N
N

N

HAL

open science

Probabilistic Schedulability Analysis for Precedence
Constrained Tasks on Partitioned Multi-core

Slim Ben-Amor, Liliana Cucu-Grosjean, Mehdi Mezouak, Yves Sorel

» To cite this version:

Slim Ben-Amor, Liliana Cucu-Grosjean, Mehdi Mezouak, Yves Sorel.
Analysis for Precedence Constrained Tasks on Partitioned Multi-core. 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Sep 2020, Vienna, Austria.

pp.345-352, 10.1109/ETFA46521.2020.9211973 . hal-03119185

HAL Id: hal-03119185
https://inria.hal.science/hal-03119185

Submitted on 25 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Probabilistic Schedulability

https://inria.hal.science/hal-03119185
https://hal.archives-ouvertes.fr

Probabilistic Schedulability Analysis for Precedence
Constrained Tasks on Partitioned Multi-core

Slim BEN-AMOR
Kopernic, INRIA
Paris, France
slim.ben-amor @inria.fr

Kopernic, INRIA
Paris, France
liliana.cucu @inria.fr

Abstract—The design of cyber-physical systems (CPSs) is
facing the explosion of new functionalities requiring increased
computation capacities and, thus, the introduction of multi-
core processors. Moreover, some functionalities may impose
precedence constraints between the programs implementing these
new functionalities. While important effort has been dedicated
to the scheduling of precedence constraints tasks on multi-core
processors, existing work considers either partitioned scheduling
for a single precedence graph defining precedence constraints
between tasks, or global scheduling policies.

In this paper, we consider partitioned scheduling for multi-
ple precedence graphs defining precedence constraints between
tasks. The variability of execution times and of communication
times is described by probability distributions. We propose a
new response time analysis over-performing existing ILP-based
results. Thanks to its scalability, our solution is extendable to a
probabilistic version and we validate it on a PX4 drone autopilot.
Beside this autopilot for our experiments, we implemented
a probabilistic extension of a multi-core processor simulator,
SimSo. A priority assignment heuristic allowing parallel execu-
tions is also proposed. Thanks to its adaptation to partitioned
scheduling, our heuristic has better performances than existing
solutions and its performances are, also, compared against a
genetic-based heuristic.

Index Terms—Precedence constraints, DAGs, Multi-core, Re-
sponse time analysis, Partitioning

I. INTRODUCTION

Chip manufacturers are constantly improving hardware per-
formance and they incorporate several cores on the same
processor for simultaneous processing, offering a speedup
for executing programs. For instance, Intel® proposes the
Xeon Phi™ 7920 processor with more than 70 cores [1].
Meanwhile, programming paradigms are evolving as well in
order to follow the development of hardware architectures.
New parallel programming models are introduced such as
OpenMP [2]]. These models exploit the possible intra-task
parallelism by dividing large tasks into smaller sub-tasks
and run them in parallel then merging their results. Such
approach creates precedence constraints between several sub-
tasks (threads) inside the same task (program). Thus, a Di-
rected Acyclic Graph (DAG) task model may be adopted to
describe independent programs as well as dependent threads.

A DAG task model provides a good representation of
control parts of a CPS. Indeed, these systems should satisfy

This research is partially funded by the FR FUI22 CEOS project.

Liliana CUCU-GROSJEAN

Mehdi MEZOUAK
Kopernic, INRIA
Paris, France
mehdi.mezouak @inria.fr

Yves SOREL
Kopernic, INRIA
Paris, France
yves.sorel @inria.fr

precedence constraints between programs in order to ensure
their functional correctness. For instance, a specific software
executed on the Electronic Control Unit manages and triggers
each cycle of the internal combustion engine using different
actuators [3|] like fuel injectors and valves. The controller
is based on the implementation of precedence constraints
between software parts to fulfill the expected function.

Although in many cases, CPSs may require intensive com-
putation resources, they may not take advantage of the multi-
core processors because of interference and communication
delays between programs causing important variability on the
execution times of those programs. An important variability
implies that worst case analysis introduces an increased pes-
simism as worst case values appear rarely and they are much
larger than average values.

In order to reduce the pessimism and its associated over-
dimensioning of the hardware architectures, we propose new
schedulability techniques complementary to the existing ones.
We present a probabilistic schedulability test and a scheduling
solution considering the variability of execution times. Our
solution is based on a model describing different possible
values of execution times by a probability distribution and it
estimates a Deadline Miss Probability (DMP) of each task. If
large values of the execution times are not frequent, then DMP
may be importantly small. Hence, the system becomes schedu-
lable with a high probability, while reducing the pessimism.
Such analysis could be applied on soft real-time systems to
guarantee a high quality of service, i.e., the DMP is small.

As mentioned in [4]], the execution time of a program on a
multi-core processor is strongly dependent on the quantity of
cross-core interference. DAG task model intensify this inter-
ference because of concurrency and communication between
the sequential units (sub-tasks) composing them. To reduce
interference and interactions between sub-tasks, we focus on
partitioned scheduling where each sub-task is assigned to a
given core.

Contributions:

e We propose a new task model, where precedence con-
straints between sub-tasks of the same task are described
by a DAG and execution times of sub-tasks are charac-
terized by probability distributions.

