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Abstract. Quantiles and expectiles can be interpreted as solutions of convex minimization

problems. Unlike quantiles, expectiles are determined by tail expectations rather than tail prob-

abilities, and define a coherent risk measure. For these reasons, among others, they have recently

been the subject of renewed attention in actuarial and financial risk management. Here, we focus

on the challenging problem of estimating extreme expectiles, whose order converges to one as the

sample size increases, given a functional covariate. We construct a functional kernel estimator of

extreme conditional expectiles by writing expectiles as quantiles of a different distribution. The

asymptotic properties of the estimators are studied in the context of conditional heavy-tailed

distributions. We also provide and analyse different ways of estimating the functional tail index,

as a way to extrapolate our estimates to the very far conditional tails. A numerical illustration

of the finite-sample performance of our estimators is provided on simulated and real datasets.

Keywords. Conditional tail index, expectiles, extrapolation, extremes, functional kernel

estimator, heavy tails, nonparametric estimation.

1 Introduction

The quantile, or Value-at-Risk in the actuarial and financial literature, is arguably the most

widespread tool in risk management. This is largely due to the simplicity and interpretability

of the quantile: if Y is a random variable with cumulative distribution function F , the quantile

of level α ∈ (0, 1) of Y is given by the generalized inverse qα(Y ) = inf{y ∈ R|F (y) ≥ α}, and

when F is continuous and (strictly) increasing, qα(Y ) is the unique solution q of the equation

F (q) = P(Y ≤ q) = α. An estimation of high quantiles, for α close to 1, is then a reasonable way

to get an understanding of extreme risk, routinely used when considering large claim amounts

in insurance, financial losses, or extreme wave heights during storms in environmental science,

for example. However, in the context of financial and actuarial risk management, it has been

repeatedly emphasized that the quantile has important shortcomings. One of them is that

the quantile does not induce a coherent risk measure in the sense of Artzner et al. (1999), in

particular because it does not fulfill the subadditivity property (see Acerbi (2002)). Another

major drawback is the reliance of quantiles on the frequency of tail events and not on their

actual magnitudes; this is of course an issue in risk management, where it is important to find

not only what constitutes an extreme level of loss but also what a typical extreme loss will be.
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These pitfalls motivated part of the risk management community to propose alternative risk

measures. One of them is induced by expectiles, introduced in Newey and Powell (1987) and

defined by the following minimization problem:

eα(Y ) = arg min
t∈R

E [ηα(Y − t)− ηα(Y )] ,

where ηα(y) = |α − 1{y≤0}|y2 is the so-called expectile loss function and 1{.} is the indicator

function. Expectiles can be seen as L2−analogues of quantiles, in the sense that (see Koenker

and Bassett (1978)):

qα(Y ) ∈ arg min
t∈R

E [ρα(Y − t)− ρα(Y )] ,

where ρα(y) = |α − 1{y≤0}||y| is called quantile loss function. Both quantiles and expec-

tiles are part of the wider family of Lp−quantiles (introduced in Chen (1996)), a subfamily

of M−quantiles (introduced in Breckling and Chambers (1988)). Unlike quantiles, expectiles

are determined by tail expectations rather than tail probabilities, and their calculation is thus

driven both by the probability of tail values and their actual realizations (see Kuan et al., 2009).

Moreover, as shown in Bellini et al. (2014), expectiles with α ≥ 1/2 are the only M−quantiles

to fulfill the coherence property. In fact, such expectiles define the only coherent law-invariant

risk measure that is elicitable (see Ziegel, 2016), meaning that they benefit from the existence

of a natural backtesting methodology (see Gneiting, 2011). The interest for expectiles is there-

fore growing in the financial and actuarial risk management literature (see, for instance, Taylor

(2008) and Cai and Weng (2016)). In particular, the problem of extreme expectile estimation for

heavy-tailed random variables has recently been considered in Daouia et al. (2018) and Daouia

et al. (2020). A substantial difficulty when working with expectiles is that they do not benefit

from closed form expressions, making their analysis significantly harder than that of quantiles.

In many applications, the random variable Y is recorded along with auxiliary information rep-

resented by a random covariate X. The difficulty of working with extreme expectiles is then

compounded by the necessity of integrating this auxiliary information into the estimation. When

X ∈ Rp is a vector, the problem of estimating such extreme conditional expectiles has been

considered in Girard et al. (2021) from a nonparametric perspective, by writing expectiles as

quantiles of a different distribution and using kernel estimation of distribution functions. The

basic idea behind this procedure dates back to Jones (1994). This followed a series of earlier

papers by Daouia et al. (2018, 2019, 2020) on the estimation of extreme unconditional expectiles

using their interpretation as convex minimizers. To the best of our knowledge, when X belongs

to a more general, potentially infinite-dimensional, functional space, the problem of estimating

extreme conditional expectiles has not yet been considered. This functional setup is precisely

the focus of this paper, in which we deal with the case when Y given X has a heavy right tail.

The heavy-tailed assumption, which is ubiquitous in actuarial and financial risk management

(see e.g. the discussions on p.9 of Embrechts et al. (1997) and p.1 of Resnick (2007)), makes it

possible to estimate extreme conditional quantiles and expectiles using a well-known extrapo-

lation argument of Weissman (1978), via the estimation of the so-called tail index: conditional

expectiles are first estimated at an intermediate level (that is, increasing with sample size, but
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not too high), and these estimates are then extrapolated using the shape of the conditional

heavy-tailed distribution to obtain estimators of properly extreme conditional expectiles.

Our paper is organized as follows. Section 2 introduces our notation, assumptions, and the

general idea behind our approach, in which we adapt the two-step, extreme conditional quantile

estimation methodology of Gardes and Girard (2012) to the estimation of extreme functional

expectiles. Section 3 gives the asymptotic properties of our estimator of the so-called interme-

diate functional expectiles, which are the basic building blocks of our estimators of properly

extreme functional expectiles considered in Section 4. In the latter section, we will explain that

the estimation of the functional tail index of Y given X is crucial, and in Section 5 we suggest

and study a handful of estimators of this quantity. Section 6 proposes a simulation study to

give an overview of the performance of our procedure. Section 7 concludes by showcasing our

technique on a real financial data example. All proofs are relegated to the Appendix.

2 Notation and assumptions

Let (Xi, Yi), i = 1, . . . , n be independent copies of a random pair (X, Y ) in E×R, where E is a

functional space endowed with a semi-metric d. We assume that the probability distribution of

X is non-atomic, and that the topology of E makes it possible to define the family of conditional

distributions of Y given X = x. For all x ∈ E, the conditional survival function (c.s.f.) of Y

given X = x is denoted by F (y|x) = P (Y > y|X = x). Discussing the existence of regular

versions of F (·|·) is beyond the scope of this paper; it is guaranteed when (E, d) is a Polish

space, see Theorem 1 and its discussion in Chang and Pollard (1997). When d is a semi-metric

defined exclusively on low-frequency components of a truncated basis expansion (for example

when E = L2[0, 1]), the relevant conditional distributions will be defined with respect to the

quotient space of E by the equivalence relation considering that two elements are different if

and only if one pair of their low-frequency components are different. This quotient space is

then essentially a finite-dimensional linear space on which conditional distributions indeed exist,

the price to pay being of course that the conditional distributions only identify lower-frequency

components.

In this context, Gardes and Girard (2012) address the estimation of the conditional quantiles of

Y given X = x, defined by q(α|x) = inf
{
y ∈ R |F (y|x) ≤ 1− α

}
, when the quantile level α is

extreme, i.e. α = αn → 1 as n → ∞. We briefly describe here their two-step approach. First,

the c.s.f. is estimated thanks to a functional kernel estimator, also considered for instance in

Ferraty et al. (2006) and Ferraty et al. (2007):

F̂n(y|x) =
1

n

n∑
i=1

K

(
d (x,Xi)

hn

)
1{Yi>y}

/
µ̂

(1)
K (x, hn) , (2.1)

where (hn) is a positive bandwidth sequence such that hn → 0 as n → ∞, K : [0,∞) → [0,∞)

is a kernel function (namely, positive and measurable), and for all b ≥ 0,

µ̂
(b)
K (x, hn) =

1

n

n∑
i=1

Kb

(
d (x,Xi)

hn

)

3



is the empirical counterpart of the quantity µ
(b)
K (x, hn) := E

[
Kb (d(x,X)/hn)

]
. We high-

light that the particular case of the uniform kernel K(t) = 1{0≤t≤1} leads to µ
(b)
K (x, hn) =

P (X ∈ B(x, hn)) =: π(x, hn), the so-called small ball probability of X, see Ferraty et al. (2007)

for a discussion on this topic. More generally, we assume that

(K)K is a function with support [0, 1] and there exist 0 < c1 < c2 <∞ such that c1 ≤ K(t) ≤ c2

for all t ∈ [0, 1].

One may also suppose without loss of generality that K integrates to one. In this case, K is

called a type I kernel, see Definition 4.1 in Ferraty and Vieu (2006).

Second, the functional estimator of conditional quantiles q(α|x) is defined via the generalized

inverse of (2.1):

q̂n(α|x) = inf
{
y ∈ R | F̂n(y|x) ≤ 1− α

}
. (2.2)

In the situation where α ∈ (0, 1) is fixed, weak and strong consistency are proved respectively in

Stone (1977) and Gannoun (1990) while asymptotic normality is shown in Stute (1986), Samanta

(1989) and Berlinet et al. (2001) when E is finite-dimensional and by Ferraty et al. (2005)

for a general metric space under dependence assumptions. In Gardes and Girard (2012), the

asymptotic distribution of the estimator (2.2) is investigated when estimating extreme quantiles,

i.e. when α = αn → 1 as n→∞.

In this paper, we propose a similar approach for functional expectile regression. For that purpose,

let us recall that, from Jones (1994), the expectile e(α|x) of level α of Y |X = x may be seen as

the quantile of level α associated to the c.s.f. E(y|x) defined by:

E(y|x) =
E
[
(Y − y)1{Y >y} |X = x

]
E [|Y − y| |X = x]

.

Introducing, for a nonnegative integer k and provided the expectations exist,

ψ(k)(y|x) = E
[
(Y − y)k 1{Y >y} |X = x

]
and m(k)(y|x) = E

[
(Y − y)k |X = x

]
, (2.3)

it thus follows that e(α|x) = inf{y ∈ R |E(y|x) ≤ 1− α}, with

E(y|x) =
ψ(1)(y|x)

2ψ(1)(y|x)−m(1)(y|x)
. (2.4)

In view of (2.3), we decide to build our estimator upon the following two random quantities:

ψ̂(k)
n (y|x) =

1

n

n∑
i=1

(Yi − y)kK

(
d (x,Xi)

hn

)
1{Yi>y}

/
µ̂

(1)
K (x, hn) ,

m̂(k)
n (y|x) =

1

n

n∑
i=1

(Yi − y)k K

(
d (x,Xi)

hn

)/
µ̂

(1)
K (x, hn).

The quantities ψ̂
(k)
n (y|x) and m̂

(k)
n (y|x) are (under technical conditions) consistent estimators of

ψ(k)(y|x) and m(k)(y|x), respectively. The c.s.f. E(·|x) defined in (2.4) is then estimated by:

Ên(y|x) =
ψ̂

(1)
n (y|x)

2ψ̂
(1)
n (y|x)− m̂(1)

n (y|x)
. (2.5)
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We refer to Girard et al. (2021) for a similar approach in the case where the covariate X is

finite-dimensional.

In the following section and below, our aim is to estimate e(α|x) when the expectile level is

extreme, i.e. α = αn → 1 as n→∞. We introduce several modelling and regularity assumptions

in this respect. We first assume that Y |X = x has a heavy-tailed distribution, namely, there

exists γ(x) > 0 such that the c.s.f. is regularly varying at infinity with index −1/γ(x):

∀y > 0, lim
t→∞

F (ty|x)

F (t|x)
= y−1/γ(x). (2.6)

We refer to Bingham et al. (1989) for a general account on regular variation. In our context,

γ(x) is referred to as the functional tail index since it tunes the tail heaviness of the conditional

distribution of Y given X = x. More precisely, the heavy tail condition (2.6) is refined in the

following way:

C1(γ(x)) There exists γ(x) > 0 such that F (·|x) is continuously differentiable and satisfies

lim
y→∞

yF
′
(y|x)

F (y|x)
= −1/γ(x).

