. Bernstein. The Poly1305-AES message-authentication code. In
FSE 2005, volume 3557 of LNCS, pages 32–49. Springer, 2005.

[11] D. J. Bernstein, T. Lange, and P. Schwabe. Nacl: Networking and cryp-
tography library. URL: http://nacl. cr. yp. to (visited on 06/26/2014),
2011.

[12] B. Blanchet. Computationally sound mechanized proofs of correspon-
dence assertions. In IEEE CSF’07, pages 97–111, July 2007. Extended
version available at http://eprint.iacr.org/2007/128.

[13] B. Blanchet. A computationally sound mechanized prover for security
protocols. IEEE Transactions on Dependable and Secure Computing,
5(4):193–207, Oct.–Dec. 2008.

[14] Y. Dodis, T. Ristenpart, J. Steinberger, and S. Tessaro. To hash or
not to hash again? (In)differentiability results for H2 and HMAC. In
CRYPTO 2012, volume 7417 of LNCS, pages 348–366. Springer, 2012.
Full version at https://eprint.iacr.org/2013/382.

18

https://people.eecs.berkeley.edu/~jonah/bc/org/bouncycastle/jce/provider/JCEIESCipher.ECIES.html
https://people.eecs.berkeley.edu/~jonah/bc/org/bouncycastle/jce/provider/JCEIESCipher.ECIES.html
https://people.eecs.berkeley.edu/~jonah/bc/org/bouncycastle/jce/provider/JCEIESCipher.ECIES.html
https://libsodium.gitbook.io/doc/
https://developer.apple.com/documentation/security/seckeyalgorithm?language=objc
https://developer.apple.com/documentation/security/seckeyalgorithm?language=objc
https://noiseprotocol.org/noise.html#one-way-handshake-patterns
https://noiseprotocol.org/noise.html#one-way-handshake-patterns
http://eprint.iacr.org/2007/128
https://eprint.iacr.org/2013/382

[15] S. for Efficient Cryptography Group. Elliptic Curve Cryptography.
2000.

[16] V. Gayoso Martínez, L. Hernández Encinas, and C. Sánchez Ávila. A
survey of the elliptic curve integrated encryption scheme. 2010.

[17] J. Jonsson and B. Kaliski. Public-key cryptography standards (pkcs)#
1: Rsa cryptography specifications version 2.1. Technical report, RFC
3447, February, 2003.

[18] S. Josefsson and I. Liusvaara. Edwards-Curve Digital Signature Algo-
rithm (EdDSA). RFC 8032, Jan. 2017.

[19] B. S. Kaliski. Ieee p1363: A standard for rsa, diffie-hellman, and elliptic-
curve cryptography (abstract). In Proceedings of the International
Workshop on Security Protocols, page 117–118, Berlin, Heidelberg, 1996.
Springer-Verlag.

[20] G. Leurent and T. Peyrin. Sha-1 is a shambles.
[21] B. Lipp, B. Blanchet, and K. Bhargavan. A mechanised cryptographic

proof of the WireGuard virtual private network protocol. In IEEE
European Symposium on Security and Privacy (EuroS&P’19), pages
231–246, Stockholm, Sweden, June 2019. IEEE Computer Society.

[22] D. A. McGrew and J. Viega. The security and performance of the
Galois/Counter Mode (GCM) of operation. In A. Canteaut and
K. Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004,
volume 3348 of LNCS, pages 343–355, Berlin, Heidelberg, Dec. 2004.
Springer.

[23] Nir, Yoav and Langley, Adam. ChaCha20 and Poly1305 for IETF
Protocols, June 2018. IETF RFC 8439.

[24] T. Okamoto and D. Pointcheval. The gap-problems: a new class of
problems for the security of cryptographic schemes. In PKC 2001,
volume 1992 of LNCS, pages 104–118. Springer, Feb. 2001.

[25] G. Procter. A security analysis of the composition of ChaCha20
and Poly1305. Cryptology ePrint Archive, Report 2014/613, 2014.
https://eprint.iacr.org/2014/613.

[26] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, Aug. 2018.

[27] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood. Encrypted Server
Name Indication for TLS 1.3. Internet-Draft draft-ietf-tls-esni-05,
Internet Engineering Task Force, Nov. 2019. Work in Progress.

