
HAL Id: hal-03120443
https://inria.hal.science/hal-03120443

Submitted on 25 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Project-Team RMoD 2019 Activity Report
Marcus Denker, Nicolas Anquetil, Vincent Aranega, Steven Costiou, Stéphane

Ducasse, Anne Etien, Damien Pollet

To cite this version:
Marcus Denker, Nicolas Anquetil, Vincent Aranega, Steven Costiou, Stéphane Ducasse, et al.. Project-
Team RMoD 2019 Activity Report. [Research Report] INRIA. 2020. �hal-03120443�

https://inria.hal.science/hal-03120443
https://hal.archives-ouvertes.fr

IN PARTNERSHIP WITH:
Université des sciences et
technologies de Lille (Lille 1)

Activity Report 2019

Project-Team RMOD

Analyses and Languages Constructs for
Object-Oriented Application Evolution

IN COLLABORATION WITH: Centre de Recherche en Informatique, Signal et Automatique de Lille

RESEARCH CENTER
Lille - Nord Europe

THEME
Distributed programming and Soft-
ware engineering

Table of contents

1. Team, Visitors, External Collaborators . 1
2. Overall Objectives . 3

2.1. Introduction 3
2.2. Reengineering and remodularization 3
2.3. Constructs for modular and isolating programming languages 3

3. Research Program . 4
3.1. Software Reengineering 4

3.1.1. Tools for understanding applications 4
3.1.2. Remodularization analyses 5
3.1.3. Software Quality 5

3.2. Language Constructs for Modular Design 5
3.2.1. Traits-based program reuse 5
3.2.2. Reconciling Dynamic Languages and Isolation 6

4. Application Domains .7
4.1. Programming Languages and Tools 7
4.2. Software Reengineering 7

5. Highlights of the Year . 7
6. New Software and Platforms . 8

6.1. Moose 8
6.2. Pharo 8
6.3. Pillar 9

7. New Results . 9
7.1. Dynamic Languages: Virtual Machines 9
7.2. Dynamic Languages: Language Constructs for Modular Design 9
7.3. Dynamic Languages: Debugging 10
7.4. Software Reengineering 10
7.5. Blockchain Software Engineering 11

8. Bilateral Contracts and Grants with Industry . 12
8.1. Bilateral Contracts with Industry 12
8.2. Bilateral Grants with Industry 12

8.2.1. Berger-Levrault: Remodularization of Architecture 12
8.2.2. Arolla: Machine Learning-Based Recommenders to Support Software Evolution 12

9. Partnerships and Cooperations . 13
9.1. Regional Initiatives 13

9.1.1. CAR IMT Douai 13
9.1.2. CPER DATA 13

9.2. National Initiatives 13
9.3. European Initiatives 13
9.4. International Initiatives 14

9.4.1. Inria International Labs 14
9.4.2. Inria Associate Teams Not Involved in an Inria International Labs 14
9.4.3. Inria International Partners 14

9.5. International Research Visitors 15
10. Dissemination . 15

10.1. Promoting Scientific Activities 15
10.1.1. Scientific Events: Organisation 15
10.1.2. Scientific Events: Selection 15

10.1.2.1. Chair of Conference Program Committees 15
10.1.2.2. Member of the Conference Program Committees 16

2 Activity Report INRIA 2019

10.1.2.3. Reviewing Activities 16
10.1.3. Journal 16

10.1.3.1. Member of the Editorial Boards 16
10.1.3.2. Reviewing Activities 16

10.1.4. Invited Talks 16
10.1.5. Scientific Expertise 16
10.1.6. Research Administration 16

10.2. Teaching - Supervision - Juries 16
10.2.1. Teaching 16
10.2.2. Supervision 18
10.2.3. Juries 19

10.3. Popularization 19
10.3.1. Articles and contents 19
10.3.2. Education 19
10.3.3. Interventions 19
10.3.4. Internal action 19

11. Bibliography .19

Project-Team RMOD

Creation of the Project-Team: 2009 July 01

Keywords:

Computer Science and Digital Science:
A1.3.3. - Blockchain
A2. - Software
A2.1. - Programming Languages
A2.1.3. - Object-oriented programming
A2.1.8. - Aspect-oriented programming
A2.1.10. - Domain-specific languages
A2.1.12. - Dynamic languages
A2.3.1. - Embedded systems
A2.5. - Software engineering
A2.5.1. - Software Architecture & Design
A2.5.3. - Empirical Software Engineering
A2.5.4. - Software Maintenance & Evolution
A2.6. - Infrastructure software
A2.6.3. - Virtual machines

Other Research Topics and Application Domains:
B2. - Health
B2.7. - Medical devices
B5. - Industry of the future
B5.9. - Industrial maintenance
B6.5. - Information systems
B7. - Transport and logistics

1. Team, Visitors, External Collaborators
Research Scientists

Stéphane Ducasse [Team leader, Inria, Senior Researcher, HDR]
Steven Costiou [Inria, Researcher, from Oct 2019]
Marcus Denker [Inria, Researcher]

Faculty Members
Nicolas Anquetil [Université de Lille, Associate Professor, HDR]
Vincent Aranega [Université de Lille, Associate Professor]
Anne Etien [Université de Lille, Associate Professor, HDR]
Damien Pollet [Université de Lille, Associate Professor]

Post-Doctoral Fellow
Steven Costiou [Inria, Post-Doctoral Fellow, until Sep 2019]

PhD Students
Lionel Akue [Inria, PhD Student, until Apr 2019]
Julien Delplanque [Université de Lille, PhD Student]

https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/ComputerScienceandDigitalScience.html
https://raweb.inria.fr/rapportsactivite/RA2018/static/keywords/OtherResearchTopicsandApplicationDomains.html

2 Activity Report INRIA 2019

Thomas Dupriez [Université de Lille, PhD Student]
Carolina Hernández Phillips [Inria, PhD Student]
Mahugnon Honoré Houekpetodji [Inria, PhD Student]
Jason Lecerf [CEA, PhD Student, until Nov 2019]
Matteo Marra [VUB Brussels, Belgium, PhD Student]
Pierre Misse Chanabier [Inria, PhD Student, from Oct 2019]
Théo Rogliano [Inria, PhD Student, from Oct 2019]
Pablo Tesone [École des Mines de Douai, PhD Student, until Mar 2019]
Benoît Verhaeghe [Berger-Levrault, PhD Student]
Oleksandr Zaitsev [Inria, PhD Student, from Mar 2019]

Technical staff
Andy Amoordon [Inria, Engineer, from Apr 2019 until Jul 2019]
Santiago Bragagnolo [Inria, Engineer, from Apr 2019]
Cyril Ferlicot-Delbecque [Inria, Engineer]
Guillaume Larchevêque [Inria, Engineer, until Oct 2019]
Allex Oliveira [Inria, Engineer]
Pablo Tesone [Inria, Engineer, from Apr 2019]
Christophe Demarey [Inria, Engineer, 60%]

Interns and Apprentices
Vanille Decoeyere [Inria, from Dec 2019]
Clément Dutriez [Université de Lille, from Apr 2019 until Aug 2019]
Dayne Lorena Guerra Calle [Inria, from Feb 2019 until Aug 2019]
Hugo Lasnier [Université de Lille, from Apr 2019 until Aug 2019]
Chia Yu Li [Inria, until Jul 2019]
Pierre Misse Chanabier [Inria, from Feb 2019 until Jul 2019]
Théo Rogliano [Inria, from Feb 2019 until Jul 2019]
Iona Thomas [Centrale Lille, from Jul 2019 until Aug 2019]
Clotilde Toullec [Université de Lille, from May 2019 until Aug 2019]
Oleksandr Zaitsev [Inria, until Feb 2019]

Administrative Assistant
Julie Jonas [Inria]

Visiting Scientists
Abdelhakim Bouremel [University of Skikda, Algeria, Oct 2019]
Mohamad Chakroun [Independent, Mar 2019]
Victor Martín Dias [University of Chile, Chile, until Sep 2019]
Christopher Fuhrman [École de technologie supérieure de Montréal, Canada, until Sep 2019]
Yann-Gaël Guéhéneuc [Concordia University, Canada, from Apr 2019 until May 2019]
Sebastijan Kaplar [University of Novi Sad, Serbia, Aug 2019]
Manuel Leuenberger [University of Bern, Switzerland, from Sep 2019 until Nov 2019]
Milton Mamani Torres [Object Profile SpA, Chile, Aug 2019]
Nina Medic [University of Novi Sad, Serbia, from Jun 2019 until Jul 2019]
Hayatou Oumarou [University of Maroua, Cameroun from Sep 2019 until Oct 2019]
Giuseppe Antonio Pierro [University of Cagliari, Italy, until July 2019]
Gordana Rakic [University of Novi Sad, Serbia, from Nov 2019]
Moussa Saker [University Badji Mokhtar-Annaba, Algeria, from Nov 2019]

External Collaborators
Luc Fabresse [IMT Lille-Douai]
Pavel Krivanek [Inria, until Jun 2019]
Guillermo Polito [CNRS]
Esteban Lorenzano [InriaSoft]

Project-Team RMOD 3

Olivier Auverlot [Université de Lille]

2. Overall Objectives
2.1. Introduction

Keywords: Software evolution, Maintenance, Program visualization, Program analyses, Meta modelling,
Software metrics, Quality models, Object-oriented programming, Reflective programming, Traits, Dynami-
cally typed languages, Dynamic software update, Pharo, Moose.

RMoD’s general vision is defined in two objectives: remodularization and modularity constructs. These two
views are the two faces of a same coin: maintenance could be eased with better engineering and analysis tools
and programming language constructs could let programmers define more modular applications.

2.2. Reengineering and remodularization
While applications must evolve to meet new requirements, few approaches analyze the implications of their
original structure (modules, packages, classes) and their transformation to support their evolution. Our research
focuses on the remodularization of object-oriented applications. Automated approaches including clustering
algorithms are not satisfactory because they often ignore user inputs. Our vision is that we need better
approaches to support the transformation of existing software. The reengineering challenge tackled by RMoD
is formulated as follows:

How to help remodularize existing software applications?