¢ We propose a new Response Time Analysis (RTA) based
on iterative equations that are scalable with the number

of sub-tasks. This analysis is adapted to task sets with
probabilistic timing parameters.

e We define priorities at sub-task level having as effect
reduced response times and less complex analyses.

o We extend the SimSo simulator for DAG tasks, proba-
bilistic execution times and priorities at sub-task level.
This extension is available as open source

II. RELATED WORK

The scheduling and the schedulability of tasks with prece-
dence constraints on multi-core processors have received re-
cent attention from the real-time community [5H12]. These
results consider, mainly, global scheduling. For instance, Fon-
seca et al. [13]] estimate the response time of sporadic DAG
tasks under global and fixed priority scheduling. They use
nested fork-join structured DAGs to propose both accurate and
efficient solution. In addition, He et al. [[14] study the global
scheduling of multiple DAG tasks on multi-core processors.
They also define sub-tasks execution order inside the same
graph to reduce the response time.

Concerning the partitioned scheduling, Rihani et al. [10]
study partitioned DAG scheduling on multi-core processors.
They consider a single DAG of multi-rate tasks. Authors
propose to unfold the graph (duplicate nodes) within an hyper-
period obtaining a single graph with a single period. Due to
the resulting graph size, the analysis is not scalable. Another
result is proposed by Casini et al. [[11] focusing on partitioned
non-preemptive fixed-priority Scheduling of parallel tasks. The
authors propose an approach similar to [9] based on response
time analysis of self-suspending tasks [[15]].

In addition, partitioned scheduling of tasks is studied in
the context of distributed systems. Tindell and Clark [16]]
propose an end-to-end RTA of several independent tasks each
composed of a chain of sub-tasks instead of a DAG. This
holistic approach was refined later by Palencia et al. [17]. It
is used in the MAST tool [[18] to analyze multi-path end-to-
end flows. This approach is pessimistic since it assumes that
higher-priority tasks are always released at each activation of
a sub-task from the chain.

In [9], Fonseca et al. tackle the problem of partitioned
scheduling of DAG tasks on identical processors according
to a preemptive and fixed-priority policy. Authors use self-
suspending tasks to model each path on a DAG task. Then,
they estimate the response times of self-suspending tasks using
approaches presented in [[15]. To evaluate their solutions, au-
thors compare them to existing approach [[17] on random gen-
erated task sets. The holistic approach of Palencia et al. [|17]]
outperforms some approaches from [|15]], while their ILP-based
solution offer the best gain when estimating response time.
Therefore, we compare our response time analysis to both [[17]]
and [9].

Existing work on DAG schedulability considers single val-
ues for the execution times. To the best of our knowledge, only

Extension of source code available on: |https://github.com/SlimBenAmor/
simso/tree/DAG_Task

our previous paper [8]] considers multiple values for execution
times through probabilistic descriptions and it is dedicated to
uniprocessor EDF schedulability of DAGs.

Concerning the priority assignment for sub-tasks inside a
DAG task, we compare our priority assignment algorithm
to existing heuristics like HLFET (Highest Levels First with
Estimated Times), SCEFT [19]] (Smallest Co-levels First with
Estimated Times) and CPMISF [20] (Critical Path/Most Im-
mediate Successors First).

III. TASK MODEL AND NOTATIONS

We consider a task set 7 of n sporadic tasks 7y, 7o,..., T,
scheduled according to a partitioned preemptive fixed-priority
scheduling policy on m identical cores. We denote by 7 a
processor with m identical cores 7y, 7s,...,Ty. Each task
7; is specified by a 3-tuple (G;, D;,T;), where G; is a DAG
describing the internal structure of 7;, D; is its deadline and
T; the minimal inter-arrival time between two consecutive
arrivals. We consider a constrained deadline tasks set, i.e.,
D; < T; for all tasks.

For a task 7;, the associated DAG G; is defined by (V;, E;),
where V; = {7 j }1<j<n, is a set of n; sub-tasks of 7, and E;
is the set of the precedence constraints between its sub-tasks.

A sub-task 7; ; is defined by (C; ;, D;, T;), where C; ; is its
probabilistic worst-case execution time (pWCET) as defined
in [21]. In this paper, we consider discrete and finite pWCETSs
for all sub-tasks. We assume that pWCETs are given and
independent, estimating pWCETs is beyond the purpose of
this paper.

Each sub-task 7; ; is mapped to only one core and all its
instances are scheduled on that same core denoted 7(7; ;).
We assume that the mapping between sub-tasks and cores is
given. For instance, in Figure (1| the sub-tasks colored in the
same colour are scheduled on the same core. In this paper,
we consider that the priorities are assigned at sub-task level.
Thus, a priority assignment algorithm will assign to each sub-
task 7; ; a priority. We denote by hp(7; ;) the set of its higher
priority sub-tasks.

61(17 2)

Fig. 1: A task set describing partitioning and precedence
constraints between sub-tasks of two DAG tasks 7y and 7

Each precedence constraint (Ti’j,Ti’k) € FE; imposes that
the sub-task 7; ; is not released until 7; ; has completed its

https://github.com/SlimBenAmor/simso/tree/DAG_Task
https://github.com/SlimBenAmor/simso/tree/DAG_Task

execution. The sub-task 7; ; is called a “predecessor” of 7; x,
whereas 7; 1, is a “successor” of 7; ;. We call a sub-task without
any successors a “sink” sub-task. For the sake of simplicity,
we assume that a DAG have a single sink sub-task. Whenever
this assumption does not hold, we add an extra sink sub-task
with an execution time equal to zero.