It follows from Theorem 1.1.11 in de Haan and Ferreira (2006) that condition (2.6) is indeed

satisfied if C1(γ(x)) holds. Another consequence of condition C1(γ(x)) is that the conditional

density function f(·|x) = −F ′(·|x) exists and is also regularly varying, with index −1/γ(x)− 1.

This regularity condition is unlikely to be very restrictive in practice due to the fact that all

commonly used heavy-tailed models satisfy this condition. In addition, Newey and Powell (1987)

point out in their Theorem 1 that continuous differentiability of the c.s.f. is a reasonable sufficient

condition for expectiles to characterize the underlying distribution.

Condition C1(γ(x)) will reveal useful in Section 3 to estimate extreme expectiles e(αn|x) asso-

ciated with intermediate levels αn and located within the sample. For higher levels αn, extreme

expectiles may be located outside the sample. Extrapolation techniques are developed in Sec-

tion 4, and they require a stronger condition on the distribution tail:

C2(γ(x), ρ(x), A(·|x)) There exist γ(x) > 0, ρ(x) ≤ 0 and a positive or negative function A(·|x)

such that:

∀y > 0, lim
t→∞

1

A(t|x)

(
q(1− 1/(ty)|x)

q(1− 1/t|x)
− yγ(x)

)
=


yγ(x) y

ρ(x) − 1

ρ(x)
if ρ(x) < 0,

yγ(x) log y if ρ(x) = 0.

(2.7)

According to Theorem 2.3.9 in de Haan and Ferreira (2006), this so-called second-order condi-

tion (2.7) generalizes condition (2.6), since it is equivalent to

∀y > 0, lim
t→∞

1

A(1/F (t|x)|x)

(
F (ty|x)

F (t|x)
− y−1/γ(x)

)
= y−1/γ(x) y

ρ(x)/γ(x) − 1

γ(x)ρ(x)
.

Our last assumption is a local Lipschitz condition on the conditional moments. Similar conditions

are used, for instance, in Krzyzak (1986), or more recently in Daouia et al. (2013) and El Methni
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et al. (2014) in the context of conditional extreme value analysis with a finite-dimensional

covariate. Let us denote by B(x, r) the ball with center x ∈ E and radius r > 0, associated

with the semi-metric d, and by ∨ the maximum operator.

(L) One has m(2)(0|x) = E
[
Y 2 |X = x

]
<∞ and there exist c, r > 0 such that

∀x′ ∈ B(x, r),
∣∣∣m(1)(0|x′)−m(1)(0|x)

∣∣∣ ∨ ∣∣∣m(2)(0|x′)−m(2)(0|x)
∣∣∣ ≤ c d (x,x′) .

We conclude this paragraph by introducing some notation, which will prove very useful, for the

oscillation of the c.s.f. F (·|x) above a high level yn:

ωhn(yn|x) = sup
z≥yn

x′∈B(x,hn)

1

log z

∣∣∣∣log
F (z|x′)
F (z|x)

∣∣∣∣ .
The quantity ωhn(yn|x) measures the discrepancy between the extremes of the conditional dis-

tributions of Y at neighboring points. Similar quantities are introduced in Gardes and Stupfler

(2014, 2019) and Stupfler (2013, 2016). In order to get an idea of the typical asymptotic behavior

of ωhn(yn|x), consider the Karamata representation of F (·|x):

∀z ≥ 1, F (z|x) = z−1/γ(x) exp

(
η(z|x) +

∫ z

1

ε(u|x)

u
du

)
,

where η(·|x) and ε(·|x) are measurable functions converging, respectively, to a constant and 0

at infinity, see Theorem 1.3.1 in Bingham et al. (1989). In this context, it is straightforward to

prove that if there are c, r > 0 and z0 > 1 with

∀x′ ∈ B(x, r),
∣∣γ(x)− γ(x′)

∣∣ ∨ sup
z≥z0

∣∣∣∣η(z|x)− η(z|x′)
log z

∣∣∣∣ ∨ sup
z≥1

∣∣ε(z|x)− ε(z|x′)
∣∣ ≤ c d (x,x′) ,

(2.8)

then ωhn(yn|x) = O(hn).

3 Intermediate functional expectile estimation

We consider from now on the case when γ(x) < 1 and Y− := max(−Y, 0) has a finite first

conditional moment. These conditions combined ensure that E(|Y | |X = x) <∞ and thus that

conditional expectiles at any order exist indeed. These will be our minimal working conditions

throughout this paper.

Let us consider a sequence (αn) such that αn → 1 as n→∞. It has been established in Gardes

and Girard (2012, Theorem 2) that the functional estimator (2.2) of the extreme quantile q(αn|x)

is asymptotically Gaussian provided that n(1− αn)π(x, hn)→∞ as n→∞. In this situation,

q(α|x) is referred to as an intermediate conditional quantile. It is, for n large enough, located

within the sample since there is then almost surely at least one sample point in the region

B(x, h) × (q(α|x),∞) ⊂ E × R, see Gardes and Girard (2012, Lemma 4). Condition n(1 −
αn)π(x, hn) → ∞ in fact ensures that there will be a growing number of observations larger

than the conditional quantile to be estimated. In this section, we propose a similar approach

for estimating intermediate conditional expectiles. Let

ên(αn|x) = inf
{
y ∈ R | Ên(y|x) ≤ 1− αn

}
. (3.1)
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Here Ên(y|x) is defined in Equation (2.5). We start by studying the joint asymptotic distri-

bution of estimators (2.2) and (3.1), as this will be crucial in our construction of extrapolation

procedures in Section 5. To this end, let us introduce

σ−1
n (x) =

(
n(1− αn)

µ
(1)
K (x, hn)2

µ
(2)
K (x, hn)

)1/2

.

Note that, under (K), σ−1
n (x) and

√
n(1− αn)π(x, hn) are of the same asymptotic order since

(c1/c2)2π(x, hn) ≤
µ

(1)
K (x, hn)2

µ
(2)
K (x, hn)

≤ (c2/c1)2π(x, hn).

The following result may be seen as a functional version of Theorem 1 in Girard et al. (2021).

It establishes the joint asymptotic normality of J empirical conditional intermediate expectiles

ên(αn,j |x) with 1 − αn,j = τj(1 − αn), 0 < τ1 < · · · < τJ ≤ 1, together with an empirical

conditional intermediate quantile q̂n(an|x).

Theorem 1. Assume that (K), (L) and C1(γ(x)) hold with γ(x) < 1/2. Suppose that there

exists δ ∈ (0, 1) such that E[Y 2+δ
− |X = x] < ∞. Let αn → 1, hn → 0 as n → ∞ and τ > 0,

0 < τ1 < τ2 < · · · < τJ ≤ 1 with

1− an = τ(1− αn)(1 + o(1)) and 1− αn,j = τj(1− αn),

for j ∈ {1, . . . , J}. Assume further that n(1− αn)π(x, hn)→∞ and

σ−1
n (x) log(1− αn)ωhn ((1− δ)(e(αn|x) ∧ q(an|x))|x)→ 0. (3.2)

Then,

σ−1
n (x)

{(
ên(αn,j |x)

e(αn,j |x)
− 1

)
1≤j≤J

,

(
q̂n(an|x)

q(an|x)
− 1

)}
d−→ N

(
0J+1, γ

2(x)Σ(x)
)
,

where Σ(x) is the symmetric matrix having entries

Σj,l(x) = τ−1
l

[
1

1− 2γ(x)

(
τj
τl

)−γ(x)

− 1

]
,

Σj,J+1(x) = τ−1
j

(τj
τ

)γ(x)
[(

1

γ(x)−1 − 1
∧ τj
τ

)1−γ(x)

+

(
1

γ(x)−1 − 1
∧ τj
τ

)−γ(x)

−
(τj
τ

)−γ(x)
]
,

ΣJ+1,J+1(x) = τ−1,

for (j, l) ∈ {1, . . . , J}2 with j ≤ l.

In particular, Theorem 1 provides the following asymptotic normality result for ên(αn|x), which

may be seen as a functional version of Theorem 2 in Daouia et al. (2018):

σ−1
n (x)

(
ên(αn|x)

e(αn|x)
− 1

)
d−→ N

(
0,

2γ3(x)

1− 2γ(x)

)
.
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This is done under the assumptions γ(x) < 1/2 and E[Y 2+δ
− |X = x] < ∞. These essentially

guarantee that |Y | has a finite conditional moment of order 2+δ, a reasonable assumption in this

context of estimating conditional expectiles which generalize the conditional mean. In addition,

condition (3.2) ensures that the bias incurred by the use of the functional kernel smoothing

technique in this conditional extreme value setting is asymptotically negligible.

As we have already noted, Theorem 1 requires the condition n(1 − αn)π(x, hn) → ∞ which

prevents the estimation of expectiles at arbitrarily large levels αn. In the next section, we

propose to overcome this issue using an extrapolation tool.

4 Extreme functional expectile extrapolation

Our aim in this section is to estimate conditional expectiles at an extreme level βn such that

n(1−βn)π(x, hn)→ c <∞. In extreme quantile estimation, a well-known approach is to use the

Weissman extrapolation device, see Theorem 4.3.8 in de Haan and Ferreira (2006): remarking

that under C1(γ(x)),

q(βn|x) =

(
1− αn
1− βn

)γ(x)

q(αn|x)(1 + o(1)), (4.1)

the extreme conditional quantile q(βn|x) can therefore be estimated using the intermediate

empirical quantile q̂n(αn|x) and a suitable estimator of γ(x). We refer for instance to Daouia

et al. (2011) or Gardes and Girard (2012) for extreme conditional quantile estimators developed

on this basis. In the expectile case, a similar approach can be adopted based on the convergence

lim
α→1

F (e(α|x)|x)

1− α
= γ(x)−1 − 1. (4.2)

This is a consequence of the heavy-tailed assumption (2.6): see Bellini et al. (2014, Theorem 11)

and more recently Daouia et al. (2018, Proposition 1). This convergence is in fact equivalent to

lim
α→1

e(α|x)

q(α|x)
=
(
γ(x)−1 − 1

)−γ(x)
, (4.3)

meaning that extreme quantiles and extreme expectiles are asymptotically proportional. As a

consequence, Equation (4.1) also holds for expectiles. As proposed in Girard et al. (2021) in

the finite-dimensional context, we introduce a Weissman-type estimator of functional extreme

expectiles:

êWn,αn(βn|x) =

(
1− αn
1− βn

)γ̂αn (x)

ên(αn|x), (4.4)

where γ̂αn(x) is any estimator of γ(x). Using the second order assumption C2(γ(x), ρ(x), A(·|x)),

we can state the asymptotic behavior of êWn,αn(βn|x) under high-level conditions.

Theorem 2. Assume that (K), (L) and C2(γ(x), ρ(x), A(·|x)) hold with γ(x) < 1/2 and ρ(x) <

0. Suppose that there exists δ ∈ (0, 1) such that E[Y 2+δ
− |X = x] < ∞. Let αn → 1, βn → 1

and hn → 0 be such that n(1 − αn)π(x, hn) → ∞ and n(1 − βn)π(x, hn) → c < ∞ as n → ∞.

Assume further that

i) σ−1
n (x) log(1− αn)ωhn ((1− δ)e(αn|x)|x)→ 0,
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ii) σ−1
n (x)/ log ((1− αn)/(1− βn))→∞,

iii) σ−1
n (x)A

(
(1− αn)−1|x

)
→ λ1 ∈ R and σ−1

n (x)/q(αn|x)→ λ2 ∈ R.

If, in addition, σ−1
n (x) (γ̂αn(x)− γ(x))

d−→ Γ, where Γ is a nondegenerate distribution, then

σ−1
n (x)

log ((1− αn)/(1− βn))

(
êWn,αn(βn|x)

e(βn|x)
− 1

)
d−→ Γ.

The Weissman-type estimator êWn,αn(βn|x) is built on the previous estimator ên(αn|x) of the

intermediate expectile, hence the conditions γ(x) < 1/2 and E[Y 2+δ
− |X = x] < ∞ to ensure

the asymptotic normality of ên(αn|x). In order to relax these assumptions, one may exploit the

asymptotic proportionality relationship (4.3) to define another Weissman-type estimator:

ẽWn,αn(βn|x) =

(
1− αn
1− βn

)γ̂(x)

q̂n(αn|x)
(
γ̂(x)−1 − 1

)−γ̂(x)
. (4.5)

The following high-level result establishes the asymptotic properties of this estimator, under

weaker conditions than those of Theorem 2.

