N
N

N

HAL

open science

Novelty detection on graph structured data to detect
network intrusions

Laetitia Leichtnam, Eric Totel, Nicolas Prigent, Ludovic Mé

» To cite this version:

Laetitia Leichtnam, Eric Totel, Nicolas Prigent, Ludovic Mé. Novelty detection on graph structured
data to detect network intrusions. CAID 2020 - Conference on Artificial Intelligence for Defense, Dec

2020, Virtual, France. hal-03115308

HAL Id: hal-03115308
https://inria.hal.science/hal-03115308
Submitted on 15 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03115308
https://hal.archives-ouvertes.fr

Novelty detection on graph structured data to
detect network intrusions

Laetitia Leichtnam', Eric Totel?, Nicolas Prigent?, and Ludovic Mé?

! Centrale Supélec, Univ. Rennes, IRISA, France
laetitia.leichtnam@centralesupelec.fr
2 IMT Atlantique, IRISA, Rennes, France eric.totel@imt-atlantique.fr
3 LSTI, St-Malo, France neeko@neekotech.fr
4 INRIA, Univ. Rennes, IRISA, France ludovic.me@inria.fr

Abstract. It is difficult to detect new types of attacks in heterogeneous
and scalable networks in time without generating too many false alarms.
While supervised anomaly detection techniques are often used to that
end, security experts generally do not have labeled datasets. That’s why
unsupervised learning, that does not require labeled data, should be pre-
ferred.

With sec2graph [4], we introduced a representation of security events
in the form of a graph linking what we defined as security objects and
proposed a method for anomaly detection based on auto-encoders. This
representation allows a rich description of the events that are analyzed.
In this paper, we apply our approach to the CICIDS2018 dataset and
show that our method outperforms classical event modeling and anomaly
detection approaches.

Keywords: Network Intrusion Detection System - Knowledge graph -
Autoencoder

1 Introduction

Security Operational Centers (SOC) ensure the collection, correlation, and anal-
ysis of security events on the perimeter of the organization they defend. A SOC
must detect and analyze internal and external attacks. This mission is hard
because security analysts must supervise numerous highly-distributed and het-
erogeneous systems that use multiple communications protocols.

To process this very heterogeneous data, data model based on knowledge
graphs, that allow semantic linking of diverse information have been proposed
for example in STIX model [6]. A model built on a knowledge graph can in-
deed contain different types of valuable information while allowing automatic
processing of the data.

Graphs structures need however one preprocessing step, the features encod-
ing, before being process automatically [3], [5]. These techniques consist in trans-
forming property graphs to a vector or a set of vectors that can be handled by
machine learning algorithms.

2 L. Leichtnam et al.

To detect network attacks, anomaly detection techniques have been proposed.
These techniques are often built on supervised learning, that requires labeled
data during the learning phase. However, security experts often do not have such
labeled data sets from their own event logs and data labeling is expensive [1].
As an alternative, an unsupervised anomaly detection technique called ”novelty
detection”, based on auto-encoding can be used. This technique is generally
used when the amount of abnormal data available is insufficient to build explicit
models for non-normal classes [8].

In this paper, we first present the model sec2graph, a unified graph repre-
sentation for heterogeneous network logs. It integrates into a single graph het-
erogeneous information found in the events and thus allows the construction of
a rich vision of the normal situation. We then present a process to efficiently en-
code this unified graph so that an auto-encoder can learn the normal situation
and then detect abnormal activities with two different strategies. We finally use
CICIDS2018 dataset [9] to evaluate the ability of the learned model to detect
anomalies.

Our contributions are, therefore:

— The definition of two different strategies of detection based on the sec2graph’s
novelty detector that overpass previous results
— Experimental results on the CICIDS2018 dataset showing that our approach
brings a significant improvement over deep anomaly detection algorithms.
In particular, this paper presents a features encoding method that is easier and
computationally more efficient than the one presented in our previous paper [4].
It also presents a new anomaly computation strategy allowing to significantly
increase the attack detection score.