For a sub-task 7; ;, we denote the set of its immediate
successors by isucc(r; ;) = {mr | 3 (i, 7ik) € Ei}.
Moreover, other sub-tasks may be reachable from 7;; by
directed paths. We denote the set of these sub-tasks by:

suce(T; ;) = {7, | 3 one directed path from 7, ; to 7; 1 }

We note that isucc(r; ;) C succ(r; ;). Similarly, we denote
the set of immediate predecessors by ipred(r; ;) = {7 x |
3(7’,’7“7'7;7]') S Ez} and by pT’Gd(TiJ’) = {Tq;ﬁk | Tij €
suce(Tig)}-

Two sub-tasks, that are not reachable one from another
by a directed path, are called independent and they may
execute in parallel if mapped to different cores. We denote
by parallel(r; ;) the set of sub-tasks independent of sub-task
7;,5- More precisely,

parallel(r; ;) = {7k | 7ix € Vi \ {pred(r; ;) U suce(ri ;) }}

A weight e;(j, k) is associated to each precedence constraint
(Ti,jsTik) € E;,¥1 < i < n. This weight accounts for
communication costs between 7; ; and 7; ;. and it is described
by a probabilistic worst case communication time distribution.
The communication cost is included in our RTA when the
sub-tasks are mapped to different cores (7(7; ;) # 7(7ik)).
Otherwise, if sub-tasks run on the same core, we assume
that communication delay is reduced and it is included in the
pWCET of each sub-task.

IV. RESPONSE TIME ANALYSIS

In this section, we present our RTA for the considered
DAG task model with probabilistic WCETs. We consider a
preemptive and fixed-priority sub-task level scheduling policy
where sub-tasks priorities are given, as well as their mapping
to the m identical cores. The closest existing analysis for
such task model is provided in [9], but a MILP formulation
would be difficult to extend to probabilistic WCETSs because of
scalability problems. Mainly, such extension implies to evolve
each MILP equation into a set of |vare,| x -+ X |vare, |
equations, where |vare,| is the number of values contained
by discrete probability WCETs of a task 7;. Therefore, our
analysis is based on iterative equations inspired by the work of
Palencia [|17]] and extended to provide probability distributions
for the response times of sub-tasks.

We define the DMP of a task 7, as DMP;, = P(R; >
D;), where R; = RY'?" is the probability distribution of the
global response time of the sink sub-task of 7; as defined in

Section [V-Bl

A. Probabilistic Operators

We use two probabilistic operators to propose our RTA, ap-
plied on independent probability distributions. The assumption
of independence is a first step towards stronger further results.
Indeed, if a strong dependency exists between distributions,
our RTA equations hold by adding the joint probability distri-
butions describing this dependence. For weak dependencies,
their introduction has no impact on the RTA result [22]. We
leave as future work the use of Bayes nets or express marginal
laws with copulas [23]] to extend our RTA to dependent case.

The convolution operator sums two probabilistic WCETs.

Definition 1. The sum Z of two independent random variables
X1 and X5 is the convolution X, ® X5 where:

k=+o0
P{Z=:)= i P{X, = k}P{X=2—k} (1)

k=—o00

3 7 ® 0 4 . 3 7 11

0.1 0.9 09 01 /) \ 009 082 0.09

In addition, the maximum operator determines the maximum
between two probabilistic WCETs of sub-tasks. This operator
compares the probability density function instead of cumula-

tive distribution function as proposed by Diaz et al. [24].

Definition 2. Let X, and X5 be two independent random
variables and Z = max(X, Xs)

If X) and X, are finite discrete distributions, we may write:

p(&X1 = i)p(Xa = j) 2

I 0 4\ (3 4 7
0.1 09)\ 09 01)7\ 009 001 09

B. Probabilistic Response Time Analysis

We explain our response time equations inspired by the
work of Palencia et al. [[17]]. They consider that synchronous
activation of all higher priority tasks always occurs at each
sub-task activation in the studied task. Consequently, several
higher-priority preemptions could be accounted in the response
time while they are not always possible and the estimation
of the response time could be pessimistic. Conversely, we
compute first the probabilistic response time assuming no
running higher-priority DAG that could preempt the sub-task
under study 7;; and we consider only sub-tasks that are
predecessors of 7; ;. We call the resulting response time the
local response time. Next, we define the response time in
isolation which includes all sub-tasks from the same graph
(predecessor or not) and discards the effect of higher-priority
tasks. Last, we compute the global response time by adding
the effect of preemptions caused by higher-priority DAG tasks.

To illustrate how response time equations work, we use
an example of two DAG tasks, described in Table [I] and
Figure [T} For this example, we assume sub-tasks partitioning
and their priority assignment are given. We also assume that

all communication costs e;(j,1) are equal to 1 ms if related
sub-tasks are mapped to different cores and 0 ms otherwise.

TABLE I: Parameters of sub-tasks in Figures

Sub-task Cij T; = D; | core | Priority
T1,1 1 ms 50 ms T 3
T1,2 1 ms 50 ms T 4
T1,3 2 ms 50 ms i) 6
T1,4 2 ms 50 ms T2 7
T1.5 (2 7) 50 ms T 5

) 6 4
T1,6 2 ms 50 ms T2 8
2,1 8 ms 40 ms T 1
72,2 10 ms 40 ms T 2

1) Local response time: We provide the local response time
analysis for a sub-task 7; ; in Equation E} Its proof requires
a first preliminary result given by Equation [3] computing
the predecessors interference Z;;(pred(r; ;)) caused by its
predecessors on one of its immediate predecessors 7;; and
on predecessors of 7;; (see Lemma |1| below).