Theorem 3. Assume that (K) and C2(γ(x), ρ(x), A(·|x)) hold with γ(x) < 1 and ρ(x) < 0.

Suppose that E [Y−|X = x] < ∞. Let αn → 1, βn → 1 and hn → 0 be such that n(1 −
αn)π(x, hn)→∞ and n(1− βn)π(x, hn)→ c <∞ as n→∞. Assume further that

i) σ−1
n (x) log(1− αn)ωhn ((1− δ)q(αn|x)|x)→ 0 for some δ > 0,

ii) σ−1
n (x)/ log ((1− αn)/(1− βn))→∞,

iii) σ−1
n (x)A

(
(1− αn)−1|x

)
→ λ1 ∈ R and σ−1

n (x)/q(αn|x)→ λ2 ∈ R.

If, in addition, σ−1
n (x) (γ̂αn(x)− γ(x))

d−→ Γ, where Γ is a nondegenerate distribution, then,

σ−1
n (x)

log ((1− αn)/(1− βn))

(
ẽWn,αn(βn|x)

e(βn|x)
− 1

)
d−→ Γ.

To illustrate these results, let us consider the case 1 − αn = (nπ(x, hn))−a and 1 − βn =

(nπ(x, hn))−b with 0 < a < 1 < b and c = 0. In this case the two conditions n(1−αn)π(x, hn)→
∞ and n(1− βn)π(x, hn)→ c = 0 turn into the single condition nπ(x, hn)→∞. We shall also

work under Assumption (2.8) which entails ωhn(yn|x) = O(hn) when yn → ∞. Recalling that

the rate of convergence σ−1
n (x) grows like

√
n(1− αn)π(x, hn) = (nπ(x, hn))(1−a)/2, we find that

the other conditions on αn, βn and hn required in Theorem 2 and Theorem 3 can be simplified

as (nπ(x, hn))(1−a)/2 log(nπ(x, hn))hn → 0, as n→∞, and a > 1/(1 + 2ξ) with ξ = min(γ,−ρ).

We illustrate the implications of this discussion on two classical examples for X.
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Example 1. If X is a fractal process of order τ > 0 with respect to the semi-metric d, then

π(x, hn) ∼ Chτn, as hn → 0, for some C > 0, see Definition 13.1 in Ferraty and Vieu (2006). This

situation includes the finite p−dimensional case, where τ = p. Here, the conditions nπ(x, hn)→
∞ and (nπ(x, hn))(1−a)/2 log(nπ(x, hn))hn → 0 imply that one can choose hn = n−θ with

θ ∈
(

1− a
2 + τ(1− a)

,
1

τ

)
.

Let us stress that there is no constraint on b, apart from b > 1, and therefore extreme functional

expectiles of level converging to 1 at an arbitrarily fast polynomial rate nb(τθ−1), b > 1, can

then be estimated with (4.4) or (4.5). Letting a ↓ 1/(1 + 2ξ), the bias associated with the

smoothing (condition i) in Theorem 2 and Theorem 3) and the bias associated with the tail

approximations (condition iii) in Theorem 2 and Theorem 3) are of the same order. It is

then possible to balance the squared bias and the variance of the Weissman type estimators by

choosing θ = ξ/(1 + (2 + τ)ξ). This yields a polynomial rate of convergence n−ξ/(1+(2+τ)ξ).

Example 2. If X is an exponential-type process with orders τ1, τ2 ≥ 0 with respect to the

semi-metric d, then π(x, hn) ∼ C exp(−h−τ1n (− log hn)τ2), as hn → 0, for some C > 0, see

Definition 13.4 in Ferraty and Vieu (2006). We refer to Li and Shao (2001) for several examples

of Gaussian processes which are exponential-type processes for the metric associated with the

supremum norm in functional spaces. Here, we focus on the case τ2 = 0 for the sake of simplicity,

and we let hn = (log n− κ log log n)−1/τ1 with

κ ∈
(

0,
2

τ1(1− a)

)
.

This choice yields 1−βn ∼ C−b(log n)−bκ. The considered Weissman type estimators are, in this

case, limited to the estimation of extreme functional expectiles of (arbitrary) logarithmic level.

Finally, balancing the bias and variance by letting κ ↑ 2/[τ1(1− a)] yields a logarithmic rate of

convergence (log n)−1/τ1 . This slow rate of convergence is a consequence of the exponentially

fast decay of the small ball probability π(x, hn) as hn → 0. One way to avoid this vexing effect

is to consider projection-type semi-metrics, for instance using functional Principal Component

Analysis; this will be tried out in our finite-sample illustrations.

In view of Theorem 2 and Theorem 3, the asymptotic distribution of the Weissman-type

estimators of êWn,αn(βn|x) and ẽWn,αn(βn|x) is exactly determined by that of the functional tail

index estimator γ̂αn(x) used in its construction. It is therefore essential to provide estimators of

γ(x) having good performance. The next section is devoted to this problem from an expectile

perspective.

5 Functional tail index estimation

The estimation of the tail index is a central problem in the extreme-value literature. In the

unconditional heavy-tailed setting, the most popular estimator is arguably that of Hill (1975),

and is based on the mean of the log-excesses. This idea of averaging log-excesses was adapted

10



to the conditional framework in Gardes and Girard (2012): for a given integer J ≥ 2,

γ̂(J)
αn (x) =

1

log(J !)

J∑
j=1

log

(
q̂n (1− (1− αn)/j|x)

q̂n (αn|x)

)
. (5.1)

The asymptotic properties of γ̂
(J)
αn (x) may be found in Theorem 4 and Corollary 1 of Gardes and

Girard (2012) under mild conditions. Our first contribution here is to strengthen their results

by making the bias term explicit; this will inform the construction of another of our estimators

below. In the Appendix, we provide the joint asymptotic distribution of γ̂
(J)
αn (x) and estimators

of extreme conditional quantiles (see Theorem 7).

Theorem 4. Assume that (K) and C2(γ(x), ρ(x), A(·|x)) hold. Let αn → 1, hn → 0 be such

that n(1− αn)π(x, hn)→∞ and

i) σ−1
n (x) log(1− αn)ωhn ((1− δ)q(αn|x)|x)→ 0, for some δ > 0,

ii) σ−1
n (x)A

(
(1− αn)−1|x

)
→ λ1 ∈ R.

Then,

σ−1
n (x)

(
γ̂(J)
αn (x)− γ(x)

)
d−→ N

 1

log(J !)

 J∑
j=1

jρ(x) − 1

ρ(x)

λ1,
J(J − 1)(2J − 1)

6 log(J !)2
γ2(x)

 .

As pointed out in Daouia et al. (2011), the choice J = 9 leads to the smallest asymptotic

variance: in this case the factor J(J − 1)(2J − 1)/(6 log(J !)2) is approximately equal to 1.245.

Second, to define an estimator of the functional tail index γ(x) solely based on the use of

expectiles, we introduce an alternative device based on the asymptotic relationship (4.2): this

relationship implies

γ(x) = lim
α→1

1− α
1− α+ F (e(α|x)|x)

.

This leads us to consider the following estimator:

γ̂αn(x) =
1− αn

1− αn + F̂n(ên(αn|x)|x)
. (5.2)

Note that this expectile-based estimator was first introduced in Girard et al. (2021) in the finite-

dimensional covariate setting. The next result gives the asymptotic distribution of the functional

tail index estimator γ̂αn(x).

Theorem 5. Assume that (K), (L) and C2(γ(x), ρ(x), A(·|x)) hold with γ(x) < 1/2. Suppose

that there exists δ ∈ (0, 1) such that E[Y 2+δ
− |X = x] < ∞. Let αn → 1 and hn → 0 such that

n(1− αn)π(x, hn)→∞ as n→∞ and

i) σ−1
n (x) log(1− αn)ωhn ((1− δ)e(αn|x)|x)→ 0,

ii) σ−1
n (x)A

(
(1− αn)−1|x

)
→ λ1 ∈ R and σ−1

n (x)/q(αn|x)→ λ2 ∈ R.

11



Then, σ−1
n (x) (γ̂αn(x)− γ(x)) is asymptotically Gaussian with mean

b(x) =
γ(x)

(
γ(x)−1 − 1

)1−ρ(x)

1− γ(x)− ρ(x)
λ1 + γ2(x)

(
γ(x)−1 − 1

)γ(x)+1 E[Y |X = x]λ2

and variance

V (x) =
γ3(x)(1− γ(x))

1− 2γ(x)
.

The main advantage of γ̂αn(x) compared to γ̂
(J)
αn (x) is its much smaller asymptotic variance

for small values of γ(x). However, the asymptotic normality of γ̂αn(x) requires the condition

γ(x) < 1/2, and the variance explodes when γ(x) is close to 1/2. To avoid this drawback, we

propose to replace the “direct” estimator of the functional expectile ên(αn|x) in Equation (5.2)

by an “indirect” estimator designed from Equation (4.3). We thus propose a third estimator

combining the two previous approaches, having a lower asymptotic variance compared to γ̂
(J)
αn (x),

and asymptotically Gaussian under weaker assumptions compared to γ̂αn(x):

γ̃(J)
αn (x) =

1− αn

1− αn + F̂n

((
γ̂

(J)
αn (x)−1 − 1

)−γ̂(J)αn (x)
q̂n(αn|x)|x

) . (5.3)

The following result provides the asymptotic normality of this new estimator.

Theorem 6. Assume that (K) and C2(γ(x), ρ(x), A(·|x)) hold with γ(x) < 1. Let αn → 1,

hn → 0 be such that n(1− αn)π(x, hn)→∞ as n→∞ and

i) σ−1
n (x) log(1− αn)ωhn ((1− δ)q(αn|x) ∧ e(αn|x)|x)→ 0, for some δ > 0,

ii) σ−1
n (x)A

(
(1− αn)−1|x

)
→ λ1 ∈ R and σ−1

n (x)/q(αn|x)→ λ2 ∈ R.

Then, σ−1
n (x)

(
γ̃

(J)
αn (x)− γ(x)

)
is asymptotically Gaussian with mean

bJ(x) =

h(γ(x))
1

log(J !)

 J∑
j=1

jρ(x) − 1

ρ(x)

− (1− γ(x))

(
γ(x)−1 − 1

)−ρ(x) − 1

ρ(x)

λ1

and variance VJ(x) = γ2(x)vJ(x), with

vJ(x) = h (γ(x))2 J(J − 1)(2J − 1)

6 log(J !)2
− 2

(1− γ(x))2

(γ(x)−1 − 1) ∨ 1
+ (1− γ(x))

− (1− γ(x))h(γ(x))
2j∗
(
(γ(x)−1 − 1) ∧ 1

)−1
+ (J − j∗)(J − j∗ + 1)− 2J

log(J !)
,

where h(t) = 1− (1− t) log
(
t−1 − 1

)
and j∗ ∈ {0, . . . , J} is such that τj∗ < γ(x)−1 − 1 ≤ τj∗+1,

in which we set τ0 = 0, τj = (J − j + 1)−1 for all j ∈ {1, . . . , J}, and τJ+1 =∞.

We can notice that the variance term vJ(x) = VJ(x)/γ2(x) may also be written:

vJ(x) = h (γ(x))2 J(J − 1)(2J − 1)

6 log(J !)2
+ (1− γ(x))2

(
1

1− γ(x)
− 2

(γ(x)−1 − 1) ∨ 1

)
− 2

(1− γ(x))h (γ(x))

log(J !)

J−1∑
j=1

[(
τj ∨ (γ(x)−1 − 1)

)−1 −
(
1 ∨ (γ(x)−1 − 1)

)−1
]
.
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In the Appendix, the proof of Theorem 6 is provided using the above formula. Straightforward

calculations lead to the equivalence of these two expressions.

It appears that this new estimator is asymptotically Gaussian under weaker conditions than those

imposed on γ̂αn(x) and has only one source of bias (in the sense that its bias does not depend

on λ2, coming from the condition σ−1
n (x)/q(αn|x) → λ2 ∈ R). We investigate the asymptotic

variances of the three estimators γ̂
(9)
αn (x), γ̃

(9)
αn (x) and γ̂αn(x) in Figure 1. We can see here

that γ̂αn(x) seems to have the lowest variance among all three estimators for γ(x) ∈ [0, 0.25].

The new estimator γ̃
(9)
αn (x) seems to strike a middle ground, in the sense that it appears to

have the lowest variance when the conditional tail index lies between approximately 0.25 and

0.5. In addition, its variance remains relatively stable when γ(x) ∈ [0.5, 1], even though the

quantile-based estimator γ̂
(9)
αn (x) has the lowest variance in this interval.

