
HAL Id: hal-03117800
https://inria.hal.science/hal-03117800

Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Principled Approach to GraphQL Query Cost
Analysis

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel,
Jim A. Laredo

To cite this version:
Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, et al.. A Principled
Approach to GraphQL Query Cost Analysis. ESEC/FSE 2020 - 28th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering, Nov 2020,
Sacramento / Virtual, United States. �10.1145/3368089.3409670�. �hal-03117800�

https://inria.hal.science/hal-03117800
https://hal.archives-ouvertes.fr


A Principled Approach to GraphQL Query Cost Analysis

Alan Cha
IBM Research, USA
alan.cha1@ibm.com

Erik Wittern∗

IBM, Germany
erik.wittern@ibm.com

Guillaume Baudart
IBM Research, USA

Guillaume.Baudart@ibm.com

James C. Davis2

Purdue University, USA
davisjam@purdue.edu

Louis Mandel
IBM Research, USA
lmandel@us.ibm.com

Jim A. Laredo
IBM Research, USA
laredoj@us.ibm.com

ABSTRACT

The landscape of web APIs is evolving to meet new client require-

ments and to facilitate how providers fulfill them. A recent web API

model is GraphQL, which is both a query language and a runtime.

Using GraphQL, client queries express the data theywant to retrieve

or mutate, and servers respond with exactly those data or changes.

GraphQL’s expressiveness is risky for service providers because

clients can succinctly request stupendous amounts of data, and re-

sponding to overly complex queries can be costly or disrupt service

availability. Recent empirical work has shown that many service

providers are at risk. Using traditional API management methods is

not sufficient, and practitioners lack principled means of estimating

and measuring the cost of the GraphQL queries they receive.

In this work, we present a linear-time GraphQL query analysis

that can measure the cost of a query without executing it. Our

approach can be applied in a separate API management layer and

used with arbitrary GraphQL backends. In contrast to existing static

approaches, our analysis supports common GraphQL conventions

that affect query cost, and our analysis is provably correct based

on our formal specification of GraphQL semantics.

We demonstrate the potential of our approach using a novel

GraphQL query-response corpus for two commercial GraphQL

APIs. Our query analysis consistently obtains upper cost bounds,

tight enough relative to the true response sizes to be actionable

for service providers. In contrast, existing static GraphQL query

analyses exhibit over-estimates and under-estimates because they

fail to support GraphQL conventions.

CCS CONCEPTS

· Security and privacy → Denial-of-service attacks; · Soft-

ware and its engineering→ Domain specific languages.

KEYWORDS

GraphQL, algorithmic complexity attacks, static analysis

∗Most of the work performed while at IBM Research, USA.
2Most of the work performed while at Virginia Tech.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409670

ACM Reference Format:

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel,

and Jim A. Laredo. 2020. A Principled Approach to GraphQL Query Cost

Analysis. In Proceedings of the 28th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’20), November 8ś13, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3368089.3409670

1 INTRODUCTION

Web APIs are the preferred approach to exchange information on

the internet. Requirements to satisfy new client interactions have

led to new web API models such as GraphQL [30], a data query

language. A GraphQL service provides a schema, defining the data

entities and relationships for which clients can query.

GraphQL has seen increasing adoption because it offers three

advantages over other web API paradigms. First, GraphQL reduces

network traffic and server processing because users can express

their data requirements in a single query [29]. Second, it simplifies

API maintenance and evolution by reducing the number of service

endpoints [37]. Third, GraphQL is strongly typed, facilitating tool-

ing including data mocking [12], query checking [8], and wrappers

for existing APIs [41]. These benefits have not been lost on service

providers [26], with adopters including GitHub [5] and Yelp [2].

However, GraphQL can be perilous for service providers. Aworst-

case GraphQL query requires the server to perform an exponential

amount of work [34], with implications for execution cost, pricing

models, and denial-of-service [32]. This risk is not hypothetical Ð

a majority of GraphQL schemas expose service providers to the

risk of high-cost queries [40]. As practitioners know [1, 36, 38], the

fundamental problem for GraphQL API management is the lack of a

cheap, accurate way to estimate the cost of a query.

Existing dynamic and static cost estimates fall short (ğ2). Dy-

namic approaches are accurate but impractically expensive [27, 34],

relying on interaction with the backend service and assuming spe-

cialized backend functionality [27]. Current static approaches are

inaccurate and do not support GraphQL conventions [20, 23, 25].

We present the first provably correct static query cost analysis for

GraphQL. We begin with a novel formalization of GraphQL queries

and semantics (ğ3). After extending the formalization with simple

configuration information to capture common schema conventions,

we define two complexity metrics reflecting server and client costs

for a GraphQL query (ğ4). Then we show how to compute upper

bounds for a query’s cost according to these metrics (ğ5). Our

analysis takes linear time and space in the size of the query.

Our analysis is accurate and practical (ğ6). We studied 10,000

query-response pairs from two commercial GraphQL APIs. Unlike

257

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409670
https://doi.org/10.1145/3368089.3409670


ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

Figure 1: Proposed applications of our query analysis. The client’smalicious query requests an exponentially large result from

GitHub’s GraphQLAPI. At the time of our study, GitHub permitted the shownquery, but halted its execution after it exceeded a

time limit. Using our techniques, client-side query inspection can provide feedback during composition (seeComplexities inset).

Server-side policy enforcement can reject queries and update rate limits based on provider-defined policies. We disclosed this

denial of service vector to GitHub, and it has since been patched (ğ6.4.3).

existing analyses, our analysis obtains accurate cost bounds even

for pathological queries. With minimal configuration, our bounds

are tight enough to be actionable for service providers. Our analysis

is fast enough to be used in existing request-response flows.

This paper makes the following contributions:

• We give a novel formalization of GraphQL semantics (ğ3).

• We propose two GraphQL query complexity measures (ğ4) that

are used to estimate the cost of a query. We then prove a linear-

time static analysis to obtain an upper bound for these measures

on a given query (ğ5).

• We evaluate our analysis against two public GraphQL APIs and

show that it is practical, accurate, and fast (ğ6). We also identify

causes of over- and under-estimation in existing static analyses.

• We share the first GraphQL query-response corpus [31]: 10, 000

unique query and response pairs from the GitHub and Yelp APIs.

We illustrate applications of our analysis by exploiting a flaw

in GitHub’s static analysis (Figure 1).1 We issued an exponential-

time query to GitHub. GitHub’s analysis incorrectly estimated the

query’s cost, accepted it, and wasted resources until the evaluation

timed out. Our analysis can help service providers avoid this situ-

ation. Some large queries are accidental, and our measure of type

complexity would permit clients to understand the potential sizes

of responses before issuing queries, reducing accidental service and

network costs. Both type complexity and our measure of resolve

complexity would permit service providers to understand a query’s

potential execution cost. Using these metrics will allow service

providers to identify high-cost queries and respond appropriately.

2 BACKGROUND AND MOTIVATION

In this section, we motivate the need for GraphQL query cost anal-

ysis (ğ2.1) and then discuss existing query analyses (ğ2.2).

1GitHub’s API also has a runtime defense, so the risk to their service was minimal.

2.1 Motivation

Our work is motivated by two aspects of software engineering

practice: (1) the majority of real-world GraphQL schemas expose

service providers to high-cost queries, and (2) existing strategies

employed by service providers are inadequate.

High-complexity GraphQL schemas are common in practice. Har-

tig and Pérez showed that a GraphQL query can yield an exponential

amount of data in the size of the query [34]. Such a query requests

the nested retrieval of the same data, and is only possible if the

schema defines self-referential relationships (łloops of listsž), and

if the underlying data contains such relationships. Wittern et al.

extended their analysis to identify schemas with polynomial-sized

worst-case responses, and analyzed a corpus of GraphQL schemas

for these properties [40]. In their corpus, they found that over 80%

of the commercial or large-scale open-source schemas had expo-

nential worst-case behavior, and that under 40% of all schemas

guaranteed linear-time queries.

Many public GraphQL APIs do not document any query analysis.

We manually studied the documentation for the 30 public APIs

listed by APIs.guru, a community-maintained listing of GraphQL

APIs [15]. We used public APIs listed as of February 28th, 2020;

other GraphQL APIs are unlisted or private [26]. Disturbingly, 25

APIs (83%) describe neither static nor dynamic query analysis to

manage access and prevent misuse. 22 APIs (73%) make no reference

to rate limiting or to preventing malicious or overly complex re-

quests. Three APIs (10%) perform rate limiting, but only by request

frequency, ignoring the wide range of query complexities.

A few APIs have incorporated customized query and/or response

analysis into their management approach. Five APIs (17%) describe

analyzing GraphQL queries to apply rate limiting based on the esti-

mated or actual cost of a query or response. GitHub [7], Shopify [17],

and Contentful [4] estimate the cost of queries before executing

them. Shopify and Yelp [19] update remaining rate limits by an-

alyzing responses, i.e., the actual data sent to clients. But these

approaches have shortcomings that are discussed in ğ6.4.