Lemma 1. The maximum interference caused by a sub-task
Tik € S,(7i;) on the response time of a sub-task T; ; is

defined as follows:
&R Cix 3)

Zi(pred(ri ;) =
73,k €S (Ti,5)

where the set Sgl(Tm) is composed of sub-tasks that are
predecessors of T;; but not predecessor of T;; and that
could preempt. T;; or one of its predecessors. A sub-task
Tik preempts T; o, if it is parallel to T; 4, it executes on the
same core as T; o and it has a higher-priority than 7; .. More
formally,

Sgl(ri,j) = {1k € pred(r; ;) \ {pred(r;;)) Ur;} |3
Tia € pred(r; ;) Uiy such that 7y, € parallel(r;),
Tik € hp(Ti,a); W(Ti,k) = 7T(Ti,a)}

Proof. To estimate the maximum interference caused by a sub-
task 7; 5 € SY,(7i;), we note that the execution of 7, on
core m(7; k) is delaying not only predecessors of 7;, €xecuting
on core 7(7;), but all sub-tasks 7, , € pred(r;;) U {1}
(whether they execute on 7(7; 1) or not). In fact, such
sub-task 7; , may be a successor of another sub-task in
pred(r;;) U {r;} that executes on 7(7;) and it is delayed
by 7; . Therefore, the maximum interference that sub-tasks
of SP,(7;;) cause to the local response time of 7;;, is equal
to the convolution (sum) of execution times of all sub-tasks
Tik € S’gl(Ti7j). O

For instance, in Figure , the set 52 , (75 ;) for all sub-tasks is
empty (= @) except for 5§ 5(71,6). In fact, 57 5(11,6) = {712}
because 71 o is parallel to 71 5 and it is executed on the same
core and has higher priority than 7 5. Also, 71 2 is predecessor
of 7y but it is not predecessor of 7 5.

The local response time of sub-task 7; ; is, then, obtained
by summing its probabilistic execution time C;; and the

maximum time needed for all its predecessors to finish their
execution as described below.

Theorem 1. The local response time of sub-task 7; ; is defined
as follows:
R =Ci ;@ max (R @ ei(l,5) @ Liu(pred(r; ;) }

ipred(Ti, ;)

“4)

Proof. We prove this theorem by mathematical induction from
source sub-tasks to their successors until reaching 7; ;. For the
first induction step, we verify that Equation {f] holds for source
sub-tasks. The local response time of a sub-task 7; ; considers
only 7;; and its predecessors while discarding the effect of
parallel sub-tasks in the same graph and higher-priority sub-
tasks in other graphs. If 7; ; is a source sub-task without
any predecessor, then its local response time is equal to its
execution time. Meanwhile, since there is no predecessor sub-
tasks to 7; ;, the “maximum” term, in Equation {4 is equal to
zero. Therefore, the computed ’Réf’fal is equal to the execution

time C; ; and Equation [is verified for source sub-tasks.
Now, we assume that Equation[]is valid for all predecessors
of a sub-task 7;; and we prove that Equation [] is correct
for 7; ;. Indeed, for each immediate predecessors 7;; of
7,4, we assume that R is enough for 7;; and all its
predecessors to finish their executions. Besides, the maximum
interference caused on 7;; by other predecessors of 7; ; is
equal to Z;;(pred(r; ;)) as explained in Equation [3| Since
we consider only predecessor sub-tasks in local response
time, the latest start time of 7;; is equal to the maximum,
over immediate predecessors 7;;, of the convolution (sum)
of: (i) the local response time of 7;; with the corresponding
communication delay e;(l,). (ii) the maximum interference
Z;, (pred(r; ;)) caused by other predecessors of 7; ;. The
term max,, , cipred(r ;) | Rix " @ €i(l,J) ® Ii,l(pred(%',j))}
provides sufficient time for all predecessors of 7;; to be
executed and then 7; ; starts executing. Under the assumption
of no preemption from parallel sub-tasks and higher-priority
DAG tasks, 7; ; finishes its execution after C; ; from its start.
Hence, we add, to the “maximum’ term, the execution time

Cij of 7;; in order to get the local response time R,
O

2) Response time in isolation: It takes into consideration
the effect of all parallel sub-tasks from the same graph
(predecessors or not) and it discards preemptions of higher-
priority DAG tasks. Since the local response time considers
only predecessor sub-tasks, we add to this latter the sum
of execution times of sub-tasks, in the set Szl,j’ that are not
predecessor of 7; ; and that could preempt 7; ; or one of its
predecessors.

Sil,j = {Ti,k ¢ pred(n_j) U’Tiyj | | Ti,a € pred(nyj) @] Ti,j
such that 7; , € parallel(t;), Tix € hp(Tiq),

m(Tik) = 7(Tia)}

For example, in Figure the set S| 5 = {712} because 71 o
is parallel to 7 5 and it is executed on the same core and has
higher priority than 7 5. Also, 7y 2 is not a predecessor of 7 5.