We are developing analyses and algorithms to remodularize object-oriented applications. This is why we
started studying and building tools to support the understanding of applications at the level of packages and
modules. This allows us to understand the results of the analyses that we are building.

We seek to create tools to help developers perform large refactoring. How can they keep track of changes in
various locations in a system while ensuring integrity of current and new code by uniformally applying new
design choices.

2.3. Constructs for modular and isolating programming languages
Dynamically-typed programming languages such as JavaScript are getting new attention as illustrated by the
large investment of Google in the development of the Chrome V8 JavaScript engine and the development of a
new dynamic language DART. This new trend is correlated to the increased adoption of dynamic programming
languages for web-application development, as illustrated by Ruby on Rails, PHP and JavaScript. With web
applications, users expect applications to be always available and getting updated on the fly. This continuous
evolution of application is a real challenge [40]. Hot software evolution often requires reflective behavior and
features. For instance in CLOS and Smalltalk each class modification automatically migrates existing instances
on the fly.

At the same time, there is a need for software isolation, i.e., applications should reliably run co-located with
other applications in the same virtual machine with neither confidential information leaks nor vulnerabilities.
Indeed, often for economical reasons, web servers run multiple applications on the same virtual machine.
Users need confined applications. It is important that (1) an application does not access information of other
applications running on the same virtual machine and (2) an application authorized to manipulate data cannot
pass such authorization or information to other parts of the application that should not get access to it.

Static analysis tools have always been confronted to reflection [37]. Without a full treatment of reflection,
static analysis tools are both incomplete and unsound. Incomplete because some parts of the program may not
be included in the application call graph, and unsound because the static analysis does not take into account
reflective features [46]. In reflective languages such as F-Script, Ruby, Python, Lua, JavaScript, Smalltalk and
Java (to a certain extent), it is possible to nearly change any aspect of an application: change objects, change
classes dynamically, migrate instances, and even load untrusted code.

4 Activity Report INRIA 2019

Reflection and isolation concerns are a priori antagonistic, pulling language design in two opposite directions.
Isolation, on the one hand, pulls towards more static elements and types (e.g., ownership types). Reflection,
on the other hand, pulls towards fully dynamic behavior. This tension is what makes this a real challenge: As
experts in reflective programming, dynamic languages and modular systems, we believe that by working on
this important tension we can make a breakthrough and propose innovative solutions in resolving or mitigating
this tension. With this endeavor, we believe that we are working on a key challenge that can have an impact on
future programming languages. The language construct challenge tackled by RMoD is formulated as follows:

What are the language modularity constructs to support isolation?

In parallel we are continuing our research effort on traits 1 by assessing trait scalability and reuse on a large
case study and developing a pure trait-based language. In addition, we dedicate efforts to remodularizing a
meta-level architecture in the context of the design of an isolating dynamic language. Indeed at the extreme,
modules and structural control of reflective features are the first steps towards flexible, dynamic, yet isolating,
languages. As a result, we expect to demonstrate that having adequate composable units and scoping units will
help the evolution and recomposition of an application.

3. Research Program

3.1. Software Reengineering
Strong coupling among the parts of an application severely hampers its evolution. Therefore, it is crucial to
answer the following questions: How to support the substitution of certain parts while limiting the impact on
others? How to identify reusable parts? How to modularize an object-oriented application?

Having good classes does not imply a good application layering, absence of cycles between packages and reuse
of well-identified parts. Which notion of cohesion makes sense in presence of late-binding and programming
frameworks? Indeed, frameworks define a context that can be extended by subclassing or composition: in this
case, packages can have a low cohesion without being a problem for evolution. How to obtain algorithms that
can be used on real cases? Which criteria should be selected for a given remodularization?

To help us answer these questions, we work on enriching Moose, our reengineering environment, with a new
set of analyses [31], [30]. We decompose our approach in three main and potentially overlapping steps:

1. Tools for understanding applications,

2. Remodularization analyses,

3. Software Quality.

3.1.1. Tools for understanding applications
Context and Problems. We are studying the problems raised by the understanding of applications at a larger
level of granularity such as packages or modules. We want to develop a set of conceptual tools to support this
understanding.

Some approaches based on Formal Concept Analysis (FCA) [59] show that such an analysis can be used to
identify modules. However the presented examples are too small and not representative of real code.

Research Agenda.
FCA provides an important approach in software reengineering for software understanding, design anomalies
detection and correction, but it suffers from two problems: (i) it produces lattices that must be interpreted by
the user according to his/her understanding of the technique and different elements of the graph; and, (ii) the
lattice can rapidly become so big that one is overwhelmed by the mass of information and possibilities [20].
We look for solutions to help people putting FCA to real use.

1Traits are groups of methods that can be composed orthogonally to simple inheritance. Contrary to mixin, the class has the control of
the composition and conflict management.

Project-Team RMOD 5

3.1.2. Remodularization analyses
Context and Problems. It is a well-known practice to layer applications with bottom layers being more stable
than top layers [47]. Until now, few works have attempted to identify layers in practice: Mudpie [61] is a first
cut at identifying cycles between packages as well as package groups potentially representing layers. DSM
(dependency structure matrix) [60], [55] seems to be adapted for such a task but there is no serious empirical
experience that validates this claim. From the side of remodularization algorithms, many were defined for
procedural languages [43]. However, object-oriented programming languages bring some specific problems
linked with late-binding and the fact that a package does not have to be systematically cohesive since it can be
an extension of another one [62], [34].

As we are designing and evaluating algorithms and analyses to remodularize applications, we also need a way
to understand and assess the results we are obtaining.

Research Agenda. We work on the following items:

Layer identification. We propose an approach to identify layers based on a semi-automatic classification
of package and class interrelationships that they contain. However, taking into account the wish or
knowledge of the designer or maintainer should be supported.

Cohesion Metric Assessment. We are building a validation framework for cohesion/coupling metrics to
determine whether they actually measure what they promise to. We are also compiling a number of
traditional metrics for cohesion and coupling quality metrics to evaluate their relevance in a software
quality setting.

3.1.3. Software Quality
Research Agenda. Since software quality is fuzzy by definition and a lot of parameters should be taken into
account we consider that defining precisely a unique notion of software quality is definitively a Grail in the
realm of software engineering. The question is still relevant and important. We work on the two following
items:

Quality models. We studied existing quality models and the different options to combine indicators —
often, software quality models happily combine metrics, but at the price of losing the explicit
relationships between the indicator contributions. There is a need to combine the results of one
metric over all the software components of a system, and there is also the need to combine different
metric results for any software component. Different combination methods are possible that can give
very different results. It is therefore important to understand the characteristics of each method.

Bug prevention. Another aspect of software quality is validating or monitoring the source code to avoid
the emergence of well known sources of errors and bugs. We work on how to best identify such
common errors, by trying to identify earlier markers of possible errors, or by helping identifying
common errors that programmers did in the past.

3.2. Language Constructs for Modular Design
While the previous axis focuses on how to help remodularizing existing software, this second research axis
aims at providing new language constructs to build more flexible and recomposable software. We will build
on our work on traits [57], [32] and classboxes [21] but also start to work on new areas such as isolation in
dynamic languages. We will work on the following points: (1) Traits and (2) Modularization as a support for
isolation.

3.2.1. Traits-based program reuse
Context and Problems. Inheritance is well-known and accepted as a mechanism for reuse in object-oriented
languages. Unfortunately, due to the coarse granularity of inheritance, it may be difficult to decompose an
application into an optimal class hierarchy that maximizes software reuse. Existing schemes based on single
inheritance, multiple inheritance, or mixins, all pose numerous problems for reuse.

6 Activity Report INRIA 2019

To overcome these problems, we designed a new composition mechanism called Traits [57], [32]. Traits are
pure units of behavior that can be composed to form classes or other traits. The trait composition mechanism is
an alternative to multiple or mixin inheritance in which the composer has full control over the trait composition.
The result enables more reuse than single inheritance without introducing the drawbacks of multiple or mixin
inheritance. Several extensions of the model have been proposed [29], [51], [22], [33] and several type systems
were defined [35], [58], [52], [45].

Traits are reusable building blocks that can be explicitly composed to share methods across unrelated class
hierarchies. In their original form, traits do not contain state and cannot express visibility control for methods.
Two extensions, stateful traits and freezable traits, have been proposed to overcome these limitations. However,
these extensions are complex both to use for software developers and to implement for language designers.

Research Agenda: Towards a pure trait language. We plan distinct actions: (1) a large application of traits,
(2) assessment of the existing trait models and (3) bootstrapping a pure trait language.

• To evaluate the expressiveness of traits, some hierarchies were refactored, showing code reuse
[24]. However, such large refactorings, while valuable, may not exhibit all possible composition
problems, since the hierarchies were previously expressed using single inheritance and following
certain patterns. We want to redesign from scratch the collection library of Smalltalk (or part of it).
Such a redesign should on the one hand demonstrate the added value of traits on a real large and
redesigned library and on the other hand foster new ideas for the bootstrapping of a pure trait-based
language.

In particular we want to reconsider the different models proposed (stateless [32], stateful [23], and
freezable [33]) and their operators. We will compare these models by (1) implementing a trait-based
collection hierarchy, (2) analyzing several existing applications that exhibit the need for traits. Traits
may be flattened [50]. This is a fundamental property that confers to traits their simplicity and
expressiveness over Eiffel’s multiple inheritance. Keeping these aspects is one of our priority in
forthcoming enhancements of traits.

• Alternative trait models. This work revisits the problem of adding state and visibility control to traits.
Rather than extending the original trait model with additional operations, we use a fundamentally
different approach by allowing traits to be lexically nested within other modules. This enables traits
to express (shared) state and visibility control by hiding variables or methods in their lexical scope.
Although the traits’ “flattening property” no longer holds when they can be lexically nested, the
combination of traits with lexical nesting results in a simple and more expressive trait model. We
formally specify the operational semantics of this combination. Lexically nested traits are fully
implemented in AmbientTalk, where they are used among others in the development of a Morphic-
like UI framework.