258



A Principled Approach to GraphQLQuery Cost Analysis ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

2.2 Existing GraphQL Query Cost Analyses

AGraphQL query cost analysismeasures the cost of a query without

fully executing it. Service providers can use such an analysis to

avoid denial of service attacks, as well as for management purposes.

There are two styles of GraphQL query analysis: dynamic [34]

and static [20, 23, 25]. The dynamic analysis of [34] considers a

query in the context of the data graph on which it will be executed.

Through lightweight query resolution, it steps through a query

to determine the number of objects involved. This cost measure

is accurate but expensive to obtain, because it incurs additional

runtime load and potentially entails engineering costs [27].2

Static analyses [20, 23, 25] calculate the worst-case query cost

supposing a pathological data graph. Because a static analysis as-

sumes the worst, it can efficiently provide an upper bound on a

query’s cost without interacting with the backend. The speed and

generality of static query analysis makes this an attractive approach

for commercial GraphQL API providers.

Our static approach follows a similar paradigm as existing static

analyses but we differ in several ways: (1) We provide two dis-

tinct definitions of query complexity, which is used to measure

query cost; (2) Our analysis can be configured to handle common

schema conventions to produce better estimates; (3) We build our

analysis on formal GraphQL semantics and prove the correctness

of our query complexity estimates; and (4) We perform the first

evaluation of such an analysis on real-world APIs. Overall, our eval-

uation shows the benefits of a formal and configurable approach,

identifying shortcomings in existing static analyses.

3 A NOVEL GRAPHQL FORMALIZATION

In this section we introduce GraphQL schemas and queries. Then,

we give a novel formalization of the semantics of query execution

based on the GraphQL specification [3] and reference implemen-

tation [13]. Compared to Hartig and Pérez [34], our semantics is

more compact, closer to the concrete GraphQL syntax, and includes

the context object for GraphQL-convention-aware static analysis.

3.1 GraphQL Schemas and Queries

For a visual introduction to GraphQL queries, see Figure 2. On

the left is an excerpt of GitHub’s API’s schema. In the center is a

sample query requesting a topic named "graphql", the names of two

relatedTopics, the totalCount of stargazers, and the names of two

stargazers. The right side of the figure shows the server’s response.

A GraphQL schema defines the data types that clients can query,

as well as possible operations on that data. Types can be scalars (e.g.,

Int, String), enumerations, object types defined by the provider

(e.g., Topic), or lists (e.g., [Topic]). In addition, there are also input

types, used to define object types for arguments. Each field of an

object type is characterized by a name (e.g., relatedTopics) and

arguments used to constrain the matching data (e.g., first). All

schemas define a Query operation type, which contains fields that

form the top-level entry points for queries [11]. Schemas may also

define a Mutation operation type, which contains fields that allow

2In particular, their analysis repeatedly interacts with the GraphQL backend, and
assumes that the backend supports cheap queries for response size. This is plausible if
the backend is a traditional database, but GraphQL is backend agnostic (ğ3).

queries to create, update, or delete data, or a Subscription operation

type, which provides event-based functionality.

The syntax of a GraphQL query is as follows:3

𝑞 ::= label :field (args) (basic query)

| ...on type {𝑞} (filter)

| 𝑞 𝑞 (concatenation)

| label :field (args){𝑞} (nesting)

A basic query, label :field (args), requests a specific field of

an object with a list of named arguments args = 𝑎1:𝑣1, . . . ,𝑎𝑛:𝑣𝑛 .

For example topic(name: "graphql") in Figure 2 queries the topic

field with the argument name: "graphql". The label renames the

result of the query with an arbitrary name. In the GraphQL syntax,

label can be omitted if it matches the field, and the list of arguments

can be omitted if empty. A simple field is thus a valid query.

Inline fragments ...on type {𝑞} filter a query 𝑞 on a type

condition, only executing query 𝑞 for objects of the correct type,

e.g., ...on Starrable in Figure 2. A query can also concatenate

fields 𝑞1 𝑞2, or request a sub-field of an object via nesting with the

form label :field (args){𝑞}. Before execution, GraphQL servers

validate incoming queries against their schema.

3.2 Query Execution

To support a schema, a GraphQL server must implement resolver

functions. Each field of each type in the schema corresponds to a

resolver in the GraphQL backend. The GraphQL runtime invokes

the resolvers for each field in the query, and returns a data object

that mirrors the shape of the query.

The evaluation of a query can be thought of as applying succes-

sive filters to a virtual data object that initially corresponds to the

complete data graph. These filters follow the structure of the query

and return only the relevant fields. For example, when executing

the query in Figure 2, given the Topic whose name is "graphql",

the resolver for field relatedTopics returns a list of Topics, and for

each of these Topics the resolver for name returns a String.

The indirection of resolver functions makes the semantics of

GraphQL agnostic to the storage of the data. The data object is an

access point, populated e.g., from a database or external service(s)

that a resolver contacts. A resolver must return a value of the appro-

priate type, but the origin of that value is up to the implementation.

Semantics. Formally, Figure 3 defines the semantics of the kernel

language as an inductive function over the query structure. The

formula J𝑞K(𝑜, ctx) = 𝑜 ′ means that the evaluation of query 𝑞 on

data object 𝑜 with context ctx returns an object 𝑜 ′. The context

tracks information for use deeper in a nested query. In our simplified

semantics we track the type, field, and arguments of the parent.

Querying a single field Jlabel :field (args)K(𝑜, ctx) calls a re-

solver function resolve(o,field,args,ctx) which returns the cor-

responding field in object 𝑜 . The response object contains a single

field label populated with this value. The interpetation the argu-

ments args in the resolver is not part of the semantics; it is left to

the service developers.

3We omit some łsyntactic sugarž of GraphQL constructs. They can be expressed as
combinations of our kernel elements.

259



ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

schema { query: Query }

type Query { topic(name: String): Topic }

type Topic {

relatedTopics(first: Int): [Topic]

name: String

stargazers(after: String, last: Int):

StargazerConnection }

type StargazerConnection {

totalCount: Int

edges: [StargazerEdge]

nodes: [User] }

type StargazerEdge {

node: User

cursor: String }

type User { name: String }

query {

topic(name: "graphql") {

relatedTopics(first: 2) {

name

}

...on Starrable {

stargazers(last: 2, after: "Y3...") {

totalCount

edges { # Connections pattern

node { name }

cursor

}

} } } }

{ "data": {

"topic": {

"relatedTopics": [

{"name": "api"},

{"name": "rest"}

],

"stargazers": {

"totalCount": 1252,

"edges": [

{"node": {"name": "XXX"},

"cursor": "Y3V..."},

{"node": {"name": "XXX"},

"cursor": "Y3V..."}

]

} } } }

Figure 2: A GraphQL schema (left) with a sample query that uses the connections pattern (center) and response (right).

Jlabel :field (args)K(𝑜, ctx) = {label : resolve(o,field,args,ctx)}

J...on type {𝑞}K(𝑜, ctx) =

{

J𝑞K(𝑜, ctx) if typeof(𝑜) = type

{} otherwise

J𝑞1 𝑞2K(𝑜, ctx) = merge(J𝑞1K(𝑜, ctx),J𝑞2K(𝑜, ctx))

Jlabel :field (args){𝑞}K(𝑜, ctx) =
{

{label : [J𝑞K(𝑜1, ctx
′),...,J𝑞K(𝑜𝑛, ctx

′)]} if 𝑜′ = [𝑜1,...,𝑜𝑛]

{label : J𝑞K(𝑜′, ctx′)} otherwise

where 𝑜′ = resolve(o,field,args,ctx)

and ctx′ = {type : typeof(𝑜), field : field, args : args}

Figure 3: Semantics of GraphQL.

A fragment J...on type {𝑞}K(𝑜, ctx) only evaluates the sub-

query 𝑞 on objects of the correct type (typeof(𝑜) returns the type

of its operand). In the example of Figure 2, the field stargazers is

only present in the response if the topic is a Starrable type.

Querying multiple fields J𝑞1 𝑞2K(𝑜, ctx) merges the returned ob-

jects, collapsing repeated fields in the response into one.4

A nested query Jlabel :field (args){𝑞}K(𝑜, ctx) is evaluated in

two steps. First, resolve(o,field,args,ctx) returns an object 𝑜 ′.

The second step depends on the type of 𝑜 ′. If 𝑜 ′ is a list [𝑜1,...,𝑜𝑛],

the returned object contains a field label whose value is the list ob-

tained by applying the sub-query 𝑞 to the all the elements 𝑜1, . . . , 𝑜𝑛
with a new context ctx′ containing the type, field, and arguments list

of the parent. Otherwise, the returned object contains a field label

whose value is the object returned by applying the sub-query 𝑞

on 𝑜 ′ in the new context ctx′. By convention the top-level field

of the response, which corresponds to the query resolver, has an

implicit label "data" (see e.g., the response in Figure 2).