Theorem 2. The response time in isolation of the sub-task
T;,; is defined as follows:

isol local
Ry =RiF'e @ Cu

. 1
i k€5 5

®)

Proof. Similarly to the proof of Equation] we prove that
the maximum interference that sub-tasks of S1 cause on the
response time in isolation of 7; ;, is equal to the convolution
(sum) of execution time of all sub-tasks 7; j € S}y e L]

3) Global response time: The global response time takes
into consideration all possible preemptions of higher-priority
DAG tasks. It is calculated recursively by Equation [6] similar
to the iterative equation in [17] for a deterministic task model.
We add to the response time in isolation, the effect of higher
priority sub-tasks from other graphs that execute on the same
core as 7; ; or one of its predecessors (grouped in the set Sf)

Si;= {Tp.q | p # 1,3 7y € pred(r; ;) U T ; such that
Tp.q € hp(Tij), ™(7pq) = 7(Tia)}

For instance, in Figure [1| the set S, = {721} because 75
belongs to another task 7. Also, 791 is executed on the same
core and has higher priority than 7 ;.

Rglob ® j
® "m" Cpa (6)

Tp, qES

The jitter: J;; = max, , cipred(r.) {Rg“”’ ® ei(k, 7)) We
note that the effect of higher priority DAG tasks is equal to
the convolution (sum) of all sub-tasks in S? ;.; in order to upper
bound the maximum delays that could be introduced as we do
in the proof of Equation 4| The iterative update of Rf_ljob stops
when earliest activation of the next job of higher-priority tasks
is greater than the maximum value in Rf’ljob distribution (this
job cannot preempt 7; ;) or it is greater than the deadline of
7;,; (even if it preempts 7; ; it cannot change its DMP).

glob __ isol
Rij =Rij @

TABLE II: Response times of sub-tasks described in Figures
and Table

local 1 isol 2 glob
R | Sigl Raj Sii i
T1,1 1 %] 1 2,1
T1,2 2 %) 2 2,1 10
71,3 4 1%} 4 T1,2,72,2 22
T1,4 6 1%} 6 T1,2,72,2 24
12 17
ms| (35) | me| (63%) | 7a 6 A4
26 30
ol (51 [o [() [name | (B 9)
2,1 8 %) 8 %) 8
T2,2 19 %] 19 %] 19

We note that the probabilistic worst-case response time
(WCRT) of task 7 is equal to (2§39). However, if we use

the approach adopted by Palencia et al [17], we find Ry = 46
with the two possible values for C; 5. Hence, we observe that
our analysis reduces pessimism when estimating the WCRT of
the DAG task. On the other hand, by using Fonseca et al. [9]]
approach, R; = 26 for C; 5 =2 and R; =30 for C; 5 = 7.
However, our analysis is faster by finding the result in 0.002
seconds, while [9]] requires 0.3 seconds.

V. PRIORITY ASSIGNMENT

Fixed-priority scheduling defines priorities at task level ac-
cording to policies like Deadline Monotonic [25]] and Audsley’s
algorithm [26]. Applying such policy imposes to any sub-task
from the task 7; to have a higher priority than all sub-tasks
of 7;, if 7; has a higher priority than 7;. Since all sub-tasks
from the same DAG have the same priority, they would have
an arbitrary order of execution.

In our previous work [12], we show that sub-task level
priorities decrease the response times and we use this approach
in this paper, by defining priorities at sub-task level. We
propose two sub-task level priority assignments (i) an heuristic
and (ii) a genetic algorithm. These proposed methods are
applied on each DAG task and we show that they do reduce
response times. They may be used both on probabilistic or
non-probabilistic set of tasks.

A. Sub-task Priority Assignment Heuristic

Our assignment heuristic prioritizes a sub-task with the
maximum successor workload that executes on a different
core than the sub-task itself. Indeed, when such sub-task
completes its execution, it allows workload on other cores to
start their execution concurrently. In case of equality between
two sub-tasks according to the first criteria, we prioritize using
topological ordering described by Kahn [27]]. In fact, we split
a graph into levels that respect precedence constraints and we
prioritize the sub-task that belongs to the previous level. This
strategy gives higher priority to a predecessor sub-task than
its successors which is coherent with precedence constraints.

Algorithm 1: Priority assignment heuristic at sub-task
level
Data: Tasks 7; and 7 set of m cores
Result: Sub-tasks priorities
1 suc_sum = zeros(n;)
2 for 7, ; € 7; do

3 for 7, ; € succ(i,j) do

4 if 7(7;;) # m(7; ;) then

5 | suc_suml[j] = suc_suml[j] + E(Cy)

6 end

7 end

8 end

9 levels = topologic_order(r;)

10 Priority = argsort(r;, order = [—suc_sum, levels])

11 return Priority

B. Genetic Algorithm

Inspired from Genetic Algorithm (GA) [28], we propose
another priority assignment method. Indeed, we create a
population composed of a set of several possible priority
assignments of sub-tasks inside the same graph. At each gen-
eration (iteration) of GA, we combine best members (priority
assignments corresponding to the least response time) from the
population to obtain a new priority assignment (child member).
The proposed algorithm is composed of several steps (cf.
Figure [2) detailed as following:

« Initialization: use random priority assignment derived

from topological order to initialize population members.

« Evaluation: compute the response time (fitness, objective
function) of the studied graph for each member in the
population corresponding to a possible priority assign-
ment at sub-task level.

« Selection: choose the two best members in the population
(winner and loser), keep the winner in the next generation
and replace the loser by the child member obtained after
crossover and mutation. The used elitist selection prevents
the degradation of the population fitness and preserves the
best member in the next generation.

o Crossover: select the priority order of a subset of nodes
from the loser and insert it in the winner to obtain the
child member.

o Mutation: swap the priorities of two parallel sub-tasks
(not predecessor nor successor) from the child member.