• We want to evaluate how inheritance can be replaced by traits to form a new object model. For
this purpose we will design a minimal reflective kernel, inspired first from ObjVlisp [28] then from
Smalltalk [38].

3.2.2. Reconciling Dynamic Languages and Isolation
Context and Problems. More and more applications require dynamic behavior such as modification of
their own execution (often implemented using reflective features [42]). For example, F-script allows one to
script Cocoa Mac-OS X applications and Lua is used in Adobe Photoshop. Now in addition more and more
applications are updated on the fly, potentially loading untrusted or broken code, which may be problematic
for the system if the application is not properly isolated. Bytecode checking and static code analysis are used
to enable isolation, but such approaches do not really work in presence of dynamic languages and reflective
features. Therefore there is a tension between the need for flexibility and isolation.

Research Agenda: Isolation in dynamic and reflective languages. To solve this tension, we will work on
Sure, a language where isolation is provided by construction: as an example, if the language does not offer
field access and its reflective facilities are controlled, then the possibility to access and modify private data is

Project-Team RMOD 7

controlled. In this context, layering and modularizing the meta-level [25], as well as controlling the access to
reflective features [26], [27] are important challenges. We plan to:

• Study the isolation abstractions available in erights (http://www.erights.org) [49], [48], and Java’s
class loader strategies [44], [39].

• Categorize the different reflective features of languages such as CLOS [41], Python and Smalltalk
[53] and identify suitable isolation mechanisms and infrastructure [36].

• Assess different isolation models (access rights, capabilities [54],...) and identify the ones adapted
to our context as well as different access and right propagation.

• Define a language based on
– the decomposition and restructuring of the reflective features [25],
– the use of encapsulation policies as a basis to restrict the interfaces of the controlled objects

[56],
– the definition of method modifiers to support controlling encapsulation in the context of

dynamic languages.

An open question is whether, instead of providing restricted interfaces, we could use traits to grant additional
behavior to specific instances: without trait application, the instances would only exhibit default public
behavior, but with additional traits applied, the instances would get extra behavior. We will develop Sure,
a modular extension of the reflective kernel of Smalltalk (since it is one of the languages offering the largest
set of reflective features such as pointer swapping, class changing, class definition,...) [53].

4. Application Domains

4.1. Programming Languages and Tools
Many of the results of RMoD are improving programming languages or development tools for such languages.
As such the application domain of these results is as varied as the use of programming languages in general.
Pharo, the language that RMoD develops, is used for a very broad range of applications. From pure research
experiments to real world industrial use (the Pharo Consortium has more than 25 company members).

Examples are web applications, server backends for mobile applications or even graphical tools and embedded
applications

4.2. Software Reengineering
Moose is a language-independent environment for reverse and re-engineering complex software systems.
Moose provides a set of services including a common meta-model, metrics evaluation and visualization. As
such Moose is used for analyzing software systems to support understanding and continuous development as
well as software quality analysis.

5. Highlights of the Year

5.1. Highlights of the Year
• Steven Costiou was hired as CR.
• We released Pharo 7. More information at http://pharo.org.
• The paper Rotten Green Tests has been accepted at ICSE.

https://hal.inria.fr/hal-02002346

5.1.1. Awards

http://www.erights.org
http://consortium.pharo.org
http://pharo.org
https://hal.inria.fr/hal-02002346

8 Activity Report INRIA 2019

• Best paper award: SATToSE 2019 Migrating GWT to angular 6 using MDE.
https://hal.inria.fr/hal-02304301

• 2nd place best paper award IWST 2019: Illicium: a modular transpilation toolchain from Pharo to
C.
https://hal.archives-ouvertes.fr/hal-02297860

• 3rd place best paper award IWST 2019: GildaVM: a Non-Blocking I/O Architecture for the Cog VM.
https://hal.archives-ouvertes.fr/view/index/docid/2379275

6. New Software and Platforms

6.1. Moose
Moose: Software and Data Analysis Platform

KEYWORDS: Software engineering - Meta model - Software visualisation

FUNCTIONAL DESCRIPTION: Moose is an extensive platform for software and data analysis. It offers multiple
services ranging from importing and parsing data, to modeling, to measuring, querying, mining, and to building
interactive and visual analysis tools. The development of Moose has been evaluated to 200 man/year.

Mots-cles : MetaModeling, Program Visualization, Software metrics, Code Duplication, Software analyses,
Parsers

• Participants: Anne Etien, Nicolas Anquetil, Olivier Auverlot, Stéphane Ducasse, Julien Delplanque,
Guillaume Larcheveque, Cyril Ferlicot-Delbecque and Pavel Krivanek

• Partners: Université de Berne - Sensus - Synectique - Pleiad - USI - Vrije Universiteit Brussel

• Contact: Stéphane Ducasse

• URL: http://www.moosetechnology.org

6.2. Pharo
KEYWORDS: Live programmation objet - Reflective system - Web Application

FUNCTIONAL DESCRIPTION: Pharo is a pure object reflective and dynamic language inspired by Smalltalk.
In addition, Pharo comes with a full advanced programming environment developed under the MIT License. It
provides a platform for innovative development both in industry and research. By providing a stable and small
core system, excellent developer tools, and maintained releases, Pharo’s goal is to be a platform to build and
deploy mission critical applications, while at the same time continue to evolve. Pharo 60 got 100 contributors
world-wide. It is used by around 30 universities, 15 research groups and around 40 companies.

• Participants: Christophe Demarey, Clement Bera, Damien Pollet, Esteban Lorenzano, Marcus
Denker, Stéphane Ducasse and Guillermo Polito

• Partners: BetaNine - Reveal - Inceptive - Netstyle - Feenk - ObjectProfile - GemTalk Systems - Greyc
Université de Caen - Basse-Normandie - Université de Berne - Yesplan - RMod - Pleiad - Sensus
- Université de Bretagne Occidentale - École des Mines de Douai - ENSTA - Uqbar foundation
Argentina - LAM Research - ZWEIDENKER - LifeWare - JPMorgan Chase - KnowRoaming - ENIT
- Spesenfuchs - FINWorks - Esug - FAST - Ingenieubüro Schmidt - Projector Software - HRWorks
- Inspired.org - Palantir Solutions - High Octane - Soops - Osoco - Ta Mère SCRL - University of
Yaounde 1 - Software Quality Laboratory, University of Novi Sad - Software Institute Università
della Svizzera italiana - Universdad Nacional de Quilmes - UMMISCO IRD - Université technique
de Prague

• Contact: Marcus Denker

• URL: http://www.pharo.org

https://hal.inria.fr/hal-02304301
https://hal.archives-ouvertes.fr/hal-02297860
https://hal.archives-ouvertes.fr/view/index/docid/2379275
http://www.moosetechnology.org
http://www.pharo.org

Project-Team RMOD 9

6.3. Pillar
KEYWORDS: HTML - LaTeX - HTML5

FUNCTIONAL DESCRIPTION: Pillar is a markup syntax and associated tools to write and generate documen-
tation and books. Pillar is currently used to write several books and other documentation. It is used in the tools
developed by Feenk.com.

• Partner: Feenk

• Contact: Stéphane Ducasse

• URL: https://github.com/Pillar-markup/pillar

7. New Results

7.1. Dynamic Languages: Virtual Machines
Illicium A modular transpilation toolchain from Pharo to C. The Pharo programming language runs on the
OpenSmalltalk-VM. This Virtual Machine (VM) is mainly written in Slang, a subset of the Smalltalk language
dedicated to VM development. Slang is transpiled to C using the Slang-to-C transpiler. The generated C is then
compiled to produce the VM executable binary code. Slang is a powerful dialect for generating C because it
benefits from the tools of the Smalltalk environment, including a simulator that runs and debugs the VM.
However, the Slang-to-C transpiler is often too permissive. For example, the Slang-to-C transpiler generates
invalid C code from some Smalltalk concepts it does not support. This makes the Slang code hard to debug
as the errors are caught very late during the development process, which is worsen by the loss of the mapping
between the generated C code and Slang. The Slang-to-C transpiler is also hard to extend or adapt to modify
part of the translation process. We present Illicium, a new modular transpilation toolchain based on a subset
of Pharo targeting C through AST transformations. This toolchain translates the Pharo AST into a C AST
to generate C code. Using ASTs as source and target artifacts enables analysis, modification and validation
at different levels during the translation process. The main translator is split into smaller and replaceable
translators to increase modularity. Illicium also allows the possibility to introduce new translators and to chain
them together, increasing reusability. To evaluate our approach, we show with a use case how to extend the
transpilation process with a translation that requires changes not considered in the original C AST. [7]

GildaVM: a Non-Blocking I/O Architecture for the Cog VM. The OpenSmalltalk virtual machine (VM)
was historically designed as a single-threaded VM. All VM code including the Smalltalk interpreter, the
garbage collector and the just-in-time compiler run in the same single native thread. While this VM provides
concurrency through green threads, it cannot take advantage of multi-core processors. This architecture
performs really well in practice until the VM accesses external resources such as e.g., FFI callouts, which
block the single VM thread and prevent green threads to benefit from the processor. We present GildaVM, a
multi-threaded VM architecture where one thread at a time executes the VM while allowing non-blocking I/O
in parallel. The ownership of the VM is orchestrated by a Global Interpreter Lock (GIL) as in the standard
implementations of Python and Ruby. However, within a single VM thread concurrency is still possible
through green threads. We present a prototype implementation of this architecture running on top of the Stack
flavour of the OpenSmalltalk VM. We finally evaluate several aspects of this architecture like FFI and thread-
switch overhead. While current benchmarks show good results for long FFI calls, short FFI calls require more
research to minimize the overhead of thread-switch. [9]

7.2. Dynamic Languages: Language Constructs for Modular Design
Magic Literals in Pharo Literals are constant values (numbers, strings, etc.) used in the source code. Magic
literals are the ones used without a clear explanation of their meaning. Presence of such literals harms source
code readability, decreases its modularity, and encourages code duplication. Identifying magic literals is
not straightforward. A literal can be considered self-explanatory in one context and magic in another. We

https://github.com/Pillar-markup/pillar

10 Activity Report INRIA 2019

need a heuristic to help developers spot magic literals. We study and characterize the literals in Pharo. We
implemented a heuristic to detect magic literals and integrated it as a code critic rule for System Browser and
Critics Browser in Pharo 7. We run our heuristic on 112,500 Pharo methods which reported 23,292 magic
literals spread across 8,986 methods. We manually validated our approach on a random subset of 100 methods
and found that 62% of the reported literals in those methods are indeed magic. [3]