This paper is organized as follows: our global approach, named sec2graph, is
presented in Section 2. This section synthesizes the approach described in [4] and
presents a detection strategy based on the auto-encoders. Anomaly detection re-
sults and comparative analysis with other methods on the CICIDIS2018 dataset
are discussed in Section 3. Finally, conclusions are presented in Section 4.

2 The sec2graph approach

Network event logs are used as an input for the whole sec2graph process. Sec-
tion 2.1 explains how we build a graph of security objects from network events;
Section 2.2 explains how we encode this graph into vectors able to be handled
by an auto-encoder; Section 2.3 explains how anomalies can be detected by the
auto-encoder.

2.1 Building Security Object Graphs from Network Events

A log file can be described as a sequence of events resulting from the observation
of activity in the network. Each event is made of several fields and some of these
fields are particularly relevant to identify links between events. For each type
of event, we identify the most relevant fields and create one or several Security

Novelty detection on graph structured data to detect network intrusions 3

Objects (SOs). A SO is a set of attributes, each attribute corresponding to a
particular event field.

For example, a network connection event leads to four SOs: a source IP
Address SO, a destination IP Address SO, a Destination Port SO and finally,
the NetworkConnection SO itself that regroups attributes corresponding to the
fields we identified as less important to create relations between events. For each
type of event, we designed a translation into a set of linked SOs. Thus, each
event is represented by a subgraph. For example, the SOs and the links created
from logs extracted from the Zeek IDS tool [7] conn.log log files are illustrated
in Figure 1.

conn.log [ts uid id.orig-h id.orig-p id.resp_h id.resp_p proto service duration orig-bytes resp_bytes
conn_state local-orig local_resp missed_bytes history orig-pkts orig-ip-bytes resp_pkts
resp_ip_bytes tunnel_parents

IPAddress Port

address_value port_value

has address,
has__‘i:i}\wdress has/é't_port

NetworkConnection

uid

sre_port
proto

Fig. 1. Building a graph from one log event of the conn.log file

To build the complete graph, we take as an input the network events coming
from various log files. From each event, and according to its type, we extract
the SOs and the links between them as described before. We then take each
SO of the sub-graph. If this SO already exists in the global graph (for instance,
the same IPAddress was already identified in a previous event), we replace the
SO in the new sub-graph with the SO that already exists in the global graph.
Therefore, if an event contains an SO that was already found in a previous event,
the old sub-graph will be linked to the new sub-graph through this SO.

The graph model in Figure 2 shows the different types of SOs (nodes of the
graphs) and their semantic links (edges of the graphs). For clarity reason, we
have not represented the attributes of the SOs on this figure. Our model is suited
to the pieces of information that are representative of network events. It can also
evolve easily according to the needs of the analysts. More details on the building
of the SO graph can be found in [4].

2.2 Encoding the graph for machine learning

The second step of sec2graph transforms the graph we computed in a structure
that can be processed efficiently by a machine learning algorithm. In our case,
the encoding method must encode both the structure of the graph (i.e., the links
between the SOs) and the specific information associated with both the nodes
(SOs) and the edges (links). Moreover, the result of the encoding should be of

4 L. Leichtnam et al.

has_ssl perver

I Destination Port l [SSL I

X _originating ip -
d & has_dst_addréss, _kerberos Syslog
— Domain dns_query ns answefs s,
—8ysiog

NetworkConnection
s is ssh
\;a,w‘
Mail
mail from, from| to, reply to, rcpt to

is, snmp
DCERPC
ss|_gert] chain_fuid, isNtp
ssl_clieht_gert_chain_fuid SNMP
g FTP

FileTransfer

is_file_transfer

transfer file

— SMTP

smtp_file

X509

Fig. 2. Complete Security Objects and Relations Model Representation

reasonable size while it should contain enough information to detect anomalies.
First attempts with the graph representation learning technique node2vec [?]
required too many computational resources to be applied on graphs containing
millions of nodes and edges. Moreover, the combination of node2vec with an
anomaly detection algorithm made the interpretation of the results difficult.
Since there does not exist a single best method to encode our graph, we had to
design one that was tailored to our specific case.