Finally, let us note that Theorem 1 opens the door to the design of estimators of the functional

tail index based on a combination of several empirical conditional intermediate expectiles. One

could for instance consider a Pickands-type estimator (Pickands, 1975) based on the following

three empirical conditional intermediate expectiles: ên(1 − kn/n|x), ên(1 − kn/(2n)|x) and

ên(1 − kn/(4n)|x) with kn = n(1 − αn), which corresponds to considering three intermediate

expectile estimators as in Theorem 1 with τ1 = 1/4, τ2 = 1/2 and τ3 = 1.
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Asymptotic variances

gamma

v

Figure 1: Asymptotic variances of γ̂
(9)
αn (x) (black curve), γ̃

(9)
αn (x) (red curve) and γ̂αn(x) (blue

curve) as functions of γ(x) ∈ [0, 1].
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6 Illustration on simulated data

We briefly illustrate here the finite-sample performance of the estimators on N = 500 replications

of an independent sample of size n = 500 (resp. 2,000) from a random pair (X, Y ), where

X ∈ E = L2[0, 1]. Here, X may be three different stochastic processes:

• (X1): A process given by Xt = cos(2πZt) for all t ∈ [0, 1] with Z a latent uniform random

variable on [1/4, 1], and the functional tail index is given by γ(X) =
(
8||X||22 − 3

)
/2.5

with ||X||22 =
∫ 1

0 X
2
t dt = 1

2

(
1 + sin(4πZ)

4πZ

)
. A similar specification is used in Gardes and

Girard (2012); in this context γ(X) ∈ [0.06, 0.61] and d is the standard metric on L2[0, 1].

• (X2): A process given for all t ∈ [0, 1] by

Xt =
√

2
50∑
j=1

(−1)j+1

j
Zj cos(jπt),

where the Zj are i.i.d. uniform on [−1, 1]. Such an example is considered in Kato (2012).

In this more difficult example, it is suitable to consider a (functional) Principal Com-

ponent Analysis semi-metric (see Chapter 3 in Ferraty and Vieu (2006) and particularly

Section 3.4), defined as

dq,PCA(X,X ′) =

√√√√ q∑
k=1

{∫ 1

0
(Xt −X ′t)ϕk(t)dt

}2

,

where ϕ1, . . . , ϕq are eigenfunctions of the unobserved covariance operator (s, t) 7→ E(XsXt)

associated with its first q eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λq. This semi-metric induces a semi-

norm by setting ||X||q,PCA = dq,PCA(X,0) where 0 is the zero function. A numerical study

using the R package fdapace (see Carroll et al. (2021)) shows that a choice of q = 2 leads

to an explained variance around 80%. We thus take q = 2, estimate ϕ1 and ϕ2 with the R

function FPCA in this package, and consider a conditional tail index γ(X) = 0.25+2||X||2.

• (X3): A standard Brownian bridge (Xt) on [0, 1]. Inspired by the previous model, we keep

γ(X) = 0.25 + 2||X||2. Here also, around 80% of the variance is typically explained with

the first two eigenfunctions and we take q = 2 in this example too.

An overview of the shape of the three covariates considered is proposed in Figure 2 through

the simulation of a few realizations. The first kind of process may be found in areas like

environmental sciences (representing sound or light waves). The other two are more frequent in

finance (see Metwally and Atiya (2002) for an example). Given X, the random variable Y has,

in all cases, a Pareto distribution with c.s.f. F (y|X) = y−1/γ(X), y > 1.

The aim of this study is to assess the quality of the estimates of the extreme functional expectile

e(βn|x) with βn = 0.995 (1 − 2.5/n when n = 500 and 1 − 10/n when n = 2,000). For that

purpose, the Weissman-type estimators (4.4) and (4.5) are used with the kernel K(t) = (1.9 −
1.8 t)1{0≤t≤1}. The tail index is estimated with γ̂

(9)
αn (x) and γ̃

(9)
αn (x) defined in (5.1) and (5.3)
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Figure 2: 10 realizations of the covariate X for models (X1) (left), (X2) (middle) and (X3)

(right).

respectively. Throughout this section, the L2−norm of a function (xt)t∈[0,1] is numerically com-

puted through its discretized form
√
m−1

∑m
k=1 x

2
tk

, with m = 101 and tk ∈ {0, 0.01, 0.02, . . . , 1}.

Similarly, the PCA semi-norm || · ||q,PCA is computed as
√∑q

j=1 (m−1
∑m

k=1 xtkϕj(tk))
2.

6.1 Cross-validation procedure

In an extreme regression framework, the question of selecting the bandwidth hn and the in-

termediate level αn has been considered in Gardes and Girard (2012), Daouia et al. (2013) or

Girard et al. (2021) for instance. These papers proposed the following type of bandwidth h∗:

h∗ = arg min
h∈H


n∑
i=1

n∑
j=1

(
1{Yi≥Yj} − F̂n,−i(Yj |Xi)

)2

 ,

where F̂n,−i is the empirical c.s.f. computed on the (n− 1)−sample X−i where the pair (Xi, Yi)

has been removed, andH is a regular grid of size 15 on [hmin, hmax] with hmin = max
1≤i≤n

min
i 6=j

d(Xi,Xj)

and hmax = max
1≤i,j≤n

d(Xi,Xj). This approach returns a value h∗ typically around 0.2 for n = 500

(0.14 for n = 2,000) on our first two models, and tends to return hmax in the third one. In-

deed, such a general choice of bandwidth not depending on x ∈ E does not take into account

the heterogeneity of x on its support; in particular, it may be thrown off by an isolated point

Xi in the data. Therefore, we propose a choice of hn related to x, which ensures that the

n× hn ≈ 500× 0.2 = 100 nearest neighbors are included in B(x, hn):

h∗(x) = min

{
h > 0 such that

n∑
i=1

1{Xi∈B(x,h)} = 100

}
.

This applies to the case n = 500; for n = 2,000, we consider 2,000 × 0.14 = 280 nearest

neighbors instead. Once the bandwidth has been chosen, the intermediate level α∗ is selected

by minimization of a quadratic score:

α∗(γ) = arg min
α∈(0,1)

n∑
i=1

(
γα,−i(Xi)− γ̂LH(Xi)

)2
.
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Here, γα,−i denotes either γ̂
(9)
α or γ̃

(9)
α computed on the (n − 1)−sample X−i, and γ̂LH(Xi) is

the local Hill estimator computed on the subset of 100 values {Y (i)
j , j = 1, . . . , 100} := {Yj : 0 <

d(Xi,Xj) ≤ h∗(x), j = 1, . . . , n} whose covariate values are within distance h∗(x) of Xi. This

estimator is defined by

γ̂LH(Xi) =
1

ki

ki∑
j=1

log

Y (i)
100−j+1,100

Y
(i)

100−ki,100

 ,

where we set ki = 20 (50 for n = 2,000) and Y
(i)

1,100 ≤ . . . ≤ Y
(i)

100,100 are the order statistics

associated with {Y (i)
j , j = 1, . . . , 100}, sorted in increasing order. This procedure yields selected

values α∗(γ̂(9)) ' α∗(γ̃(9)) typically around 0.84 (0.805 for n = 2,000) for (X1), 0.80 (0.815 for

n = 2,000) for (X2) and 0.70 (0.88 for n = 2,000) for (X3).

6.2 Results

In example (X1), Figure 3 displays the performance of the conditional tail index and conditional

expectile estimators on boxplots, within the space of functions {xt 7→ cos(2πzt), t ∈ [0, 1]},
depending on the latent variable z ∈ [1/4, 1]. In other words, at each z within a fine grid

of points in [1/4, 1], we estimate the conditional tail index and extreme conditional expectile

estimators given x = (t 7→ cos(2πzt)). The numerical results associated with γ̂
(9)
α∗ (x) and γ̃

(9)
α∗ (x)

are in line with the theoretical results illustrated in Figure 1: it appears indeed from the length

of the represented boxplots that the estimator γ̃
(9)
α∗ (x) tends to have a lower variance for lower

values of γ(x), and to be slightly more accurate on average, than the estimator γ̂
(9)
α∗ (x). Finally,

it seems that both Weissman-type estimators êWn,α∗(βn|x) and ẽWn,α∗(βn|x) generally perform

similarly at the level 0.995, with an advantage for the direct estimator êWn,α∗(βn|x) in areas

where the tail is heavy, and, by contrast, an advantage for the indirect estimator ẽWn,α∗(βn|x) in

areas where the tail is light.

In examples (X2) and (X3), contrary to the first example, we can no longer represent the results

as a function of a single univariate latent variable. To visualize our results, we thus propose

to simulate a test sample x1, . . . ,x100 of size 100 (fixed across all samples), and estimate the

extreme expectiles e(βn|x1), . . . , e(βn|x100). The results are reported in Figure 4 as functions of

the L2−norms of xi, 1 ≤ i ≤ 100. In the area where most of the data are typically concentrated,

the proposed estimators provide a good approximation of the conditional tail index and the

conditional extreme expectile. However, in the areas where this is not the case (for unusually

small or large L2−norms), trusting our estimators is of course more difficult. This problem is a

classical problem in the nonparametric literature. Note that the empirical curves are smoothed

with the R function loess, and a smoothing parameter of 0.25. Note also that we computed

the bias-reduced versions of our extreme expectile estimators introduced in Girard et al. (2021)

(dashed lines) which improve the accuracy of the results:
êW,BRn,αn (βn|x) = êWn,αn(βn|x)

(
1− m̂n(x)γ̂(x)

ên(αn|x)

)
+ m̂n(x)γ̂(x),

ẽW,BRn,αn (βn|x) = ẽWn,αn(βn|x) + m̂n(x)γ̂(x).

(6.1)
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Figure 3: Simulation results on a conditional Pareto distribution with model (X1). Top panel:

tail index estimators γ̂
(9)
α∗ (·) (green box plots) and γ̃

(9)
α∗ (·) (blue box plots), where at each z ∈

[1/4, 1] we represent estimated values at x = (t 7→ cos(2πzt)), for n = 500 (left) and n = 2,000

(right). The red curve is the true value of γ(·). Bottom panel: Indirect (green box plots) and

direct (blue box plots) expectile estimators ẽWn,α∗(βn|·) and êWn,α∗(βn|·) based on the tail index

estimator γ̃
(9)
α∗ (·) for n = 500 (left) and n = 2,000 (right). The red curve is the true value of

e(βn|·), with βn = 0.995.

These bias-reduced versions have the same asymptotic behavior as the original êWn,αn(βn|x) and

ẽWn,αn(βn|x) but perform better in finite samples, as illustrated in Figure 4.

7 Real data example

We consider data on the price of the Bitcoin cryptocurrency between January 1, 2012 and

January 8, 2018 on the exchange platform Bitstamp1. We use our estimators to, based on

hourly log-returns of the price of Bitcoin on a given day, estimate the level of extreme swings

of the price of Bitcoin the next day. More specifically, our goal is to estimate extreme expectile

levels of the maximum hourly log-return Y of Bitcoin price based on the information on past

1This dataset is available at https://github.com/FutureSharks/financial-data/tree/master/

pyfinancialdata/data/cryptocurrencies/bitstamp/BTC_USD and is on file with the authors.