Yes
Initialization Evaluation

No
| Mutation |<—{ Crossover 4—{ Selection |

Fig. 2: Flowchart of the used Genetic Algorithm

For the stop condition, we use a limited number of itera-
tions equal to 100 because we note beyond this number, the
objective function (response time) becomes almost constant.

VI. EVALUATION RESULTS

We evaluate both our RTA and priority assignment algo-
rithms on a real use case (PX4 autopilot) and on randomly
generated task sets. We also compare our solutions to similar
existing ones by comparing the average performance over 100
generated task sets. Each generated task set is composed of
5 DAG tasks with 100 sub-tasks scheduled on 4 cores. We
limit the number of tasks and sub-tasks because the algorithm
of [9], used for comparison does not scale with large graphs.

To generate a task set, we use the “randfixedsum” algo-
rithm [29] to split a total utilization equal to 50% of the system
capacity, into individual task utilization for each DAG task.
We also use “log-uniform” distribution [30] to generate tasks’
periods in the range [10,1000 ms]. After choosing a period
for each task, we set deadlines to their task periods D; = T;.
We calculate the execution time according to C; = T; x Uj.

Then, we share the total execution time C; between sub-tasks
composing DAG task 7;. From the individual execution time of
each sub-task, we generate a discrete exponential distribution
with 5 values. This distribution has an expected value equal
to the individual execution time of the sub-task.

In addition, we use a “layer-by-layer” method [31] to
generate a DAG graph with unbiased structure describing
precedence constraints of a task. We consider a probability
of 20% to create a precedence constraint between a sub-task
and its subsequent sub-tasks in the DAG.

A. Deterministic Response Time Analysis

TABLE III: WCRT ratio regarding MILP based approach [9]

Avg ratio | Min ratio | Max ratio
Our RTA 1.61 1 8
Holistic [17] 2.52 1 9.73
MILP [9] 1 1 1

From Table we note that our analysis and the holistic
one overestimate the WCRT computed wrt the [9] approach.
However, our approach introduces less overestimation and
pessimism compared to the holistic approach. In average,
our WCRT is 1.61 times larger than the WCRT of MILP
approach, while the WCRT of the holistic approach is 2.52
times larger. Thus, in average the WCRT of the holistic
approach is almost twice larger than our WCRT. Moreover,
for some generated task sets, we obtain the same WCRT
for three approaches. Meanwhile, with other task sets, we
could have large difference between MILP approach and other
approaches. The computed WCRT is up to 8 and 9 times larger.

TABLE IV: Comparison of run-time of RTA

Avg run-time | Min run-time | Max run-time
Our RTA 2.1s 0.001 s 11.2 s
Holistic [17] 1.9 s 0.0009 s 10.17 s
MILP [9] 74.7 s 0.01 s 7648 s

Table illustrates the run-time performance of the three
RTA approaches. We note that run-times of our RTA and
holistic analysis are comparable and they are much faster than
MILP approach. In average, our algorithm takes 2.1 seconds
to deliver a WCRT estimation and the holistic analysis takes
1.9 seconds, while [9] analysis takes 74.7 seconds. Besides,
the maximum run-time, over 100 generated task sets, is 11.2
seconds for our approach and 10.17 seconds for the holistic
approach, while MILP analysis take more than 2 hours.

B. Probabilistic Response Time Analysis

Here, we compare the results of our RTA when applied
to task sets with deterministic and probabilistic execution
times. The deterministic analysis is based on worst case
reasoning. Hence, it considers the highest execution time from
the pWCET and it declares a task set schedulable when
the probabilistic analysis finds a probability of schedulability
equals to 100%. We note that, in Figure [3| none of the gener-
ated task sets reaches the probability of 100% so they won’t

Schedulability probability histogram

30 1

254

204

Number of task set
&

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Schedulability probability

Fig. 3: schedulability of 100 task sets randomly generated

be schedulable using deterministic analysis. However, about
half of generated tasks are schedulable with high probability
(more than 80%) which highlights the pessimism of the worst
case reasoning of deterministic analyses. There is a significant
number of task sets with 0% probability to be schedulable
(not schedulable under any timing parameters values). This is
explained by the random generation of timing and precedence
constraints that may be too stringent to be respected.

C. Priority Assignment Algorithm

TABLE V: comparison with other priority assignment algo-
rithm for sub-tasks

HLFET SCFET CPMISF | GA
WCRT Analysis 114.66% 119.09% 110.81% 113.9%
Simso simulation | 106.57% | 110.71% | 104.23% | 107.18%

In order to compare our proposed priority assignment
heuristic to HLFET, SCEFT and CPMISF heuristics [19}
20|] and to our genetic algorithm, we compute the response
times under each priority assignment algorithm. Next, we
calculate the ratio of obtained WCRTSs by each heuristic and
our Genetic Algorithm (GA) over the one obtained by our
heuristic. Response times are derived using: (i) our proposed
RTA and (ii) our extension of the SimSo simulation.

Extension of SimSo: Simso is a simulation tool developed
by Chéramy et al. [32] to evaluate real-time scheduling algo-
rithms. It supports single and multiprocessor. It also supports
several models and scheduling policies. However, it does
not include DAG task model, priority on sub-task level and
probabilistic execution times. Therefore, we extend SimS(ﬂ to
add precedence constraints inside tasks and to specify a static
priority for sub-tasks. Hence, our extension of this tool allows
to simulate the generated task sets over an hyper-period and
to derive the response time from the simulator events log.