4 QUERY COMPLEXITY

A GraphQL query describes the structure of the response data,

and also dictates the resolver functions that must be invoked to

satisfy it (which resolvers, in what order, and how many times). We

propose two complexity metrics intended to measure costs from

the perspectives of a GraphQL service provider and a client:

4merge(𝑜1,𝑜2) recursively merges the fields of 𝑜1 and 𝑜2 .

Resolve complexity reflects the server’s query execution cost.

Type complexity reflects the size of the data retrieved by a query.

GraphQL service providers will benefit from either measure,

e.g., leveraging them to inform load balancing, threat-prevention,

resolver resource allocation, or request pricing based on the ex-

ecution cost or response size. GraphQL clients will benefit from

understanding the type complexity of a query, which may affect

their contracts with GraphQL services and network providers, or

their caching policies.

Complexity metrics can be computed on either a query or its

response. For a query, in ğ5.2 we propose static analyses to estimate

resolve and type complexities before its execution given minimal

assumptions on the GraphQL server. For a response, resolve and

type complexity are determined similarly but in terms of the fields

and data in the response object.

The intuition behind our analysis is straightforward. A GraphQL

query describes the size and shape of the response. With an ap-

propriate formalization of GraphQL semantics, an upper bound

on resolve complexity and type complexity can be calculated us-

ing weighted recursive sums. But unless it accounts for common

GraphQL design practices, the resulting bound may mis-estimate

complexities. In ğ6.4 we show this problem in existing approaches.

In the remainder of this section, we describe two commonly-used

GraphQL pagination mechanisms. If a GraphQL schema and query

uses these mechanisms, either explicitly (ğ4.1) or implicitly (ğ4.2),

we can obtain a tighter and thus more useful complexity bound.

Research reported that both of these conventions are widely used

in real-world GraphQL schemas [40], so supporting them is also

important for practical purposes.

4.1 GraphQL Pagination Conventions

At the scale of commercial GraphQL APIs, queries for fields that

return lists of objects may have high complexity Ð e.g., consider the

(very large) cross product of all GitHub repositories and users. The

official GraphQL documentation recommends that schema develop-

ers bound response sizes through pagination, using slicing or the

connections pattern [10]. GraphQL does not specify semantics for

such arguments, so we describe the common convention followed

by commercial [2, 5, 18] and open-source [40] GraphQL APIs.

260



A Principled Approach to GraphQLQuery Cost Analysis ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Resolvers can return lists of objects which can result in arbitrarily

large responses ś bounded only by the size of the underlying data.

Slicing is a solution that uses limit arguments to bound the size of

the returned lists (e.g., relatedTopics(first: 2) in Figure 2).

The connections pattern introduces a layer of indirection for

more flexible pagination, using virtual Edge and Connection types [10,

16]. For example, in Figure 2-left the field stargazers returns a

single StargazerConnection, allowing access to the totalCount of

stargazers and the edges field, returning a list of StargazerEdges.

This pattern requires limit arguments to target children of a re-

turned object (e.g., stargazers(last: 2) in Figure 2-middle applies

to the field edges).

The size of a list returned by a resolver can thus depend on the

current arguments and the arguments of the parent stored in the

context. Ensuring that limit arguments actually bound the size of

the returned list is the responsibility of the server developers:

Assumption 1. If the arguments list (args) or the context (ctx) con-

tains a limit argument (arg:val) the list returned by the resolver

cannot be longer than the value of the argument (val), that is:

length(resolve(o,field,args,ctx)) ≤ val.

If this assumption fails, it likely implies a backend error.

Pagination, not panacea. While slicing and the connections pat-

tern help to constrain the response size of a query and the number of

resolver functions that its execution invokes, these patterns cannot

prevent clients from formulating complex queries that may exceed

user rate limits or overload backend systems. Our pagination-aware

complexity analyses can statically identify such queries.

4.2 Configuration for Pagination Conventions

As we discuss in ğ6, ignoring slicing arguments or mis-handling

the connections pattern can lead to under- or over-estimation of a

query’s cost. Understanding pagination semantics is thus essential

for accurate static analysis of query complexity. Since GraphQL

pagination is a convention rather than a specification, we therefore

propose to complement GraphQL schemas with a configuration that

captures common pagination semantics. To unify this configuration

with our definitions of resolve and type complexity, we also include

weights representing resolver and type costs. Here is a sample

configuration for the schema from Figure 2:

resolvers:

"Topic.relatedTopics":

limitArguments: [first]

defaultLimit: 10

resolverWeight: 1

"Topic.stargazers":

limitArguments: [first, last]

limitedFields: [edges, nodes]

defaultLimit: 10

resolverWeight: 1

types:

Topic:

typeWeight: 1

Stargazer:

typeWeight: 1

This configuration specifies pagination behavior for slicing and

the connections pattern. In this configuration, resolvers are iden-

tified by a string "type.field" (e.g., "Topic.relatedTopics"). Their

limit arguments are defined with the field limitArguments. For slic-

ing, the limit argument applies directly to the returned list (see

"Topic.relatedTopics"). For the connections pattern, the limit argu-

ment(s) apply to children of the returned object (see limitedFields

for "Topic.stargazers"). The defaultLimit field indicates the size

of the returned list if the resolver is called without limit arguments.

We must make a second assumption (using JavaScript dot and

bracket notation to access the fields of an object):

Assumption 2. If a resolver is called without limit arguments, the

returned list is no longer than the configuration c’s default limit.

length(resolve(o,field,args,ctx)) ≤

c.resolvers["type.field"].defaultLimit

In the following, limit(c,type,field,args,ctx) returns the max-

imum value of the limit arguments for the resolver "type.field"

if such arguments are present in the arguments list args or the

context ctx, and the default limit otherwise. If a resolver returns

unbounded lists, the default limit can be set to ∞, but we urge

service providers to always bound lists for their own protection.

From Assumptions 1 and 2, we have:

Property 1. Given a configuration c and a data object 𝑜 of type 𝑡 , if

the context ctx contains the information on the parent of 𝑜 , we have:

length(resolve(o,field,args,ctx)) ≤ limit(c,t,field,args,ctx).

Concise configuration. Researchers have reported that many

GraphQL schemas follow consistent naming conventions [40], so

we believe that regular expressions and wildcards are a natural way

to make a configuration more concise. For example, the expression

"/.*Edge$/.nodes" can be used for configuring resolvers associated

with nodes fields within all types whose names end in Edge. Or, the

expression "User.*" can be used for configuring resolvers for all

fields within type User.

5 GRAPHQL QUERY COST ANALYSIS

In this section we formalize two query analyses to estimate the

type and resolve complexities of a query. The analyses are defined

as inductive functions over the structure of the query, mirroring

the formalization of the semantics presented in ğ3. We highlight

applications of these complexities in ğ6.4.

Like other static query cost analyses (ğ2.2), our analysis returns

upper bounds for the actual response costs. For example, if a query

asks for 10 Topics, our analysis will return 10 as a tight upper bound

on the response size. If there are only 3 Topics in the data graph,

our analysis will over-estimate the actual query cost.

5.1 Resolve and Type Complexity Analyses

As mentioned in ğ4, we propose two complexity metrics: resolve

complexity and type complexity. In this section, we formalize the

resolve complexity analysis and then explain how to adapt the

approach to compute the type complexity. We will work several

complexity examples, relying on the𝑊1,0 configuration: a resolver

weight of 1 for fields returning object and list of object and 0 for

all other fields and the top-level operation resolvers (i.e. query,

mutation, subscription), and a type weight of 1 for all objects (in-

cluding those returned in lists) and 0 for all other types and the

top-level operation types (i.e. Query, Mutation, Subscription).

Resolve Complexity. Resolve complexity is a measure of the execu-

tion costs of a query. Given a configuration c, the resolve complexity

of a response 𝑟 : rcx(r, 𝑐) is the sum of the weights of the resolvers

that are called to compute the response. Each resolver call populates

261



ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

qrcx(label :field (args), c, 𝑡, ctx) =

c.resolvers["t .field"].resolverWeight

qrcx(...on type {𝑞}, c, 𝑡, ctx) =

{

qrcx(𝑞, c, 𝑡, ctx) if 𝑡 = type

0 otherwise

qrcx(𝑞1 𝑞2, c, 𝑡, ctx) = qrcx(𝑞1, c, 𝑡, ctx) + qrcx(𝑞2, c, 𝑡, ctx)

qrcx(label :field (args){𝑞}, c, 𝑡, ctx) =
{

𝑤 + 𝑙 × qrcx(𝑞, c, 𝑡 ′, ctx′) if t[field] = [𝑡 ′]

𝑤 + qrcx(𝑞, c, t.field, ctx′) otherwise

where 𝑤 = c.resolvers["t .field"].resolverWeight

and 𝑙 = limit(c,t,field,args,ctx)

and ctx’ = {type : 𝑡, field : field, args : args}

Figure 4: Resolve complexity analysis. The analysis operates

on the types defined in the schema starting from Query.

a field in the response. The resolve complexity of a response is thus

the sum of the weights of each field. With the𝑊1,0 configuration,

the resolve complexity of the response in Figure 2-right is 6: 1 topic,

1 relatedTopics, 1 stargazers, 1 edges, 2 nodes.