[28] P. Rogaway. Authenticated-encryption with associated-data. In Ninth
ACM Conference on Computer and Communications Security (CCS-9),
pages 98–107, New York, NY, Nov. 2002. ACM Press.

[29] V. Shoup. A proposal for an iso standard for public key encryption
(version 2.1). IACR e-Print Archive, 112, 2001.

19

https://eprint.iacr.org/2014/613

[30] V. Shoup. Iso/iec 18033-2: 2006: Information technology–security
techniques–encryption algorithms–part 2: Asymmetric ciphers. Inter-
national Organization for Standardization, Geneva, Switzerland, 44,
2006.

[31] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov.
The first collision for full sha-1. In Annual International Cryptology
Conference, pages 570–596. Springer, 2017.

20

A. Figures for remaining modes

Sender S Receiver R

knows
pkR

knows
skRenc, ct

– – – – – – – – – – – Encap – – – – –

(skE , pkE)←$ KeyGen()
zz ← DH(skE , pkR)

enc ← Marshal(pkE)
– – – – – – – – – – – KeySchedule – –

s← Extract(psk, zz)
k ← Expand(s, “hpke key”||ctx, Nk)
n← Expand(s, “hpke nonce”||ctx, Nn)

sexp ← Expand(s, “hpke exp”||ctx, Nh)
– – – – – – – – – – – Seal – – – – –

ct ← Seal(k, n⊕ 0, aad, pt)
– – – – – – – – – – – Export – – – –

kexp,1 ← Expand(sexp, “exp key”||ctx, L)

Figure 2a Figure 2b

Figure 2: (a) An overview of HPKE’s protocol flow in mode Base; (b) the cryptographic
computations used to create these messages on the sender’s side; they need
to be adapted accordingly for the receiving side. The computations are split
up into parts like in the specification. For a detailed description of ctx and
other variables, please see Section 3. In mode base, psk is zero.

21

Sender S Receiver R

knows
pkR, psk

knows
skR, pskenc, ct

– – – – – – – – – – – Encap – – – – –

(skE , pkE)←$ KeyGen()
zz ← DH(skE , pkR)

enc ← Marshal(pkE)
– – – – – – – – – – – KeySchedule – –

s← Extract(psk, zz)
k ← Expand(s, “hpke key”||ctx, Nk)
n← Expand(s, “hpke nonce”||ctx, Nn)

sexp ← Expand(s, “hpke exp”||ctx, Nh)
– – – – – – – – – – – Seal – – – – –

ct ← Seal(k, n⊕ 0, aad, pt)
– – – – – – – – – – – Export – – – –

kexp,1 ← Expand(sexp, “exp key”||ctx, L)

Figure 3a Figure 3b

Figure 3: (a) An overview of HPKE’s protocol flow in mode PSK; (b) the cryptographic
computations used to create these messages on the sender’s side; they need
to be adapted accordingly for the receiving side. The computations are split
up into parts like in the specification. For a detailed description of ctx and
other variables, please see Section 3.

22

Sender S Receiver R

knows
skS , pkR

knows
skR, pkSenc, ct

– – – – – – – – – – – Encap – – – – –

(skE , pkE)←$ KeyGen()
zz ← DH(skE , pkR)||DH(skS , pkR)

enc ← Marshal(pkE)
– – – – – – – – – – – KeySchedule – –

s← Extract(psk, zz)
k ← Expand(s, “hpke key”||ctx, Nk)
n← Expand(s, “hpke nonce”||ctx, Nn)

sexp ← Expand(s, “hpke exp”||ctx, Nh)
– – – – – – – – – – – Seal – – – – –

ct ← Seal(k, n⊕ 0, aad, pt)
– – – – – – – – – – – Export – – – –

kexp,1 ← Expand(sexp, “exp key”||ctx, L)

Figure 4a Figure 4b

Figure 4: (a) An overview of HPKE’s protocol flow in mode Auth; (b) the cryptographic
computations used to create these messages on the sender’s side; they need
to be adapted accordingly for the receiving side. The computations are split
up into parts like in the specification. For a detailed description of ctx and
other variables, please see Section 3. In mode Auth, psk is zero.

23

	Introduction
	Background and Motivation
	Hybrid Public Key Encryption
	Cryptographic Assumptions
	Modeling HPKE
	Verification Results
	Discussion
	Figures for remaining modes