17

https://github.com/FutureSharks/financial-data/tree/master/pyfinancialdata/data/cryptocurrencies/bitstamp/BTC_USD
https://github.com/FutureSharks/financial-data/tree/master/pyfinancialdata/data/cryptocurrencies/bitstamp/BTC_USD


0.04 0.06 0.08 0.10 0.12

0
5

10
15

20
25

Tail index estimators

L2−norm

0.
30

0.
35

0.
40

0.
45

0.
50

0.04 0.06 0.08 0.10 0.12

0
5

10
15

20
25

Expectile estimators

L2−norm

4
6

8
10

12
14

0.04 0.06 0.08 0.10 0.12

0
5

10
15

20
25

Tail index estimators

L2−norm

0.
30

0.
35

0.
40

0.
45

0.
50

0.04 0.06 0.08 0.10 0.12

0
5

10
15

20
25

Expectile estimators

L2−norm

4
6

8
10

12
14

0.02 0.04 0.06 0.08

0
5

10
20

30

Tail index estimators

L2−norm

0.
25

0.
30

0.
35

0.
40

0.
45

0.02 0.04 0.06 0.08

0
5

10
20

30

Expectile estimators

L2−norm

3
4

5
6

7
8

9
10

0.02 0.04 0.06 0.08

0
5

10
20

30

Tail index estimators

L2−norm

0.
25

0.
30

0.
35

0.
40

0.
45

0.02 0.04 0.06 0.08

0
5

10
20

30

Expectile estimators

L2−norm

3
4

5
6

7
8

9
10

Figure 4: Histograms of the PCA-norm of the test sample x1, . . . ,x100 of (X2) (first two rows)

and Brownian bridges (X3) (last two rows), and the associated theoretical values of γ(xi) and

e(βn|xi) (red curves) as functions of ||xi||2. On the tail index panels, the median values of

estimates γ̂
(9)
α∗ (·) and γ̃

(9)
α∗ (·) are respectively represented with the green and blue curves. On

the expectile panels, the median values of the direct and indirect estimators êWn,α∗(βn|·) and

ẽWn,α∗(βn|·) (both computed with γ̃
(9)
α∗ (·)) are respectively represented with the green and blue

curves, and their respective bias-reduced versions êW,BRn,α∗ (βn|·) and ẽW,BRn,α∗ (βn|·) are the dashed

lines. The sample size is n = 500 for the first and third rows, and n = 2,000 for the others.
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price behavior given by its curve X of hourly log-returns the day before. In order to reduce the

obvious temporal dependence existing in the data, we construct our sample of data by keeping

a gap of one day between observations: in other words,

• X1 and Y1 are respectively the curve of hourly log-returns on day 1 and maximum hourly

log-return on day 2,

• X2 and Y2 are respectively the curve of hourly log-returns on day 3 and maximum hourly

log-return on day 4,...

More generally, the ith data point (Xi, Yi) is obtained by considering the curve of hourly log-

returns on day 2i − 1 and maximum hourly log-return on day 2i. Data cleaning leads to the

removal of days with missing data, leading us to a final dataset X = {(Xi, Yi), i = 1, . . . , n} of

size n = 917. The left panel of Figure 5 provides an overview of this dataset.

To confirm that the assumption of a heavy right tail is appropriate for the unconditional dis-

tribution of Y , the right panel of Figure 5 displays a quantile-quantile plot of the log-excesses

Wi,k = log(Yn−i+1,n/Yn−k,n), 1 ≤ i ≤ k against the quantiles of the standard exponential distri-

bution. It is indeed known that, if Y is heavy-tailed with tail index γ and if k, corresponding

to the sample fraction of the highest data points considered as “‘extreme”, is chosen sufficiently

small, then the Wi,k’s are approximately order statistics of an exponential random variable with

mean γ, see for instance Equation (10) in Beirlant et al. (1999). The linear trend appearing in

the right panel of Figure 5, for which k = 100 (thus taking into account approximately the top

11% of the data) constitutes graphical evidence that the assumption of a heavy right tail makes

sense, with an estimated unconditional tail index around 1/2.

We now discuss the choice of the parameters h and α. In the considered situation where the

Xi’s are widely scattered (with respect to the L2 or PCA semi-distances d), it is sensible to

use the uniform kernel K(t) = 1{0≤t≤1}, and to select a local bandwidth h∗i for each day i so as

to guarantee that enough data will be available for our local estimation. As in the simulation

study, we choose here h∗i so that there are always 100 covariate values in the h∗i− neighbourhood

of Xi, that is, #{j ∈ {1, . . . , n} : d(Xi,Xj) < h∗i } = 100 for all i ∈ {1, . . . , n}. We also use

the PCA norm || · ||2,PCA, as this allows to explain an estimated 75% in the variance, see the

bottom left panel of Figure 5. The cross-validation procedure introduced in Section 6 (with 25

points used in the local Hill estimator) yields intermediate levels α∗(γ̂(9)) = 1−230/917 ' 0.749,

α∗(γ̃(9)) = 1− 230/917 ' 0.749 and α∗(γ̂) = 1− 120/917 ' 0.869.

It is then interesting, as a first step in the analysis, to compare the behavior of the three

functional tail index estimators γ̂
(9)
α∗ (x), γ̂α∗(x), γ̃

(9)
α∗ (x) and the local Hill estimator introduced

in Section 6. Note that in this application, we use a (partly) bias-reduced version of γ̂α∗(x):

γ̂BRα∗ (x) = γ̂α∗(x)

(
1− m̂n(x) (1− γ̂α∗(x))

ên(α∗|x)

)
.

Indeed, according to Theorem 5, this estimator features a bias term linked to 1/q(αn|x), which

can be eliminated in a straightforward way (we use here a procedure similar to that of Corollary 2

in Girard et al. (2021), and we omit the details). The unconditional Hill estimate used in the
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Figure 5: Financial data on the price of Bitcoin. Top left panel: Hourly log-returns

of Bitcoin price. Top right panel: Exponential quantile-quantile plot of the log-excesses

log(Yn−i+1,n/Yn−k,n) (vertically) versus log((k+1)/i) (horizontally), for 1 ≤ i ≤ k, with k = 100.

The straight line has a slope computed using the Hill estimator on the top k Yi’s. Bottom panel:

scree plot following the functional PCA procedure, obtained via the FPCA function of the R

package fdapace.
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QQ-plot of Figure 5 is slightly below 1/2; it is likely, from Theorem 6 and Figure 1, that this is

a favorable case for our proposed estimator γ̃
(9)
α∗ (x), due to our estimator having lowest variance

in this area.

Using these selected parameters, our aim is now, for each i ∈ {1, . . . , n}, to predict the expectile

of level βn of Yi, the maximum hourly log-return of the price of Bitcoin on day i+ 1, given Xi,

the curve of hourly log-returns on day i, using the dataset X−i = {(Xj , Yj), j 6= i}. We propose

to consider the extreme level βn = 1 − 1/n ≈ 0.999. To give a reasonable idea of how extreme

conditional expectiles vary in this functional context, we represent the bias-reduced estimated

expectiles êW,BRn,α∗ (βn|Xi) (introduced in Equation (6.1) and improving upon (4.4)), versus the

PCA norm ||Xi||2,PCA and the daily volatility s2(Xi) = mean((Xi − X̄i)
2) (here X̄i denotes

the average hourly log-return) in Figures 6 and 7. One can observe that the expectile curves

seem to increase with respect to both the norm and the volatility, and that all the proposed

estimators return similar values. As a sanity check, we recall that from (4.2), as n→∞, one has

nP (Y > e (1− 1/n|x) |x) → (γ(x)−1 − 1). In this example, based on a value of the functional

tail index around 0.4, we would therefore expect no more than a handful of exceedances above

the estimated conditional expectile êW,BRn,α∗ (βn|Xi) = êW,BRn,α∗ (1−1/n|Xi). A graphical inspection

yields 2 exceedances for the estimate based on γ̃
(9)
α∗ (x), and 4 exceedances for the estimates

based on either γ̂
(9)
α∗ (x) or γ̂BRα∗ (x). Finally, in order to confirm our previous observation on the

trend of extreme expectiles depending on volatility, we plot in Figure 8 our expectile predictions

sorted by volatility observed the previous day. The estimated expectile curves generally behave

as the observed values of the Yi; in comparison with the other estimates, γ̂BRα∗ (x) seems to lead

to lower estimates of the extreme expectiles. All in all, it appears that our extreme expectile

method gives a reasonable account of large movements in the price of Bitcoin; they in particular

give an indication that a large volatility on a given day leads to potentially more extreme swings

in price the following day.
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timators γ̂
(9)
αn (·) (red), γ̂BRα∗ (·) (green), γ̃
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A Appendix: proofs

This Appendix is organized as follows: Section A.1 provides some preliminary results useful for

the proofs of the main results in Section A.2. Define

ψ̃(k)
n (y|x) =

1

n

n∑
i=1

(Yi − y)kK

(
d (x,Xi)

hn

)
1{Yi>y}

/
µ

(1)
K (x, hn)

and m̃(k)
n (y|x) =

1

n

n∑
i=1

(Yi − y)k K

(
d (x,Xi)

hn

)/
µ

(1)
K (x, hn).

The quantities ψ̃
(k)
n (y|x) and m̃

(k)
n (y|x) are the pseudo-estimator counterparts of ψ̂

(k)
n (y|x) and

m̂
(k)
n (y|x) when the smoothed small-ball probability µ

(1)
K (x, hn) is assumed to be known.

A.1 Preliminary results

Lemma 1. Assume that (K) holds. Then for any x ∈ E, h > 0 and b > 0,

cb1π(x, h) ≤ µ(b)
K (x, h) ≤ cb2π(x, h).

In particular, for any b, b′ > 0 and δ > 0, [µ
(b′)
K (x, h)]1+δ/µ

(b)
K (x, h)→ 0 as h→ 0.

Proof. The double inequality is an obvious consequence of assumption (K). The desired conver-

gence follows because, by monotone convergence, π(x, h)→ P(X = x) = 0 as h→ 0 (since the

probability distribution of X is non-atomic).

Lemma 2. Assume that (L) holds. Let yn →∞ and hn → 0. Then, uniformly in x′ ∈ B(x, hn),

m(1)(yn|x′)−m(1)(yn|x) = O(hn) and m(2)(yn|x′)−m(2)(yn|x) = O(ynhn).

Proof. Remarking that

m(1)(yn|x′)−m(1)(yn|x) = m(1)(0|x′)−m(1)(0|x),

m(2)(yn|x′)−m(2)(yn|x) = m(2)(0|x′)−m(2)(0|x)− 2yn

(
m(1)(0|x′)−m(1)(0|x)

)
,

the result is a straightforward consequence of (L).

Lemma 3. Assume (K) holds. Let yn →∞ and hn → 0 be such that nπ(x, hn)→∞ as n→∞.

Then,

E
[
m̃(0)
n (yn|x)

]
= 1 and Var

[
m̃(0)
n (yn|x)

]
=

µ
(2)
K (x, hn)

nµ
(1)
K (x, hn)2

(1 + o(1)).

If moreover (L) holds then

E
[
m̃(1)
n (yn|x)

]
= m(1)(yn|x)+O(hn) and Var

[
m̃(1)
n (yn|x)

]
=

µ
(2)
K (x, hn)

nµ
(1)
K (x, hn)2

m(2)(yn|x)(1+o(1)).
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Proof. By definition,

E
[
m̃(0)
n (yn|x)

]
=

E
[
K
(
d(x,X)
hn

)]
µ

(1)
K (x, hn)

= 1,

hence the first result. The second one is obtained through a similar calculation:

Var
[
m̃(0)
n (yn|x)

]
=

E
[
K2
(
d(x,X)
hn

)]
−
(
E
[
K
(
d(x,X)
hn

)])2

nµ
(1)
K (x, hn)2

=
µ

(2)
K (x, hn)− µ(1)

K (x, hn)2

nµ
(1)
K (x, hn)2

.

Using Lemma 1 proves the result. Then,

E
[
m̃(1)
n (yn|x)

]
=

E
[
m(1)(yn|X)K

(
d(x,X)
hn

)]
µ

(1)
K (x, hn)

= m(1)(yn|x) +O(hn)

from Lemma 2. The third result is proved. The fourth one is obtained through a similar

calculation:

Var
[
m̃(1)
n (yn|x)

]
=

E
[(
m(2)(yn|X)−m(2)(yn|x)

)
K
(
d(x,X)
hn

)2
]

+m(2)(yn|x)µ
(2)
K (x, hn)

nµ
(1)
K (x, hn)2

− m(1)(yn|x)2

n
(1 + o(1)).

Clearly m(1)(yn|x) = yn(1 + o(1)) and m(2)(yn|x) = y2
n(1 + o(1)). Combining the results of

Lemmas 1 and 2 concludes the proof.

In the next lemma and throughout, B(·, ·) denotes the Beta function. The proofs of Lemmas 4

and 5 are omitted: they are straightforward adaptations of corresponding results (Lemma 2i) and

Lemma 3 respectively) in Girard et al. (2021), whose proofs are written based on a multivariate

covariate (their finite-dimensional nature not playing any role whatsoever).

Lemma 4. Suppose C1(γ(x)) holds. Then, for all a ∈ [0, 1/γ(x)),

ψ(a)(y|x) =
B
(
a+ 1, γ(x)−1 − a

)
γ(x)

yaF (y|x)(1 + o(1)) as y →∞.

Lemma 5. Assume C1(γ(x)) holds. Let yn →∞ and hn → 0 such that ωhn(yn|x) log(yn)→ 0.