The query analysis presented in Figure 4 computes an estimate

qrcx of the resolve complexity of the response. Each call to a resolver

is abstracted by the corresponding weight, and the sizes of lists are

bounded using the limit function. limit uses the limit argument if

present; otherwise, it will use the default limit in the configuration.

The analysis is defined by induction over the structure of the

query and mirrors the semantics presented in Figure 3 with one ma-

jor difference: the complexity analysis operates solely on the types

defined in the schema starting from the top-level Query type. The

formula qrcx(𝑞, c, 𝑡, ctx) = 𝑥 means that given a configuration 𝑐 ,

the estimated complexity of a query 𝑞 on a type 𝑡 with a context ctx

is 𝑥 ∈ N ∪ {∞}. For example, using the𝑊1,0 configuration, the

resolve complexity of the query in Figure 2-middle is also 6.

Theorem 1. Given a configuration c, the analysis of Figure 4 always

returns an upper-bound of the resolve complexity of the response. For

any query 𝑞 over a data object 𝑜 , and using {} to denote the empty

initial context:

qrcx(𝑞, c, Query, {}) ≥ rcx(JqK(o, {}), 𝑐)

Proof. The theorem is proved by induction on the structure of

the query. The over-approximation has two causes. First, limit

returns an upper bound on the size of the returned list (Property 1).

If the underlying data is sparse, the list will not be full; themaximum

complexity will not be reached. Second, we express the complexity

of merge(𝑜1,𝑜2) as the sum of the complexity of the two objects.

This is accurate if 𝑜1 and 𝑜2 share no properties, but if properties

overlap then the merge will remove redundant fields (cf. ğ3.2). □

Type Complexity. Type complexity is a measure of the size of the

response object. Given a configuration 𝑐 , the type complexity of a

response object 𝑟 : tcx(r, 𝑐) is the sum of the weights of the types

of all objects in the response. Using the𝑊1,0 configuration, the type

complexity of the response in Figure 2-right is 8: 1 Topic, 2 (related)

Topics, 1 StargazerConnection, 2 StargazerEdges, 2 Users.

Similar to our resolve complexity analysis qrcx (Figure 4), our

type complexity analysis bounds the response’s type complexity

without performing query execution. We call the estimated query

type complexity qtcx. To compute qtcx, we tweak the first and final

rules from the qrcx analysis:

(1) The call to a resolver is abstracted by the weight of the returned

type 𝑡 ′ = t[field].

qtcx(label :field (args), c, 𝑡, ctx) = c.types[t′].typeWeight.

(2) When a nested query returns a list (t[field] = [𝑡 ′]), the type

complexity must reflect the cost of instantiating every element.

Every element thus adds the weight of the returned type 𝑡 ′ to

the complexity.

qtcx(label :field (args){𝑞}, c, 𝑡, ctx) = 𝑙 × (𝑤 + qtcx(𝑞, c, 𝑡 ′, ctx′))

where 𝑤 = c.types[t′].typeWeight.

With the𝑊1,0 configuration, the type complexity of the query in

Figure 2 is also 8.

Theorem 2. Given a configuration c, the type complexity analysis

always returns an upper-bound of the type complexity of the response.

For any query 𝑞 over a data object 𝑜 , and using {} to denote the empty

initial context:

qtcx(𝑞, c, Query, {}) ≥ tcx(JqK(o, {}), 𝑐)

The proof is similar to the proof of Theorem 1.

5.2 Time/Space Complexity of the Analyses

The type and resolve complexity analyses are computed in one

traversal of the query. The time complexity of both analyses is

thus 𝑂 (𝑛), where 𝑛 is the size of the query as measured by the

number of derivations required to generate it from the grammar

of GraphQL. Both analyses need to track only the parent of each

sub-query during the traversal. This implies that the space required

to execute the analyses depends on the maximum nesting of the

query which is at worst 𝑛. The space complexity is thus in 𝑂 (𝑛).

We emphasize that these are static analyses ś they do not need

to communicate with backends.

5.3 Mutations and Subscriptions

So far we have considered only GraphQL queries. GraphQL also

supportsmutations to modify the exposed data and subscriptions for

event-based functionality [3]. Our resolve complexity approach also

applies to mutations, reflecting the execution cost of the mutation.

API providers can use resolve weights to reflect costly mutations

in resolve complexity calculations. However, our type complexity

approach only estimates the size of the returned object, ignoring

the amount of data modified along the way. Assuming the user pro-

vides the new data, computing the type complexity of arguments

passed to mutation resolvers may give a reasonable approximation.

We leave this for future work. Our analysis can also produce resolve

and type complexities for subscription queries. Policies around sub-

scriptions may differ, though. For rate-limiting, for example, the

API provider could reduce the remaining rates based on complex-

ities when a subscription is started, and replenish them once the

client unsubscribes.

6 EVALUATION

We have presented our query analysis and proved its accuracy. In

our evaluation we consider five questions:

262



A Principled Approach to GraphQLQuery Cost Analysis ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Table 1: Characteristics of the evaluated APIs.

Schema GitHub Yelp

Number of object types 245 25

Total fields on all object types 1,569 121

Lines of Code (LoC) 22,071 760

Pagination w. slicing arguments Yes Yes

Pagination w. connections pattern Yes Yes

Configuration GitHub Yelp

Number of default limits 21 13

LoC (% of schema LoC ) 50 (0.2%) 39 (5.1%)

RQ1: Can the analysis be applied to real-world GraphQL APIs, espe-

cially considering the required configuration?

RQ2: Does the analysis produce cost upper-bounds for queries to

such APIs?

RQ3: Are these bounds useful, i.e. close enough to the actual costs of

the queries for providers to respond based on the estimates?

RQ4: Is our analysis cheap enough for use in API management?

RQ5: How does our approach compare to other solutions?

Our analysis depends on a novel dataset (ğ6.1). We created the

first GraphQL query-response corpus for two reputable, publicly ac-

cessible GraphQLAPIs: GitHub [5] and Yelp [2]. Table 1 summarizes

these APIs using the metrics from [40].

To answer RQ1, we discuss configuring our analysis for these

APIs (ğ6.2). To answer RQ2-RQ4, we analyzed the predicted and ac-

tual complexities in our query-response corpus (ğ6.3). For RQ5, we

compare our findings experimentally to open-source static analyses,

and qualitatively to closed-source commercial approaches (ğ6.4).

6.1 A GraphQL Query-Response Corpus

Answering our research questions requires a multi-API query-

response corpus. None existed so we created one. We automatically

generated queries for GitHub and Yelp, and collected 5, 000 unique

query-response pairs each from April 2019 to March 2020.

General approach.We developed and open-sourced a GraphQL

query generator [31]. Its input is a GraphQL schema and user-

supplied parameters. Following standard grammar-based input

generation techniques [33], it generates queries recursively and

randomly by building an abstract syntax tree and rendering it as

a GraphQL query string. The depth probability dictates the likeli-

hood of adding nested fields. The breadth probability controls the

likelihood of adding additional adjacent fields into each query level.

Providing Argument Values. The AST generated by this approach

includes argument variables that must be concretized. We populate

these values using a provider map that maps a GraphQL argument

to functions that generate valid values.

Queries for GitHub and Yelp.We tuned the query generation to

our experimental design and context. We used breadth and depth

probabilities of 0.5. For numeric arguments, we used normally dis-

tributed integer values with mean and variance of ⟨5, 1.0⟩ (GitHub)

and ⟨7, 2.0⟩ (Yelp).5 For enum arguments, we randomly chose a

valid enum value. For named arguments (e.g., GitHub projects, Yelp

5Yelp has a maximum nesting depth. Larger values yielded complex, shallower queries.

restaurants), we randomly chose a valid entity, e.g., the 100 most-

starred GitHub repositories. For context-dependent arguments, we

used commonly-valid values, e.g., README.md as a GitHub filepath.

Ethically, because we are issuing queries against public APIs,

we omitted overly-complex queries and queries with side effects.

We issued queries with: (1) estimated type or resolve complexity

≤ 1, 000; (2) nesting depth ≤ 10; and (3) query, not mutation or

subscription operations.