Towards easy program migration using language virtualization Migrating programs between language
versions is a daunting task. A developer writes a program in a particular version of a language and cannot
foresee future language changes. In this article, we explore a solution to gradual program migration based
on virtualization at the programming language level. Our language virtualization approach adds a backwards-
compatibility layer on top of a recent language version, allowing developers to load and run old programs on
the more recent infrastructure. Developers are then able to migrate the program to the new language version or
are able to run it as it is. Our virtualization technique is based on a dynamic module implementation and code
intercession techniques. Migrated and non-migrated parts co-exist in the meantime allowing an incremental
migration procedure. We validate it by migrating legacy Pharo programs, MuTalk and Fuel. [10]

7.3. Dynamic Languages: Debugging
Sindarin: A Versatile Scripting API for the Pharo Debugger Debugging is one of the most important
and time consuming activities in software maintenance, yet mainstream debuggers are not well-adapted to
several debugging scenarios. This has led to the research of new techniques covering specific families of
complex bugs. Notably, recent research proposes to empower developers with scripting DSLs, plugin-based
and moldable debuggers. However, these solutions are tailored to specific use-cases, or too costly for one-
time-use scenarios. We argue that exposing a debugging scripting interface in mainstream debuggers helps in
solving many challenging debugging scenarios. For this purpose, we present Sindarin, a scripting API that
eases the expression and automation of different strategies developers pursue during their debugging sessions.
Sindarin provides a GDB-like API, augmented with AST-bytecode-source code mappings and object-centric
capabilities. To demonstrate the versatility of Sindarin, we reproduce several advanced breakpoints and non-
trivial debugging mechanisms from the literature. [4]

Challenges in Debugging Bootstraps of Reflective Kernels The current explosion of embedded systems (i.e.,
IoT, Edge Computing) implies the need for generating tailored and customized software for these systems.
Instead of using specific runtimes (e.g., MicroPython, eLua, mRuby), we advocate that bootstrapping specific
language kernels is a promising higher-level approach because the process takes advantage of the generated
language abstractions, easing the task for a language developer. Nevertheless, bootstrapping language kernels
is still challenging because current debugging tools are not suitable for fixing the possible failures that occur
during the process. We take the Pharo bootstrap process as an example to analyse the different challenges a
language developer faces. We propose a taxonomy of failures appearing during bootstrap and their causes.
Based on this analysis, we identify future research directions: (1) prevention measures based on the reification
of implicit virtual machine contracts, and (2) hybrid debugging tools that unify the debugging of high-level
code from the bootstrapped language with low-level code from the virtual machine. [6]

7.4. Software Reengineering
Decomposing God Classes at Siemens A group of developers at Siemens Digital Industry Division ap-
proached our team to help them restructure a large legacy system. Several problems were identified, including
the presence of God classes (big classes with thousands of lines of code and hundred of methods). They
had tried different approaches considering the dependencies between the classes, but none were satisfactory.
Through interaction during the last three years with a lead software architect of the project, we designed a
software visualization tool and an accompanying process that allows her to propose a decomposition of a God
Class in a matter of one or two hours even without prior knowledge of the class (although actually imple-
menting the decomposition in the source code could take a week of work). We present the process that was
formalized to decompose God Classes and the tool that was designed. We give details on the system itself and
some of the classes that were decomposed. The presented process and visualisations have been successfully
used for the last three years on a real industrial system at Siemens. [1]

Project-Team RMOD 11

Rotten Green Tests Unit tests are a tenant of agile programming methodologies, and are widely used to
improve code quality and prevent code regression. A green (passing) test is usually taken as a robust sign that
the code under test is valid. However, some green tests contain assertions that are never executed. We call
such tests Rotten Green Tests. Rotten Green Tests represent a case worse than a broken test: they report that
the code under test is valid, but in fact do not test that validity. We describe an approach to identify rotten
green tests by combining simple static and dynamic call-site analyses. Our approach takes into account test
helper methods, inherited helpers, and trait compositions, and has been implemented in a tool called DrTest.
DrTest reports no false negatives, yet it still reports some false positives due to conditional use or multiple
test contexts. Using DrTest we conducted an empirical evaluation of 19,905 real test cases in mature projects
of the Pharo ecosystem. The results of the evaluation show that the tool is effective; it detected 294 tests as
rotten-green tests that contain assertions that are not executed. Some rotten tests have been "sleeping" in Pharo
for at least 5 years. [2]

Migrating GWT to Angular 6 using MDE In the context of a collaboration with Berger-Levrault, a major
IT company, we are working on the migration of a GWT application to Angular. We focus on the GUI
aspect of this migration which, even if both are web frameworks, is made difficult because they use different
programming languages (Java for one, Typescript for the other) and different organization schemas (e.g.
different XML files). Moreover, the new application must mimic closely the visual aspect of the old one so that
the users of the application are not disturbed. We propose an approach in three steps that uses a meta-model
to represent the GUI at a high abstraction level. We evaluated this approach on an application comprising 470
Java (GWT) classes representing 56 screens. We are able to model all the web pages of the application and
93% of the wid-gets they contain, and we successfully migrated (i.e., the result is visually equal to the original)
26 out of 39 pages (66%). We give examples of the migrated pages, both successful and not. [14] [11] [12]

Empirical Study of Programming to an Interface A popular recommendation to programmers in object-
oriented software is to program to an interface, not an implementation (PTI). Expected benefits include
increased simplicity from abstraction, decreased dependency on implementations, and higher flexibility. Yet,
interfaces must be immutable, excessive class hierarchies can be a form of complexity, and speculative
generality is a known code smell. To advance the empirical knowledge of PTI, we conducted an empirical
investigation that involves 126 Java projects on GitHub, aiming to measuring the decreased dependency
benefits (in terms of cochange). [13]

Exposing Test Analysis Results with DrTests Tests are getting the cornerstone of continuous development
process and software evolution. Tests are the new gold. To improve test quality, a plethora of analyses is
proposed such as test smells, mutation testing, test coverage. The problem is that each analysis often needs
a particular way to expose its results to the developer. There is a need for an architecture supporting test
running and analysis in a modular and extensible way. We present an extensible plugin-based architecture
to run and report test results. DrTests is a new test browser that implements such plugin-based architecture.
DrTests supports the execution of rotten tests, comments to tests, coverage and profiling tests. [5]

7.5. Blockchain Software Engineering
SmartAnvil: Open-Source Tool Suite for Smart Contract Analysis Smart contracts are new computational
units with special properties: they act as classes with aspectual concerns; their memory structure is more
complex than mere objects; they are obscure in the sense that once deployed it is difficult to access their internal
state; they reside in an append-only chain. There is a need to support the building of new generation tools to
help developers. Such support should tackle several important aspects: (1) the static structure of the contract,
(2) the object nature of published contracts, and (3) the overall data chain composed of blocks and transactions.
We present SmartAnvil an open platform to build software analysis tools around smart contracts. We illustrate
the general components and we focus on three important aspects: support for static analysis of Solidity
smart contracts, deployed smart contract binary analysis through inspection, and blockchain navigation and
querying. SmartAnvil is open-source and supports a bridge to the Moose data and software analysis platform.
[18]

12 Activity Report INRIA 2019

The Influence Factors on Ethereum Transaction Fees In Ethereum blockchain, the user needs to set a Gas
price to get a transaction processed and approved by Miners. To have the transaction executed, the Gas price
has to be greater than or equal to the lowest Ethereum transaction fees. We present a set of data sampled
every 15 seconds, from December 1st, 2018 to December 15, 2018, coming from different blockchain web
APIs. The aim is to investigate whether and to what extent different variables - such as the number of pending
transactions, the value of the USD/Ether pair, average electricity prices around the world, and the number of
miners - influence the Ethereum transaction fees. This study is relevant from an economic perspective because
more and more companies in different economic fields are adopting Ethereum blockchain. From historical
data analysis, we found that only some of these variables do have an influence. For example, the number of
pending transactions and the number of miners have a major influence on Ethereum transaction fees when
compared to the other variables. [8]

8. Bilateral Contracts and Grants with Industry

8.1. Bilateral Contracts with Industry
8.1.1. Pharo Consortium

Participants: Esteban Lorenzano, Marcus Denker, Stéphane Ducasse
From 2012, ongoing.

The Pharo Consortium was founded in 2012 and is growing constantly. By the end 2019, it has 25 company
members, 19 academic partners. Inria supports the consortium with one full time engineer starting in 2011. In
2018, the Pharo Consortium joined InriaSoft.

More at http://consortium.pharo.org.

8.2. Bilateral Grants with Industry
8.2.1. Berger-Levrault: Remodularization of Architecture

Participants: Nicolas Anquetil, Santiago Bragagnolo, Stéphane Ducasse, Anne Etien, Benoît Verhaeghe
From 2017, ongoing.

We started a new collaboration with the software editor Berger-Levrault about software architecture remodu-
larization. The collaboration started with an end study project exploring the architecture used in the company
in order to later migrate from GWT to Angular since GWT will not be backward supported anymore in the next
versions. A PhD CIFRE thesis started in 2019: Benoît Verhaeghe, Support à l’automatisation de la migration
d’interface d’applications Web : le cas de GWT vers Angular.

8.2.2. Arolla: Machine Learning-Based Recommenders to Support Software Evolution
Participants: Nicolas Anquetil, Stéphane Ducasse, Anne Etien, Oleksandr Zaitsev

We started a new collaboration with the council company, Arolla, about software evolution. Arolla has daily
problems with identifying architecture, design, and deviations from those artifacts. The goal of the thesis is
to experiment which learning techniques can help with semi-automatically extracting design and architectural
aspects and their violations. A PhD CIFRE has started in 2019: Oleksandr Zaitsev, Machine Learning-Based
Tools to Support Software Evolution.