Then, uniformly in x′ ∈ B(x, hn) and for all a ∈ [0, 1/γ(x)),

ψ(a)(yn|x′)
ψ(a)(yn|x)

− 1 = O(ωhn(yn|x) log(yn)).

Lemma 6. Assume that (K) and C1(γ(x)) hold. Let yn → ∞ and hn → 0 be such that

ωhn(yn|x) log(yn)→ 0 as n→∞. Then, for all a ∈ [0, 1/γ(x)) and b > 0,

E
[
(Y − yn)aKb

(
d (x,X)

hn

)
1{Y >yn}

]
= ψ(a)(yn|x)µ

(b)
K (x, hn)(1 +O(ωhn(yn|x) log(yn))).

In particular,

∀a ∈ [0, 1/γ(x)), E
[
ψ̃(a)
n (yn|x)

]
= ψ(a)(yn|x) (1 +O (ωhn(yn|x) log(yn)))

and ∀a ∈ [0, 1/(2γ(x))), Var
[
ψ̃(a)
n (yn|x)

]
= ψ(2a)(yn|x)

(
µ

(2)
K (x, hn)

nµ
(1)
K (x, hn)2

)
(1 + o(1)).
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Proof. The first identity is immediate by noting that

E
[
(Y − yn)aKb

(
d (x,X)

hn

)
1{Y >yn}

]
= E

[
ψ(a)(yn|X)Kb

(
d (x,X)

hn

)]
and applying Lemma 5. The second one follows immediately because

E
[
ψ̃(a)
n (yn|x)

]
=

1

µ
(1)
K (x, hn)

E
[
(Y − yn)aK

(
d (x,X)

hn

)
1{Y >yn}

]
.

The third result can be obtained by similar calculations, which yield

Var
[
ψ̃(a)
n (yn|x)

]
=
ψ(2a)(yn|x)µ

(2)
K (x, hn)

nµ
(1)
K (x, hn)2

(1 + o(1))− ψ(a)(yn|x)2

n
(1 + o(1)),

Combining the results of Lemmas 1 and 4 completes the proof.

Lemma 7. Assume (K) and C1(γ(x)) hold with γ(x) < 1/2. Suppose also that there exists

δ ∈ (0, 1) such that E[Y 2+δ
− |X = x] < ∞. Let yn → ∞, hn → 0 and zn = θyn(1 + o(1)), with

θ > 0, such that nF̄ (yn|x)π(x, hn)→∞ and√
nF̄ (yn|x)π(x, hn) log(yn)ωhn ((1− δ)(θ ∧ 1)yn|x)→ 0.

If, for all j ∈ {1, . . . , J}, yn,j = τ
−γ(x)
j yn(1 + o(1)) with 0 < τ1 < τ2 < . . . < τJ ≤ 1, then√√√√nF̄ (yn|x)

µ
(1)
K (x, hn)2

µ
(2)
K (x, hn)


(
ψ̃

(1)
n (yn,j |x)

ψ(1)(yn,j |x)
− 1

)
1≤j≤J

,

(
ψ̃

(0)
n (zn|x)

ψ(0)(zn|x)
− 1

) d−→ N (0J+1,V (x))

where V (x) is the symmetric matrix having entries:

Vj,l(x) =
1− γ(x)

γ(x)
τ−1
l

[
1

1− 2γ(x)

(
τj
τl

)−γ(x)

− 1

]
, (j, l) ∈ {1, . . . , J}2, j ≤ l,

Vj,J+1(x) =
γ(x)θ1/γ(x)

(
θ ∨ τ−γ(x)

j

)1−1/γ(x)
+ (1− γ(x))

(
θ ∨ τ−γ(x)

j − τ−γ(x)
j

)
γ(x)τ

1−γ(x)
j

, j ∈ {1, . . . , J},

VJ+1,J+1(x) = θ1/γ(x).

If in addition (L) holds, then√√√√nF̄ (yn|x)
µ

(1)
K (x, hn)2

µ
(2)
K (x, hn)


(
Ên(yn,j |x)

E(yn,j |x)
− 1

)
1≤j≤J

,

(
F̂n(zn|x)

F (zn|x)
− 1

) d−→ N (0J+1,V (x)) .

Proof. Let β = (β1, . . . , βJ , βJ+1) ∈ RJ+1 and vn(x) =

√
nF̄ (yn|x)

µ
(1)
K (x,hn)2

µ
(2)
K (x,hn)

. One has:

vn(x)


J∑
j=1

βj

(
ψ̃

(1)
n (yn,j |x)

ψ(1)(yn,j |x)
− 1

)
+ βJ+1

(
ψ̃

(0)
n (zn|x)

ψ(0)(zn|x)
− 1

)
= vn(x)


J∑
j=1

βj

 ψ̃(1)
n (yn,j |x)− E

[
ψ̃

(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

+ βJ+1

 ψ̃(0)
n (zn|x)− E

[
ψ̃

(0)
n (zn|x)

]
ψ(0)(zn|x)


+ vn(x)


J∑
j=1

βj

E
[
ψ̃

(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

− 1

+ βJ+1

E
[
ψ̃

(0)
n (zn|x)

]
ψ(0)(zn|x)

− 1

 .
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According to Lemma 6, E
[
ψ̃

(0)
n (zn|x)

]
= ψ(0)(zn|x)(1 +O(ωhn(zn|x) log(zn))),

E
[
ψ̃

(1)
n (yn,j |x)

]
= ψ(1)(yn,j |x)(1 +O(ωhn(yn,j |x) log(yn,j))).

Noticing that for n large enough, yn,j > yn(1 − δ), we obtain ωhn(yn,j |x) ≤ ωhn((1 − δ)yn|x),

∀j ∈ {1, . . . , J}. Similarly zn > θyn(1− δ) and thus ωhn(zn|x) ≤ ωhn((1− δ)θyn|x). Moreover,

log(yn,j) = O(log(yn)) for any j ∈ {1, . . . , J} and log(zn) = O(log(yn)). Therefore

vn(x)


J∑
j=1

βj

E
[
ψ̃

(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

− 1

+ βJ+1

E
[
ψ̃

(0)
n (zn|x)

]
ψ(0)(zn|x)

− 1

 = o(1).

We now focus on the asymptotic distribution of

Zn = vn(x)


J∑
j=1

βj

 ψ̃(1)
n (yn,j |x)− E

[
ψ̃

(1)
n (yn,j |x)

]
ψ(1)(yn,j |x)

+ βJ+1

 ψ̃(0)
n (zn|x)− E

[
ψ̃

(0)
n (zn|x)

]
ψ(0)(zn|x)

 .

We clearly have E[Zn] = 0. In addition, Var[Zn] = F (yn|x)β>B(n)β, where B(n) is the sym-

metric matrix-valued sequence having entries

B
(n)
j,l =

cov
(

(Y − yn,j)K
(
d(x,X)
hn

)
1{Y >yn,j}, (Y − yn,l)K

(
d(x,X)
hn

)
1{Y >yn,l}

)
µ

(2)
K (x, hn)ψ(1)(yn,j |x)ψ(1)(yn,l|x)

, j ≤ l ∈ {1, . . . , J},

B
(n)
j,J+1 =

cov
(

(Y − yn,j)K
(
d(x,X)
hn

)
1{Y >yn,j},K

(
d(x,X)
hn

)
1{Y >zn}

)
µ

(2)
K (x, hn)ψ(1)(yn,j |x)ψ(0)(zn|x)

, j ∈ {1, . . . , J},

B
(n)
J+1,J+1 =

Var
[
K
(
d(x,X)
hn

)
1{Y >zn}

]
µ

(2)
K (x, hn)[ψ(0)(zn|x)]2

.

Let us first focus, for j ≤ l, on the term A
(n)
j,l = B

(n)
j,l ψ

(1)(yn,j |x)ψ(1)(yn,l|x). Since yn,j > yn,l

for n large enough, we find:

A
(n)
j,l =

1

µ
(2)
K (x, hn)

E
[
(Y − yn,j)(Y − yn,l)K2

(
d(x,X)

hn

)
1{Y >yn,j}

]
− 1

µ
(2)
K (x, hn)

E
[
(Y − yn,j)K

(
d(x,X)

hn

)
1{Y >yn,j}

]
E
[
(Y − yn,l)K

(
d(x,X)

hn

)
1{Y >yn,l}

]
.

According to Lemma 6, the second term is equal to µ
(1)
K (x, hn)2ψ(1)(yn,j |x)ψ(1)(yn,l|x)/µ

(2)
K (x, hn)(1+

o(1)). It thus remains to focus on the first term of A
(n)
j,l which we rewrite as

1

µ
(2)
K (x, hn)

(
E
[
(Y − yn,j)2K2

(
d(x,X)

hn

)
1{Y >yn,j}

]
+ (yn,j − yn,l)E

[
(Y − yn,j)K2

(
d(x,X)

hn

)
1{Y >yn,j}

])
.

Using Lemma 6, we get

1

µ
(2)
K (x, hn)

E
[
(Y − yn,j)2K2

(
d(x,X)

hn

)
1{Y >yn,j}

]
= ψ(2)(yn,j |x)(1 + o(1))
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and

(yn,j − yn,l)
µ

(2)
K (x, hn)

E
[
(Y − yn,j)K2

(
d(x,X)

hn

)
1{Y >yn,j}

]
=
(
τ
−γ(x)
j − τ−γ(x)

l

)
ψ(1)(yn,j |x)yn(1+o(1)).

Besides, Lemma 4 and the regular variation property of F (·|x) provide, for any j,
ψ(1)(yn,j |x) =

γ(x)

1− γ(x)
τ
−γ(x)
j ynτjF (yn|x)(1 + o(1)),

ψ(2)(yn,j |x) =
2γ(x)2

(1− 2γ(x))(1− γ(x))
τ
−2γ(x)
j y2

nτjF (yn|x)(1 + o(1)).

Consequently the first term in A
(n)
j,l is of order y2

nF (yn|x) and thus dominates, by Lemma 1.

Straightforward calculations then yield:

B
(n)
j,l =

1− γ(x)

γ(x)
τ−1
l

[
1

1− 2γ(x)

τ
−γ(x)
j

τ
−γ(x)
l

− 1

]
1

F (yn|x)
(1 + o(1)).

We now deal with B
(n)
j,J+1 for j ∈ {1, . . . , J}, which can be rewritten as

E
[
(Y − yn,j)K2

(
d(x,X)
hn

)
1{Y >yn,j∨zn}

]
− E

[
(Y − yn,j)K

(
d(x,X)
hn

)
1{Y >yn,j}

]
E
[
K
(
d(x,X)
hn

)
1{Y >zn}

]
µ

(2)
K (x, hn)ψ(1)(yn,j |x)ψ(0)(zn|x)

.

Using Lemma 6, the second term in the numerator equals µ
(1)
K (x, hn)2ψ(1)(yn,j |x)ψ(0)(zn|x)(1 +

o(1)) and the first term can be rewritten

E
[
(Y − yn,j)K2

(
d(x,X)

hn

)
1{Y >yn,j∨zn}

]
= µ

(2)
K (x, hn)

[
ψ(1)(yn,j ∨ zn|x) + (yn,j ∨ zn − yn,j)ψ(0)(yn,j ∨ zn|x)

]
(1 + o(1)).

Combining Lemma 1 and Lemma 4 with the asymptotic equivalent F (yn,j ∨ zn|x)/F (yn|x) =

(θ ∨ τ−γ(x)
j )−1/γ(x)(1 + o(1)), we get that the first term dominates again. From straightforward

calculations,

B
(n)
j,J+1 =

ψ(1)(yn,j ∨ zn|x) + (yn,j ∨ zn − yn,j)ψ(0)(yn,j ∨ zn|x)

ψ(1)(yn,j |x)ψ(0)(zn|x)
(1 + o(1))

=
γ(x)

(
θ ∨ τ−γ(x)

j

)1−1/γ(x)
+ (1− γ(x))

(
θ ∨ τ−γ(x)

j − τ−γ(x)
j

)(
θ ∨ τ−γ(x)

j

)−1/γ(x)

γ(x)τ
1−γ(x)
j θ−1/γ(x)

1

F (yn|x)
(1 + o(1))

=
γ(x)

(
θ ∨ τ−γ(x)

j

)1−1/γ(x)
+ (1− γ(x))

(
θ ∨ τ−γ(x)

j − τ−γ(x)
j

)
θ−1/γ(x)

γ(x)τ
1−γ(x)
j θ−1/γ(x)

1

F (yn|x)
(1 + o(1)).