Table [V] shows the obtained results. We note that our
proposed priority assignment heuristic reduces both computed
and simulated response times compared to other heuristics
(HLFET, SCEFT and CPMISF) and the genetic algorithm.

2Extension of source code available on: https:/github.com/SlimBenAmor/
simso/tree/DAG_Task

D. Use Case: PX4 Autopilot

In this section, we present numerical results obtained for
DAG tasks corresponding to the open source PX4 autopilot
programs of a droneﬂ The structure of the DAG tasks is
illustrated in Figure []

T \‘
|
|
|
|
l
|
|

ErnREaRm

|
|
N

| Nav

Fig. 4: DAGs describing precedence constraints between sub-
tasks of the three tasks representing PX4 Autopilot programs.

The execution time traces have been obtained from
hardware-in-the-loop measurements while the sensors and the
output drivers are simulated on predefined flying missions on
a Pixhawk 4 hardwarfﬂ on top of a NuttX Oqﬂ Moreover,
when measured, each sub-task is executed with highest priority
in order to avoid any preemptions from other sub-tasks. The
execution time measurements of the sub-tasks are obtained by
executing them on a single core processor (ARM family). In
order to obtain the probabilistic bounds, we extract from each
empirical distribution several quantiles. The execution times
traces will be made to the reader to ensure the reproductibility
of our results.

TABLE VI: Comparison of computed DMP and drone behav-
ior

Periods | Drone behavior DMP
3 ms Could not fly 0.9999
3.5 ms Could not fly 0.994
4 ms Poor stability 0.2696
4.5 ms | Medium stability 0.0049
5 ms Good stability 1.4959 x 10~ 1%

First, we compute DMP of the PX4 drone autopilot under
different period values (same period for the 3 tasks). Then,
we compare them to drone behavior already evaluated with
different period settings. Results are illustrated in Table [VI]
We note that the obtained DMPs are coherent with the drone
behavior obtained from simulation. For instance, when the
tasks’ period is relatively small the DMP is very high (near
to one) and the drone could not fly because the execution
frequency of programs is very high and they cannot finish
their execution before deadline (D; = T;). Moreover, the DMP
is reduced to 10~'* when period is not small and the drone
shows a good stability.

Now, we assume that the set of three tasks of the PX4
autopilot (Figure [d) is scheduled on a dual core processor with
two identical cores. Then, we compute their DMP to study the
schedulability of the system on such hardware architecture.

3https://en.wikipedia.org/wiki/PX4_autopilot
4https://pixhawk.org
Shttp://nuttx.org

https://github.com/SlimBenAmor/simso/tree/DAG_Task
https://github.com/SlimBenAmor/simso/tree/DAG_Task
https://en.wikipedia.org/wiki/PX4_autopilot
https://pixhawk.org
http://nuttx.org

TABLE VII: DMP of PX4 autopilot tasks under dual core
processor with different period configurations

Ty To T3 DMP DMP 7> | DMP 73
4dms | Tms 10 ms 0 0.1536 0
3ms | Tms | 10ms || 27 x10~% | 0.9147 0
3ms | 6 ms 10 ms 2.7 x 1078 0.9993 0
3ms | 6ms | 7Tms 2.7 x 1078 | 0.9993 0.0006
3ms | 6 ms 7 ms 2.7 x 1078 0.9993 0.0006
2ms | 4ms 5 ms 0.7082 0.9999 0.9271
4ms | 2ms 5 ms 0 0 0
3ms | 2ms 5 ms 5.5 x 10~ 0 0.0451

We consider that sub-tasks Sensors, EKF, Nav, GYRO and
GPS are assigned to the first core while sub-tasks Pos, Att,
Att_rate and Motor_Drv are assigned to the second core.

Results are illustrated in Table for different periods
combinations. Since priorities at task level are defined by rate
monotonic, all programs of task 7 have higher priorities than
7o (11 < T5) in the first six experiments in Table We note
that DMPs of the three tasks increase as we decrease periods
because their period are too small to respect their deadlines.
For the two last experiments, we inverse the priorities of 71 and
7o by choosing T, < T7. We notice that DMP are significantly
reduced even with smaller periods. Thus, we suggest to change
the priorities of programs to accord the highest priority to task
To. We note also that under this configuration, we guarantee
a low DMP with smaller periods than in case of single core.
Hence, the parallelization on a dual core processor, allows to
reach a more reactive and schedulable system.

VII. CONCLUSION

In this paper, we tackle the problem of partitioned schedul-

ing of tasks with precedence constraints defined by multiple
DAGs. We develop iterative response time equations inspired
from [17] and we extend them to fit our task model with prob-
abilistic execution and communication times. Our RTA gives
comparable results, in average, with Fonseca et al. [9] method
based on MILP while extensively decreasing the calculation
time. Besides, we propose to assign priorities to sub-tasks and
we show the effectiveness of our ordering strategy.
Our approach is validated on a PX4 drone autopilot. First,
we computed the DMP of autopilot tasks on a single core
processor and we analysed the stability of the drone with
different execution periods. Then, we considered a dual core
processor. We succeed to reduce tasks’ periods while guar-
anteeing low DMP by reordering tasks’ priorities. Hence, we
make the system more reactive.