A second CIFRE around legacy system cartography will start in 2020.

http://consortium.pharo.org

Project-Team RMOD 13

9. Partnerships and Cooperations

9.1. Regional Initiatives
9.1.1. CAR IMT Douai

Participants: Pablo Tesone, Guillermo Polito, Marcus Denker, Stéphane Ducasse with: L. Fabresse and N.
Bouraqadi (IMT Douai)
From 2009, ongoing.

We have signed a convention with the CAR team led by Noury Bouraqadi of IMT Douai. In this context we
co-supervised three PhD students (Mariano Martinez-Peck, Nick Papoylias and Guillermo Polito). The team
is also an important contributor and supporting organization of the Pharo project.

Pablo Tesone did a PhD co-supervided by RMOD and Pr. L. Fabresse and N. Bouraqadi (finished in 2018).
Currently, three PhD Students are co-supervised:

• PhD in progress: Théo Rogliano, On multiple language kernel, started Oct 2019, Stéphane Ducasse,
Luc Fabresse

• PhD in progress: Pierre Misse-Chanabier, Modular, green, versatile Virtual Machines, started Oct
2019, Stéphane Ducasse, Noury Bouraqadi

• PhD in progress: Carolina Hernández, Tools for MicroKernels Guillermo Polito and Luc Fabresse

We are collaborating in the Context of CPER Data since 2018.

9.1.2. CPER DATA
Participants: Marcus Denker, Stéphane Ducasse, Allex Oliveira with: L. Fabresse and N. Bouraqadi (IMT
Douai)
From 2018, ongoing.

Funding to work one year on the PharoThings Platform. We are creating content for a website and a Demo in
callaboration with IMT Douai.

9.2. National Initiatives
9.2.1. CEA List

Participants: Jason Lecerf, Stéphane Ducasse with Thierry Goubier (CEA List)
From 2016, PhD finished 2019.

Jason Lecerf started a shared PhD Oct 2016 and finished November 2019: Designing Language-Agnostic Code
Transformation Engines.

9.3. European Initiatives
9.3.1. Collaborations in European Programs, Except FP7 & H2020

University of Novi Sad, Serbia
Participants: Stéphane Ducasse, Anne Etien, Nicolas Anquetil, Vincent Aranega

A collaboration with the University of Novi Sad, Serbia, started in 2018 with the university joining the Pharo
Consortium as an academic member.

We have handed in a bilateral project (Campus France) between Novi Sad and RMOD: An innovative visual
environment in service of developer experience. We expect results by the end of this year.

A Master thesis has been cosupervised. Nina Medic: Graph library with layout algorithms in Pharo.

14 Activity Report INRIA 2019

Visitors:

• Sebastijan Kaplar [University of Novi Sad, Serbia, Aug 2019]

• Gordana Rakic [University of Novi Sad, Serbia, from Nov 2019]

• Nina Medic [University of Novi Sad, Serbia, from Jun 2019 until Jul 2019]

University of Prague, Czech Republic
Participants: Stéphane Ducasse.

From 2015, ongoing.

We are working with Dr. Robert Pergl from the University of Prague. Stéphane Ducasse gave a lecture at the
University of Prague in 2018, the next lecture is planned for 2020.

University of Cagliari, Italy
Participants: Stéphane Ducasse

We are working on sofware engineering problems in the context of blockchain based sofware.

Visitor: Giuseppe Antonio Pierro [University of Cagliari, until July 2019].

University of Bern, Switzerland
Participants: Stéphane Ducasse, Marcus Denker

We are working on dynamic software update to, for example, automatically transform users of deprecated
code.

Visitor: Manuel Leuenberger [University of Bern, from Sep 2019 until Nov 2019]

Siemens AG, Germany
Participants: Stéphane Ducasse, Anne Etien, Nicolas Anquetil

The Siemens Digital Industry Division approached our team to help them restructure a large legacy systems.
The joined work resulted in a publication in 2019: Decomposing God Classes at Siemens [1].

9.4. International Initiatives
9.4.1. Inria International Labs

Discussions with Inria Chile have started about organizing Pharo lectures in Chile. A first visit to Inria Chile
in fall 2019 did not happen due to the political situation in Chile.

9.4.2. Inria Associate Teams Not Involved in an Inria International Labs
VUB Brussels, Belgium
Participants: Guillermo Polito, Stéphane Ducasse, Marcus Denker.

Collaboration with SOFT started 2016, from 2020 Inria Lille North-European associated team funding with
SOFT/VUB for 2 years.

Student: Matteo Marra, collaboration with Eliza Gonzalez Boix.

Marcus Denker gave a lecture at VUB in October 2019.

9.4.3. Inria International Partners
9.4.3.1. Informal International Partners

Uqbar Argentina
Participants: Pablo Tesone, Esteban Lorenzano, Guillermo Polito, Stéphane Ducasse.

From 2015, ongoing.

We are working with the Uqbar team from different Argentinian universities. We hired three of the people:
Nicolas Passerini(engineer), Esteban Lorenzano (engineer) and Pablo Tesone (PhD).

Project-Team RMOD 15

Pharo in Research:
Participants: Pablo Tesone, Esteban Lorenzano, Guillermo Polito, Marcus Denker, Stéphane Ducasse.
From 2009, ongoing.

We are building an ecosystem around Pharo with international research groups, universities and companies.
Several research groups (such as Software Composition Group – Bern, and Pleaid – Santiago) are using Pharo.
Many universities are teaching OOP using Pharo and its books. Several companies worldwide are deploying
business solutions using Pharo.

9.5. International Research Visitors
9.5.1. Visits of International Scientists

• Abdelhakim Bouremel [University of Skikda, Algeria, Oct 2019]

• Mohamad Chakroun [Mar 2019]

• Victor Martín Dias [University of Chile, Chile, until Sep 2019]

• Christopher Fuhrman [École de technologie supérieure de Montréal, Canada, until Sep 2019]

• Yann-Gaël Guéhéneuc [Concordia University, Canada, from Apr 2019 until May 2019]

• Sebastijan Kaplar [University of Novi Sad, Serbia, Aug 2019]

• Manuel Leuenberger [University of Bern, Switzerland, from Sep 2019 until Nov 2019]

• Milton Mamani Torres [Object Profile SpA, Chile, Aug 2019]

• Nina Medic [University of Novi Sad, Serbia, from Jun 2019 until Jul 2019]

• Hayatou Oumarou [University of Maroua, Cameroun, from Sep 2019 until Oct 2019]

• Giuseppe Antonio Pierro [University of Cagliari, Italy, until July 2019]

• Gordana Rakic [University of Novi Sad, Serbia, from Nov 2019]

• Moussa Saker [University Badji Mokhtar-Annaba, Algeria, from Dec 2019]

9.5.1.1. Internships

• Dayne Lorena Guerra Calle [Inria, from Feb 2019 until Aug 2019]

• Chia Yu Li [Inria, until Jul 2019]

• Iona Thomas [Centrale Lille, from Jul 2019 until Aug 2019]

• Oleksandr Zaitsev [Inria, until Feb 2019]

10. Dissemination

10.1. Promoting Scientific Activities
10.1.1. Scientific Events: Organisation
10.1.1.1. Member of the Organizing Committees

• Marcus Denker and Stéphane Ducasse are in the board of ESUG and organized ESUG 2019, the
yearly Smalltalk conference that brings together research and industry http://www.esug.org/

10.1.2. Scientific Events: Selection
10.1.2.1. Chair of Conference Program Committees

• Anne Etien has been PC chair of IWST since 2015.

• Anne Etien has been PC chair of Sattose 2019.

http://www.esug.org/

16 Activity Report INRIA 2019

• Santiago Bragagonolo: IWBOSE 2020 CFP Manager, Chair (workshop on blockchain software
engineering).

• Stéphane Ducasse: PC-chair International Conference on Software Reuse 2020.

10.1.2.2. Member of the Conference Program Committees
• Marcus Denker has been a member of ICOOLPS 2019.
• Steven Costiou has been member of IWST 2019.
• Anne Etien has been member of BENEVOL 2019, IWor 2019, VISSOFT 2019, ICPC 2019, CIEL

2019, GDRGPL 2019, Modelwards Program Committees.
• Guillermo Polito has been PC of IWST 2019
• Guillermo Polito has been PC of Meta Workshop 2019.
• Vincent Aranega was in the PC of IWST 2019.

10.1.2.3. Reviewing Activities
• Vincent Aranega reviewed for MODELSWARD19.
• Damien Pollet reviewed for ICSOFT.

10.1.3. Journal
10.1.3.1. Member of the Editorial Boards

• Anne Etien has been a member of the editorial board for the Special issue on Dynamic Languages
of Science of Computer Programming journal.

• Anne Etien has been editor for CEUR journal vol 2510.

10.1.3.2. Reviewing Activities
• Anne Etien was reviewer for Journal of Systems and Software.
• Steven Costiou was reviewer for Science of Computer Programming.
• Guillermo Polito was reviewer for Journal IEEE Transactions on Industrial Informatics.
• Damien Pollet was reviewer for Science of Computer Programming.
• Gordana Rakic was reviewer for the 3rd call for The Programming Journal (and Programming 2020

conference).
• Gordana Rakic was reviewer for the Computing and Informatics journal.

10.1.4. Invited Talks
Steven Costiou: Keynote ICCR2019 6th International Conference on Cloud and Robotics (Remote and live
debugging of IOT applications: tools for researchers and developers.)

10.1.5. Scientific Expertise
• Anne Etien: expert for the French government on Research Tax Credit.
• Anne Etien: expert for the ANRT to evaluate a CIFRE file.
• Steven Costiou: program committee of the GDR-GPL 2020 challenges.

10.1.6. Research Administration
• Steven Costiou: representative of the post-doc researchers of the CRIStAL lab for the 2019 HCERES

evaluation.
• Anne Etien is animator of the Software Engineering thematic Group of the CRIStAL lab since 2019.
• Anne Etien is elected at the committee of Inria Lille - Nord Europe center since 2016.