Finally, combining Lemmas 1, 4 and 6, the variance term B
(n)
J+1,J+1 is clearly

E
[
K2
(
d(x,X)
hn

)
1{Y >zn}

]
−
{
E
[
K
(
d(x,X)
hn

)
1{Y >zn}

]}2

µ
(2)
K (x, hn)[ψ(0)(zn|x)]2

= θ1/γ(x) 1

F (yn|x)
(1 + o(1)).
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Therefore, Var[Zn] → β>V (x)β, where V (x) is given in the statement of the lemma. It only

remains to prove the asymptotic normality of Zn. We thus write Zn =
∑n

i=1 Zi,n, where

Zi,n =
vn(x)

nµ
(1)
K (x, hn)

J∑
j=1

βj
(Yi − yn,j)K

(
d(x,Xi)
hn

)
1{Yi>yn,j} − E

[
(Yi − yn,j)K

(
d(x,Xi)
hn

)
1{Yi>yn,j}

]
ψ(1)(yn,j |x)

+
vn(x)

nµ
(1)
K (x, hn)

βJ+1

K
(
d(x,Xi)
hn

)
1{Yi>zn} − E

[
K
(
d(x,Xi)
hn

)
1{Yi>zn}

]
ψ(0)(zn|x)

.

We prove that there is δ > 0 such that nE|Z1,n|2+δ → 0 as n → ∞; the result then follows

by the Lyapunov central limit theorem (see Theorem 27.3 p.362 of Billingsley, 1995). For that

purpose, note that, if T1, . . . , Tq have finite (2 + δ)−moments,E

∣∣∣∣∣
q∑
i=1

[Ti − E(Ti)]

∣∣∣∣∣
2+δ


1/(2+δ)

≤
q∑
i=1

{E|Ti|2+δ}1/(2+δ) + E|Ti| ≤ 2q max
1≤i≤q

{E|Ti|2+δ}1/(2+δ)

by the triangle inequality for the standard norm in the space of random variables with finite

(2 + δ)−moment, and Jensen’s inequality. Therefore, E|Z1,n|2+δ =

O

( F (yn|x)

nµ
(2)
K (x, hn)

)1+δ/2
 max

1≤j≤J
E

∣∣∣∣∣∣
(Y − yn,j)K

(
d(x,X)
hn

)
1{Y >yn,j}

ψ(1)(yn,j |x)

∣∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣∣
K
(
d(x,X)
hn

)
1{Y >zn}

ψ(0)(zn|x)

∣∣∣∣∣∣
2+δ

 .

Combine now, for δ small enough, Lemmas 1, 4 and 6 with the asymptotic equivalences F (zn|x) =

θ−1/γ(x)F (yn|x)(1 + o(1)) and F (yn,j |x) = τjF (yn|x)(1 + o(1)) to get

nE|Z1,n|2+δ = O
([
nπ(x, hn)F (yn|x)

]−δ/2)
,

which clearly tends to 0 as n→∞. The first result is proved. To show the second result, set

Rn,j :=
2
(
ψ̃

(1)
n (yn,j |x)− ψ(1)(yn,j |x)

)
−
(
m̃

(1)
n (yn,j |x)−m(1)(yn,j |x)

)
2ψ(1)(yn,j |x)−m(1)(yn,j |x)

.

We may write

vn(x)

J∑
j=1

βj

(
Ên(yn,j |x)

E(yn,j |x)
− 1

)
+ vn(x)βJ+1

(
F̂n(zn|x)

F (zn|x)
− 1

)

= vn(x)

J∑
j=1

βj

(
ψ̃

(1)
n (yn,j |x)

ψ(1)(yn,j |x)
− 1

)
(1 +Rn,j)

−1 + vn(x)βJ+1

(
ψ̃

(0)
n (zn|x)

ψ(0)(zn|x)
− 1

)
1

m̃
(0)
n (zn|x)

+ vn(x)

J∑
j=1

βj
(
(1 +Rn,j)

−1 − 1
)

+ vn(x)βJ+1

(
1

m̃
(0)
n (zn|x)

− 1

)
.

Combining Lemmas 1, 3 and 6 directly entails

∀j ∈ {1, . . . , J}, Rn,j = OP

(
1√

nπ(x, hn)

)
= oP

 1√
nπ(x, hn)F (yn|x)

 P−→ 0

and the result then follows by applying the first result of the lemma.
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Lemma 8. Assume (K) and C1(γ(x)) hold. Let yn →∞, hn → 0 and zn = θyn(1 + o(1)), with

θ > 0, be such that nF (yn|x)π(x, hn)→∞ and

∃δ > 0,
√
nF̄ (yn|x)π(x, hn) log(yn)ωhn((1− δ)(θ ∧ 1)yn|x)→ 0.

Then if, for all j ∈ {1, . . . , J}, yn,j = τ
−γ(x)
j yn(1 + o(1)) with 0 < τ1 < τ2 < . . . < τJ ≤ 1, one

has√√√√nF (yn|x)
µ

(1)
K (x, hn)2

µ
(2)
K (x, hn)


(
F̂n(yn,j |x)

F (yn,j |x)
− 1

)
1≤j≤J

,

(
F̂n(zn|x)

F (zn|x)
− 1

) d−→ N (0J+1,Σ(x)) ,

where Σ(x) is the symmetric matrix having entries:
Σj,l(x) = τ−1

l , (j, l) ∈ {1, . . . , J}2, j ≤ l,

Σj,J+1(x) =
(
τj ∨ θ−1/γ(x)

)−1
, j ∈ {1, . . . , J},

ΣJ+1,J+1(x) = θ1/γ(x).

Proof. The proof is entirely similar to that of Lemma 7 and is thus omitted.

A.2 Proofs of main results

Proof of Theorem 1 Let us recall that σ−1
n (x) =

√
n(1− αn)

µ
(1)
K (x,hn)2

µ
(2)
K (x,hn)

, introduce z =

(z1, . . . , zJ , t) and focus on the probability

Φn(z) = P

 J⋂
j=1

{
σ−1
n (x)

(
ên(αn,j |x)

e(αn,j |x)
− 1

)
≤ zj

}
∩
{
σ−1
n (x)

(
q̂n(an|x)

q(an|x)
− 1

)
≤ t
}

= P

 J⋂
j=1

{ên(αn,j |x) ≤ e(αn,j |x) (1 + zjσn(x))} ∩ {q̂n(an|x) ≤ q(an|x) (1 + tσn(x))}

 .

By noticing that 1−αn,j = E(e(αn,j |x)|x) and 1− an = F (q(an|x)|x), and using that for all y,

α, ên(α|x) ≤ y ⇔ Ên(y|x) ≤ 1− α and q̂n(α|x) ≤ y ⇔ F̂n(y|x) ≤ 1− α, we find that Φn(z) is

equal to

P

 J⋂
j=1

{
Ên(e(αn,j |x)(1 + zjσn(x))|x) ≤ E(e(αn,j |x)|x)

}
∩
{
F̂n(q(an|x)(1 + tσn(x))|x) ≤ F (q(an|x)|x)

} .

Letting yn = e(αn|x), yn,j = e(αn,j |x)(1 + zjσn(x)), zn = q(an|x)(1 + tσn(x)) and vn(x) =√
nF̄ (yn|x)

µ
(1)
K (x,hn)2

µ
(2)
K (x,hn)

, we have

Φn(z) = P

 J⋂
j=1

{
vn(x)

(
Ên(yn,j |x)

E(yn,j |x)
− 1

)
≤ vn(x)

(
E(e(αn,j |x)|x)

E(yn,j |x)
− 1

)}
⋂{

vn(x)

(
F̂n(zn|x)

F (zn|x)
− 1

)
≤ vn(x)

(
F (q(an|x)|x)

F (zn|x)
− 1

)})
.
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By Corollary 3 of Girard et al. (2021), E(·|x) is continuously differentiable with

lim
y→∞

yE
′
(y|x)

E(y|x)
= lim

y→∞

yF
′
(y|x)

F (y|x)
= − 1

γ(x)
.

Thus, for any j ∈ {1, . . . , J}, a Taylor expansion shows that there exists θn,j ∈ [0, 1] with:

E(yn,j |x) = 1− αn,j + zjσn(x)e(αn,j |x)E
′
(e(αn,j |x) + θn,jzjσn(x)e(αn,j |x)|x)

= 1− αn,j + zjσn(x)e(αn,j |x)E
′
(e(αn,j |x)|x)(1 + o(1))

= (1− αn,j)
(

1− zjσn(x)

γ(x)
(1 + o(1))

)
= E(e(αn,j |x)|x)

(
1− zjσn(x)

γ(x)
(1 + o(1))

)
.

In view of (4.2), vn(x) = σ−1
n (x)

√
γ(x)−1 − 1(1 + o(1)) and therefore

∀j ∈ {1, . . . , J}, vn(x)

(
E(e(αn,j |x)|x)

E(yn,j |x)
− 1

)
=

zj
γ(x)

√
1− γ(x)

γ(x)
(1 + o(1)).

Similarly

vn(x)

(
F (q(an|x)|x)

F (zn|x)
− 1

)
=

t

γ(x)

√
1− γ(x)

γ(x)
(1 + o(1)).

Finally, yn,j = τ
−γ(x)
j yn(1 + o(1)) and zn =

(
γ(x)−1 − 1

)γ(x)
τ−γ(x)yn(1 + o(1)), since, in

view of (4.3), e(·|x) is regularly varying. Thus, for n large enough, ωhn(yn,j |x) ≤ ωhn((1 −
δ)e(αn|x)|x) and ωhn(zn|x) ≤ ωhn((1 − δ)q(an|x)|x). Moreover, log(yn,j) = O(log(yn)) and

log(zn) = O(log(yn)). Noting that log(yn) = O(| log(1 − αn)|) by the regular variation prop-

erty of the tail expectile function t 7→ e(1 − t−1|x), Lemma 7 can then be applied with

θ = τ−γ(x)
(
γ(x)−1 − 1

)γ(x)
to conclude the proof. 2

Proof of Theorem 2 The key is to write

log

(
êWn,αn(βn|x)

e(βn|x)

)
= log

(
1− αn
1− βn

)
(γ̂αn(x)−γ(x))+log

(
ên(αn|x)

e(αn|x)

)
+log

([
1− αn
1− βn

]γ(x) e(αn|x)

e(βn|x)

)
.

The first term is controlled by our assumptions on γ̂αn(x), the second term by Theorem 1 and

the third one by Lemma 8 of Girard et al. (2021) (whose proof carries over to the functional

case without modification). The delta-method concludes the proof. 2

Proof of Theorem 3 The key is to write

log

(
ẽWn,αn(βn|x)

e(βn|x)

)
= log

(
1− αn
1− βn

)
(γ̂αn(x)− γ(x)) + log

(
q̂n(αn|x)

q(αn|x)

)

+ log

([
1− αn
1− βn

]γ(x) q(αn|x)

q(βn|x)

)

+ log

((
γ̂αn(x)−1 − 1

)−γ̂αn (x)

(γ(x)−1 − 1)−γ(x)

)
+ log

(
q(βn|x)

(
γ(x)−1 − 1

)−γ(x)

e(βn|x)

)
.

Under our conditions, the second term is a OP(σn(x)). According to Theorem 4.3.8 in de Haan

and Ferreira (2006) and condition iii), the third term is a O
(
A
(
(1− αn)−1|x

)
)
)
. Similarly,

Proposition 1 in Daouia et al. (2018) entails that the last term is a O
(
A
(
(1− αn)−1|x

))
+

O
(
q(αn|x)−1

)
. Finally, our assumptions on γ̂αn(x) imply that the fourth term is a OP(σn(x)).

The result follows. 2
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Extension and proof of Theorem 4 The proof of Theorem 4 hinges on the result below.

Recall that σn(x) = 1/

√
n(1− αn)

µ
(1)
K (x,hn)2

µ
(2)
K (x,hn)

.

Proposition 1. Assume (K) and C1(γ(x)) hold. Let αn → 1, hn → 0 and 1 − an = τ(1 −
αn)(1 + o(1)) be such that n(1− αn)π(x, hn)→∞ and

∃δ > 0,
√
n(1− αn)π(x, hn)ωhn((1− δ)(τ−γ(x) ∧ 1)q(αn|x)|x) log(1− αn)→ 0

Then, if 1− αn,j = τj(1− αn) for some 0 < τ1 < τ2 < · · · < τJ ≤ 1, one has

σ−1
n (x)

{(
q̂n(αn,j |x)

q(αn,j |x)
− 1

)
1≤j≤J

,

(
q̂n(an|x)

q(an|x)
− 1

)}
d−→ N

(
0J+1, γ

2(x)Σ(x)
)
,

where Σ(x) is defined in Lemma 8 (with θ = τ−γ(x)).