A given SO can be linked to several events, normal or abnormal. An edge, on
the other hand, is only related to the event that led to its construction. Therefore,
an anomaly is not carried by the node (an IP address or a port are not abnormal
per se) but by the edges that link the SOs together. Consequently, we have chosen
to encode our graph by encoding each of its edges. Our representation takes into
account the structure of the graph, information contained in SO’s attributes, and
the type of the edges. To this end, we encode an edge as a vector resulting from
the concatenation of information on (a) the type of this edge, (b) the attributes
of its source node, (c¢) the attributes of its destination node.

To encode the edge type and the attributes of the nodes, we use common
machine learning techniques to transform numerical and categorical data such
as the number of packets transferred or the protocol that was used (tcp, udp,
or icmp) into a binary vector. The basic principle consists in determining a
function which associates a category for each value of each attribute, regardless
of the type considered. Then, the category is encoded in a binary vector by using
the one-hot-encoding techniques. The result of this process is a fixed-dimension
binary vector encoding an edge that can now be processed by an auto-encoder.

Novelty detection on graph structured data to detect network intrusions 5

2.3 Novelty Detection with an Auto-encoder

An auto-encoder learns a representation (encoding) of a set of pieces of data,
typically for dimensional reduction. To do so, it learns a function that sets the
outputs of the network to be equal to its inputs. It is made of two parts :
an encoder and a decoder. The encoder compresses the input data into a low-
dimensional representation, and the decoder generates a representation that is
as close as possible to its original input from the reduced encoding.

Anomaly detection methods based on auto-encoders use it to first learn the
“normal” behavior by using a dataset with benign data. Then, it is assumed
that attacks will generate “abnormal” observations that the auto-encoder has
never seen. Therefore, it will not be able to reconstruct the data identically. As
a consequence, by computing the difference between the input and the output,
we can determine an error, called reconstruction error. If this error is above a
determined threshold, an analyst is then able to detect anomalies in a dataset.

While classical approaches seek to identify anomalies linked to events, our
approach seeks to identify anomalies related to the links between objects. To refer
to the case of anomalies on events, we have considered two strategies called maz
and mean. The first one consists in considering as abnormal any event containing
at least one link exceeding a detection threshold (max strategy). The second
(mean strategy) consists in computing the mean of the reconstruction errors
of all the links associated with an event. If this average exceeds our detection
threshold, the event is considered abnormal. In other words, the first strategy
supposes that the anomaly is carried by one link (one strong local anomaly),
whereas the second strategy assumes that the anomaly is carried by all the links
of the same event (the sum of several weak anomalies).

3 Implementation and experimental results

This section details our implementation choices and a comparison of the sec2graph
approach with other approaches based on anomaly detection.

3.1 Configuration

We choose to use the CICIDS2018 dataset that is made of ten pcap encompassing
millions of events. This dataset was generated at the Canadian Cybersecurity
Institute and contains ten days of mixed traffic, benign and attacks such as DoS,
DDoS, BruteForce, XSS, SQL injection, infiltration, and botnet activities. The
CICIDS2018 dataset is the most recent one that models a complete network
configuration with a wide variety of components. The data set is also labeled,
allowing us to quantify the effectiveness of our method. To generate log files from
the capture files, we used the Zeek IDS tool [7] (formerly Bro) that can generate
network and application logs such as connections, http communications, or file
transfers.