10.2. Teaching - Supervision - Juries
10.2.1. Teaching

http://ceur-ws.org/Vol-2510

Project-Team RMOD 17

Master: Marcus Denker, 2 hours, Advanced Reflection. MetaLinks, VUB Brussels, Belgium.
Master: Steven Costiou, Fondamentaux du debugging, 20h, M2, Université de Lille
Master: Steven Costiou, Fondamentaux du debugging, 12h eTD, M2, Université de Bretagne
Occidentale
Master: Steven Costiou, Introduction au C, 10h, M1 + M2, Polytech-Lille
Master: Steven Costiou, IOT, 13h, M2, Polytech-Lille
Master: Steven Costiou, IOT, 8h, M2, Université de Picardie Jules Verne
Licence: Steven Costiou, Systèmes d’information, 36h, L3, Université de Bretagne Occidentale
Master: Christophe Demarey, Intégration continue, 16 EdTD, M2, Université de Lille, France
Master: Bragagnolo Santiago, Robotique avec ROS, 36h TD, M2, ISEN
Master: Bragagnolo Santiago, Introduction a la blockchain, 6h TD, M2, Université de Lille
Licence: Bragagnolo Santiago, Programmation par objet, 26.3h TD, Polytech-Lille, France
Licence: Anne Etien, Bases de données, 30h, L3, Polytech-Lille, France
Licence: Anne Etien, Programmation par objet, 40h, L3, Polytech-Lille, France
Licence: Anne Etien, Bases de données, 30h, M1, Polytech-Lille, France
Master: Anne Etien, Test et Maintenance, 10h, M1, Polytech-Lille, France
Master: Anne Etien, Test et Maintenance, 14h, M2, Polytech-Lille, France
Master: Anne Etien, Système d’information objet, 10h, M1, Polytech Lille, France
Master: Anne Etien, Bases de données Avancées, 17h, M1, Polytech-Lille, France
Licence: Vincent Aranega, Programmation Python, 42h, niveau (L1), Université de Lille, France
Master: Vincent Aranega, Génie Logiciel, 42h, niveau (M1), Université de Lille, France
Master: Vincent Aranega, Paradigme de Programmation par la Pratique, 40h, niveau (M1), Univer-
sité de Lille, France
Master: Vincent Aranega, Paradigme de Programmation par la Pratique, 15h, niveau (M1), Univer-
sité de Lille, France
Licence: Vincent Aranega, Programmation C, 42h, niveau (L2), Université de Lille, France
Licence: Vincent Aranega, Programmation avancée, 32h, niveau (L3), Polytech-Lille, France
Licence: Nicolas Anquetil, Principes des Système d’Exploitation, 30h, L2, IUT-A, Université de
Lille, France
Licence: Nicolas Anquetil, Conception OO Avancée, 34h, L2, IUT-A, Université de Lille, France
Licence: Nicolas Anquetil, Modélisation Mathématique, 36h, L2, UT-A, Université de Lille, France
Licence: Nicolas Anquetil, Production d’Application, 30h, L2, IUT-A, Université de Lille, France
Licence: Nicolas Anquetil, Programation Mobile, 30h, L2, IUT-A, Université de Lille, France
Licence: Nicolas Anquetil, Projets Agiles, 12h, L2, IUT-A, Université de Lille, France
Licence: Nicolas Anquetil, Graphes & Languages, 64h, L2, IUT-A, Université de Lille, France
Licence: Nicolas Anquetil, Suivi de Stages, 15h, L2, IUT-A, Université de Lille, France
Licence: Nicolas Anquetil, Interfaces Hommes-Machines, 32h, L2, IUT-A, Université de Lille,
France
Licence: Benoît Verhaeghe, Structure de données, 22 EdTD, L3, Polytech Lille, France
Licence: Benoît Verhaeghe, Système d’exploitation, 20 EdTD, L2, Université de Montpellier,
France
Licence: Benoît Verhaeghe, Fondamentaux Architecture et Systèmes d’Exploitation, 15 EdTD, L3,
Polytech Montpellier, France

18 Activity Report INRIA 2019

Master: Benoît Verhaeghe, Architecture Logicielles, 25 EdTD, M1, Polytech Lille, France
Master: Benoît Verhaeghe, Évolution et restructuration, 9 EdTD, M2, Université de Montpellier,
France
License: Damien Pollet, OpenDevs, 35h, L3, Université de Lille, France
License: Damien Pollet, Programmation objet en Java, 140h, L3, IMT Lille-Douai, France
License: Damien Pollet, Systèmes numériques, 18h, L3, IMT Lille-Douai, France
Master: Damien Pollet, Technologies des systèmes d’informations, 28h, M1, IMT Lille-Douai,
France
Master: Damien Pollet, Ingénierie du logiciel, 7h, M2, IMT Lille-Douai, France
Master: Damien Pollet, Algorithmes pour les réseaux, 22h, M2, IMT Lille-Douai, France
Licence: Julien Delplanque, Structure de données, 18 EdTD, L3, Polytech Lille, France
Licence: Julien Delplanque, Base de données relationnelles, 16 EdTD, L3, Polytech Lille, France
Master: Julien Delplanque, Base de données, 12 EdTD, M1, Polytech Lille, France
Master: Julien Delplanque, Informatique Industrielle 2, 12 EdTD, M1, Polytech Lille, France
Master: Stéphane Ducasse. Pharo, 20h, University of Prague, Czech Republic
Master: Stéphane Ducasse, Advanced Design, 16h, M1, Université Brest, France
Licence: Stéphane Ducasse, Interpreters, 24h, L3, Université de Lille, France
Master: Stéphane Ducasse, Pharo, 2h, M1, Polytech Lille, France
Master: Stéphane Ducasse, Advanced Design, 2h, M1, ENS Paris Sud, France
Master: Stéphane Ducasse, Advanced Design, 20h, M1, Université de Picardie, France
Master: Stéphane Ducasse, Advanced Design, 20h, M2, Tunis ENSI, Tunisia
Master: Stéphane Ducasse, Advanced Design, 9h, M1, Université de Brest, France
Master: Stéphane Ducasse, Modelisation, 18h, M1, Paris Pantheon Sorbonne, France
Licence: Carolina Hernández Phillips, Algorithmique et Programmation, 12 EdTD, L3, IMT Lille
Douai, France
E-learning

Pharo Mooc, 7 weeks, Licences and Master students
Pedagogical resources: TinyBlog: Develop your First Web App with Pharo [16] and Pharo
with Style [17]

10.2.2. Supervision
PhD: Jason Lecerf, Designing Language-Agnostic Code Transformation Engines, 26 Nov 2019,
CEA, Thierry Goubier, Stéphane Ducasse
PhD in progress: Oleksandr Zaitsev, Machine Learning-Based Tools to Support Software Evolution,
started Jul 2019, Stéphane Ducasse, Nicolas Anquetil
PhD in progress: Benoît Verhaeghe, Support à l’automatisation de la migration d’interface
d’applications Web : le cas de GWT vers Angular, started Jan 2019, Anne Etien, Nicolas Anquetil
PhD in progress: Théo Rogliano, On multiple language kernel, started Oct 2019, Stéphane Ducasse,
Luc Fabresse
PhD in progress: Pierre Misse-Chanabier, Modular, green, versatile Virtual Machines, started Oct
2019, Stéphane Ducasse, Noury Bouraqadi
PhD in progress: Julien Delplanque, Software Engineering Techniques Applied to Databases, started
Oct 2017, Anne Etien, Nicolas Anquetil
PhD in progress: Thomas Dupriez, New Generation Debugger and Application Monitoring, started
Oct 2018, Stéphane Ducasse, Steven Costiou, Guillermo Polito

Project-Team RMOD 19

PhD in progress: Mahugnon Honoré Houekpetodji, Multi-Facet Actionable for Information System
Rejuvenation, SPI Lille, France, Stéphane Ducasse, Nicolas Anquetil, Nicolas Dias, Jérome Sudich
PhD in progress: Carolina Hernández, Tools for MicroKernels Guillermo Polito and Luc Fabresse

10.2.3. Juries
Dynamic program analysis for suggesting test improvements to developers, Oscar Luis Vera Perez,
KTH Royal Institute of Technology, (Sweden), 17/12/2019.
Adaptation non-anticipée de comportement : application au déverminage de programmes en cours
d’exécution, Steven Costiou, Université de Bretagne Occidentale, Brest (France), 26/11/2018.
Modélisation et évaluation de la sécurité des parcours d’authentification Youssou Ndaye, Université
Rennes 1, France, 10/12/19
Challenges in the collaborative evolution of a proof language and its ecosystem Théo Zimmermann,
Université de Paris, France, 12/12/19
ARIANE: Automated Re-documentation to Improve software Architecture uNderstanding and Evo-
lution, Alexandre Le Borgne, IMT Mines Alès, France, 12/12/19.
Contribution à la conception d’un Système de Recommandation dédié à la réutilisation de com-
posants logiciels, Brice Evrard Tarehy, Université de Fianarantsoa, Madagascar, Jan. 2020.

10.3. Popularization
10.3.1. Articles and contents

• Olivier Auverlot, Stéphane Ducasse, Luc Fabresse. TinyBlog: Créer votre première application web
avec Pharo [15].

• Olivier Auverlot, Stéphane Ducasse, Luc Fabresse. TinyBlog: Develop your First Web App with
Pharo [16].

• Stéphane Ducasse. Pharo with Style [17].

10.3.2. Education
• A MOOC for Pharo is online (Stéphane Ducasse).

http://mooc.pharo.org
• The Pharo Consortium was part of GSOC (Google Summer of Code) again in 2019. Oleksandr

Zaitsev was co-organizer. RMoD mentored some of the Students.

10.3.3. Interventions
• Multiple public Pharo Sprints in Lille.

https://association.pharo.org/events
• RMOD co-organized and participated at ESUG 2019.

http://www.esug.org/wiki/pier/Conferences/2019

10.3.4. Internal action
• 30 Minutes de Sciences, Inria Lille - Nord Europe. 25 octobre 2019: Hard bugs and how to track

them with Unanticipated Debugging, Steven Costiou.