Query realism. Our query generation algorithm yielded diverse

queries for each API. To assess their realism, we compared them

to example queries provided by each API. Yelp did not provide

any examples, but GitHub’s documentation includes 24 example

queries [6]. We analyzed them using the𝑊1,0 configuration (cf. ğ5.1)

to determine the size of a typical query. Only 14 could be analyzed

using the same GitHub schema version. Of these, all but one had a

type complexity of 302 or less. Therefore, we used a type complexity

of ≤ 300 to categorize typical queries.

6.2 RQ1: Configuration

Our aim is a backend-agnostic query cost analysis. As priorwork [27,

34] cannot be applied to estimate query cost for arbitrary GraphQL

servers, we first assess the feasibility of our approach.

Per ğ4.2, our analysis requires GraphQL API providers to con-

figure limit arguments, weights, and default limits. We found it

straightforward to configure both APIs. Our configurations are far

smaller than the corresponding schemas (Table 1).

Limit arguments. GitHub and Yelp uses consistent limit argu-

ments names (first and last for GitHub, limit for Yelp), which we

configured with regular expressions. GitHub has a few exceptional

limit arguments, such as limit on the Gist.files field, which we

configured with both strings and regular expressions. Following the

conventions of the connections pattern [16], we set all Connection

types to have the limited fields edges and nodes for GitHub. GitHub

also has a few fields that follow the slicing pattern, so we did not

set any limited fields for these. The Yelp API strictly follows the

slicing pattern, so no additional settings were required.

Weights. For simplicity, we used a𝑊1,0 configuration (cf. ğ5.1).

This decision permitted us to compare against the open-source

static analysis libraries, but may not reflect the actual costs for

GraphQL clients or service providers. For example, we set the type

weights for scalars and enums to 0, supposing that these fields are

paid for by the resolvers for the containing objects.

Default limits.We identified default limits for the 21 fields (GitHub)

and 13 fields (Yelp). These fields are unpaginated lists or lists that do

not require limit arguments. We determined these numbers using

API documentation and experimental queries.

6.3 RQ2-RQ4: Complexity Measurements

Using this configuration, we calculated type and resolve complexi-

ties for each query-response pair in the corpus. Figure 5 summarizes

the results for Yelp and GitHub using heat maps. Each heat map

shows the density of predictions for request/response complexity

cells. Cells above the diagonal are queries whose actual complexity

we over-estimated, cells below the diagonal are under-estimates.

263



ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

(a) Yelp type complexities

0 75 150
Actual (response) cxty

0

150

300

Pr
ed

. (
qu

er
y)

 c
xt

y

100% resp., 69% of preds.
100

101

102

(b) Yelp resolve complexities

0 50 100
Actual (response) cxty

0

100

200

Pr
ed

. (
qu

er
y)

 c
xt

y
100% resp., 100% of preds.

100

101

102

(c) GitHub type complexities

0 150 300
Actual (response) cxty

0

300

600

Pr
ed

. (
qu

er
y)

 c
xt

y

99% resp., 99% of preds.
100

101

102

(d) GitHub resolve complexities

0 75 150
Actual (response) cxty

0

150

300

Pr
ed

. (
qu

er
y)

 c
xt

y

99% resp., 99% of preds.
100

101

102

Figure 5: Actual (response) complexities and predicted

(query) complexities, using our analysis on the corpus. Each

figure has text indicating the percentage of responses that

are shown (the remainder exceed the x-axis), and the per-

centage of the corresponding predictions that are shown

(the remainder exceed the y-axis).

Table 2: Over-estimation of our type and resolve complexi-

ties. The first table summarizes our approach on all queries.

The second shows the results for łtypicalž queries, i.e., those

with type complexities of up to 300 (cf. ğ6.1).

Yelp (5, 000) GitHub (5, 000)

All qeries Resolve Type Resolve Type

Underestimation None None None None

No overestimation 60.1% 21.8% 54.7% 8.4%

Overestimation <25% 63.0% 26.1% 84.9% 60.3%

Overestimation <50% 66.7% 30.1% 92.2% 84.0%

Yelp (3, 416) GitHub (4, 703)

łTypicalž qeries Resolve Type Resolve Type

Underestimation None None None None

No overestimation 83.4% 31.9% 57.9% 9.0%

Overestimation <25% 85.3% 38.2% 88.3% 63.8%

Overestimation <50% 88.1% 44.1% 95.2% 87.3%

6.3.1 RQ2: Upper Bounds. In Figure 5, all points lie on or above

the diagonal. In terms of our analysis, every query’s predicted com-

plexity is an upper bound on its actual complexity. This observation

is experimental evidence for the results theorized in ğ5.1.

As an additional note, the striations that can be seen in Figure 5b

are the result of fields with large default limits. Queries that utilize

these fields will have similar estimated complexities.

6.3.2 RQ3: Tight Upper Bounds. Answering RQ2, we found our

analysis computes upper bounds on the type and resolve complex-

ities of queries. Other researchers have suggested that these cost

bounds may be too far from the actual costs to be actionable [34].

Our data show that the bounds are tight enough for practical

purposes, and are as tight as possible with a static, data-agnostic

approach. Figure 5 indicates that our upper bound is close or equal

to the actual type and resolve complexities of many queries Ð this

can be seen in the high density of queries near the diagonals.

Our bounds are looser for more complex queries. This follows

intuition about the underlying graph: larger, more nested queries

may not be satisfiable by an API’s real data. Data sparsity leads

responses to be less complex than their worst-case potential. Table 2

quantifies this observation. It shows the share of queries for which

our predictions over-estimate the response complexity by <25% and

<50%. Over-estimation is less common for the subset of łtypicalž

queries whose estimated type complexity is ≤ 300.

However, per the proofs in ğ5.2, our upper bounds are as tight

as possible without dynamic response size information. The over-

estimates for larger queries are due to data sparsity, not inaccuracy.

For example, consider this pathological query to GitHub’s API:
query {

organization (login: "nodejs") {

repository (name: "node") { issues (first: 100) { nodes {

repository { issues (first: 100) { nodes {

... }}}}}}}}

This query cyclically requests the same repository and issues.

With two levels of nesting, the query complexities are 10, 203 (re-

solve) and 20, 202 (type). If the API data includes at least 100 issues,

the response complexities will match the query complexities.

6.3.3 RQ4: Performance. Beyond the functional correctness of our

analysis, we assessed its runtime cost to see if it can be incorporated

into existing request-response flows, e.g., in a GraphQL client or an

API gateway. We measured runtime cost on a 2017 MacBook Pro

(8-core Intel i7 processor, 16 GB of memory).

As predicted in ğ5.2, our analysis runs in linear time as a function

of the query and response size.6 The median processing time was

3.0 ms for queries, and 1.1 ms for responses. Even the most complex

inputs were fairly cheap; 95% of the queries could be processed in

< 7.3 ms, and 95% of the responses in < 4 ms. The open-source

analyses we consider in ğ6.4 also appear to run in linear time.

6.4 RQ5: Comparison to Other Static Analyses

In this section we compare our approach to state-of-the-art static

GraphQL analyses (ğ2.2). To permit a fair comparison across differ-

ent notions of GraphQL query cost, we tried to answer two practical

bound questions for the GitHub API with each approach.

BQ1: How large might the response be?

BQ2: How many resolver functions might be invoked?

BQ1 is of interest to clients and service providers, who both pay

the cost of handling the response. Various interpretations of łlargež

are possible, so we operationalized this as the number of distinct

objects (non-scalars) in the response. BQ2 is of interest to service

providers, who pay this cost when generating the response.

6We define query size as the number of derivations required to generate the query
from the grammar presented in ğ3.1. It can be understood as the number of lines in
the query if fields, inline fragments, and closing brackets each claim their own line.

264



A Principled Approach to GraphQLQuery Cost Analysis ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

We configured and compared our analysis against three open-

source analyses experimentally, with results shown in Figure 6.

The static GraphQL analyses performed by corporations are not

publicly available, so we discuss them qualitatively instead.

6.4.1 Configuring our Analysis to Answer BQ1 and BQ2. Our mea-

sure of a query’s type complexity can answer BQ1. Using the𝑊1,0

configuration (cf. ğ5.1), the type complexity measures the maximum

number of objects that can appear in a response, i.e., response size.

Our measure of a query’s resolve complexity is suitable for an-

swering BQ2.We assume that the cost of a resolver for a scalar or an

enum field is paid for by some higher-level resolver. Thus, we again

configured our analysis for GitHub using the𝑊1,0 configuration

from ğ5.1. The resolve complexity resulting from this configuration

will count each possible resolver function execution once.

6.4.2 Comparison to Open-Source Static Analyses. We selected

open-source libraries for comparison. We describe their approaches

in terms of our complexity measures, configure them to answer the

questions as best as possible, and discuss their shortcomings.

Library selection. We considered analyses that met three criteria:

(1) Existence: Theywere hosted onGitHub, discoverable via searches

on graphql {static|cost|query} {cost|analysis|complexity};

(2) Relevance: They statically compute a query cost measure; and

(3) Quality: They had ≥ 10 stars, a rough proxy for quality [28].