In addition to the number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), we evaluate our results using the

6 L. Leichtnam et al.

following standard measures: Precision, Detection Rate also known as Recall
(DR), True Negative Rate (TNR) and False Positive Rate (FPR). Precision
gives the ratio of true abnormal events over events reported as abnormal. DR
gives the proportion of events correctly detected as abnormal out of all truly
abnormal events. TNR is the proportion of normal events correctly classified
among all normal events and FPR the proportion of normal events incorrectly
classified among all normal events. Formally, these criteria can be defined as
follows:

TP TP TN FP

Precision = ————— DR= ——+ . TNR= ——~ . FPR= ——~" __
recision = pp PR = pp N TNE= pp oy PPR = 5p N

3.2 Defining an optimal threshold for detection

In this section, we present the experiments conducted to determine the threshold value
to be used for the anomaly score. The analyst sets this threshold value according to
his or her supervisory context, lowering the threshold value if it is more important for
the analyst not to miss any attacks than to have to eliminate a large number of false
positives.

We determine the value of the threshold as follows: first, we consider all the events
on the first day of the CICIDS2018 dataset in time windows where there is no attack.
With this data, we determine the rate of false positives according to the detection
threshold. We obviously want the lowest possible false-positive rate.

The curves in Figure 3 shows the evolution of the FPR as a function of the detection
threshold for the strategies maz (left) and mean (right). We computed the FPR on a
sample of benign data composed of the 12 first attack-free hour-timeslot. A threshold
of 0.0018 gives us an FPR of 0,46% for the max strategy while a threshold of 0.001
gives us an FPR of 0,25% for the mean strategy. For both strategies, we see in the
figure that the FPR does not decrease significantly when we increase the detection
threshold above 0.0018 for the maz strategy and above 0.001 for the mean strategy. In
addition, increasing the detection threshold too much can induce a high false-negative
rate.

0,08 0,03
0,07
0,06
005
0,04
003
0,02
001

0
@NQ S & @@ Q"& @QQ Q.Q& & @\:‘/ e@?
; ¥ (SRR

0

SRR R)

S PP
SN &S $
FEF &S & &

SIFSROnY
[SEENEEN

Fig. 3. False Positive Rate (FPR) according to the value of the detection threshold for

maz strategy (left) and mean strategy (right) computed on a sample of benign data.

We conclude that a threshold higher than 0.0018 for the maz strategy and a thresh-
old higher than 0.001 for the mean strategy should be retained.

Novelty detection on graph structured data to detect network intrusions 7

3.3 Comparison with other anomaly detection algorithms on the
same dataset

To compare our results with the state of the art, we took the results of a study on
intrusion detection using deep learning methods [2] that uses the same data set as we
do, the CICIDS2018 data set.

Ferrag et al. [2] compares the results of seven supervised and unsupervised classical
deep learning algorithms applied to this dataset: Deep Neural Network (DNN), Recur-
rent Neural Network (RNN), and Convolutional Neural Network (CNN), that are all
supervised algorithms as well as Restricted Boltzmann Machine (RBM), Deep Belief
Network (DBN), Deep Boltzmann Machine (DBM) and Auto-Encoder (AE) that are
unsupervised.

The table 1 provides a comparison of the results obtained by Ferrag on the CI-
CIDS2018 dataset with those of sec2graph using the previously determined optimal
value for the detection limit for the two strategies maz and mean. To compute the de-
tection rate, we first train and validate our model on a sample of benign data composed
of the 12 first attack-free hour-timeslot. We use a split ratio of 0.1 between the train
and validation set. The TNR was computed on the whole dataset and the detection
rate for each attack was computed on timeslot containing the attacks.

Table 1. Comparison of True Negative Rate (TNR) and Detection Rate (DR) for each
type of attack and for different methods (in %).