As future work, we consider the study of dependent prob-
ability distributions and their impact on the RTA, as well as
the consideration of heterogenous cores.

REFERENCES

[1] Intel, “’Intel Xeon Phi Product Family”,” (2016). [Online]: https://www.
intel.com/content/products/processors/xeon-phi.html,

[2] API specification for parallel programming, “OpenMP 5.0,” (2018).
[Online]:www.openmp.org/press-release/openmp-5.

[3] J. G. Kassakian, H. . Wolf, J. M. Miller, and C. J. Hurton, “Automotive
electrical systems circa 2005,” IEEE Spectrum, 1996.

[5]

[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]
[20]
[21]
(22]
[23]

[24]

[25]
[26]
[27]
(28]
[29]
[30]

[31]

[32]

S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke,
“A generic and compositional framework for multicore response time
analysis,” in RTNS, 2015.

N. Ueter, G. von der Bruggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time tasks,”
in RTSS, 2018.

X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in RTSS, 2017.

R. Medina, E. Borde, and L. Pautet, “Scheduling multi-periodic mixed-
criticality dags on multi-core architectures,” in RTSS, 2018.

S. Ben-Amor, D. Maxim, and L. Cucu-Grosjean, “Schedulability anal-
ysis of dependent probabilistic real-time tasks,” in RTNS, 2016.

J. C. Fonseca, G. Nelissen, V. Nélis, and L. M. Pinho, “Response time
analysis of sporadic DAG tasks under partitioned scheduling,” in /1th
IEEE Symposium on Industrial Embedded Systems, SIES, 2016.

H. Rihani, M. Moy, C. Maiza, R. Davis, and S. Altmeyer, “Response
Time Analysis of Synchronous Data Flow Programs on a Many-Core
Processor,” in RTNS, 2016.

D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, ‘“Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in 2018 IEEE
Real-Time Systems Symposium (RTSS), 2018.

S. Ben-Amor, D. Maxim, and L. Cucu-Grosjean, “Worst-case response
time analysis for partitioned fixed-priority dag tasks on identical pro-
cessors,” in ETFA, WIP session, 2019.

J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in Proceedings of the
25th International Conference RTNS, 2017.

Q. He, x. jiang, N. Guan, and Z. Guo, “Intra-task priority assignment
in real-time scheduling of dag tasks on multi-cores,” IEEE Transactions
on Parallel and Distributed Systems, 2019.

G. Nelissen, J. C. Fonseca, G. Raravi, and V. Nélis, “Timing analysis
of fixed priority self-suspending sporadic tasks,” ECRTS, 2015.

K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Microprogram-
ming, vol. 40, 1994.

J. C. P. Gutiérrez, J. J. G. Garcia, and M. G. Harbour, “On the schedu-
lability analysis for distributed hard real-time systems,” in Proceedings
of the Ninth Euromicro Workshop on Real-Time Systems, RTS, 1997.
M. Gonzalez Harbour, J. J. Gutierrez Garcia, J. C. Palencia Gutierrez,
and J. M. Drake Moyano, “Mast: Modeling and analysis suite for real
time applications,” in ECRTS, 2001.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput., vol. 31, 1999.
Kasahara and Narita, “Practical multiprocessor scheduling algorithms for
efficient parallel processing,” IEEE Transactions on Computers, 1984.
R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic timing
analysis techniques for real-time systems,” LITES, vol. 6, 2019.

M. Santos, B. Lisper, G. Lima, and V. Lima, “Sequential composition
of execution time distributions by convolution,” in CRTS, 2011.

G. Bernat, A. Burns, and M. Newby, “Probabilistic timing analysis: An
approach using copulas,” J. Embedded Comput., vol. 1, 2005.

J. L. Diaz, D. F. Garcia, Kanghee Kim, Chang-Gun Lee, L. Lo Bello,
J. M. Lopez, Sang Lyul Min, and O. Mirabella, “Stochastic analysis of
periodic real-time systems,” in RTSS, 2002.

J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Perform. Eval., vol. 2, 1982.
N. C. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,” Department of Computer
Science, University of York, Tech. Rep. YCS-164, 1991.

A. B. Kahn, “Topological sorting of large networks,” Commun. ACM,
vol. 5, no. 11, Nov. 1962.

I. Harvey, “The microbial genetic algorithm,” in ECAL, 2009.

P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in WATERS, 2010.

R. I. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability tests
for fixed priority real-time systems,” IEEE Transactions on Computers,
vol. 57, no. 9, 2008.

D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
3rd International Conference on Simulation Tools and Techniques, 2010.
M. Chéramy, P.-E. Hladik, and A.-M. Déplanche, “Simso: A simulation
tool to evaluate real-time multiprocessor scheduling algorithms,” in
WATERS, 2014.

https://www.intel.com/content/products/processors/xeon-phi.html
https://www.intel.com/content/products/processors/xeon-phi.html
www.openmp.org/press-release/openmp-5

	Introduction
	Related Work
	Task Model and Notations
	Response Time Analysis
	Probabilistic Operators
	Probabilistic Response Time Analysis
	Local response time
	Response time in isolation
	Global response time

	Priority Assignment
	Sub-task Priority Assignment Heuristic
	Genetic Algorithm

	Evaluation Results
	Deterministic Response Time Analysis
	Probabilistic Response Time Analysis
	Priority Assignment Algorithm
	Use Case: PX4 Autopilot

	Conclusion
	References