Three libraries met this criteria: libA [20], libB [25], and libC [23].

Understanding their complexity measures. At a high level, each of

these libraries defines a cost measure in terms of the data returned

by each resolver function invoked to generate a response. Users

must specify the cost of the entity type that it returns, and a multi-

plier corresponding to the number of entities. These libraries then

compute a weighted recursive sum, much as we do. Problematically,

these libraries do not always permit users to specify the sizes of

lists, leading to over- and under-estimates. In terms of the analysis

from ğ5.1, the list field size 𝑙 cannot always be obtained (see qtcx,

last rule above Theorem 2). We discuss the details below.

Configuring the libraries to answer BQ1.We summarize our ap-

proach here. Our artifact includes the configuration details [31].

libA: We set the cost of all objects to 1 and all other types to 0.

The library allows the maximum size of a list to be set. Therefore,

we set the maximum sizes of unpaginated lists using values identi-

fied in ğ6.2. Unfortunately, the library cannot use arguments and

consequently, cannot take advantage of pagination. To configure

paginated lists, we instead set their maximum sizes to GitHub’s

maximum list size, 100 [7].

libB: As with libA, we set the cost of objects to 1 and other

types to 0. We also leveraged libB’s partial pagination support. We

configured it to use the limit arguments of paginated lists. However,

libB treats unpaginated lists are treated as a single (non-list) entity.

It also does not support the connections pattern.

libC: libB and libC appear to be related. Their support for BQ1

is equivalent, and we configured them similarly.

Comparing outcomes on BQ1. Figure 6 illustrates the effectiveness

of each approach when answering BQ1. The same query-response

corpus was used in each case, and the response sizes were calculated

using the method discussed in ğ5. The variation is on the y-axis,

the predicted response size estimated from the query. As implied

by our proofs of correctness, our approach consistently provides

an upper bound on the actual response size (no under-estimation).

As mentioned, libA cannot use arguments as limits. Configuring

all paginated lists to have a maximum list size equal to GitHub’s

maximum list size resulted in significant over-estimation. Addition-

ally, this configuration caused in the striations in Figure 6b, which

lie at intervals of 100 (the maximum list size); queries fall into bands

based on the number of paginated lists they contain. In contrast to

the striations found in Figure 5b, these fields nest within each other,

allowing for repeated and regularly spaced stripes. To illustrate the

overestimation, about 81.2% of libA’s predictions were more than

double the actual response size. In contrast, 84% of our analysis’s

predictions over-estimate less than 50% (cf. Table 2). Furthemore,

the median over-estimation of our analysis (i.e. median error) is 19%,

whereas that of libA is 634%. The 90% percentile over-estimation of

our analysis is 66.0% and that of libA is 14,568.2%. As a result, our

analysis conclusively performs better than libA.

libB and libC both over-estimate and under-estimate. Because

they do not support default limits and treat unpaginated lists as

a single (non-list) entity, they are prone to under-estimation. The

under-estimation can compound geometrically when multiple un-

paginated lists are nested. About 64% of their predictions were

under-estimations. Additionally, because they do not support the

connections pattern style of pagination and do not properly utilize

limit arguments in these cases, they are prone to over-estimation.

In any case, because libB and libC can under-estimate, they do not

reliably produce upper bounds, which is a problem in security criti-

cal contexts. In contrast, our analysis consistently produces upper

bounds and notably, tight upper bounds. Because our analysis is not

at risk of this security problem, our analysis also performs better

than libB and libC.

Configuring the libraries to answer BQ2. We were unable to con-

figure these libraries to answer BQ2. Fundamentally, libA, libB, and

libC measure costs in terms of the entities returned by the query,

not in terms of the resolvers used to obtain the results. Trying to ap-

ply the multipliers to count resolvers will instead inflate them. The

trouble is illuminated by our resolve complexity analysis (Figure 4):

in the first clause of the final rule, the resolver multiplier should be

used to account for the 𝑙 uses of each child resolver, but the parent

should be counted just once. In contrast, when answering BQ1, the

type multiplier should be applied to both a field and its children.

This finding highlights the novelty of our notion of resolve com-

plexity. We believe its ability to answer BQ2 also shows its utility.

6.4.3 Comparison to Closed-Source Analyses. GitHub and Yelp de-

scribe their analyses in enough detail for comparison. GitHub’s

analysis can approximate BQ1 and BQ2, while Yelp’s cannot.

GitHub. GitHub’s GraphQL API relies on two static analyses for

rate limiting and blocking overly complex queries prior to execut-

ing them [7]. Both analyses support pagination via the connections

pattern as described in ğ4.1. For BQ1, their node limit analysis dis-

regards types associated with the connections pattern.7 We can

replicate this behavior with our analysis by setting the weights

of types associated with the connections pattern to 0 and 1 oth-

erwise. For BQ2, their call’s score analysis only counts resolvers

7A possible explanation: virtual constructs like Edge and Connection types may
not significantly increase the amount of effort to fulfill a query.

265



ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

(a) Our GitHub complexities

0 150 300
Actual response size

0

300

600

Pr
ed

. r
es

po
ns

e 
siz

e

99% resp., 99% of preds.
100

101

102

(b) libA’s GitHub complexities

0 150 300
Actual response size

0

300

600

Pr
ed

. r
es

po
ns

e 
siz

e
99% resp., 55% of preds.

100

101

(c) libB’s GitHub complexities

0 150 300
Actual response size

0

300

600

Pr
ed

. r
es

po
ns

e 
siz

e

99% resp., 99% of preds.

100

101

(d) libC’s GitHub complexities

0 150 300
Actual response size

0

300

600

Pr
ed

. r
es

po
ns

e 
siz

e

99% resp., 99% of preds.

100

101

Figure 6: BQ1: Actual and predicted response sizes based on type complexity, from our analysis and the libraries on the GitHub

data. libB and libC produce identical values under our configuration. All static approaches over-estimate due to data sparsity.

The libraries have sources of over-estimation beyond our own. libB and libC also under-estimate (cells below the diagonal).

that return Connection types. We can also replicate this behavior

by setting a weight of 1 to these resolvers and 0 otherwise. In any

case, because GitHub’s metrics cannot be weighted, they cannot

distinguish between more or less costly types or resolvers.

GitHub’s focus on the connections pattern may have caused

them issues in the past. When our study began, GitHub shared a

shortcoming with libB and libC: it did not properly handle unpagi-

nated lists (which would not employ the connections pattern). We

demonstrated the failure of their approach in Figure 1. We reported

this possible denial of service vector to GitHub. They confirmed

the issue and have since patched their analysis.

Yelp. Yelp’s GraphQL API analysis has both static and dynamic

components. Statically, Yelp’s GraphQL API rejects queries with

more than four levels of nesting. This strategy bounds the complex-

ity of valid queries, but expensive queries can still be constructed

with this restriction using large nested lists. Dynamically, Yelp then

applies rate limits by executing queries and retroactively replenish-

ing the client’s remaining rate limits according to the complexity of

the response. It is therefore possible to significantly exceed Yelp’s

rate limits by submitting a complex query when a client has a

small quota remaining. Using our type complexity analysis, Yelp

could address this problem by rejecting queries whose estimated

complexities exceeded a client’s remaining rates.

7 DISCUSSION AND RELATED WORK

Configuration and applicability. Our experiments show that our

analysis is configurable to work with two real-world GraphQL

APIs. Applying our analysis was possible because it is static, i.e.,

it does not depend on any interaction with the GraphQL APIs

or other backend systems. This contrasts with dynamic analyses,

which depend on probing backends for list sizes [34]. Our analysis

is more broadly applicable, and can be deployed separately from the

GraphQL backend if desired, e.g., in API gateways (cf. ğ8). The static

approach carries greater risk of over-estimation, however, and API

providers may consider a hybrid approach similar to GitHub’s: a

static filter, then dynamic monitoring.

We have identified three strategies for managing over-estimation.

First, an unpaginated list field may produce responses with a wide

range of sizes, leading our approach to overestimate. Schema de-

signers may respond by paginating the list, which will bound the

degree of overestimation. Second, in our tests we used the𝑊1,0 con-

figuration, which assigned all types and resolvers the same weights.

In contexts where different data and resolvers carry different costs,

schema designers can tune the configuration appropriately. Lastly,

service providers may resort to a hybrid static/dynamic system to

leverage the graph data at runtime. The design of such a system is

a topic for further research.

The value of formalization. Our formal analysis gives us provably

correct bounds, provided that list sizes can be obtained from an

analysis configuration. This contrasts with the more ad hoc ap-

proaches favored in the current generation of GraphQL analyses

used by practitioners. A formal approach ensured that we did not

miss łcorner casesž, as in the unpaginated list entities missed by

libB, libC, and GitHub’s internal analysis. Although our formalisms

are not particularly complex, they guarantee the soundness and

correctness missing from the state of the art.