DNN | RNN | CNN | RBM | DBN | DBM | DA |[sec2graph|sec2graph
(maz) [4]| (mean)
TNR (BENIGN) 96.915[98.112(98.914(97.316]98.212(96.215|98.101| 99.538 99.743
DR SSH-Bruteforce 100 100 100 100 100 100 100 100 100
DR FTP-BruteForce 100 100 100 100 100 100 100 0.03 100
DR Brute Force-XSS 83.265(92.182(92.101(83.164|92.281(92.103(95.223| 99.573 100
DR Brute Force-Web 82.223(91.322(91.002(82.221|91.427|91.254|95.311 100 100
DR SQL Injection 100 100 100 100 100 100 100 100 100
DR DoS-Hulk 93.333(94.912|94.012{91.323|91.712|93.072(92.112 100 100
DR DoS-SlowHTTPTest|94.513(96.123|96.023]93.313|95.273|95.993|94.191 0 100
DR DoS-Slowloris 98.140(98.220(98.120{97.040(97.010|97.112{97.120 100 100
DR DoS-GoldenEye 92.110(98.330(98.221{92.010|97.130(97.421|96.222 100 100
DR DDOS-HOIC 98.640(98.711|98.923|97.541|97.211|97.121|96.551| 99.997 100
DR DDOS-LOIC-UDP |97.348(97.118|97.888(96.148|96.122|96.654|96.445| 86.932 100
DR DDOS-LOIC-HTTP|97.222(98.122|98.991(96.178|97.612(|97.121{97.102 100 100
DR Botnet 96.420(98.101|98.982196.188|97.221|97.812(97.717 100 100
DR Infiltration 97.518|97.874|97.762|96.411|96.712|96.168|97.818| 2.815 100

The values in this table show that the sec2graph approach is superior to the other
approaches in terms of FPR, regardless of the strategy chosen. The sec2graph approach
with the medium strategy offers a 100% detection rate for all types of attacks while
having a false positive rate of only 0.25%.

However, we note that the maz approach first proposed in [4] gives poor results
for the detection of FTP-Bruteforce, DoS-Slow-HTTPTest, and Infiltration attacks. It
gives an average score for the DDOS-LOIC-UDP attack but also high scores for all
other attacks where the detection rate surpasses one of the other learning machine
algorithms.

Mean strategy is more able at highlighting small novelties on several links, novelties
which together constitute an anomaly than maz strategy. FTP-Bruteforce, DoS-Slow-
HTTPTest, and Infiltration attacks present weak anomalies on most of the links and

8 L. Leichtnam et al.

do not present big reconstruction errors. The maz strategy could outperform the mean
strategy only if a link with a low anomaly score compensates for the anomaly of a link
with a high score. This case was not encountered in this dataset.

4 Conclusion

We proposed in this paper a graph representation of security events that underlines
the relationship between them. We also proposed an unsupervised technique built on
an auto-encoder to efficiently detect anomalies on this graph representation with two
different strategies to compute the anomaly score. This approach can be applied to any
data set without prior data labeling. Using the CICIDS2018 dataset, we showed that
the use of graph structures to represent security data coupled with an auto-encoder
gives results that are better than common deep anomaly detection methods (supervised
and unsupervised).

To further improve our detection results, we plan to use another kind of auto-
encoder (LSTM auto-encoder) to take temporal links between events into account
to complement to logical links that we already take into account. Another area for
improvement is related to the usability and interpretability of results by a security
analyst. Here, the idea is to present to the analyst a graphical view of the detected
anomalies, based on the SOs graphs that we have defined. We believe that this would
help the analyst eliminating false positives or reconstructing global attack scenarios.

References

1. Anagnostopoulos, C.: Weakly supervised learning: How to engineer labels for ma-
chine learning in cyber-security. Data Science for Cyber-Security (2018)

2. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.: Deep learning for cyber
security intrusion detection: Approaches, datasets, and comparative study. Journal
of Information Security and Applications 50, 102419 (2020)

3. Grover, A.| Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discov-
ery and data mining. pp. 855-864 (2016)

4. Leichtnam, L., Totel, E., Prigent, N., Mé, L.: Sec2graph: Network attack detection
based on novelty detection on graph structured data. In: International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. pp. 238-258.
Springer (2020)

5. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y.: graph2vec:
Learning distributed representations of graphs. In: International Workshop on Min-
ing and Learning with Graphs (2017)

6. OASIS: Stixv2.0, freetaxii.github.io

7. Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer
networks (1999)

8. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty de-
tection. Signal Processing (2014)

9. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: ICISSP (2018)