Proof. The proof is entirely similar to that of Theorem 1, applying Lemma 8 rather than

Lemma 7 at the final step. We omit the details.

Theorem 7. Assume (K) and C2(γ(x), ρ(x), A(·|x)) hold. Let αn → 1, hn → 0 be such that

n(1 − αn)π(x, hn) → ∞ and introduce 1 − an = τ(1 − αn)(1 + o(1)), where τ > 0. Assume

further that

i) σ−1
n (x) log(1− αn)ωhn

(
(1− δ)(τ−γ(x) ∧ 1)q(αn|x))|x

)
→ 0 for some δ > 0,

ii) σ−1
n (x)A

(
(1− αn)−1|x

)
→ λ1 ∈ R.

Then

σ−1
n (x)

(
γ̂(J)
αn (x)− γ(x),

q̂n(αn|x)

q(αn|x)
− 1,

q̂n(an|x)

q(an|x)
− 1

)
converges in distribution to a Gaussian random vector with expectation 1

log(J !)

 J∑
j=2

jρ(x) − 1

ρ(x)

λ1, 0, 0


and covariance matrix

γ2(x)



J(J − 1)(2J − 1)

6 log(J !)2
0

1

log(J !)

J−1∑
j=1

[
(τj ∨ τ)−1 − (1 ∨ τ)−1

]
0 1 (τ ∨ 1)−1

1

log(J !)

J−1∑
j=1

[
(τj ∨ τ)−1 − (1 ∨ τ)−1

]
(τ ∨ 1)−1 τ−1


where τj = (J − j + 1)−1 for all j ∈ {1, . . . , J}.
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Proof. Recall that τj = 1/(J − j + 1) (in particular τJ = 1) and therefore

σ−1
n (γ̂(J)

αn (x)− γ(x))

= σ−1
n (x)

 1

log(J !)

J−1∑
j=1

log

(
q̂n (1− τj(1− αn)|x)

q̂n (1− τJ(1− αn)|x)

)
− γ(x)


= σ−1

n (x)

 1

log(J !)

J−1∑
j=1

log

(
q̂n (1− τj(1− αn)|x)

q (1− τj(1− αn)|x)

)
− J − 1

log(J !)
log

(
q̂n (1− τJ(1− αn)|x)

q (1− τJ(1− αn)|x)

)
+ σ−1

n (x)

 1

log(J !)

J−1∑
j=1

log

(
q (1− τj(1− αn)|x)

q (αn|x)

)
− γ(x)

 =: An +Bn.

The bias term Bn is controlled by applying Theorem 2.3.9 in de Haan and Ferreira (2006): since

∀u > 0,
q (1− (1− αn)/u|x)

q (αn|x)
= uγ(x)

(
1 +A

(
(1− αn)−1|x

) [uρ(x) − 1

ρ(x)
+ o(1)

])
,

it is easily seen that, by condition ii),

Bn →
1

log(J !)

J−1∑
j=1

τ
−ρ(x)
j − 1

ρ(x)

λ1 =
1

log(J !)

 J∑
j=2

jρ(x) − 1

ρ(x)

λ1 as n→∞.

Besides, by Proposition 1 and a Taylor expansion,

An = σ−1
n (x)

1

log(J !)
(1, . . . , 1,−(J − 1))


q̂n(1−τ1(1−αn)|x)
q(1−τ1(1−αn)|x) − 1

...
q̂n(1−τJ−1(1−αn)|x)
q(1−τJ−1(1−αn)|x) − 1
q̂n(1−τJ (1−αn)|x)
q(1−τJ (1−αn)|x) − 1

+ oP(1).

By Proposition 1 again, it follows that ∆n = σ−1
n (x)

(
γ̂

(J)
αn (x)− γ(x), q̂n(αn|x)

q(αn|x) − 1, q̂n(an|x)
q(an|x) − 1

)
is asymptotically Gaussian, with asymptotic mean 1

log(J !)

 J∑
j=2

jρ(x) − 1

ρ(x)

λ1, 0, 0

 .

It remains to calculate the covariance matrix of this limiting Gaussian distribution. Note that,

by Proposition 1 and straightforward calculations,

Var(An)→ J(J − 1)(2J − 1)

6 log(J !)2

(see also Gardes and Girard (2012)) and

cov

(
An,

q̂n(an|x)

q(an|x)
− 1

)
→ 1

log(J !)

J−1∑
j=1

(τj ∨ τ)−1 − (J − 1)(τJ ∨ τ)−1


=

1

log(J !)

J−1∑
j=1

[
(τj ∨ τ)−1 − (1 ∨ τ)−1

]
.
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It now follows directly from Proposition 1 and straightforward calculations that the covariance

matrix is

γ2(x)


J(J−1)(2J−1)

6 log(J !)2
0 1

log(J !)

J−1∑
j=1

[
(τj ∨ τ)−1 − (1 ∨ τ)−1

]
0 1 (τ ∨ 1)−1

1
log(J !)

J−1∑
j=1

[
(τj ∨ τ)−1 − (1 ∨ τ)−1

]
(τ ∨ 1)−1 τ−1


as required.

Proof of Theorem 5 Let τ = γ(x)−1 − 1. For any z ∈ R, let us focus on the probability

Φn(z) = P

(
σ−1
n (x)

(
ˆ̄Fn (ên(αn|x)|x)

1− αn
− τ

)
≤ z

)
= P

(
ˆ̄Fn (ên(αn|x)|x) ≤ (1− αn) (τ + zσn(x))

)
.

Equivalently, Φn(z) = P (ên(αn|x) ≥ q̂n(βn|x)), where βn = 1 − (1 − αn) (τ + zσn(x)) and

therefore Φn(z) is given by

P
(
σ−1
n (x)

(
ên(αn|x)

e(αn|x)
− 1

)
≥ σ−1

n (x)

(
q̂n(βn|x)

q(βn|x)
− 1

)
q(βn|x)

e(αn|x)
+ σ−1

n (x)

(
q(βn|x)

e(αn|x)
− 1

))
.

From de Haan and Ferreira (2006, Theorem 2.3.9), condition C2(γ(x), ρ(x), A(.|x)) entails

q(βn|x)

q(αn|x)
= τ−γ(x)

[
1 +

τ−ρ(x) − 1

ρ(x)
A
(
(1− αn)−1|x

)
(1 + o(1))− γ(x)zσn(x)

τ
(1 + o(1))

]
.

(A.1)

In addition, under C2(γ(x), ρ(x), A(.|x)), Daouia et al. (2018, Corollary 1) yields

e(αn|x)

q(αn|x)
= τ−γ(x)

[
1 + r(αn|x) +

τ−ρ(x) − 1

ρ(x)
A
(
(1− αn)−1|x

)]
, (A.2)

where

r(αn|x) =
γ(x)τγ(x)

q(αn|x)
(E[Y |X = x] + o(1)) +

(
τ−ρ(x)

1− γ(x)− ρ(x)
+ o(1)

)
A
(
(1− αn)−1|x

)
.

Combining (A.1) and (A.2) yields

σ−1
n (x)

(
q(βn|x)

e(αn|x)
− 1

)
= −z γ(x)

τ
+ o(1)− σ−1

n (x)r(αn|x)(1 + o(1)).

In view of conditions ii) and iii), one has

σ−1
n (x)r(αn|x)→ λ =

(
γ(x)−1 − 1

)−ρ(x)

1− γ(x)− ρ(x)
λ1 + γ(x)

(
γ(x)−1 − 1

)γ(x) E[Y |X = x]λ2 as n→∞.

This entails

σ−1
n (x)

(
q(βn|x)

e(αn|x)
− 1

)
= −z γ(x)

τ
− λ+ o(1). (A.3)

Then, Φn(z) can be rewritten as

P
(

τ

γ(x)

[
−σ−1

n (x)

(
ên(αn|x)

e(αn|x)
− 1

)
+ σ−1

n (x)

(
q̂n(βn|x)

q(βn|x)
− 1

)
(1 + o(1))

]
− λ τ

γ(x)
+ o(1) ≤ z

)
,
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and therefore the asymptotic distribution of σ−1
n (x)

(
ˆ̄Fn(ên(αn|x)|x)

1−αn − τ
)

is the same as that of

1− γ(x)

γ2(x)
(−1, 1)σ−1

n (x)

 ên(αn|x)
e(αn|x) − 1

q̂n(βn|x)
q(βn|x) − 1

− λ1− γ(x)

γ2(x)
.

Finally, γ̂αn(x) being obtained by applying the function u 7→ (1 + u)−1 to ˆ̄Fn(ên(αn|x)|x)/(1−
αn), its asymptotic distribution is the limit in distribution of

(1− γ(x)) (1,−1)σ−1
n (x)

 ên(αn|x)
e(αn|x) − 1

q̂n(βn|x)
q(βn|x) − 1

+ λ(1− γ(x))

by the delta-method. Apply Theorem 1 to conclude the proof. 2

Proof of Theorem 6 Let τ = γ(x)−1 − 1, ẽn(αn|x) =
(
γ̂

(J)
αn (x)−1 − 1

)−γ̂(J)αn (x)
q̂n(αn|x) and

for any z ∈ R, focus on the probability

Φn(z) = P

(
σn(x)−1

(
ˆ̄Fn (ẽn(αn|x)|x)

1− αn
− τ

)
≤ z

)
= P

(
ˆ̄Fn (ẽn(αn|x)|x) ≤ (1− αn) (τ + zσn(x))

)
.

Similarly to the previous proof, and using (A.3), Φn(z) can be rewritten as

P
(

τ

γ(x)

[
−σ−1

n (x)

(
ẽn(αn|x)

e(αn|x)
− 1

)
+ σ−1

n (x)

(
q̂n(βn|x)

q(βn|x)
− 1

)
(1 + o(1))

]
− λ τ

γ(x)
+ o(1) ≤ z

)
where βn = 1− (1− αn) (τ + zσn(x)). Consider the expansion:

σn(x)−1

(
ẽn(αn|x)

e(αn|x)
− 1

)
= σn(x)−1

((
γ̂(J)
αn (x)−1 − 1

)−γ̂(J)αn (x)
− τ−γ(x)

)
q(αn|x)

e(αn|x)

q̂n(αn|x)

q(αn|x)

+ σn(x)−1

(
q̂n(αn|x)

q(αn|x)
− 1

)
τ−γ(x)q(αn|x)

e(αn|x)
+ σn(x)−1

(
τ−γ(x)q(αn|x)

e(αn|x)
− 1

)
.

By (A.2) above, Proposition 1, Theorem 4, and Slutsky’s lemma, the asymptotic distribution of

σn(x)−1 (ẽn(αn|x)/e(αn|x)− 1) is that of

σn(x)−1

(
1

1− γ(x)
− log

(
γ(x)−1 − 1

)
, 1

)(
γ̂

(J)
αn (x)− γ(x)
q̂n(αn|x)
q(αn|x) − 1

)
− λ− τ−ρ(x) − 1

ρ(x)
λ1.

Recall then (A.3) to find that σn(x)−1
(

ˆ̄Fn (ẽn(αn|x)|x) /(1− αn)− τ
)

has the asymptotic dis-

tribution of

− τ

γ(x)
σn(x)−1

(
1

1− γ(x)
− log

(
γ(x)−1 − 1

)
, 1,−1

)
γ̂

(J)
αn (x)− γ(x)
q̂n(αn|x)
q(αn|x) − 1
q̂n(βn|x)
q(βn|x) − 1

 +
τ

γ(x)

τ−ρ(x) − 1

ρ(x)
λ1.
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Finally, γ̃
(J)
αn (x) being obtained by applying the function u 7→ (1 + u)−1 to ˆ̄Fn(ẽn(αn|x)|x)/(1−

αn), its asymptotic distribution is the limit in distribution of

(1−γ(x))σn(x)−1

(
1

1− γ(x)
− log

(
γ(x)−1 − 1

)
, 1,−1

)
γ̂

(J)
αn (x)− γ(x)
q̂n(αn|x)
q(αn|x) − 1
q̂n(βn|x)
q(βn|x) − 1

−(1−γ(x))
τ−ρ(x) − 1

ρ(x)
λ1

by the delta-method. Apply Theorem 7 to conclude the proof. 2
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