Data-driven software engineering. Our approach benefited from

an understanding of GraphQL as it is used in practice, specifically

the use of pagination and naming conventions. Although pagina-

tion is not part of the GraphQL specification [30], we found that

the GraphQL grey literature emphasized the importance of pagina-

tion. A recent empirical study of GraphQL schemas confirmed that

various pagination strategies are widely used by practitioners [40].

We therefore incorporated pagination into our formalization (viz.

that list sizes can be derived from the context object) and supported

both of the widely used pagination patterns in our configuration.

This decision differentiates our analysis from the state of the art,

enabling us to avoid common sources of cost under- and over-

estimation. In addition, the prevalence of naming conventions in

GraphQL schemas inspired our support for regular expressions,

which allowed our configuration answer BQ1 and BQ2 remarkably

concisely. In contrast, the libraries we used required us to manually

specify costs and multipliers for each of the (hundreds of) GitHub

schema elements Ð they did not scale well to real-world schemas.

Bug finding. One surprising application of our analysis was as

a bug finding tool. When we configured Yelp’s API, we assumed

that limit arguments would be honored (Assumption 1, ğ4). In

early experiments we found that Yelp’s resolver functions for the

Query.reviews and Business.reviews fields ignore the limit argu-

ment. Yelp’s engineering team confirmed this to be a bug. This

interaction emphasized the validity of our assumptions.

266



A Principled Approach to GraphQLQuery Cost Analysis ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

Figure 7: Screenshot of the configuration GUI in IBM’s Dat-

aPower API gateway. Thewarnings indicate incomplete con-

figuration and make recommendations.

Database Query Analyses. There has been significant work on

query cost estimation for database query languages to optimize

execution. Our analysis is related to the estimation of a database

query’s cardinality and cost [14]. However, typical SQL servers rou-

tinely optimize queries by reordering table accesses, which makes

static cost evaluation challenging [35]. In comparison, our analysis

takes advantage of the limited expressivity of GraphQL, and the in-

formation provided in the schema (e.g., via pagination mechanism)

to guarantee robust and precise upper-bounds before execution.

8 APPLICATION EXAMPLE: API GATEWAY

Wedesigned our GraphQL query cost analysis as a building block for

a GraphQL API gateway that offers API management for GraphQL

backends (Figure 1). We worked with IBM’s product division to

implement a GraphQL API gateway based on our ideas. Following

patterns for API gateways for REST-like APIs [21, 22, 24], this gate-

way is backend agnostic, made possible by our data- and backend-

independent query cost analysis. This gateway was incorporated

into v10.0.0 of IBM’s API Connect and DataPower products [39].

A weakness of our approach is the need for configuration. Dur-

ing productization we explored two ways to support this task: a

graphical user interface (GUI) and automatic recommendations.

The gateway automatically ingests the backend’s schema using

introspection [9]. Users can then configure using the GUI depicted

in Figure 7. They can manually configure fields with weights, limit

arguments, and/or default limits, either one at a time or bulk-apply

to all types/fields matching a search. To mitigate the security risks

of schemas with nested structures, the GUI automatically identifies

some problematic fields and proposes an appropriate configuration

based on schema conventions. For example, it flags fields that return

lists and infers possible configurations based on type information.

9 THREATS TO VALIDITY

Construct validity. Our study does not face significant threats to

construct validity.We believe our definitions of type complexity and

resolve complexity are useful. We do not rely on proxy measures,

but rather measure these complexities directly from real queries.

Internal validity. These threats come from configuration and

query realism. In our evaluation, we created configurations for

the GitHub and Yelp APIs. Errors would affect the accuracy of our

bounds. Our evaluation showed that we did not make errors leading

to under-estimation, but we may have done so for over-estimation.

Although RQ2 showed that our analysis produces upper bounds,

in RQ3 our conclusions about the practicality of our bounds rely on

the realism of our query-response corpus. Our evaluation is based

on randomly generated queries, parameterized as described in ğ6.1.

Some of our queries used popular projects, which are more likely to

have associated data (decreasing over-estimates from data sparsity).

Other queries lacked contextual knowledge and may result in łun-

naturalž queries unlikely to be filled with data. To avoid harming

the public API providers, we bounded the complexity of the queries

we issued, and this may have skewed our queries to be smaller than

realistic queries. We plan to pursue a more realistic set of queries,

e.g., obtained through collaboration with a GraphQL API provider

or by mining queries from open-source software.

External validity. Our work makes assumptions about the prop-

erties of GraphQL schemas and backend implementations that may

not hold for all GraphQL API providers. For example, the complex-

ity calculations depend on the presence of slicing arguments in

queries, on resolver function implementations to enforce these lim-

its, and on a proper configuration. By relying on default limits (ğ4.2),

we enable our analysis to function even if slicing arguments are

not enforced in (parts of) a schema. We demonstrated that proper

configuration is possible even when treating the backend as a grey

box, as we did when evaluating on the GitHub and Yelp APIs (ğ6.2).

10 CONCLUSION

GraphQL is an emerging web API model. Its flexibility can benefit

clients, servers, and network operators. But its flexibility is also

a threat: GraphQL queries can be exponentially complex, with

implications for service providers including rate limiting and denial

of service. The fundamental requirement for service providers is a

cheap, accurate way to estimate the cost of a query.

We showed in our evaluation that existing ad hoc approaches

are liable to both over-estimates and under-estimates. We proposed

instead a principled approach to address this challenge. Grounded

in a formalization of GraphQL semantics, in this work we presented

the first provably-correct static query cost analyses. With proper

configuration, our analysis offers tight upper bounds, low runtime

overhead, and independence from backend implementation details.

We accompany our work with the first GraphQL query-response

corpus to support future research.

REPRODUCIBILITY

An artifact containing the GraphQL query generator, the query-

response corpuses, library configurations, and corpus measure-

ments can be found here: https://zenodo.org/record/4023299. Insti-

tutional policy precludes sharing our analysis prototype.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers and to A. Kazerouni for

their helpful feedback. We thank the IBM API Connect and Dat-

aPower teams for working with us on the GraphQL API Gateway.

267

https://zenodo.org/record/4023299


ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo

REFERENCES
[1] 2016. How do you prevent nested attack on GraphQL/Apollo server?

https://web.archive.org/web/20200910231657/https://stackoverflow.com/
questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-
server/37338465

[2] 2017. Yelp ś Introducing Yelp’s Local Graph. https://web.archive.org/web/
20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-
local-graph.html

[3] 2018. GraphQL Specification. https://graphql.org/graphql-spec/
[4] 2019. Contentful ś Query complexity limits. https://www.contentful.com/

developers/docs/references/graphql/#/introduction/api-rate-limits
[5] 2019. GitHub ś GraphQL API v4. https://developer.github.com/v4/
[6] 2019. GitHub ś GraphQL Example Queries. https://github.com/github/platform-

samples/tree/master/graphql/queri
[7] 2019. GitHub GraphQL API v4: GraphQL resource limitations. https:

//developer.github.com/v4/guides/resource-limitations/
[8] 2019. GraphiQL śAn in-browser IDE for exploring GraphQL. https://github.com/

graphql/graphiql
[9] 2019. GraphQL Docs: Introspection. https://graphql.org/learn/introspection/
[10] 2019. GraphQL Docs: Pagination. http://graphql.org/learn/pagination/
[11] 2019. GraphQL Docs: The Query and Mutation types. https://graphql.org/learn/

schema/#the-query-and-mutation-types
[12] 2019. GraphQL Faker. https://github.com/APIs-guru/graphql-faker
[13] 2019. GraphQL.js ś JavaScript reference implementation for GraphQL. https:

//github.com/graphql/graphql-js
[14] 2019. Oracle Database Documentation. https://docs.oracle.com/database
[15] 2019. Public GraphQL APIs. https://github.com/APIs-guru/graphql-apis
[16] 2019. Relay ś Pagination Specification. https://facebook.github.io/relay/graphql/

connections.htm
[17] 2019. Shopify ś GraphQL Admin API rate limits. https://shopify.dev/concepts/

about-apis/rate-limits#graphql-admin-api-rate-limits
[18] 2019. Shopify ś Shopify Storefront API. https://shopify.dev/docs/storefront-api
[19] 2019. Yelp ś GraphQL API Points-Based Daily Limit. https://www.yelp.com/

developers/graphql/guides/rate_limiting
[20] 2020. 4Catalyzer/graphql-validation-complexity: Query complexity validation

for GraphQL.js. https://github.com/4Catalyzer/graphql-validation-complexity
[21] 2020. Google Apigee. https://cloud.google.com/apigee/
[22] 2020. IBM API Connect. https://www.ibm.com/cloud/api-connect
[23] 2020. pabru/graphql-cost-analysis: A Graphql query cost analyzer. https:

//github.com/pa-bru/graphql-cost-analysis
[24] 2020. RedHat 3Scale. https://www.3scale.net/
[25] 2020. slicknode/graphql-query-complexity: GraphQL query complexity analysis

and validation for graphql-js. https://github.com/slicknode/graphql-query-
complexity

[26] 2020. Who’s using GraphQL? http://graphql.org/users
[27] Tim Andersson. 2018. Result size calculation for Facebook’s GraphQL query

language. B.S. Thesis. http://www.diva-portal.org/smash/get/diva2:1237221/

FULLTEXT01.pdf
[28] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? under-

standing repository starring practices in a social coding platform. , 112ś129 pages.
[29] Gleison Brito, Thais Mombach, and Marco Tulio Valente. 2019. Migrating to

GraphQL: A Practical Assessment. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 140ś150. https:
//doi.org/10.1109/SANER.2019.8667986

[30] Lee Byron. 2015. GraphQL: A data query language. https:
//web.archive.org/web/20200910232048/https://engineering.fb.com/core-
data/graphql-a-data-query-language/

[31] Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and
Jim A. Laredo. 2020. A Principled Approach to GraphQL Query Cost Analysis
Research Paper Artifact. https://doi.org/10.5281/zenodo.4023299

[32] Scott A. Crosby and Dan S. Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12 (Washington, DC) (SSYM’03). USENIX Association, 29ś
44.

[33] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based
whitebox fuzzing. In Proceedings of the 29th ACM SIGPLANConference on Program-
ming Language Design and Implementation. 206ś215. https://doi.org/10.1145/
1375581.1375607

[34] Olaf Hartig and Jorge Pérez. 2018. Semantics and Complexity of GraphQL. In Pro-
ceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18). Inter-
national WorldWideWeb Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland, 1155ś1164. https://doi.org/10.1145/3178876.3186014

[35] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaudhuri.
2012. , 1555ś1566 pages.

[36] Arnaud Rinquin. 2017. Avoiding n+1 requests in GraphQL, including
within subscriptions. https://web.archive.org/web/20200910232552/https:
//medium.com/slite/avoiding-n-1-requests-in-graphql-including-within-
subscriptions-f9d7867a257d

[37] Nick Shrock. 2015. GraphQL Introduction. https://web.archive.org/web/
20200414211542/https://reactjs.org/blog/2015/05/01/graphql-introduction.html

[38] Max Stoiber. 2018. Securing Your GraphQL API from Malicious Queries.
https://web.archive.org/web/20200910232751/https://www.apollographql.com/
blog/securing-your-graphql-api-from-malicious-queries-16130a324a6b/

[39] Rob Thelen. 2020. API Connect is making GraphQL safer for the enterprise.
https://web.archive.org/web/20200910232932/https://community.ibm.com/
community/user/imwuc/blogs/rob-thelen1/2020/06/16/api-connect-is-making-
graphql-safer-for-the-enterp

[40] Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart, and Louis Mandel.
2019. An Empirical Study of GraphQL Schemas. In Proceedings of the 17th
International Conference on Service-Oriented Computing (ICSOC), Vol. 11895.

[41] Erik Wittern, Alan Cha, and Jim A. Laredo. 2018. Generating GraphQL-Wrappers
for REST (-like) APIs. In International Conference on Web Engineering (ICWE ’18).
Springer International Publishing, 65ś83. https://doi.org/10.1007/978-3-319-
91662-0_5

268

https://web.archive.org/web/20200910231657/https://stackoverflow.com/questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-server/37338465
https://web.archive.org/web/20200910231657/https://stackoverflow.com/questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-server/37338465
https://web.archive.org/web/20200910231657/https://stackoverflow.com/questions/37337466/how-do-you-prevent-nested-attack-on-graphql-apollo-server/37338465
https://web.archive.org/web/20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://web.archive.org/web/20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://web.archive.org/web/20200910231907/https://engineeringblog.yelp.com/2017/05/introducing-yelps-local-graph.html
https://graphql.org/graphql-spec/
https://www.contentful.com/developers/docs/references/graphql/#/introduction/api-rate-limits
https://www.contentful.com/developers/docs/references/graphql/#/introduction/api-rate-limits
https://developer.github.com/v4/
https://github.com/github/platform-samples/tree/master/graphql/queri
https://github.com/github/platform-samples/tree/master/graphql/queri
https://developer.github.com/v4/guides/resource-limitations/
https://developer.github.com/v4/guides/resource-limitations/
https://github.com/graphql/graphiql
https://github.com/graphql/graphiql
https://graphql.org/learn/introspection/
http://graphql.org/learn/pagination/
https://graphql.org/learn/schema/#the-query-and-mutation-types
https://graphql.org/learn/schema/#the-query-and-mutation-types
https://github.com/APIs-guru/graphql-faker
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://docs.oracle.com/database
https://github.com/APIs-guru/graphql-apis
https://facebook.github.io/relay/graphql/connections.htm
https://facebook.github.io/relay/graphql/connections.htm
https://shopify.dev/concepts/about-apis/rate-limits#graphql-admin-api-rate-limits
https://shopify.dev/concepts/about-apis/rate-limits#graphql-admin-api-rate-limits
https://shopify.dev/docs/storefront-api
https://www.yelp.com/developers/graphql/guides/rate_limiting
https://www.yelp.com/developers/graphql/guides/rate_limiting
https://github.com/4Catalyzer/graphql-validation-complexity
https://cloud.google.com/apigee/
https://www.ibm.com/cloud/api-connect
https://github.com/pa-bru/graphql-cost-analysis
https://github.com/pa-bru/graphql-cost-analysis
https://www.3scale.net/
https://github.com/slicknode/graphql-query-complexity
https://github.com/slicknode/graphql-query-complexity
http://graphql.org/users
http://www.diva-portal.org/smash/get/diva2:1237221/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1237221/FULLTEXT01.pdf
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/SANER.2019.8667986
https://web.archive.org/web/20200910232048/https://engineering.fb.com/core-data/graphql-a-data-query-language/
https://web.archive.org/web/20200910232048/https://engineering.fb.com/core-data/graphql-a-data-query-language/
https://web.archive.org/web/20200910232048/https://engineering.fb.com/core-data/graphql-a-data-query-language/
https://doi.org/10.5281/zenodo.4023299
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/3178876.3186014
https://web.archive.org/web/20200910232552/https://medium.com/slite/avoiding-n-1-requests-in-graphql-including-within-subscriptions-f9d7867a257d
https://web.archive.org/web/20200910232552/https://medium.com/slite/avoiding-n-1-requests-in-graphql-including-within-subscriptions-f9d7867a257d
https://web.archive.org/web/20200910232552/https://medium.com/slite/avoiding-n-1-requests-in-graphql-including-within-subscriptions-f9d7867a257d
https://web.archive.org/web/20200414211542/https://reactjs.org/blog/2015/05/01/graphql-introduction.html
https://web.archive.org/web/20200414211542/https://reactjs.org/blog/2015/05/01/graphql-introduction.html
https://web.archive.org/web/20200910232751/https://www.apollographql.com/blog/securing-your-graphql-api-from-malicious-queries-16130a324a6b/
https://web.archive.org/web/20200910232751/https://www.apollographql.com/blog/securing-your-graphql-api-from-malicious-queries-16130a324a6b/
https://web.archive.org/web/20200910232932/https://community.ibm.com/community/user/imwuc/blogs/rob-thelen1/2020/06/16/api-connect-is-making-graphql-safer-for-the-enterp
https://web.archive.org/web/20200910232932/https://community.ibm.com/community/user/imwuc/blogs/rob-thelen1/2020/06/16/api-connect-is-making-graphql-safer-for-the-enterp
https://web.archive.org/web/20200910232932/https://community.ibm.com/community/user/imwuc/blogs/rob-thelen1/2020/06/16/api-connect-is-making-graphql-safer-for-the-enterp
https://doi.org/10.1007/978-3-319-91662-0_5
https://doi.org/10.1007/978-3-319-91662-0_5

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivation
	2.2 Existing GraphQL Query Cost Analyses

	3  A Novel GraphQL Formalization 
	3.1 GraphQL Schemas and Queries
	3.2 Query Execution

	4 Query Complexity
	4.1 GraphQL Pagination Conventions
	4.2 Configuration for Pagination Conventions

	5 GraphQL Query Cost Analysis
	5.1 Resolve and Type Complexity Analyses
	5.2 Time/Space Complexity of the Analyses
	5.3 Mutations and Subscriptions

	6 Evaluation
	6.1 A GraphQL Query-Response Corpus
	6.2 RQ1: Configuration
	6.3 RQ2-RQ4: Complexity Measurements
	6.4 RQ5: Comparison to Other Static Analyses

	7 Discussion and Related Work
	8 Application example: API Gateway
	9 Threats to Validity
	10 Conclusion
	References