11. Bibliography
Publications of the year

International Conferences with Proceedings

[1] N. ANQUETIL, A. ETIEN, G. ANDREO, S. DUCASSE. Decomposing God Classes at Siemens, in "International
Conference on Software Maintenance and Evolution (ICSME)", Cleveland, United States, October 2019,
https://hal.inria.fr/hal-02395836

http://mooc.pharo.org
https://association.pharo.org/events
http://www.esug.org/wiki/pier/Conferences/2019
https://hal.inria.fr/hal-02395836

20 Activity Report INRIA 2019

[2] J. DELPLANQUE, S. DUCASSE, G. POLITO, A. P. BLACK, A. ETIEN. Rotten Green Tests, in "ICSE 2019
- International Conference on Software Engineering", Montréal, Canada, May 2019, https://hal.inria.fr/hal-
02002346

[3] J. DELPLANQUE, S. DUCASSE, O. ZAITSEV. Magic Literals in Pharo, in "IWST19 - International Workshop
on Smalltalk Technologies Cologne", Köln, Germany, August 2019, https://hal.inria.fr/hal-02266137

[4] T. DUPRIEZ, G. POLITO, S. COSTIOU, V. ARANEGA, S. DUCASSE. Sindarin: A Versatile Script-
ing API for the Pharo Debugger, in "Proceedings of the 15th ACM SIGPLAN International Sym-
posium on Dynamic Languages", Athens, Greece, October 2019, https://arxiv.org/abs/1909.03658
[DOI : 10.1145/3359619.3359745], https://hal.archives-ouvertes.fr/hal-02280915

[5] D. GUERRA CALLE, J. DELPLANQUE, S. DUCASSE. Exposing Test Analysis Results with DrTests, in
"International Workshop on Smalltalk Technologies", Cologne, Germany, August 2019, https://hal.inria.fr/
hal-02404040

[6] C. HERNÁNDEZ PHILLIPS, G. POLITO, L. FABRESSE, S. DUCASSE, N. BOURAQADI, P. TESONE. Chal-
lenges in Debugging Bootstraps of Reflective Kernels, in "IWST19 - International workshop on Smalltalk
Technologies", Cologne, Germany, August 2019, https://hal.archives-ouvertes.fr/hal-02297710

[7] P. MISSE-CHANABIER, V. ARANEGA, G. POLITO, S. DUCASSE. Illicium A modular transpilation toolchain
from Pharo to C, in "IWST19 — International Workshop on Smalltalk Technologies", Köln, Germany, August
2019, https://hal.archives-ouvertes.fr/hal-02297860

[8] G. A. PIERRO, H. S. C. ROCHA. The Influence Factors on Ethereum Transaction Fees, in "2019 IEEE/ACM
2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB)",
Montreal, Canada, IEEE, May 2019, pp. 24-31 [DOI : 10.1109/WETSEB.2019.00010], https://hal.inria.
fr/hal-02403098

[9] G. POLITO, P. TESONE, E. MIRANDA, D. SIMMONS. GildaVM: a Non-Blocking I/O Architecture for the Cog
VM, in "International Workshop on Smalltalk Technologies", Cologne, Germany, August 2019, https://hal.
archives-ouvertes.fr/hal-02379275

[10] T. ROGLIANO, G. POLITO, P. TESONE. Towards easy program migration using language virtualization, in
"IWST19 - International Workshop on Smalltalk Technologies", Cologne, Germany, August 2019, https://hal.
archives-ouvertes.fr/hal-02297756

[11] B. VERHAEGHE, N. ANQUETIL, S. DUCASSE, A. SERIAI, L. DERUELLE, M. DERRAS. Migrating GWT
to Angular 6 using MDE, in "SATToSE 2019 - 12th Seminar on Advanced Techniques & Tools for Software
Evolution", Bolzano, Italy, July 2019, https://hal.inria.fr/hal-02304301

[12] B. VERHAEGHE, A. ETIEN, N. ANQUETIL, A. SERIAI, L. DERUELLE, S. DUCASSE, M. DERRAS. GUI
Migration using MDE from GWT to Angular 6: An Industrial Case, in "SANER 2019 - 26th edition of the IEEE
International Conference on Software Analysis, Evolution and Reengineering", Hangzhou, China, February
2019, https://hal.archives-ouvertes.fr/hal-02019015

[13] B. VERHAEGHE, C. FUHRMAN, L. GUERROUJ, N. ANQUETIL, S. DUCASSE. Empirical Study of Program-
ming to an Interface, in "Automated Software Engineering (ASE 2019)", San Diego, United States, November
2019, https://hal.inria.fr/hal-02353681

https://hal.inria.fr/hal-02002346
https://hal.inria.fr/hal-02002346
https://hal.inria.fr/hal-02266137
https://arxiv.org/abs/1909.03658
https://hal.archives-ouvertes.fr/hal-02280915
https://hal.inria.fr/hal-02404040
https://hal.inria.fr/hal-02404040
https://hal.archives-ouvertes.fr/hal-02297710
https://hal.archives-ouvertes.fr/hal-02297860
https://hal.inria.fr/hal-02403098
https://hal.inria.fr/hal-02403098
https://hal.archives-ouvertes.fr/hal-02379275
https://hal.archives-ouvertes.fr/hal-02379275
https://hal.archives-ouvertes.fr/hal-02297756
https://hal.archives-ouvertes.fr/hal-02297756
https://hal.inria.fr/hal-02304301
https://hal.archives-ouvertes.fr/hal-02019015
https://hal.inria.fr/hal-02353681

Project-Team RMOD 21

Conferences without Proceedings

[14] B. VERHAEGHE, A. ETIEN, S. DUCASSE, A. SERIAI, L. DERUELLE, M. DERRAS. Migration de GWT vers
Angular 6 en utilisant l’IDM, in "CIEL 2019 - 8ème Conférence en Ingénierie du Logiciel", Toulouse, France,
June 2019, https://hal.inria.fr/hal-02304296

Scientific Books (or Scientific Book chapters)

[15] O. AUVERLOT, S. DUCASSE, L. FABRESSE. TinyBlog: Créer votre Première Application Web avec Pharo,
Square Bracket Associates, 2019, https://hal.archives-ouvertes.fr/hal-02297691

[16] O. AUVERLOT, S. DUCASSE, L. FABRESSE. TinyBlog: Develop your First Web App with Pharo, Square
Bracket Associates, April 2019, https://hal.archives-ouvertes.fr/hal-02297688

[17] S. DUCASSE. Pharo with Style, Square Bracket Associates, April 2019, https://hal.archives-ouvertes.fr/hal-
02299550

[18] S. DUCASSE, H. ROCHA, S. BRAGAGNOLO, M. DENKER, C. FRANCOMME. SmartAnvil: Open-Source
Tool Suite for Smart Contract Analysis, in "Blockchain and Web 3.0: Social, economic, and technological
challenges", Routledge, February 2019, https://hal.inria.fr/hal-01940287

Research Reports

[19] M. DENKER, N. ANQUETIL, S. DUCASSE, A. ETIEN, D. POLLET. Project-Team RMoD 2018 Activity
Report, Inria, February 2019, https://hal.inria.fr/hal-02006630

References in notes

[20] N. ANQUETIL. A Comparison of Graphs of Concept for Reverse Engineering, in "Proceedings of the 8th
International Workshop on Program Comprehension", Washington, DC, USA, IWPC’00, IEEE Computer
Society, 2000, pp. 231–240, http://rmod.lille.inria.fr/archives/papers/Anqu00b-ICSM-GraphsConcepts.pdf

[21] A. BERGEL, S. DUCASSE, O. NIERSTRASZ. Classbox/J: Controlling the Scope of Change in Java,
in "Proceedings of 20th International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’05)", New York, NY, USA, ACM Press, 2005, pp. 177–189
[DOI : 10.1145/1094811.1094826], http://scg.unibe.ch/archive/papers/Berg05bclassboxjOOPSLA.pdf

[22] A. BERGEL, S. DUCASSE, O. NIERSTRASZ, R. WUYTS. Stateful Traits, in "Advances in Smalltalk —
Proceedings of 14th International Smalltalk Conference (ISC 2006)", LNCS, Springer, August 2007, vol.
4406, pp. 66–90, http://dx.doi.org/10.1007/978-3-540-71836-9_3

[23] A. BERGEL, S. DUCASSE, O. NIERSTRASZ, R. WUYTS. Stateful Traits and their Formalization, in "Journal
of Computer Languages, Systems and Structures", 2008, vol. 34, no 2-3, pp. 83–108, http://dx.doi.org/10.
1016/j.cl.2007.05.003

[24] A. P. BLACK, N. SCHÄRLI, S. DUCASSE. Applying Traits to the Smalltalk Collection Hierarchy, in
"Proceedings of 17th International Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’03)", October 2003, vol. 38, pp. 47–64 [DOI : 10.1145/949305.949311], http://
scg.unibe.ch/archive/papers/Blac03aTraitsHierarchy.pdf

https://hal.inria.fr/hal-02304296
https://hal.archives-ouvertes.fr/hal-02297691
https://hal.archives-ouvertes.fr/hal-02297688
https://hal.archives-ouvertes.fr/hal-02299550
https://hal.archives-ouvertes.fr/hal-02299550
https://hal.inria.fr/hal-01940287
https://hal.inria.fr/hal-02006630
http://rmod.lille.inria.fr/archives/papers/Anqu00b-ICSM-GraphsConcepts.pdf
http://scg.unibe.ch/archive/papers/Berg05bclassboxjOOPSLA.pdf
http://dx.doi.org/10.1007/978-3-540-71836-9_3
http://dx.doi.org/10.1016/j.cl.2007.05.003
http://dx.doi.org/10.1016/j.cl.2007.05.003
http://scg.unibe.ch/archive/papers/Blac03aTraitsHierarchy.pdf
http://scg.unibe.ch/archive/papers/Blac03aTraitsHierarchy.pdf

22 Activity Report INRIA 2019

[25] G. BRACHA, D. UNGAR. Mirrors: design principles for meta-level facilities of object-oriented programming
languages, in "Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’04), ACM SIGPLAN Notices", New York, NY, USA, ACM Press,
2004, pp. 331–344, http://bracha.org/mirrors.pdf

[26] D. CAROMEL, J. VAYSSIÈRE. Reflections on MOPs, Components, and Java Security, in "ECOOP ’01:
Proceedings of the 15th European Conference on Object-Oriented Programming", Springer-Verlag, 2001,
pp. 256–274

[27] D. CAROMEL, J. VAYSSIÈRE. A security framework for reflective Java applications, in "Software: Practice
and Experience", 2003, vol. 33, no 9, pp. 821–846, http://dx.doi.org/10.1002/spe.528

[28] P. COINTE. Metaclasses are First Class: the ObjVlisp Model, in "Proceedings OOPSLA ’87, ACM SIGPLAN
Notices", December 1987, vol. 22, pp. 156–167

[29] S. DENIER. Traits Programming with AspectJ, in "Actes de la Première Journée Francophone sur le
Développement du Logiciel par Aspects (JFDLPA’04)", Paris, France, P. COINTE (editor), September 2004,
pp. 62–78

[30] S. DUCASSE, T. GÎRBA. Using Smalltalk as a Reflective Executable Meta-Language, in "International
Conference on Model Driven Engineering Languages and Systems (Models/UML 2006)", Berlin, Germany,
LNCS, Springer-Verlag, 2006, vol. 4199, pp. 604–618 [DOI : 10.1007/11880240_42], http://scg.unibe.ch/
archive/papers/Duca06dMOOSEMODELS2006.pdf

[31] S. DUCASSE, T. GÎRBA, M. LANZA, S. DEMEYER. Moose: a Collaborative and Extensible Reengineering
Environment, in "Tools for Software Maintenance and Reengineering", Milano, RCOST / Software Technol-
ogy Series, Franco Angeli, 2005, pp. 55–71, http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.
pdf

[32] S. DUCASSE, O. NIERSTRASZ, N. SCHÄRLI, R. WUYTS, A. P. BLACK. Traits: A Mechanism for
fine-grained Reuse, in "ACM Transactions on Programming Languages and Systems (TOPLAS)", March
2006, vol. 28, no 2, pp. 331–388 [DOI : 10.1145/1119479.1119483], http://scg.unibe.ch/archive/papers/
Duca06bTOPLASTraits.pdf

[33] S. DUCASSE, R. WUYTS, A. BERGEL, O. NIERSTRASZ. User-Changeable Visibility: Resolving Unantic-
ipated Name Clashes in Traits, in "Proceedings of 22nd International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’07)", New York, NY, USA, ACM Press, Oc-
tober 2007, pp. 171–190 [DOI : 10.1145/1297027.1297040], http://scg.unibe.ch/archive/papers/Duca07b-
FreezableTrait.pdf

[34] A. DUNSMORE, M. ROPER, M. WOOD. Object-Oriented Inspection in the Face of Delocalisation, in
"Proceedings of ICSE ’00 (22nd International Conference on Software Engineering)", ACM Press, 2000,
pp. 467–476

[35] K. FISHER, J. REPPY. Statically typed traits, University of Chicago, Department of Computer Science,
December 2003, no TR-2003-13

[36] P. W. L. FONG, C. ZHANG. Capabilities as alias control: Secure cooperation in dynamically extensible
systems, Department of Computer Science, University of Regina, 2004

http://bracha.org/mirrors.pdf
http://dx.doi.org/10.1002/spe.528
http://scg.unibe.ch/archive/papers/Duca06dMOOSEMODELS2006.pdf
http://scg.unibe.ch/archive/papers/Duca06dMOOSEMODELS2006.pdf
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
http://scg.unibe.ch/archive/papers/Duca06bTOPLASTraits.pdf
http://scg.unibe.ch/archive/papers/Duca06bTOPLASTraits.pdf
http://scg.unibe.ch/archive/papers/Duca07b-FreezableTrait.pdf
http://scg.unibe.ch/archive/papers/Duca07b-FreezableTrait.pdf

Project-Team RMOD 23

[37] M. FURR, J.-H. AN, J. S. FOSTER. Profile-guided static typing for dynamic scripting languages, in
"OOPSLA’09", 2009

[38] A. GOLDBERG. Smalltalk 80: the Interactive Programming Environment, Addison Wesley, Reading, Mass.,
1984

[39] L. GONG. New security architectural directions for Java, in "compcon", 1997, vol. 0, 97 p. , http://dx.doi.org/
10.1109/CMPCON.1997.584679

[40] M. HICKS, S. NETTLES. Dynamic software updating, in "ACM Transactions on Programming Languages and
Systems", nov 2005, vol. 27, no 6, pp. 1049–1096, http://dx.doi.org/10.1145/1108970.1108971

[41] G. KICZALES, J. DES RIVIÈRES, D. G. BOBROW. The Art of the Metaobject Protocol, MIT Press, 1991

[42] G. KICZALES, L. RODRIGUEZ. Efficient Method Dispatch in PCL, in "Proceedings of ACM conference on
Lisp and Functional Programming", Nice, 1990, pp. 99–105

[43] R. KOSCHKE. Atomic Architectural Component Recovery for Program Understanding and Evolution, Univer-
sität Stuttgart, 2000, http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIS-
2000-05&mod=0&engl=0&inst=PS

[44] S. LIANG, G. BRACHA. Dynamic Class Loading in the Java Virtual Machine, in "Proceedings of OOPSLA
’98, ACM SIGPLAN Notices", 1998, pp. 36–44

[45] L. LIQUORI, A. SPIWACK. FeatherTrait: A Modest Extension of Featherweight Java, in "ACM
Transactions on Programming Languages and Systems (TOPLAS)", 2008, vol. 30, no 2, pp. 1–32
[DOI : 10.1145/1330017.1330022], http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/toplas-
07.pdf

[46] B. LIVSHITS, T. ZIMMERMANN. DynaMine: finding common error patterns by mining software revision
histories, in "SIGSOFT Software Engineering Notes", September 2005, vol. 30, no 5, pp. 296-305

[47] R. C. MARTIN. Agile Software Development. Principles, Patterns, and Practices, Prentice-Hall, 2002

[48] M. S. MILLER. Robust Composition: Towards a Unified Approach to Access Control and Concurrency
Control, Johns Hopkins University, Baltimore, Maryland, USA, May 2006

[49] M. S. MILLER, C. MORNINGSTAR, B. FRANTZ. Capability-based Financial Instruments, in "FC ’00:
Proceedings of the 4th International Conference on Financial Cryptography", Springer-Verlag, 2001, vol.
1962, pp. 349–378

[50] O. NIERSTRASZ, S. DUCASSE, N. SCHÄRLI. Flattening Traits, in "Journal of Object Technology", May
2006, vol. 5, no 4, pp. 129–148, http://www.jot.fm/issues/issue_2006_05/article4

[51] P. J. QUITSLUND. Java Traits — Improving Opportunities for Reuse, OGI School of Science & Engineering,
Beaverton, Oregon, USA, September 2004, no CSE-04-005

http://dx.doi.org/10.1109/CMPCON.1997.584679
http://dx.doi.org/10.1109/CMPCON.1997.584679
http://dx.doi.org/10.1145/1108970.1108971
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIS-2000-05&mod=0&engl=0&inst=PS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIS-2000-05&mod=0&engl=0&inst=PS
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/toplas-07.pdf
http://www-sop.inria.fr/members/Luigi.Liquori/PAPERS/toplas-07.pdf
http://www.jot.fm/issues/issue_2006_05/article4

24 Activity Report INRIA 2019

[52] J. REPPY, A. TURON. A Foundation for Trait-based Metaprogramming, in "International Workshop on
Foundations and Developments of Object-Oriented Languages", 2006

[53] F. RIVARD. Pour un lien d’instanciation dynamique dans les langages à classes, in "JFLA96", Inria —
collection didactique, January 1996

[54] J. H. SALTZER, M. D. SCHOROEDER. The Protection of Information in Computer Systems, in "Fourth ACM
Symposium on Operating System Principles", IEEE, September 1975, vol. 63, pp. 1278–1308

[55] N. SANGAL, E. JORDAN, V. SINHA, D. JACKSON. Using Dependency Models to Manage Complex Software
Architecture, in "Proceedings of OOPSLA’05", 2005, pp. 167–176

[56] N. SCHÄRLI, A. P. BLACK, S. DUCASSE. Object-oriented Encapsulation for Dynamically Typed Languages,
in "Proceedings of 18th International Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’04)", October 2004, pp. 130–149 [DOI : 10.1145/1028976.1028988], http://scg.
unibe.ch/archive/papers/Scha04bOOEncapsulation.pdf

[57] N. SCHÄRLI, S. DUCASSE, O. NIERSTRASZ, A. P. BLACK. Traits: Composable Units of Behavior, in
"Proceedings of European Conference on Object-Oriented Programming (ECOOP’03)", LNCS, Springer
Verlag, July 2003, vol. 2743, pp. 248–274 [DOI : 10.1007/B11832], http://scg.unibe.ch/archive/papers/
Scha03aTraits.pdf

[58] C. SMITH, S. DROSSOPOULOU. Chai: Typed Traits in Java, in "Proceedings ECOOP 2005", 2005

[59] G. SNELTING, F. TIP. Reengineering Class Hierarchies using Concept Analysis, in "ACM Trans. Program-
ming Languages and Systems", 1998

[60] K. J. SULLIVAN, W. G. GRISWOLD, Y. CAI, B. HALLEN. The Structure and Value of Modularity in SOftware
Design, in "ESEC/FSE 2001", 2001

[61] D. VAINSENCHER. MudPie: layers in the ball of mud, in "Computer Languages, Systems & Structures", 2004,
vol. 30, no 1-2, pp. 5–19

[62] N. WILDE, R. HUITT. Maintenance Support for Object-Oriented Programs, in "IEEE Transactions on
Software Engineering", December 1992, vol. SE-18, no 12, pp. 1038–1044

http://scg.unibe.ch/archive/papers/Scha04bOOEncapsulation.pdf
http://scg.unibe.ch/archive/papers/Scha04bOOEncapsulation.pdf
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf

