
HAL Id: hal-03120656
https://hal.inria.fr/hal-03120656

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alternative Constructions of Asymmetric Primitives
from Obfuscation: Hierarchical IBE, Predicate

Encryption, and More
Pooya Farshim, Georg Fuchsbauer, Alain Passelègue

To cite this version:
Pooya Farshim, Georg Fuchsbauer, Alain Passelègue. Alternative Constructions of Asymmetric Prim-
itives from Obfuscation: Hierarchical IBE, Predicate Encryption, and More. Indocrypt 2020 - 21st
International Conference on Cryptology, Dec 2020, Virtual conference, India. �hal-03120656�

https://hal.inria.fr/hal-03120656
https://hal.archives-ouvertes.fr


Simpler Constructions of Asymmetric Primitives
from Obfuscation

Pooya Farshim1,2, Georg Fuchsbauer2,1, and Alain Passelègue3

1 DI/ENS, CNRS, PSL, Paris, France
2 Inria, Paris, France

3 UCLA, Los Angeles, USA

pooya.farshim@gmail.fr georg.fuchsbauer@ens.fr alapasse@gmail.com

Abstract. We revisit constructions of asymmetric primitives from ob-
fuscation and give simpler alternatives. We consider public-key encryp-
tion, (hierarchical) identity-based encryption ((H)IBE), and predicate
encryption. Obfuscation has already been shown to imply PKE by Sahai
and Waters (STOC’14) and full-fledged functional encryption by Garg
et al. (FOCS’13). We simplify all these constructions and reduce the
necessary assumptions on the class of circuits that the obfuscator needs
to support. Our PKE scheme relies on just a PRG and does not need
any puncturing. Our IBE and bounded HIBE schemes convert natural
key-delegation mechanisms from (recursive) applications of puncturable
PRFs to IBE and HIBE schemes. Our most technical contribution is an
unbounded HIBE, which uses (public-coin) differing-inputs obfuscation
for circuits and whose proof relies on a recent pebbling-based hybrid ar-
gument by Fuchsbauer et al. (ASIACRYPT’14). All our constructions
are anonymous, support arbitrary inputs, and have compact keys and
ciphertexts.

Keywords. Obfuscation, public-key encryption, identity-based encryp-
tion, hierarchical IBE, predicate encryption, puncturable PRF, pebbling.

1 Introduction

Indistinguishability obfuscation [BGI+12, GGH+13] has rekindled interest in
the search for a unified approach to constructions of cryptographic primitives.
It has been proven sufficient to build almost every primitive, from the most
basic such as public-key encryption or short signatures, to powerful ones such as
functional encryption for all circuits. Indistinguishability obfuscation has been
used extensively as a building block for many other constructions [GGH+13,
SW14, HSW14, BZ14, BLR+15, HW15, CLP15, PPS15, AS16].

1.1 Motivation

In this paper, we take a second look at constructions of basic cryptographic
primitives and try to obtain the simplest possible constructions. Devising simple



constructions based on indistinguishability obfuscation (iO) presents multiple
interests. iO for NC1, and even for smaller classes, can be extended to iO for
P/poly via bootstrapping theorems [GGH+13, CLTV15, Lin16] at the cost of
strong assumptions such as sub-exponentially secure pseudorandom generators
in NC0 or the sub-exponential hardness of the learning with errors problem.
On the other hand, certain simple circuits, such as those with logarithmic input
lengths or point functions, can be easily obfuscated, and more advanced cir-
cuits such as “compute-and-compare” programs (of the form “if C(x) = z then
output m,” where x is the input, C a circuit, m a string and z a long pseudo-
random secret string) can be obfuscated assuming only the learning with errors
assumption [WZ17, GKW17, CVW18].

Therefore, depending on the class of circuits, assuming the existence of iO
can be either a weak or an extremely strong assumption. In particular, there
seems to be an enormous gap between assuming the existence of iO for P/poly
or “bootstrappable” classes of circuits and those for small sets of circuits. Hence,
understanding the minimal class of circuits that one needs to obfuscate in order
to build various cryptographic primitives is an interesting theoretical measure
of their “cryptographic complexity”, and constructing primitives using indistin-
guishability obfuscation for a small enough class of circuits could lead to efficient
constructions based on standard assumptions.

1.2 Contributions

In this work, we study public-key encryption (PKE), (hierarchical) identity-
based encryption (IBE) and predicate encryption with the goal of minimizing
the required class of obfuscatable circuits.

Our PKE scheme, which we sketch below, will demonstrate the core (con-
ceptual) idea behind all schemes that we study in this work: using iO we can
convert a (trivial) key-delegation mechanism for a single user (namely a single
secret key for that user) to an asymmetric encryption scheme that supports this
key delegation.

We show that this idea lends itself to natural generalizations. The key dele-
gation underlying an IBE can be seen as a tree of height one with the trusted
authority sitting at the root and the users at its leaves. Keys are derived by
applying a pseudorandom function (PRF) to leaf identities under the root key.
A hierarchical delegation generalizes this to trees of arbitrary height with a PRF
iteratively applied to identities along a path. We show the technique underlying
our PKE can convert these key-delegation schemes to encryption schemes that
support them respectively.

The HIBE construction just sketched supports a bounded number of levels.
As we shall discuss shortly, a number of obstacles prevent us from directly ex-
tending the bounded HIBE to an unbounded one. Nevertheless, we show that
these obstacles can be overcome by introducing a somewhat more involved key
delegation (which ensures the compactness of the key delegation operation) and

2



at the expense of introducing stronger primitives.4 We see this result as the main
technical contribution of the paper.

Public-key encryption. Following [GGSW13, BNPW16], we start by con-
structing a simple public-key encryption scheme. The secret key of the scheme is
a random seed sk ∈ {0, 1}λ and the corresponding public key is G(sk) where G
is a length-doubling pseudorandom generator (PRG). Encrypting a message M
under pk consists of obfuscating a circuit that takes as input some sk′ ∈ {0, 1}λ,
and checks if G(sk′) = pk, in which case it outputs the message M, and ⊥ oth-
erwise. To decrypt, a user runs the ciphertext (which is an obfuscated circuit)
on input the secret key sk. If sk corresponds to the public key, the check passes
and the message M is returned; the scheme is thus correct.

A similar idea was also used in [BZ14] to construct n-party non-interactive
key-exchange: Intuitively, the setup outputs a public obfuscated program that
allows to evaluate a hardwired PRF Fk on inputs x1, . . . , xn, s if and only if
xi = G(s) for some i for a PRG G. A group key is then obtained via each
party publishing a PRG evaluation G(si) for a private seed si and running the
obfuscated program on inputs G(s1), . . . , G(sn), si.

Security of our PKE follows from the security of the PRG, which ensures the
public keyG(sk) is indistinguishable from a random bit string of the same length.
Now, if pk is outside of the range of G, there is no sk′ for which G(sk′) = pk
and encryptions under pk are (obfuscated) circuits that always output ⊥. By
the security of the obfuscator, this circuit reveals no more information than a
circuit that is independent of the message and always returns ⊥. This arguably
very simple construction can also be shown to be anonymous, meaning that its
ciphertexts do not reveal their intended recipients.

Due to its simplicity, we show that our construction can be efficiently instan-
tiated based on the standard DDH assumption. In particular, we give a PRG
and an indistinguishability obfuscator based on DDH, that when used within
the construction result in an anonymous (and lossy) version of ElGamal.

Identity-based encryption. We now apply the idea to key-delegation mech-
anism for IBEs. In our scheme the secret key of an identity id is the output of
a pseudorandom function F (K, id), where K is the master secret key. The mas-
ter public key is an obfuscated circuit that on input id outputs its public key
pkid := G(F (K, id)). Encryption and decryption work as in the PKE scheme.

To prove the security of the scheme, similarly to our PKE, we need to switch
the public key of the challenge identity id∗ from G(F (K, id∗)) to a random
value. Intuitively, this should follow from the pseudorandomness of F . But the
IBE game also contains an obfuscated circuit depending on the master key K,
and furthermore key extraction for identities id 6= id∗ should be simulated.
This restriction in the IBE security game precisely matches the functionality
and security of puncturable PRFs: from K we can derive a punctured key K∗

that allows evaluating the PRF everywhere except at id∗ and F (K, id∗) is in-

4 Although the proof of this construction is somewhat complex, the construction itself
is relatively simple given that it achieves an unbounded number of levels.

3



distinguishable from random even in the presence of K∗. (Such PRFs can be
based on the GGM [GGM86] construction only assuming the existence of PRGs
[BW13, BGI14, KPTZ13].) As for our PKE, since ciphertexts are indistinguish-
able from obfuscations of a constant circuit, they hide both their underlying
plaintexts and recipient identities, giving rise to an IBE that is anonymous and
can therefore be used, for example, in the context of public-key encryption with
keyword search [ABC+05].

We leave it as an interesting open problem to instantiate the IBE construction
based on standard assumptions (as we did for PKEs via ElGamal). Doing so
could shed further light on the construction of these primitives and conceptually
clarify the rationale behind them through their lens of obfuscation.

Bounded HIBE. In an HIBE, identities take the form id = (id1, . . . , idi) and
a key for (id1, . . . , idi) allows deriving keys for (id1, . . . , idi+1) for any idi+1. By
recursively applying the PRF to identities along a path we arrive at a hierarchical
key-delegation mechanism. Following the PKE construction, we can then convert
this to an HIBE scheme as follows. Our scheme defines the master secret key
as a random value sk0 = K, and sets the key for id1 to sk1 := F (K, id1), that
for (id1, id2) to sk2 := F (sk1, id2), and so on. We follow the encryption and
decryption procedures of the PKE scheme to arrive at a full scheme. When the
puncturable GGM PRF is used, it is easy to see how the puncturability of the
PRF maps to the ability to extract keys for identities that are not parents of the
challenge identity.

This HIBE only supports an a priori bounded number of levels. To prove se-
curity, we need to replace the public key for the challenge identity id∗, computed
as

pk∗ = G(F (. . . F (F (K, id∗1), id∗2) . . . , id∗n)) ,

by a random value. To this end, we first define a game where we change the
master circuit (used to compute public keys) and hardwire all values that we
will change later in the proof. In more detail, we replace K by K∗ punctured at
id∗1, then from sk∗1 = F (K, id∗1) we derive a key punctured at id∗2 (which allows
to derive public keys for all (id∗1, id2, . . .) with id2 6= id∗2) and so on until we
finally hardwire the public key pk∗ = G(sk∗n) at the lowest level. As we did not
change the functionality of the circuit, its obfuscation is indistinguishable from
an honestly generated master public key. Note, however, that we did change the
size of the circuit, and thus need to pad the master circuit in the scheme to
the maximum size of the circuits that will be used in the proof. (This issue will
reappear when extending the construction to an unbounded HIBE.) The rest of
the proof proceeds via a sequence of hybrids where we iteratively replace sk∗1 by
a random value, then sk∗2 , etc., until we arrive at a random sk∗n, which together
with PRG security allows us to replace pk∗ = G(sk∗n) by a random value.

Unbounded HIBE. There are a number of challenges when extending the HIBE
to support an unbounded number of levels (analogously to direct constructions
of unbounded HIBEs [LW11]). An obvious one is that circuits cannot take iden-
tities of arbitrary lengths as inputs. We could define a Turing machine (TM)

4



that accepts identities of arbitrary lengths and carries out the recursive PRF
evaluation to derive its public key. Using the TM-obfuscator of Ishai, Pandey,
and Sahai [IPS15], we could then obfuscate this TM. However, when using punc-
turing, we still need to hardwire random values in the circuit in the proof, which
would result in a TM whose description size is not a priori bounded. The prob-
lem seems to stem from the fact that in order to replace key sk∗n corresponding
to (id∗1, . . . , id

∗
n) with a random value, we first need to replace all intermediate

values sk∗1 := F (K, id∗1), sk∗2 := F (sk∗1, id
∗
2), . . . with random.

While it is true that we can only replace a value sk∗i = F (sk∗i−1, id
∗
i ) by

random if sk∗i−1 is already random (since the reduction would not know sk∗i−1),
the previous values do not have to be random for this specific game hop. Let
Si ⊆ {1, . . . , n} denote the set of indices j for which sk∗j is random in hybrid i. In
the proof of the bounded HIBE, the i-th hybrid replaces sk∗i by a random value,
so we have Si := {1, . . . , i}. For the proof to go through, the sequence of sets
S0,S1, . . . ,S` needs to have the following properties: (A) S0 = ∅ and n ∈ S`, and
(B) every two consecutive sets differ in exactly one element j, and j− 1 belongs
to both sets. Set S0 with no random values corresponds to the original game and
S` makes the last value corresponding to sk∗n random. To go from one hybrid
to the next, we can replace an additional value by random, since its ancestor is
already random (by property (B)).

Similarly to the pebbling strategy used in the context of reversible com-
putation in [Ben89], Fuchsbauer et al. [FKPR14] give such a sequence where
` = nlog2 3 and with the property that |Si| ≤ log n (this corresponds to a peb-
bling of a path in the GGM tree with logarithmically many pebbles). Letting n
be an upper bound on the length of the challenge identity the adversary chooses
(which is polynomial in the security parameter λ), we would have a polynomial
number ` of hybrids, while in each hybrid step we only need to hardwire a log-
arithmic number of values. It seems that we can thus pad the actual scheme to
support an exponential number of levels in the hierarchy.

Alas, this approach does not work: we also need to hardwire the positions
(id∗1, . . . , id

∗
n) of these values for which there is no upper bound. We therefore use

a different approach and hash the identities to obtain compact representations of
them. We define the secret key for id as F (K,H(id)). The problem now is that
hashing completely destroys the hierarchical relationship between the identities
and we thus need to implement key delegation differently. We do this by adding
a second functionality to the public parameters that given a valid secret key sk
for a identity id and a value id′ returns a secret key sk′ = F (K,H(id, id′)) for
(id, id′).

Rather than relying on TM-obfuscators, which can be constructed from
public-coin differing-input obfuscation (pc-diO) for circuits5 [IPS15], we devise
circuits for computing public keys and delegating secret keys so that we directly
rely on pc-diO for circuits. One benefit of this approach is that any (natural)
iO for circuits is conjecturally also a public-coin differing-input obfuscator for

5 We note that public-coin diO is not known to suffer from impossibility results that
apply to its private-coin counterpart [GGHW14, BSW16].

5



circuits. Hence we avoid the overheads associated with the complex construc-
tions of [IPS15]. Computing public keys can easily be done by defining a circuit
Cgen(h) that returns G(F (K,h)) and to get a public key for id we simply run
Cgen(H(id)).

The delegation circuit Cdel, on the other hand, needs to ensure it only works
for descendants. If we relied on pc-diO for Turing machines, we could define Cdel

on input (sk, id, id′) to check whether G(sk) = G(F (K,H(id))), and if so return
F (K,H(id, id′)). This results in a fairly simple construction of an unbounded
HIBE (whose proof is nevertheless somewhat involved). At the expense of slightly
increasing the complexity of the scheme, we modify this construction so as to
only rely on pc-diO for circuits (as discussed above). To do this, we require a
user to compactly prove (to the circuit) that two hash values (h, h′) correspond
to (id, id′) with h = H(id) and h′ = H(id, id′). For this we use a succinct non-
interactive argument of knowledge (SNARK) system and define Cdel as follows:
On input (sk, h, h′, π) the delegation circuit checks the validity of the proof π
for (h, h′), then checks that G(sk) = G(F (K,h)), and if so returns F (K,h′).

To bound the number of hardwired values, our proof strategy follows the
above ideas. For a set system S0, . . . ,S` satisfying properties (A) and (B), we
define game Gi as one that replaces the values pk∗j = G(F (K,H(id∗1, . . . , id

∗
j )))

by random values for all j ∈ Si. That is, these values are hardwired into the
circuits Cgen and Cdel. Games Gi and Gi+1 differ in that pk∗j is random in only
one of them, with j defined as {j} := Si4Si+1 (where 4 denotes the symmetric
difference). To show that these games are indistinguishable, we puncture K at
H(id∗1, . . . , id

∗
j ) and use this K∗ in Cgen and Cdel. Since we can first hardwire

pk∗j , this does not change the behavior of Cgen, and thus we can rely on iO
security.

The behavior of Cdel, on the other hand, does change, which is why we require
(public-coin) differing-inputs obfuscation and must show that it is hard to actu-
ally find a differing input. Suppose an adversary finds an input (sk, h, h′, π) for
which Cdel behaves differently when using the punctured key. This means h′ =
H(id∗1, . . . , id

∗
j ); but π (together with the collision-resistance of H) guarantees

that h = H(id∗1, . . . , id
∗
j−1). By property (B) of our set system: j−1 ∈ Si; thus the

value pk∗j−1 corresponding to G(F (K,H(id∗1, . . . , id
∗
j−1))), and thus G(F (K,h)),

was replaced by random, and hence no sk will satisfy G(sk) = pk∗j−1. But this

means that Cdel returns ⊥, which contradicts (sk, h, h′, π) being a differing in-
put. Consistently, we require H to be public-coin and collision-resistant [HR04]
and the SNARK to be in the common-random-string model [IPS15].6

We observe that if identities are restricted to be of bounded length, the hash
function can be replaced with the identity function, and the SNARK with a
trivial one that simply outputs the witness. These in turn allow us to rely on iO
(for circuits) in the Cdel circuit.

6 Since our construction relies on public-coin diO, it must be hard to find a differing
input even when given the coins used to sample the circuits (whose obfuscations
should be indistinguishable). As a hash collision results in a differing input, it must
be hard to find one even given the coins used to sample the hash function.

6



Predicate encryption. Predicate encryption (PE) [BW07, KSW08] is a pow-
erful type of public-key encryption that can support, for example, searching for
complex queries on encrypted data and encompasses other forms of PKE such as
attribute-based encryption [GPSW06, LOS+10]. A natural construction of a PE
scheme also falls out from our techniques. Intuitively, we identify attributes with
identities. A secret key skP for a predicate P is then an obfuscated circuit with
K and P hardwired that on input an attribute γ outputs F (K, γ) if P(γ) = 1
and ⊥ otherwise. We defer the details of the construction to Appendix F.

Complexity of circuits. All of our constructions except PKE obfuscate a
puncturable PRF. Thus, the classes of circuits used in these constructions are
potentially amenable to further simplifications. However, it is worth noting that
the obfuscated circuits corresponding to a ciphertext in all of our constructions
(specifically, a circuit that evaluates a PRG and possibly a puncturable PRF
and outputs a message if the evaluation matches a certain value z) fall into
the class of “compute-and-compare” functionalities. Unfortunately, in our case,
the string z is a public (pseudorandom) string, while obfuscation of compute-
and-compare programs from standard assumptions [WZ17, GKW17, CVW18]
is, for now, only known when z is secret. Yet, these recent works show that
certain classes of programs that appear non-trivial to obfuscate can actually be
obfuscated under standard assumptions. This strengthens our belief that simpler
constructions based on special-purpose obfuscation is an interesting direction to
pursue.

We finally note that puncturing is only required in the proofs. Thus, it would
be interesting to devise new PRFs that are easily obfuscatable even though
neither puncturing them nor obfuscating their punctured evaluation procedures
are efficient. For example, assuming one can obfuscate AES, we either obtain a
secure AES-based IBE, or deduce that either AES cannot be punctured or its
punctured circuit cannot be obfuscated.

1.3 Related works

Canetti, Rothblum, and Varia [CRV10] adopt a similar approach for building
leakage-resilient one-time signatures by first constructing a special-purpose ob-
fuscator for testing hyperplane membership. Similarly, Matsuda and Hanaoka
[MH14] propose a construction of CCA-secure encryption based on rerandomiz-
able and composable point function obfuscators.

Garg et al. [GGSW13] show that witness encryption (which is implied by iO)
and unique signatures imply identity-based encryption. Such unique signatures
can be based on iO and injective one-way functions (or just one-way functions
for constructions in the CRS model) [BP15]. Combining these results, one ob-
tains an IBE from (injective) one-way functions and iO, but the construction
is fairly complex. In particular, encrypting consists of obfuscating a circuit that
runs the verification circuit of a signature scheme, which is itself an obfuscated
circuit. Our construction relies on iO and one-way functions and is much simpler.
Garg et al. also show that witness encryption combined with a perfectly binding

7



non-interactive commitment scheme implies (key-policy) attribute-based encryp-
tion. In particular, their scheme does not guarantee privacy of the attributes,
while our predicate encryption scheme does. Garg et al. [GGH+13] also show
that full-fledged functional encryption is implied by iO and non-interactive zero-
knowledge proofs (and hence so is predicate encryption). Our construction is
conceptually simpler, avoids NIZKs, and relies on iO and one-way functions
only.

A simple construction of a (semi-adaptive) functional encryption from indis-
tinguishability obfuscation is also described in [Wat15], but it relies on the full
power of obfuscation, since a functional secret key for f is an obfuscated circuit
that evaluates f (amongst other things). Our PE construction follows a different
path and obfuscates constrained PRFs. Obfuscating the latter could imply the
existence of iO that can be bootstrapped to full iO. Thus our PE construction
should be seen as an alternative route to more expressive primitives.

Finally, Brakerski et al. in recent work [BCG+17] construct a hierarchical
notion of functional encryption. This implies bounded HIBEs from LWE or low-
complexity PRGs and public-key encryption (for their constant-depth and poly-
nomially bounded width delegation structure), and a construction of unbounded
HIBE based on unbounded-collusion functional encryption (which implies iO for
P/poly assuming subexponential security). Their construction is fairly simple,
which is not surprising as functional encryption is powerful enough to subsume
IBEs. Since their construction relies on re-encryption techniques, it is inherently
public-key. Our construction takes a very different route and relies on poten-
tially weaker special-purpose obfuscation, while re-encryption techniques lead
to indistinguishability obfuscation for any circuit supported by the underlying
functional encryption scheme [BV15].

As we aim at using special-purpose obfuscation, we do not discuss recent
advances in constructions and cryptanalysis of candidate general-purpose indis-
tinguishability obfuscators and refer the reader to discussions in [AS17, LT17,
CGH17, MZ17, ADGM17] for details.

Paper Organization. The rest of the paper is organized as follows. We present
the main cryptographic tools used throughout the paper in Section 2. Then we
successively introduce our constructions of PKE, IBE, and unbounded HIBE in
Sections 3,4, and 5 respectively. Additional cryptographic notions used locally
as well as proofs and constructions of bounded HIBE and PE are detailed in the
Appendix.

2 Preliminaries

We briefly recall various cryptographic primitives that we will use throughout
the paper. For the sake of completeness, the formal definitions are included in
Appendix A. A pseudorandom generator is a deterministic algorithm PRG that
takes as input a string x and outputs a longer string y . PRG outputs on uniform
inputs must be indistinguishable from uniform elements in the output space. We
call a hash function public-coin if its key generation algorithm simply outputs

8



Algo. Gen(1λ)

SK←←{0, 1}λ
PK← PRG(SK)
return (SK,PK)

Algo. Dec(SK,CT)

return CT(SK)

Algo. Enc(PK,M)

CT←←iO(1λ,C[PK,M])
return CT

Circ. C[PK,M](SK)

if PRG(SK) = PK return M
return ⊥

Fig. 1. Public-key encryption scheme from a PRG and an obfuscator.

its random coins. We will assume public-coin hash functions that are collision-
resistant.

A puncturable pseudorandom function (PPRF) is a tuple (CPRF,Cons),
where CPRF(K, x ) evaluates the PRF on input x under key K. For a set S, let
C[S](x ) denote the circuit that returns 1 iff x 6∈ S. Algorithm Cons(K,C[S])
outputs a constrained key KC[S] that allows evaluating the PRF anywhere except
on set S. Given KC[S], PRF evaluations on points inside S should be indistin-
guishable from uniform.

An obfuscator is an algorithm Obf that on input a circuit C outputs an ob-
fuscated circuit C. Perfect correctness requires that for all C←←Obf(1λ,C) and
all x ∈ {0, 1}λ: C(x ) = C(x ). Indistinguishability obfuscation requires the out-
puts of the obfuscator on two functionally equivalent (and equal-size) circuits to
be indistinguishable. Public-coin differing-input obfuscation requires this same
for circuits sampled from a public-coin distribution and for which it is hard to
find an input on which the outputs of the circuits differ.

3 Public-Key Encryption

We start by presenting our simple PKE construction based on iO and a pseudo-
random generator with sparse image. Our construction uses an obfuscator that
only needs to support simple circuits. In particular, we show this class is simple
enough to be instantiated based on the DDH assumption. We will prove the
scheme IND-CPA as well as anonymous, meaning that ciphertexts do not reveal
their intended recipients.

3.1 Construction

We now formalize our public-key encryption scheme, for which we have given
a high-level description in the introduction. The details of the construction are
shown in Figure 1. The proof of the following theorem follows the ideas outlaid
in the introduction and can be found in Appendix B.

Theorem 1. Scheme PKE in Figure 1 is AI-CPA secure if its underlying pseu-
dorandom generator PRG and obfuscator Obf are secure. More precisely, for

9



Circ. C[X,Z,M](x)

if (gx, Y x) = (X,Z)
return M

return 1

Algo. Obf(C[X,Z,M])

r1, r2, r3, s1, s2, s3←←Zq
h11 ← gr1Y s1 ; h12 ← Xr1Zs1

h21 ← gr2Y s2 ; h22 ← Xr2Zs2

h31 ← gr3Y s3 ; h32 ← M ·Xr3Zs3

return C[h11, h12, h21, h22, h31, h32]

Circ. C[{hij}3,2i,j=1](x)

if hx11 = h12 ∧ hx21 = h22

return h32 · h−x31

return 1

Fig. 2. Left: Circuits that are obfuscated in encryption. Middle: An obfuscator for
this class. Right: The obfuscated circuits.

any ppt adversary A against PKE there are ppt adversaries B1 and B2 against
PRG and Obf , respectively, such that

Advai-cpa
PKE,A(λ) ≤ 2 ·Advind

PRG,B1
(λ) + Advind

Obf ,B2
(λ) .

Algorithm B2 places the same number of queries to its (obfuscation) LR oracle
as A does to its (encryption) LR oracle.

3.2 A DDH-based instantiation

In this section we show that the above construction can be instantiated under
the standard DDH assumption. That is, we provide a DDH-based PRG and an
indistinguishability obfuscator for the class of circuits used in the above con-
struction. The resulting PKE scheme is defined over the message space G− {1}
where we identify the element 1 with the error symbol ⊥.

We now describe our construction, which is basically a lossy version of the
El-Gamal PKE scheme [ElG84], meaning that one can define lossy public keys,
which are indistinguishable from regular ones, but for which ciphertexts statis-
tically hide all information about their underlying plaintexts.

A DDH-based PRG. Let G denote a cyclic group of order q generated by g.
The public parameters are (G, q, g, Y ) with Y a random element in G∗. Algo-

rithm PRG : Z∗q −→ (G∗)2 is defined as PRG : x 7→ (gx, Y x). Under the DDH
assumption, the outputs of PRG are computationally indistinguishable from
uniformly random elements in (G∗)2. Plugging this into our PKE construction
in Section 3, secret keys take the form x ∈ Z∗q and public keys PK = (gx, Y x).

The circuit class. We next define an indistinguishability obfuscator for the
class of circuits C[PK,M] associated with the PRG above. This class consists of

circuits defined in Figure 2 (left) for PK = (X,Z) ∈ (G∗)2 and M ∈ G∗, where
we identify the identity group element 1 with the error symbol ⊥.

The obfuscator. Given a description (X,Z,M) of the circuit C[X,Z,M], we
define our obfuscator as shown in Figure 2 (middle), which takes randomness
(r1, r2, r3, s1, s2, s3)←←Z6

q and returns a circuit C[h11, h12, h21, h22, h31, h32] as
described on the right of Figure 2. Intuitively, (h31, h32) is an encryption of M if
(X,Z) is in the range of PRG, whereas it is a random pair otherwise. Similarly,

10



(h11, h12) and (h21, h22) are encryptions of 1, which let C check whether (X,Z) is
in the range of PRG. If this is the case then the obfuscated circuit is functionally
equivalent to C[X,Z,M]. However, if (X,Z) is not in the range of PRG then
C[X,Z,M] always returns 1, whereas with negligible probability over the coins
of Obf , for C there is one input on which it returns a different value (since
h11, h12, h21, h22 are uniformly random, the probability that there exists x with
hx11 = h12 and hx21 = h22 is negligible7).

Lemma 1. The obfuscator described in Figure 2 is an indistinguishability ob-
fuscator with statistical correctness and statistical indistinguishability.

Consider an adversary outputting two functionally equivalent circuits C[X,Z,M]
and C[X ′, Z ′,M′]. Both of them always return 1 iff (X,Z) and (X ′, Z ′) are not
in the range of PRG, in which case the obfuscator returns a random tuple
(h11, h12, h21, h22, h31, h32). If X = gx and Z = Y x then C[X,Z,M] returns M
on input x and 1 otherwise. For C[X ′, Z ′,M′] to be functionally equivalent to
C[X,Z,M], we must thus have X ′ = X, Z ′ = Z and M′ = M. This shows the
iO security of the obfuscator. A formal proof is given in Appendix C.

4 Identity-Based Encryption

We now present a simple construction of identity-based encryption, again based
on an indistinguishability obfuscator and a pseudorandom generator. In addition,
we will use a pseudorandom function, which we assume to be puncturable. We
prove that our scheme is both IND-CPA secure and anonymous in the selective-
ID model. Anonymity means that ciphertexts do not leak the identity of the
intended recipients; a property that can be leveraged to construct public-key
encryption with keyword search [ABC+05].

4.1 Construction

Our IBE construction generalizes the PKE scheme as follows. The master secret
key MSK is a random PRF key. The secret key for user ID is simply the PRF
evaluated at the identity, that is PRF(MSK, ID). The master public key MPK
is an obfuscation of a circuit Cgen that computes a public key PKID for ID
by computing PRG(PRF(MSK, ID)), as in our PKE scheme. Hence we use a
PRF to “compress” exponentially many public keys into the master public key
MPK (by generating their secret key using the PRF). A message is encrypted by
first deriving PKID for the identity using MPK and then obfuscating the same
circuit as the PKE scheme. Decryption is identical to the PKE. The details of
the scheme are shown in Figure 3 (with Sgen defined below).

In our security analysis we will rely on the puncturability of the PRF to sim-
ulate key-extraction queries. That is, we use a PRF key punctured at {ID0, ID1}
to derive keys for all other users. We will use the indistinguishability security of

7 Note that this is not the case if we only use one encryption of 1 (i.e. if we remove
h21 and h22)

11



Algo. IBSetup(1λ)

MSK←←{0, 1}λ
pad Cgen so that |Cgen| = Sgen(λ)

MPK←← iO(1λ,Cgen[MSK])
return (MSK,MPK)

Circ. Cgen[MSK](ID)

PK← PRG(PPRF(MSK, ID))
return PK

Algo. IBGen(ID)

SK← PPRF(MSK, ID)
return SK

Algo. IBEnc(MPK, ID,M)

PK← MPK(ID)

CT←← iO(1λ,Cenc[PK,M])
return CT

Circ. Cenc[PK,M](SK)

if PRG(SK) = PK return M
return ⊥

Algo. IBDec(SK,CT)

M← CT(SK)
return M

Fig. 3. Identity-based encryption from a PRG, a puncturable PRF, and an iO.

the obfuscator in conjunction with this to form the master public key. Hence we
need to pad the circuit Cgen so that its size matches that of the modified circuit
used in the proof. We define Sgen(λ) as (an upper bound on) the maximum size
of circuits defined by

C̃gen[K, r, x0, x1](x)
:=


PRG(PPRF(Cons(K,C[{x0, x1}]; r), x)) if x 6∈ {x0, x1}
PRG(PPRF(K, x0)) if x = x0

PRG(PPRF(K, x1)) if x = x1

Here the maximum is taken over (K, r, x0, x1) ∈ {0, 1}λ×{0, 1}tCons(λ)×{0, 1}m(λ)

×{0, 1}m(λ), where tCons is the polynomial bounding the runtime of Cons. We
recall that Cons denote the puncturing algorithm of the puncturable PRF.

Theorem 2. Scheme IBE in Figure 3 is Sel-AI-CPA secure if the underlying
pseudorandom generator PRG, the puncturable pseudorandom function PPRF,
and the obfuscator Obf are secure. More precisely, for any ppt adversary A
against IBE there are ppt adversaries B1, B2, and B3 against PRG, PPRF,
and Obf respectively such that

Advsel-ai-cpa
IBE,A (λ) ≤ 2 ·Advind

Obf ,B1
(λ) + Advind

PPRF,B2
(λ) + 2 ·Advind

PRG,B3
(λ) .

Algorithm B1 places at most the same number of queries to its (obfuscation) LR
oracle that A does to its (encryption) LR oracle.

The proof is detailed in Appendix D.

ID space. The ID space IDSpλ of the construction matches the input space
{0, 1}m(λ) of PPRF. An IBE with IDSpλ = {0, 1}∗ can be obtained in the
standard way by hashing the identities using a collision-resistant hash function.
An alternative route would be to use a variable-input-length puncturable PRF.
A statistically correct puncturable PRF is needed when used in conjunction

12



with an indistinguishability obfuscator. However, such PRFs with unbounded
domain cannot have compact punctured keys (as a punctured key information-
theoretically determines the punctured point). This means that there is no a

priori bound on the size of the circuit C̃gen used in the security proof in G1. We
note, however, that the GGM PRF can be turned into a PRF with unbounded
input length [Gol01], whose keys can be punctured in the same way as those of
the original construction.

Adaptive security. We have established the selective security of the IBE
based on the selective security of the puncturable PRF. This raises the question
if the theorem naturally extends to the adaptive-ID model under the adaptive
security of the puncturable PRF. This turns out not to be the case: during the
proof we need to puncture the MPK, which is given to the adversary at the onset.
It is unclear at which point the underlying MSK should be punctured, even with
a reduction down to the adaptive security of the PPRF. On the other hand,
adaptive security can be obtained with a sub-exponential loss (on all underlying
primitives) through complexity leveraging, or with only a polynomial loss in
the random-oracle model. The recent work of Zhandry [Zha16] on extremely
lossy functions (ELFs) proposes a generic selective-to-adaptive transformation
for IBEs in the standard model that also results in a polynomial loss in security
from a single exponential assumption. This transformation can be also applied to
our IBE and we obtain an adaptive IBE with only a polynomial loss in security.

4.2 Extensions to bounded HIBE and predicate encryption

Bounded HIBE. Our IBE construction generalizes that for PKEs by using
a PRF, instead of a single secret corresponding to the PRG seed, to derive
many secret keys. Similarly, we can further generalize the IBE construction to
a hierarchal IBE by considering a tree of (puncturable) PRFs (as in the GGM
construction). The secret key for a vector of identities ID := (ID1, . . . , IDn) cor-
responds to the iterative PRF applications via SKi ← PRF(SKi−1, IDi) where
SK0 is the master secret key. We can then use the puncturing property of the
PRF to replace, via a sequence of hybrids, the PRF value corresponding to any
identity (ID1, . . . , IDn) with random values one at a time. This then allows us
to apply the PRG game hop (as for IBEs) at the leaf nodes to conclude the
proof. We formalize this construction and prove its security in Appendix E. We
refer the reader to the introduction for why this construction does not yield an
unbounded HIBE.

Predicate Encryption. Our IBE also generalizes to predicate encryption
fairly easily. A natural way to build a PE scheme would be to modify the IBE
construction so that instead of a puncturable PRF it uses a constrained PRF.
The idea is that a constrained key for a circuit C can evaluate a PRF value
on γ correctly if C(γ) = 1. This approach does not work directly, as the punc-
turability of the PRF is used to simulate the key-extraction queries in the IBE
game. Hence, an analogous form of puncturing would be also needed to derive

13



constrained keys. Luckily, a natural construction of a constrained PRF from a
puncturable PRF due Boneh and Waters [BW13] already enjoys this property.
We formalize this construction and prove its security in Appendix F.

5 Unbounded HIBE

A hierarchal IBE (HIBE) [GS02] generalizes IBEs to a setting where a user with
a secret key for identity ID can derive secret keys for child identities with prefix
ID. In this section we present a construction of an unbounded HIBE, where key
delegation can be carried out for an exponential number of prefixes.

As before, we use a PRG and a puncturable PRF. We however also rely on
a public-coin differing-inputs obfuscator (pc-diO) for circuits, an indistinguisha-
bility obfuscator, a public-coin collision-resistant (pc-CR) hash function, and a
SNARK proof system with a common random string.

Given a public-coin hash function H, we rely on SNARKs for the relation
Rel(1λ, (k , h1, h2), (w1, w2)) that checks(

|k | = λ ∧ H(k , w1) = h1 ∧ H(k , w1|w2) = h2 ∧ w2 6= ε
)
.

In our construction, the obfuscation of a delegation circuit Cdel with a hard-
wired master key will be made public. This circuit takes as input a user secret
key SK, two hash values h′, h, and a SNARK proof π. The circuit checks that the
proof π verifies (and hence proves knowledge of ID, ID such that h = H(k , ID)
and h′ = H(k , ID|ID)). This is done explicitly by computing a public key for h
using the master key and checking if the result matches the one derived from
SK. (Comparison with the public key rather than the secret key is needed as in
the security proof we have to forget the SK at some point). If all checks pass,
a secret key for h′ (i.e., the hash of child identity ID|ID) is returned. The other
algorithms operate as in the IBE scheme on hashed identities. The details of the
construction are shown in Figure 4. As for our IBE construction in Figure 3, we
pad the circuits Cgen and Cdel respectively to the maximum size of any circuit
C̃gen and C̃del used in the proof (and argue that these sizes are polynomially
bounded).

Theorem 3. Scheme HIBE in Figure 4 is Sel-AI-CPA secure if PRG and
PPRF are secure, H is public-coin collision-resistant, the obfuscator iO is an
indistinguishability obfuscation, and the obfuscator diO is public-coin differing-
input secure. More precisely, for any ppt adversary A against HIBE there exist
ppt adversaries B1 against iO, diO-legitimate B2 against diO, B3 against H,
B4 against PPRF and B5 against PRG such that

Advsel-ai-cpa
HIBE,A (λ) ≤ (4p(λ) + 1) ·Advind

iO,B1
(λ) + 4p(λ) ·Advind

diO,B2
(λ)

+ 4p(λ) ·Advcr
H,B3

(λ) + 2p(λ) ·Advind
PPRF,B4

(λ) + 2p(λ) ·Advind
PRG,B5

(λ) ,

where p(λ) = (n(λ))log 3+1 and n(λ) is such |ID(0)|, |ID(1)| ≤ n(λ). Furthermore,
B1 and B2 are iO and diO-legitimate respectively.

14



Algo. HSetup(1λ)

K←←{0, 1}λ; k←←{0, 1}λ

crs←←{0, 1}rS(λ)

C
gen←← iO(1λ,Cgen[K])

C
del←←diO(1λ,Cdel[K])

MPK← (crs, k,C
gen
,C

del
)

SK0 ← PPRF(K,H(k, ε))
return ((SK0, ε),MPK)

Circ. Cgen[K](h)

PK← PRG(PPRF(K, h))
return PK

Circ. Cdel[K, k, crs](SK, h, h′, π)

if Ver(crs, (k, h, h′), π) = 0 return ⊥
PK← PRG(PPRF(K, h))
if PRG(SK) 6= PK return ⊥
return PPRF(K,H(k, h′))

Algo. HEnc(MPK, ID,M)

PK← C
gen

(H(k, ID))

CT←← iO(1λ,Cenc[PK,M])
return CT

Circ. Cenc[PK,M](SK)

if PRG(SK) = PK return M
return ⊥

Algo. HDel((SK, ID), ID′)

h← H(k, ID); h′ ← H(k, ID|ID′)
π←←Prove(crs, (k, h, h′), (ID, ID′))

SK′←←C
del

(SK, h, h′, π)

return (SK′, ID | ID′)

Algo. HDec((SK, ID),CT)

M← CT(SK)
return M

Fig. 4. Unbounded HIBE from a PRG, a puncturable PRF, a pc-CR hash function
and a pc-diO.

We refer the reader to the introduction for a high-level overview of the proof.
The detailed proof of Theorem 3 is provided in Appendix H.

Remark. Suppose we define H(k, ID) := ID for all k, ID and Prove(crs, (h, h′),
w) := w. Then there are no collisions for H and the SNARK proofs are perfectly
extractable. This means that the diO adversary we constructed when showing
that Gi,δ,1 and Gi,δ,2 in the proof of Theorem 3 are indistinguishable is actually
iO-legitimate. It then suffices to use an indistinguishability obfuscator to obtain
a bounded -depth HIBE from the above construction.

Acknowledgments Farshim was supported by the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-
2013 Grant Agreement no. 339563 - CryptoCloud). Fuchsbauer was supported by
the French ANR Project ANR-16-CE39-0002 EfTrEC. Passelègue was supported
in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955,
NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant.

References

ABC+05. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi
Kohno, Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier,
and Haixia Shi. Searchable encryption revisited: Consistency properties,

15



relation to anonymous IBE, and extensions. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 205–222. Springer, Heidel-
berg, August 2005.

ADGM17. Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Crypt-
analysis of indistinguishability obfuscations of circuits over GGH13. In
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of
LIPIcs, pages 38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2017.

AS16. Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for
turing machines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-
A, Part I, volume 9562 of LNCS, pages 125–153. Springer, Heidelberg,
January 2016.

AS17. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional
encryption and indistinguishability obfuscation from degree-5 multilinear
maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lec-
ture Notes in Computer Science, pages 152–181, 2017.

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
Key-privacy in public-key encryption. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer, Heidel-
berg, December 2001.

BCG+17. Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sa-
hai, and Gil Segev. Hierarchical functional encryption. In Proceedings of
the 2017 ACM Conference on Innovations in Theoretical Computer Sci-
ence, Berkeley, CA, USA, January 9-11, 2017, 2017.

Ben89. Charles H. Bennett. Time/space trade-offs for reversible computation.
SIAM J. Comput., 18(4):766–776, 1989.

BGI+12. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6:1–6:48, May 2012.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

BLR+15. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry,
and Joe Zimmerman. Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation. In Elisabeth Os-
wald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 563–594. Springer, Heidelberg, April 2015.

BNPW16. Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From
cryptomania to obfustopia through secret-key functional encryption. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume
9986 of LNCS, pages 391–418. Springer, Heidelberg, October / November
2016.

BP15. Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 401–427. Springer, Heidelberg, March 2015.

16



BSW16. Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on
differing-inputs obfuscation. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 792–
821. Springer, Heidelberg, May 2016.

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In Venkatesan Guruswami, editor, 56th FOCS,
pages 171–190. IEEE Computer Society Press, October 2015.

BW07. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 535–554. Springer, Heidelberg, February 2007.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 480–499. Springer, Heidelberg, August 2014.

CGH17. Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate
branching program obfuscators. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings,
Part III, volume 10212 of Lecture Notes in Computer Science, pages 278–
307, 2017.

CLP15. Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent
zero-knowledge from indistinguishability obfuscation. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215
of LNCS, pages 287–307. Springer, Heidelberg, August 2015.

CLTV15. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 468–497. Springer, Heidelberg, March 2015.

CRV10. Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyper-
plane membership. In Daniele Micciancio, editor, TCC 2010, volume 5978
of LNCS, pages 72–89. Springer, Heidelberg, February 2010.

CVW18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. Ggh15 beyond
permutation branching programs: Proofs, attacks, and candidates. IACR
Cryptology ePrint Archive, 2018:360, 2018.

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg, Au-
gust 1984.

FKPR14. Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Van-
ishree Rao. Adaptive security of constrained PRFs. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 82–101. Springer, Heidelberg, December 2014.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Com-
puter Society Press, October 2013.

17



GGHW14. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implau-
sibility of differing-inputs obfuscation and extractable witness encryption
with auxiliary input. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535. Springer,
Heidelberg, August 2014.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness en-
cryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 467–476. ACM Press, June
2013.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In Umans [Uma17], pages 612–621.

Gol01. Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1.
Cambridge University Press, Cambridge, UK, 2001.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In Ari
Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 06, pages 89–98. ACM Press, October / November 2006. Avail-
able as Cryptology ePrint Archive Report 2006/309.

GS02. Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In
Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages
548–566. Springer, Heidelberg, December 2002.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate
encryption for circuits from LWE. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
503–523. Springer, Heidelberg, August 2015.

HR04. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road,
or do secure hash functions need secret coins? In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 92–105. Springer, Heidelberg,
August 2004.

HSW14. Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random
oracle: Full domain hash from indistinguishability obfuscation. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 201–220. Springer, Heidelberg, May 2014.

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In Tim Roughgarden, editor,
ITCS 2015, pages 163–172. ACM, January 2015.

IPS15. Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs
obfuscation and its applications. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 668–
697. Springer, Heidelberg, March 2015.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
13, pages 669–684. ACM Press, November 2013.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner products. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 146–162.
Springer, Heidelberg, April 2008.

18



Lin16. Huijia Lin. Indistinguishability obfuscation from constant-degree graded
encoding schemes. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 28–57. Springer,
Heidelberg, May 2016.

LOS+10. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima,
and Brent Waters. Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In Henri Gilbert,
editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 62–91. Springer,
Heidelberg, May 2010.

LT17. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilin-
ear maps and block-wise local prgs. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 630–660. Springer, 2017.

LW11. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based
encryption. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume
6632 of LNCS, pages 547–567. Springer, Heidelberg, May 2011.

MH14. Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via
point obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 95–120. Springer, Heidelberg, February 2014.

MZ17. Fermi Ma and Mark Zhandry. New multilinear maps from CLT13 with
provable security against zeroizing attacks. IACR Cryptology ePrint
Archive, 2017:946, 2017.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437.
ACM Press, May 1990.

PPS15. Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based
non-black-box simulation and four message concurrent zero knowledge for
NP. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 638–667. Springer, Heidelberg, March 2015.

SBC+07. Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song,
and Adrian Perrig. Multi-dimensional range query over encrypted data.
In 2007 IEEE Symposium on Security and Privacy, pages 350–364. IEEE
Computer Society Press, May 2007.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014.

Uma17. Chris Umans, editor. 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017.
IEEE Computer Society, 2017.

Wat15. Brent Waters. A punctured programming approach to adaptively secure
functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 678–697.
Springer, Heidelberg, August 2015.

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare pro-
grams under LWE. In Umans [Uma17], pages 600–611.

Zha16. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–
508. Springer, Heidelberg, August 2016.

19



A Definitions

Here we define the different notions involved in this paper. We first define the
basic tools that are common to all our constructions, and then the more specific
notions.

A.1 Basic tools

We introduce basic cryptographic primitives that we use as tools throughout
the paper. In particular, we recall the notions of pseudorandom generator, con-
strained (and puncturable) pseudorandom functions, and indistinguishability ob-
fuscation. Definitions of various public-key primitives are deferred to the corre-
sponding subsections.

Game INDAPRG(λ):

b←←{0, 1}; x←←{0, 1}λ

y←←{0, 1}λ+s(λ)
if b = 1, y ← PRG(x )

b′←←A(1λ, y)
return (b′ = b)

PRG. A pseudorandom generator is a deterministic

algorithm PRG(x ) that takes as input an x ∈ {0, 1}λ
and outputs a string y ∈ {0, 1}λ+s(λ) for a (positive)
polynomial s(·). We say PRG is secure if for all ppt A

Advind
PRG,A(λ) := 2 · Pr

[
INDAPRG(λ)

]
− 1 ∈ Negl.

Constrained PRFs. A constrained pseudorandom function (C-PRF) for a
boolean circuit family CSp := {CSpλ}λ∈N, where each C ∈ CSpλ has input
space {0, 1}m(λ) for a polynomial m(·), is a tuple of algorithms (CPRF,Cons)
as follows. Algorithm CPRF(K, x ) is deterministic and on input a key K ∈
{0, 1}λ and x ∈ {0, 1}m(λ) outputs a string y ∈ {0, 1}n(λ) for a polynomial
n(·). Algorithm Cons(K,C) takes a key K and a boolean circuit C ∈ CSpλ
and outputs a constrained key KC. We require that for any K ∈ {0, 1}λ, any
C ∈ CSpλ and any x ∈ {0, 1}m(λ)

C(x ) = 1 =⇒ CPRF(K, x ) = CPRF(Cons(K,C), x ) .

We say that CPRF is a secure constrained PRF if for all ppt A

Advind
CPRF,A(λ) := 2 · Pr

[
INDACPRF(λ)

]
− 1 ∈ Negl ,

where game INDACPRF(λ) is shown in Figure 5.8 We say a constrained PRF is
selectively secure if Chal is queried at the onset and before Prf and Key.

Puncturable PRFs. A puncturable pseudorandom function (PPRF) for a
family of sets SSp := {SSpλ}λ∈N, where SSpλ is a set of polynomial-size sets
(i.e., a set system), is a constrained PRF that supports the circuit family CSp :=
{CSpλ}λ∈N where CSpλ consists of all circuits of the form C[S](x ) for S ∈ SSpλ

8 For simplicity, table T in Figure 5 is formally defined as a table of size 2m(λ) which
initially contains only ⊥ but it can easily be reduced to a polynomial-sized data
structure by storing the queried inputs/outputs lazily.

20



Game INDACPRF(λ):

b←←{0, 1}
K←←{0, 1}λ
b′←←APrf,Key,Chal(1λ)
for x ′ ∈ L1,C ∈ L2, x ∈ L3

if C(x ) = 1 ∨ x = x ′

b′ ← 0
return (b′ = b)

Proc. Prf(x ):

L1 ← L1 ∪ {x}
y ← CPRF(K, x )
return y

Proc. Key(C):

L2 ← L2 ∪ {C}
KC ← Cons(K,C)
return KC

Proc. Chal(x ):

L3 ← L3 ∪ {x}
y ← CPRF(K, x )
if T [x ] = ⊥
T [x ]←←{0, 1}n(λ)

if b = 0
y ← T [x ]

return y

Fig. 5. Security of a constrained PRF.

that return 1 iff x 6∈ S. The class of circuits consisting of singleton sets SSpλ :=
{{x} : x ∈ {0, 1}m(λ)} correspond to singly puncturable PRFs and those con-
sisting of SSpλ := {{x1, x2} : x1, x2 ∈ {0, 1}m(λ)} to doubly puncturable PRFs.
In this work, we will rely on selectively secure singly and doubly puncturable
PRFs. Such puncturable PRFs can be based on a PRG via the GGM construc-
tion [BW13, BGI14, KPTZ13].

Game CRAH(λ):

k←←{0, 1}λ
(x0, x1)←←A(1λ, k)
return (x0 6= x1∧

H(k , x0) = H(k , x1))

Public-coin hashing. A public-coin hash function

with key space {0, 1}λ and message space {0, 1}∗ is
an algorithm H(k , x ) that takes a key k ∈ {0, 1}λ
and an input x ∈ {0, 1}∗ and outputs a string y ∈
{0, 1}n(λ) for some polynomial n(·). The public-coin
hash function is collision resistant if for all ppt A

Advcr
H,A(λ) := Pr

[
CRAH(λ)

]
∈ Negl .

Obfuscators. A ppt algorithm Obf is called an obfuscator for the (deter-
ministic) circuit class CSp := {CSpλ}λ∈N, where each C ∈ CSpλ has input space
{0, 1}λ, if Obf on input the security parameter 1λ and the description of a circuit
C ∈ CSpλ outputs a (deterministic) circuit C. We require Obf to be perfectly
correct in the sense that for all λ ∈ N, all C ∈ CSpλ, all C←←Obf(1λ,C) and
all x ∈ {0, 1}λ we have that C(x ) = C(x ).

In order to formalize security, we say an adversary A is diO-legitimate if for
every ppt extractor E we have

Adveq
Obf ,A,E(λ) := Pr

[
EQEObf ,A(λ)

]
∈ Negl ,

where game EQEA(λ) is shown in Figure 6 (right). Algorithm A is said to be iO-
legitimate if the same holds for every unbounded extractor E .9 An obfuscator Obf
is a public-coin differing-input obfuscator if any diO-legitimate ppt adversary A
we have

Advind
Obf ,A(λ) := 2 · Pr

[
INDAObf (λ)

]
− 1 ∈ Negl ,

9 This is equivalent to requiring that for every query (C0,C1) queried to LR we have
C0(x) = C1(x) for all x ∈ {0, 1}λ, i.e., that C0 and C1 are functionally equivalent.

21



Game INDAObf (λ):

b←←{0, 1}
b′←←ALR(1λ)
for (C0,C1) ∈ L1

if |C0| 6= |C1| then b′ ← 0
return (b = b′)

Proc. LR(C0,C1):

C←←Obf(1λ,Cb)
L1 ← L1 ∪ {(C0,C1)}
return C

Game EQEObf ,A(λ):

rA←←{0, 1}tA(λ); ALR(1λ; rA)

x←←E(1λ, rA,L2)
for (C0,C1) ∈ L1

if C0(x ) 6= C1(x ) return 1
return 0

Proc. LR(C0,C1):

r←←{0, 1}rl(λ); C← Obf(1λ,Cb; r)
L1 ← L1 ∪ {(C0,C1)}; L2 ← L2 ∪ {r}
return C

Fig. 6. Left: Indistinguishability game for an obfuscator. Right: The functional-
equivalence game. Here tA denotes a polynomial upper-bounding the runtime of A
and rl(·) denotes the length of the random input of Obf .

where game INDAObf (λ) gives A access to a left/right (LR) oracle and is shown
in Figure 6. We denote such an obfuscator by diO. An obfuscator Obf is an
indistinguishability obfuscator if Advind

Obf ,A(λ) is negligible for any iO-legitimate
ppt adversary A. We denote such an obfuscator by iO.

Game DDHAG (λ):

(G, q, g)←←G(1λ)
b←←{0, 1}
Y,Z←←G∗; x←←Z∗q ; X ← gx

T0 ← Y x; T1 ← Z
b′←←A(G, q, g,X, Y, Tb)
return (b = b′)

The DDH assumption. Let G(1λ) be a group

generation algorithm that outputs the descrip-
tion of a cyclic group G of order q generated
by g. Let G∗ := G \ {1}. The decisional Diffie–
Hellman (DDH) assumption for G requires that
for any ppt adversary A,

Advddh
G,A(λ) := 2 · Pr

[
DDHAG (λ)

]
− 1 ∈ Negl .

A.2 Public-key encryption

A public-key encryption (PKE) scheme for message space MSp := {MSpλ}λ∈N
is a tuple of ppt algorithms PKE := (Gen,Enc,Dec).

Gen(1λ): This is the key-generation algorithm, which outputs a key pair (SK,PK).
Enc(PK,M): This is the encryption algorithm, which on input a public key PK

and a message M outputs a ciphertext CT.
Dec(SK,CT): This is the deterministic decryption algorithm, which on input

a secret key SK and a ciphertext CT outputs a message M or the error
symbol ⊥.

The correctness of a PKE scheme requires that for any λ ∈ N, any (SK,PK)←←
Gen(1λ), any M ∈ MSpλ, and CT←←Enc(PK,M) we have Dec(SK,CT) = M.

The anonymous and indistinguishable security of a PKE scheme under chosen-
plaintext attacks (AI-CPA) [BBDP01] requires that for any ppt adversary A,

Advai-cpa
PKE,A(λ) := 2 · Pr

[
AI-CPAAPKE(λ)

]
− 1 ∈ Negl ,

22



Game AI-CPAAPKE(λ):

b←←{0, 1}
(SK0,PK0)←←Gen(1λ)

(SK1,PK1)←←Gen(1λ)
b′←←ALR(PK0,PK1)
for (M0,M1) ∈ L1

if |M0| 6= |M1| then b′ ← 0
return (b = b′)

Proc. LR(M0,M1):

CT←←Enc(PKb,Mb)
L1 ← L1 ∪ (M0,M1)
return CT

Fig. 7. The AI-CPA security of a PKE scheme.

where game AI-CPAAPKE(λ) is shown in Figure 7. Besides anonymity, this defini-
tion implies the standard IND-CPA definition. To see this note that by AI-CPA
security, Enc(PK0,M0) is indistinguishable from Enc(PK1,M1). Furthermore
Enc(PK1,M1) is also indistinguishable from Enc(PK0,M1) as the adversary
can set M1 = M0. Combining the two we get that Enc(PK0,M0) is indistin-
guishable from Enc(PK0,M1), as required.

A.3 Identity-based encryption

An identity-based encryption (IBE) scheme for message space MSp := {MSpλ}λ∈N
and identity space IDSp := {IDSpλ}λ∈N is a tuple of ppt algorithms IBE :=
(IBSetup, IBEnc, IBGen, IBDec) as follows:

IBSetup(1λ): This is the master key generation which outputs a key pair
(MSK,MPK).

IBGen(MSK, ID): This is the key-generation algorithm, which on input a mas-
ter secret key MSK and an identity ID outputs a (user) key SK.

IBEnc(MPK, ID,M): This is the encryption algorithm, which on input a master
public key MPK, an identity ID, and a message M outputs a ciphertext CT.

IBDec(SK,CT): This is the deterministic decryption algorithm that on input
an SK and a ciphertext CT outputs a message M or the error symbol ⊥.

Correctness requires that for any λ ∈ N, any (MSK,MPK)←← IBSetup(1λ),
any ID ∈ IDSpλ, any SK←← IBGen(MSK, ID), any M ∈ MSpλ and any CT←←
IBEnc(MPK, ID,M), we have that IBDec(SK,CT) = M.

The selective anonymous and indistinguishable security of IBE under chosen-
plaintext attacks [ABC+05] (Sel-AI-CPA) requires that for any ppt adversary A,

Advsel-ai-cpa
IBE,A (λ) := 2 · Pr

[
Sel-AI-CPAAIBE(λ)

]
− 1 ∈ Negl ,

where game Sel-AI-CPAAIBE(λ) is shown in Figure 8. This notion implies IND-CPA
security by setting ID0 = ID1.

23



Game Sel-AI-CPAAIBE(λ):

(ID0, ID1, st)←←A(1λ)
b←←{0, 1}
(MSK,MPK)←← IBSetup(1λ)
b′←←ALR,Ext(MPK, st)
for (M0,M1) ∈ L1, ID ∈ L2

if ID ∈ {ID0, ID1} then b′ ← 0
if |M0| 6= |M1| then b′ ← 0

return (b = b′)

Proc. LR(M0,M1):

CT←← IBEnc(MPK, IDb,Mb)
L1 ← L1 ∪ {(M0,M1)}
return CT

Proc. Ext(ID):

SK←← IBGen(MSK, ID)
L2 ← L2 ∪ {ID}
return SK

Fig. 8. Selective AI-CPA security of an IBE scheme.

A.4 Hierarchical IBE

Hierarchical IBE. In HIBE schemes, identities are of the form ID = (ID1, . . . ,
IDn) ∈ IDSpnλ for some n ∈ N. For m ≤ n we write ID[m] for (ID1, . . . , IDm).
An (unbounded) HIBE scheme for message space MSp := {MSpλ}λ∈N, identity
space IDSp := {IDSpλ}λ∈N and depth d(·) is a tuple of ppt algorithms HIBE :=
(HSetup,HEnc,HDel,HDec) as follows.

HSetup(1λ): The master key-generation algorithm outputs a pair (SK0,MPK).

HEnc(MPK, ID,M): The encryption algorithm, on input a master public key
MPK, a vector of identities ID and a message M, outputs a ciphertext CT.

HDel(SK, ID): The delegation algorithm, on input a secret key SK and an iden-
tity ID, outputs a (user) key SK′.

HDec(SK,CT): The deterministic decryption algorithm, on input a secret key
SK and a ciphertext CT, outputs a message M or the error symbol ⊥.

We require correctness of the HIBE scheme: For any λ ∈ N, d := d(λ), any
(SK0,MPK)←←HSetup(1λ), any M ∈ MSpλ, any ID = (ID1, . . . , IDd) ∈ IDSpdλ,
any CT←←HEnc(MPK, ID,M), any SKi←←HDel(SKi−1, IDi) for i = 1, . . . , d
we have that HDec(SKd,CT) = M. We call an HIBE bounded if correctness (and
security; see below) hold for a polynomial d(λ). We call the HIBE unbounded if
this holds for d(λ) = 2λ.

The Sel-AI-CPA security of HIBE requires that for any legitimate ppt adver-
sary A,

Advsel-ai-cpa
HIBE,A (λ) := 2 · Pr

[
Sel-AI-CPAAHIBE(λ)

]
− 1 ∈ Negl ,

where game Sel-AI-CPAAHIBE(λ) is shown in Figure 9. We note that the adversary
might choose two identities of different depths, and hence an anonymous HIBE,
according to our definition, also hides the receipt’s level in the hierarchy. In
a Sel-AI-CPA-secure bounded HIBE scheme we relax the model and require
the adversary to always output a tuple of challenge vectors (ID0, ID1) of depth
exactly d(λ).

24



Game Sel-AI-CPAAHIBE(λ):

(ID
(0)
, ID

(1)
, st)←←A(1λ)

b←←{0, 1}
(SK0,MPK)←←HSetup(1λ)
b′←←ALR,Ext(MPK, st)
for (M0,M1) ∈ L1

if |M0| 6= |M1| then b′ ← 0

for ID = (ID1, . . . , IDn) ∈ L2

for i = 1, . . . , n

if ID = ID
(0)

[i] then b′ ← 0

if ID = ID
(1)

[i] then b′ ← 0
return (b = b′)

Proc. LR(M0,M1):

CT←←HEnc(MPK, IDb,Mb)
L1 ← L1 ∪ {(M0,M1)}
return CT

Proc. Ext(ID):

parse (ID1, . . . , IDn)← ID
for i = 1, . . . , n

SKi←←HDel(SKi−1, IDi)

L2 ← L2 ∪ {ID}
return SKn

Fig. 9. The selective AI-CPA security of a (possibility unbounded) HIBE scheme.

Game ExtEASNARK,A(λ):

crs←←{0, 1}pS(λ); r←←{0, 1}pA(λ)

(η, π)← A(crs; r); w←←EA(1λ, crs, r)

return (Ver(crs, η, π) = 1 ∧Rel(1λ, η, w) = 0)

Fig. 10. The extraction game for a SNARK.

A.5 SNARKs

Relations. A relation Rel(1λ, η, w) is a ppt Turing machine in the length
of its inputs (rather than the security parameter) which on input the security
parameter, a statement η ∈ {0, 1}∗, and a witness w ∈ {0, 1}∗ outputs 0 or 1.
We say η ∈ Relλ if there exists w ∈ {0, 1}∗ such that Rel(1λ, η, w) = 1.

SNARKs. A succinct non-interactive argument of knowledge (SNARK) is a
non-interactive proof-of-knowledge system whose proofs lengths and verification
time are independent of the witness size and only bounded by an a priori fixed
polynomial in the statement length. Formally a SNARK for a relation Rel is a
pair of ppt algorithms (Prove,Ver) such that Prove(crs, η, w) outputs a proof
π and Ver(crs, η, π) outputs 0 or 1. We call the SNARK complete (or correct)
if for any λ ∈ N, any (η, w) with Rel(1λ, η, w) = 1, any crs←←{0, 1}pS(λ) and
any π←←Prove(crs, η, w) we have that Ver(crs, η, π) = 1. We call the SNARK
succinct if there exist polynomials p(·), l(·) and q(·) such that for any λ ∈ N,
any crs←←{0, 1}pS(λ), any (η, w) ∈ {0, 1}∗ × {0, 1}∗ with Rel(1λ, η, w) = 1, and
any π←←Prove(crs, η, w) we have that |π| ≤ l(λ+ |η|), Prove(crs, η, w) runs in
time q(λ+ |η|), and Ver(crs, η, π) runs in time p(λ+ |η|).

We call the SNARK (adaptively) extractable if for any ppt A there exists
a ppt extractor EA such that Advext

SNARK,A,EA(λ) := Pr
[
ExtEASNARK,A(λ)

]
∈

Negl , where game ExtASNARK(λ) is shown in Figure 10.

25



Game Sel- W AI-CPAAPE(λ):

(γ0, γ1, st)←←A(1λ); b←←{0, 1}
(MSK,MPK)←←PSetup(1λ)
b′←←ALR,Ext(MPK, st)
for (M0,M1) ∈ L1,P ∈ L2

if |M0| 6= |M1| then b′ ← 0
if P(γ0) 6= P(γ1) then b′ ← 0

if P(γ0) 6= 0 ∨P(γ1) 6= 0 then b′ ← 0

return (b = b′)

Proc. LR(M0,M1):

CT←←PEnc(MPK, (γb,Mb))
L1 ← L1 ∪ (M0,M1)
return CT

Proc. Ext(P):

SK←←PGen(MSK,P)
L2 ← L2 ∪P
return SK

Fig. 11. The Sel- W AI-CPA security of a predicate encryption scheme. The
Sel-WAI-CPA game includes the boxed statement.

A.6 Predicate encryption

A predicate encryption (PE) scheme for message space MSp := {MSpλ}λ∈N
and predicate space PSp := {PSpλ}λ∈N is a tuple of ppt algorithms PE :=
(PSetup,PGen,PEnc,PDec) as follows:

PSetup(1λ): The master key-generation algorithm outputs a pair (MSK,MPK).
PGen(MSK,P): The key-generation algorithm, on input a master secret key

MSK and a boolean circuit (predicate) P, outputs a key SK.
PEnc(PK, γ,M): The encryption algorithm, on input a master public key MPK,

an attribute γ and a message M, outputs a ciphertext CT.
PDec(SK,CT): The deterministic decryption algorithm, on input an SK and a

ciphertext CT, outputs a message M or the error symbol ⊥.

The correctness of a PE scheme requires that for any λ ∈ N, any (MSK,MPK)←←
PGen(1λ), any P ∈ PSpλ and any SK←←PGen(MSK,P), any M ∈ MSpλ, any
γ ∈ ASpλ, and any CT←←PEnc(MPK, γ,M), we have that if P(γ) = 1 then
PDec(SK,CT) = M.

In an attribute-hiding PE scheme, on top of plaintexts, the ciphertexts should
not reveal the attributes used in encryption. Formally, the selective attribute-
hiding (Sel-AI-CPA) security of an PE scheme requires that for any ppt A,

Advsel-ai-cpa
PE,A (λ) := 2 · Pr

[
Sel-AI-CPAAPE(λ)

]
− 1 ∈ Negl ,

where game Sel-AI-CPAAPE(λ) is shown in Figure 11. We define the selective and
weak attribute-hiding security similarly through game Sel-WAI-CPA that is also
shown in Figure 11. In this game the adversary is restricted to only query keys
for predicates that evaluate to 0 on the challenge attributes.

B Proof of Theorem 1

We prove the theorem via a sequence of games as follows.

26



G0: This is the AI-CPA game with respect to PKE in Figure 1. By definition
we have

2 · Pr[GA0 ]− 1 = Advai-cpa
PKE,A(λ) .

G1: This game replaces PK0 with a truly random bit string of length {0, 1}2λ.

We justify this transition based on the security of PRG. Let A be any adver-
sary that distinguishes G0 from G1. Consider the following PRG adversary B.
Algorithm B receives a challenge PRG value y , sets PK0 := y , generates a key
pair (SK1,PK1), picks a random bit b, and runs A(PK0,PK1). When A queries
LR on (M0,M1) algorithm B uses PKb to encrypt Mb and obtains a ciphertext
CT, which it sends to A. When A outputs a bit b′, algorithm B returns (b = b′).
When y is a PRG output, A is run with respect to G0; when y is truly random,
A is run with respect to G1. Furthermore, B outputs a bit that matches the
output of G0 or G1 when run with A. Hence

Pr[GA0 ]− Pr[GA1 ] ≤ Advind
PRG,B(λ) .

G2: This game replaces PK1 with a truly random bit string of length {0, 1}2λ.

Using a virtually identical reduction to that in G1 for PK1 we get that for any
A distinguishing G1 from G2 there is an adversary B such that

Pr[GA1 ]− Pr[GA2 ] ≤ Advind
PRG,B(λ) .

G3: This game generates the challenge ciphertexts by obfuscating C[PK0,M0]
(irrespective of the bit b).

We justify this transition based on the security of Obf as follows. Suppose an
adversary A distinguishes game G2 from G3. Consider adversary B against Obf
as follows. Adversary B generates two random y0, y1←←{0, 1}2λ, sets PKi := yi,
for i = 0, 1, and runs A(PK0,PK1) (as in G2). B picks a random bit b and when-
ever A queries its LR on two messages (M0,M1), it queries its own (obfuscation)
LR oracle on (C[PKb,Mb],C[PK0,M0]) and receives an obfuscated circuit CT,
which it sends to A. When A terminates outputting a bit b′, algorithm B2 re-
turns (b = b′). It is clear that according to the challenge bit in the obfuscation
game algorithm B runs A according to either game G2 or G3. Furthermore, B
outputs a bit that matches the output of G2 or G3 when run with A. Hence

Pr[GA2 ]− Pr[GA3 ] ≤ Advind
Obf ,B(λ) .

It remains to show that the circuits C[PKb,Mb] and C[PK0,M0] that B queries
to its obfuscation LR oracle are functionally equivalent and of the same size.
Since PK0 and PK1 are truly random bit strings of length 2λ, for each value
of SK and b we have that Pr[PRG(SK) = PKb] = 1/22λ. Hence by the union
bound

Pr[∃SK ∈ {0, 1}λ, b ∈ {0, 1} : PRG(SK) = PKb] ≤ 2λ+1/22λ = 2/2λ .

27



This means with probability at least 1−2/2λ over the choice of PKb the circuits
C[PKb,Mb] both implement a circuit always returning ⊥. The circuits are of
equal size as long as the two messages are of equal size.

Finally note that G3 is independent of the bit b as C[PK0,M0] is always
obfuscated. Hence for any (even unbounded) adversary A we have that Pr[GA3 ] =
0. The theorem follows from the above inequalities. ut

C Proof of Lemma 1

Correctness. Correctness of the obfuscator means that circuits C[X,Z,M]
and C[h11, h12, h21, h22, h31, h32] = Obf(C[X,Z,M]) are functionally equivalent.
Our obfuscator only achieves statistical correctness, meaning that with negligible
probability over the choice of r1, r2, r2, s1, s2, s3 the obfuscated circuit might
differ from the original one. This comes from the fact that there might exist x′

such that hx
′

11 = h12 and hx
′

21 = h22, even though there does not exist any x′

such that (gx
′
, Y x

′
) = (X,Z) in the original circuit. Letting x, y, z denote the

respective discrete logarithms of X,Y, Z, hx
′

11 = h12 is equivalent to (r1+ys1)x′ =
xr1 +zs1, so x1 = xr1+zs1

r1+ys1
always satisfies this equation (assuming r1 +ys1 6= 0).

Similarly, we have hx
′

21 = h22 if and only if (r2 + ys2)x′ = xr2 + zs2, so assuming
r1 + ys1 6= 0, we have that x2 = xr2+zs2

r2+ys2
satisfies this equation.

Note that if z = xy, then x1 = x2 = x and we have perfect correctness, but
if z 6= xy, x1 = x2 and x1 6= x, the obfuscated circuit differs on this point. Thus
the statistical correctness of our obfuscator, since the obfuscated circuit might
not be functionally equivalent, but this only happens with negligible probability
(when x1 = x2 and x1 6= x).

This is not an issue for our construction. In particular, since obfuscator is
perfectly correct when the public key is well-formed (z = xy), our encryption
scheme satisfies perfect correctness.

Indistinguishability. Let us now prove the indistinguishability security of the
obfuscator. Let C1[X,Z,M] and C2[X ′, Z ′,M′] be two functionally equivalent
circuits. It is clear that if (X,Z) is a well-formed public-key (meaning that Z =
Y log(X)) then one needs to have X ′ = X, Z ′ = Z, and M′ = M, otherwise circuits
C1 and C2 would differ on input x = log(X), since C1 would output M (and
we have by definition M 6= 1) and C2 would output either a different message
M′ or 1 (if (X ′, Z ′) 6= (gx, Y x)). Hence, if (X,Z) is a well-formed public-key and
C2 is functionally equivalent to C1, then C2 = C1 and there obfuscations are
(perfectly) indistinguishable.

Let us now assume (X,Z) is not a well-formed key (so Z 6= Y log(X)). Then,
any circuit C2[X ′, Z ′,M′] such that (X ′, Z ′) is also not a well-formed key is
functionally equivalent to C1[X,Z,M], since they both always output 1 (and
any circuit C2[X ′, Z ′,M′] with X ′, Z ′ well-formed is not functionally equivalent
to C1[X,Z,M] since the message space is G∗ = G \ {1}). Thus, we just need
to show that the obfuscations of any such two circuits are indistinguishable and
the indistinguishability of our obfuscator will follow. To do so, it is sufficient to

28



prove that the two distributions(
gr1Y s1 , Xr1Zs1 , gr2Y s2 , Xr2Zs2 , gr3Y s3 , M ·Xr3Zs3

)(
gr1Y s1 , X ′r1Z ′s1 , gr2Y s2 , X ′r2Z ′s2 , gr3Y s3 , M′ ·X ′r3Z ′s3

)
for (r1, r2, r3, s1, s2, s3)←←Z6

q are identical. Letting x, y, z,m, x′, z′,m′ denote
the respective discrete logarithms of X,Y, Z,M, X ′, Z ′,M′, we thus just want
to prove that the distributions(
r1 + ys1, xr1 + zs1, r2 + ys2, xr2 + zs2, r3 + ys3, m+ xr3 + zs3

)(
r1 + ys1, x′r1 + z′s1, r2 + ys2, x′r2 + z′s2, r3 + ys3, m′ + x′r3 + z′s3

)
for (r1, r2, r3, s1, s2, s3)←←Z6

q are identical, when z 6= xy and z′ 6= x′y. This
immediately follows from the facts that:

r1 + ys1
xr1 + zs1
r2 + ys2
xr2 + zs2
r3 + ys3

m+ xr3 + zs3

 =


1 y 0 0 0 0
x z 0 0 0 0
0 0 1 y 0 0
0 0 x z 0 0
0 0 0 0 1 y
0 0 0 0 x z

 ·


r1
s1
r2
s2
r3
s3

+


0
0
0
0
0
m




r1 + ys1
x′r1 + z′s1
r2 + ys2
x′r2 + z′s2
r3 + ys3

m′ + x′r3 + z′s3

 =


1 y 0 0 0 0
x′ z′ 0 0 0 0
0 0 1 y 0 0
0 0 x′ z′ 0 0
0 0 0 0 1 y
0 0 0 0 x′ z′

 ·

r1
s1
r2
s2
r3
s3

+


0
0
0
0
0
m′


and that the above two matrices are invertible if and only if z 6= xy and z′ 6= x′y.
This concludes the proof of security of our obfuscator. ut

D Proof of Theorem 2

Theorem 4 (Theorem 2, restated). Scheme IBE in Figure 3 is Sel-AI-CPA
secure as long as its underlying pseudorandom generator PRG, the puncturable
pseudorandom function PPRF, and the obfuscator Obf are secure. More pre-
cisely, for any ppt adversary A against IBE there are ppt adversaries B1, B2,
and B3 against PRG, PPRF, and Obf respectively such that

Advsel-ai-cpa
IBE,A (λ) ≤ 2 ·Advind

Obf ,B1
(λ) + Advind

PPRF,B2
(λ) + 2 ·Advind

PRG,B3
(λ) .

Algorithm B1 places at most the same number of queries to its (obfuscation) LR
oracle that A does to its (encryption) LR oracle.

Proof. We prove the theorem via a sequence of games as follows.

29



G0: This is the Sel-AI-CPA game with respect to scheme IBE in Figure 3:

2 · Pr
[
GA0
]
− 1 = Advsel-ai-cpa

IBE,A (λ) .

G1: This game modifies the generation of the master public key as follows.
After A outputs (ID0, ID1) the game generates a key MSK, computes a
punctured key MSK∗ at the challenge identity set {ID0, ID1} and defines
yi := PRG(PPRF(MSK, IDi)) for i = 0, 1. The master public key is gener-
ated by obfuscating the circuit

C̃gen[MSK∗, y0, y1](ID) :=


PRG(PPRF(MSK∗, ID)) if ID 6∈ {ID0, ID1}
y0 if ID = ID0

y1 if ID = ID1

and padding it so its size is Sgen(λ). Note that this circuit is functionally
equivalent to and has the same size as the original circuit Cgen[MSK].

We show that G0 and G1 are indistinguishable. Let A be an adversary that
distinguishes game G0 from game G1. We use A to build an adversary B against
Obf as follows. Algorithm B picks a random bit b and runs A until it outputs
(ID0, ID1, st). It then samples a PPRF key MSK and punctures it at {ID0, ID1}
to compute MSK∗. It also computes yi := PRG(PPRF(MSK, IDi)) for i = 0, 1.

Algorithm B uses these values to generate two circuits Cgen and C̃gen as above
and queries them to its (obfuscation) LR oracle to receive an obfuscated circuit
which B defines to be MPK. Algorithm B answers the encryption queries of A on
(M0,M1) by computing a ciphertext using MPK and (IDb,Mb). Key-extraction
queries on ID are handled using the (un-punctured) key MSK. When A returns
a bit b′, algorithm B returns (b = b′). It is easily seen that according to the
bit chosen by B’s (obfuscation) game, algorithm A is run either with respect to
game G0 or G1 and the output of B matches the output of these games when
run with A. Hence

Pr
[
GA0
]
− Pr

[
GA1
]
≤ Advind

Obf ,B(λ) .

G2: This game no longer sets yi := PRG(PPRF(MSK, IDi)), but instead com-
putes it by first sampling two Si←←{0, 1}λ and then setting yi := PRG(Si).

Let A be an adversary that distinguishes G1 and G2. We use A to build an
adversary B against the selective security of the puncturable PRF as follows.
Algorithm B picks a random bit b and runs A until it outputs (ID0, ID1, st). It
then queries a punctured key MSK∗ at {ID0, ID1}. Algorithm B also queries the
PPRF challenge oracle on ID0 and ID1 to receive S0 and S1 which are either
PPRF(MSK, ID0) and PPRF(MSK, ID1) or truly random values. (Note that
B’s query is legitimate.) Algorithm B uses MSK∗ and yi := PRG(Si) to compute
MPK. It resumes A on (MPK, st) and answers its extraction queries using the
punctured key MSK∗. By the rules of the Sel-AI-CPA game the key extraction

30



oracle will be never queried on ID0 or ID1, and hence MSK∗ can be used to per-
fectly simulate the key extraction oracle.10 For an LR query by A on (M0,M1),
algorithm B encrypts (IDb,Mb) using MPK. When A terminates with a bit b′,
algorithm B returns (b = b′). It is easy to see that if Si is PPRF(MSK, IDi),
algorithm A is run in game G1, and when Si are random, A is run with respect
to G2. Hence,

Pr
[
GA1
]
− Pr

[
GA2
]
≤ Advind

PPRF,B(λ) .

G3: This game modifies y0 further as follows. Instead of setting it to PRG(S0)
it directly samples y0←←{0, 1}2λ.

Let A be an adversary that distinguishes G2 from G3. We use A to build an
adversary B against the security of PRG as follows. Algorithm B receives a value
y0 which is either PRG(S0), for a uniformly random S0 or y0 is truly random.
Algorithm B picks a random bit b and runs A until it outputs (ID0, ID1, st).
It generates a PRF key MSK, computes a punctured key MSK∗ at {ID0, ID1},
and uses MSK∗, y0 and y1 := PRG(S1) for a random S1 to compute MPK.
Algorithm B resumes A on (MPK, st) and answers its extraction queries. For
the LR query (M0,M1), B encrypts (IDb,Mb) using MPK. When A terminates
with a bit b′, algorithm B returns (b = b′). It is easy to see that if y0 is PRG(S0),
algorithm A is run in game G2 and when it is truly random it is run with respect
to G3. Hence,

Pr
[
GA2
]
− Pr

[
GA3
]
≤ Advind

PRG,B(λ) .

G4: This game modifies y1 analogously to G3. That is, instead of setting it to
PRG(S1) it directly samples y1←←{0, 1}2λ.

As in G3 we have that for any A that distinguishes G3 from G4, there is a B
such that

Pr
[
GA3
]
− Pr

[
GA4
]
≤ Advind

PRG,B(λ) .

G5: This game generates the challenge ciphertexts by always encrypting M0 for
identity ID0 (independently of b).

Let A be an adversary that distinguishes G4 and G5. We use A to build an
adversary B against the security of Obf as follows. Algorithm B picks a ran-
dom bit b, generates MSK and runs A answers until it outputs (ID0, ID1, st).
It uses MSK to compute a key MSK∗ punctured at these identities. It then
samples y0, y1←←{0, 1}2λ and computes MPK using all these values. It resumes
A on MPK and answers A’s extraction queries. The LR query on (M0,M1) is

10 This raises the question whether or not G2 should use MSK∗ and Si in key-extraction
queries as well. This can be done at this stage, and as a result we would not need
to rely on the legitimacy rules of the IBE game. However, in the next two games
we will use the security of the PRG to replace yi with truly random values. To this
end, we must ensure that the Si’s are not used in MPK and only their PRG values
are. Hence we rely on IBE legitimacy rules to avoid using Si later on. Note also that
IBE legitimacy makes it inconsequential whether MSK∗ or MSK is used.

31



answered by choosing a bit b at random and calling the (obfuscation) LR oracle
on (Cenc[yb,Mb],C

enc[y0,M0]). Algorithm B continues in this manner until A
outputs a bit b′ and B returns (b = b′). It is easy to see that according to the
challenge bit in the obfuscation game, A is run in game G4 or G5. Hence

Pr
[
GA4
]
− Pr

[
GA5
]
≤ Advind

Obf ,B(λ) .

It remains to show that the circuits queried by B to its challenge oracle are
functionally equivalent. Since y0 and y1 are truly random bit strings of length
2λ, for each value of SK and b we have that Pr[PRG(SK) = yb] = 1/22λ. Hence
by the union bound

Pr[∃SK ∈ {0, 1}λ, b ∈ {0, 1} : PRG(SK) = yb] ≤ 2λ+1/22λ = 2/2λ .

This means with probability at least 1− 2/2λ over the choice of yb the circuits
Cgen[yb,Mb] both are functionally equivalent to a circuit that always outputs ⊥.
Note also that the two circuits are of equal size as long as the two messages are
of equal size.

Finally note that G5 is independent of the bit b and hence for any (even
unbounded) adversary A we have 2 Pr[GA5 ]− 1 = 0. The theorem follows.

Avoiding double puncturing. Although in the above proof we relied on
puncturing at two points, this can be avoided at the cost of introducing addi-
tional game hops. Roughly speaking, we can proceed along the above sequence
of games for each b until we reach game G5. In these games (for the two bits)
we switch the master circuit back to one that uses the original master secret
key, keeping the public key for IDb random. We would then puncture the key at
ID1−b and replace its public key with a random value, and the switch back to a
master circuit that uses the original master secret key, keeping the public key for
ID1−b random. These modifications result in a game where the master circuit is
no longer punctured for any particular identity and hence is independent of the
challenge bit.

E Bounded HIBE

The GGM construction, on top of offering puncturing of keys permits a delega-
tion mechanism whereby a punctured key for a set S of points can be used to
derive a more restricted punctured key for subset of S. We leverage this property
to extend our IBE construction from Section 4 to an HIBE for a priori bounded
number of polynomial levels in the hierarchies. The reason that our construction
supports only a bounded-depth hierarchy is that the master secret key under-
lying the generation of the master public key will be punctured at a number
of points that is proportional to the depth of challenge identities. Therefore, to
use indistinguishability obfuscation the circuit for the original master public key
should be padded to the maximum depth of identities queried.

32



Algo. HSetup(1λ)

SK0←←{0, 1}λ
MPK←← iO(1λ,Cgen[SK0])
return (SK0,MPK)

Circ. Cgen[SK0](ID1, . . . , IDd)

for i = 1, . . . , d:
SKi ← PPRF(SKi−1, IDi)

PK← PRG(SKd)
return PK

Algo. HDel(SK, ID)

SK′ ← PPRF(SK, ID)
return SK′

Algo. HEnc(MPK, ID,M)

PK← MPK(ID)

CT←← iO(1λ,Cenc[PK,M])
return CT

Circ. Cenc[PK,M](SK)

if PRG(SK) = PK return M
return ⊥

Algo. HDec(SK,CT)

M← CT(SK)
return M

Fig. 12. A d(·)-bounded HIBE from a PRG, a puncturable PRF, and an iO. In the
above d := d(λ).

We present our construction based on (a tree of) punctured PRFs that allows
directly handling large identities at each level. Our construction is shown in
Figure 12. For this scheme, the PPRF needs to have identical key space and
domain, i.e., m(λ) = λ using the notation from Section 2.

Theorem 5. The d(·)-bounded HIBE scheme in Figure 12 is Sel-AI-CPA se-
cure as long as its underlying pseudorandom generator PRG, puncturable PRF
PPRF, and obfuscator Obf are secure. More precisely, for any ppt adversary
A against HIBE there are ppt adversaries B1, B2, and B3 against Obf , PPRF,
and PRG respectively such that

Advsel-ai-cpa
HIBE,A (λ)

≤ 2 ·Advind
Obf ,B1

(λ) + (2 · d(λ)− 1) ·Advind
PPRF,B2

(λ) + 2 ·Advind
PRG,B3

(λ) .

Proof. We prove the theorem via a sequence of games as follows.

G0: This is the Sel-AI-CPA game with respect to scheme HIBE in Figure 12.
By definition we have

2 · Pr[GA0 ]− 1 = Advsel-ai-cpa
HIBE,A (λ) .

G1: This game modifies the generation of the master public key as follows. Let
ID0 = (ID0,1, . . . , ID0,d) and ID1 = (ID1,1, . . . , ID1,d) be the identity vectors
that A chooses. Let (ID1, . . . , ID`) be the longest common prefix of ID0 and
ID1. That is, ID0,i = ID1,i = IDi for i = 1, . . . , `. (Note that ` might be 0.)
The game generates a master key SK0, it defines SK0,0 := SK1,0 := SK0,
and for i = 1, . . . , d and b = 0, 1 generates correct PRF values for internal

33



nodes associated to IDb,i:
11

SKb,i := PRF(SKb,i−1, IDb,i) . (1)

Note that SK0,i = SK1,i for i = 1, . . . , ` and there are 2d− ` such values in
total. For i = 0, . . . , d − 1 and b = 0, 1 the game also generates punctured
keys

SK∗b,i :=

{
Cons(SKb,i, {IDb,i+1}) if i 6= `

Cons(SKb,i, {ID0,i+1, ID1,i+1}) if i = `
(2)

Note that SK∗0,i = SK∗1,i for i = 0, . . . , ` and that there are 2d − ` − 1
punctured keys.

The keys {SK∗b,i}d−1i=0 and {SKb,i}di=1 for b = 0, 1 contain sufficient infor-

mation to iteratively compute PRG(PPRF(SK0, ID)) for any ID. Roughly
speaking, we can do this as follows. Given ID = (ID1, . . . , IDd), we start with
ID1 and check if ID1 is one of the level-one challenge identities ID0,1 or ID1,1.
If not, then we can use SK∗0,0 = SK∗1,0 to successfully compute the PRF at
this point, and continue iteratively until we reach level d, where we return
PK = PRG(SKd). Else we use the hardwired values SKb,1 for the correct
value of b according to whether ID1 = ID0,1 or ID1 = ID1,1 to compute the
PRF once. Suppose b = 0 at this stage. In the stage, if ID2 is not one of
ID0,2 or ID1,2, then once gain we use the punctured key SK∗0,1 (which is com-
puted from the correct value SK0,1 at {ID0,2, ID1,2}) to compute the PRF
and continue iteratively to level n. Otherwise, we use the correct hardwired
values SK0,2 to compute the PRF. Case b = 1 is dealt with similarly. We
continue in this manner for all IDi until we reach level d, where we return
PRG(SKd). Note that the intermediate correct values of the PRF at the
challenge identities are not really used in this computation as public keys
at two leaf nodes need to be computed. Hence we do not need to hardwire
these values. Furthermore, at the two leaf nodes, instead of the PRF values
we directly hardwire the public keys, i.e, yb := PRG(PPRF(MSKd−1, IDd))
for b = 0, 1. The details of this procedure are shown in Figure 13.
Game G1 returns an obfuscation of this circuit as MPK.

We show that games G0 and G1 are indistinguishable. Let A be an adversary
that distinguishes G0 from G1. We use A to build an adversary B against Obf as
follows. Algorithm B picks a bit b at random runs A until it outputs (ID0, ID1).
It then samples a PPRF key SK0 and computes {SK∗b,i−1}di=1,b=0,1 as per Equa-
tions (1) and (2) and the public key values y0 and y1. It then forms the func-

tionally equivalent circuits Cgen[SK0] and C̃gen[{SK∗b,i−1, IDb,i, yb}di=1,b=0,1] as
above, pads then to the appropriate size, and queries them to its LR oracle
to get an obfuscated circuit MPK. Algorithm B answers the encryption queries

11 Formally a node is associated to a vector of identities. Since the challenge identity
vectors are fixed, we simply speak of the final identity in this vector to simplify
notation.

34



Circ. C̃gen[{SK∗b,i−1, IDb,i, yb}di=1,b=0,1](ID1, . . . , IDd)

SK∗0 ← SK∗0,0
for i = 1, . . . , d:

if IDi 6∈ {ID0,i, ID1,i} then
for j = i, . . . , d:

SK∗j ← PRF(SK∗j−1, IDj)
return PRG(SK∗n)

if IDi = ID0,i

if i = d then return y0
else SK∗i ← SK∗0,i

if IDi = ID1,i

if i = d then return y1
else SK∗i ← SK∗1,i

Fig. 13. Alternative circuit used in the generation of MPK.

of A on (M0,M1) by computing a ciphertext using MPK and (IDb,Mb). Key-
extraction queries on ID are handled using the (un-punctured) key SK0. When A
returns a bit b′, algorithm B returns (b = b′). It is easily to see that according to
the bit chosen by B’s (obfuscation) game, algorithm A is run either with respect
to game G0 or G1 and the output of B matches the output of these games when
run with A. Hence

Pr[GA0 ]− Pr[GA1 ] ≤ Advind
Obf ,B(λ) .

We will now define games G2,i for i = 1, . . . , 2d− `, which gradually replace
the iteratively computed PRF values SKb,i with truly random values. In doing
so, we will rely on the security of PPRF. (At a single stage we will rely on
“double” puncturing.) Starting from the root of the tree, we will replace the
level-one values SKb,1 with truly random values. Next, relying on these already
replaced values and PPRF security, we replace the level-two SKb,2 values with
random, etc., until all values, including those at the leaf nodes, are replaced by
random values.

G2,i for i = 0, . . . , `: We define G2,0 as G1. For i > 0, game G2,i modifies G2,i−1
and replaces SK0,i = SK1,i with a truly random value. (Note that ID0,i =
ID1,i for i = 1, . . . , `.)

We will use the security of PPRF with puncturing at ID0,i = ID1,i to justify these
transitions. Let A be an adversary that distinguishes G2,i−1 from G2,i. We build
an adversary B against PPRF as follows. Algorithm B picks a random bit b and
runs A until it outputs the challenge identity vectors (ID0, ID1). Algorithm B
simulates the game implicitly setting SK0,i−1 to the key of its challenger. B uses
its Key oracle to obtain a key SK∗i−1 punctured at ID0,i. It also requests a chal-
lenge at ID0,i, which it defines as SK0,i (which is either PPRF(SK0,i−1, ID0,i)
or random). PRF values for nodes that are descendants of node ID0,i (i.e., those

35



at levels ≥ i + 1) can be computed using SK0,i. PRF values for the siblings of
ID0,i (i.e., those at level i) can be computed using the punctured key SK∗i−1.
To compute the PRF values for nodes at levels ≤ i− 1 algorithm B proceeds as
follows. It generates random values SK0,j for 0 ≤ j < i− 1 (level 0 corresponds
to the root of the tree). It uses these values to compute PRF values for nodes at
levels ≤ i−1, except for node ID0,i−1; the PRF value for this node, according to
the rules of game Gi−1, is an independent random value which B implicitly de-
fines as the (un-punctured) PRF key. We will disallow key extraction for identity
ID0,i−1, which is compatible with the legitimacy rules of the HIBE adversary.12

These computed PRF values and the punctured key SK∗i−1 allows B to also com-
pute the punctured keys and PRF values at all nodes that are hardwired into the
circuit underlying MPK. Algorithm B generated these and uses them to form
MPK. Algorithm B answers A’s single LR query by encrypting (IDb,Mb) under
the generated MPK. When A returns a bit b′, algorithm B returns (b = b′).
According to the challenge bit in the PPRF game, algorithm B runs A either in
game G2,i−1 or game G2,i. Hence for any i = 1, . . . , ` and any ppt A, there is a
ppt B such that

Pr[GA2,i−1]− Pr[GA2,i] ≤ Advind
PPRF,B(λ) .

G2,`+1: At level ` + 1, the identity vectors differ for the first time. This game
modifies G2,` and replaces both SK0,`+1 and SK1,`+1 with truly random
values.

We will use puncturing at {ID0,`+1, ID1,`+1} to justify this transition. The re-
duction is similar to the previous game except that a doubly punctured key
SK∗0,` = SK∗1,` at {ID0,`+1, ID1,`+1} is requested and the challenge PPRF oracle
is queried on ID0,`+1 and ID0,`+1 to define SK0,`+1 and SK1,`+1. Algorithm A is
also barred from querying the key at ID0,` = ID1,`. Hence for any ppt A there
is a ppt B such that

Pr[GA2,`]− Pr[GA2,`+1] ≤ Advind
PPRF,B(λ) .

G2,`+1+j for j = 1, . . . , d− `− 1: Game G2,`+1+j simply modifies G2,`+1+j−1
and replaces SK0,`+1+j with a truly random value.

We use puncturing at ID0,`+1+j as before to justify these transitions. Using a
reduction similar to above we obtain that for j = 1, . . . , d − ` − 1 and any ppt
A there is a ppt B such that

Pr[GA2,`+1+j−1]− Pr[GA2,`+1+j ] ≤ Advind
PPRF,B(λ) .

G2,d+j for j = 1, . . . , d− `− 1: These games replace SK1,`+1+j with random
values and as before for any ppt A there is a ppt B such that

Pr[GA2,d+j−1]− Pr[GA2,`+1+j ] ≤ Advind
PPRF,B(λ) .

12 We emphasize, however, that we are not relying on the full legitimacy of HIBE
adversary in these games. In particular a key for ID0,i can be extracted by A.

36



Note that in game G2,2d−` all PRF values, includes those at the leaf nodes, are
replaced by truly random values. Overall, the above transitions disallow A to
extract keys for any identity that is a prefix of (IDb,1, . . . , IDb,d−1) for b = 0, 1.

G3,0: Instead of hardwiring PRG(SK0,d) in the MPK circuit in Figure 13, this
game samples a truly random value y0,d, hardwires it to the MPK circuit.

We rely on the security of PRG to bound this transition. Let A be an adversary
that distinguishes G2,2d−` from G3,0. We build an adversary B against PRG as
follows. Algorithm B receives a PRG challenge y . It chooses a bit b at random and
runs A until it outputs (ID0, ID1). Algorithm B then generates random values for
all nodes IDb,i for i = 1, . . . , d−1 and a final random value for node ID1,d, which it
passes through PRG to compute y1. These values can also be used to generated
all information required to form the MPK circuit in Figure 13 Algorithm B also
hardwires y0 := y and y1 into the circuit. Therefore, B implicitly defines the
PRF value at ID0,d as the PRG seed. It resumes A on MPK, an obfuscation of
this circuit. It answers the key-extraction queries, except the disallowed one at
ID0,d, using its internally generated values. Algorithm B answers A’s LR queries
by encrypting (IDb,Mb) under the generated MPK. When A returns a bit b′,
algorithm B returns (b = b′). According to whether y is a real or fake PRG value,
algorithm B runs A in an environment identical to either G2,2d−` or G3. Hence

Pr[GA2,2d−`]− Pr[GA3,0] ≤ Advind
PRG,B(λ) .

G3,1: Instead of hardwiring PRG(SK1,d) in the MPK circuit in Figure 13 this
game also samples a truly random value y1,d, hardwires it to the MPK circuit.

A reduction similar to that for game G3,0 shows that for any ppt A there is a
ppt B such that

Pr[GA3,0]− Pr[GA3,1] ≤ Advind
PRG,B(λ) .

G4: This game replaces responds to A’s LR queries (M0,M1) by always encrypt-
ing M0 for identity ID0 under MPK.

Using the fact that PRG has a sparse image, with overwhelming probabil-
ity both PKID0

and PKID1
are not in the image of PRG. Thus the circuits

Cenc[PKID1
,M1] and Cenc[PKID0

,M0] always return ⊥. By iO-security, their
obfuscations are thus indistinguishable and a reduction similar to that for the
IBE scheme shows that for any ppt A there is a ppt iO-legitimate B such that

Pr[GA3,1]− Pr[GA4 ] ≤ Advind
Obf ,B(λ) .

Finally note that G4 is independent of the bit b and hence the for any (even
unbounded) adversary A we have Pr[GA4 ] = 0. The theorem follows.

37



Algo. PSetup(1λ)

MSK←←{0, 1}λ
MPK←← iO(1λ,Cgen[MSK])
return (MSK,MPK)

Circ. Cgen[MSK](γ)

PK← PRG(PPRF(MSK, γ))
return PK

Algo. PGen(MSK,P)

SK←← iO(1λ,Csk[MSK,P])
return SK

Circ. Csk[MSK,P](γ)

if P(γ) = 1 return PPRF(MSK, γ)
return ⊥

Algo. PEnc(MPK, γ,M)

PK← MPK(γ)

CT←← iO(1λ,Cenc[PK, γ,M])
return CT

Circ. Cenc[PK, γ,M](SK)

if PRG(PPRF(SK, γ)) = PK
return M

return ⊥

Algo. PDec(SK,CT)

return CT(SK)

Fig. 14. Predicate encryption from a PRG, a constrained PRF, and an iO.

F Predicate Encryption

Predicate encryption [BW07, KSW08] is a powerful type of public-key encryp-
tion that, for example, supports searching on encrypted data. It includes other
forms of PKEs, such as Attribute-Based Encryption [GPSW06, LOS+10] and
IBEs. (See [SBC+07, GVW15] for further motivating applications.) We show
our approach is flexible enough to also lend itself to constructions of predicate
encryption schemes. This construction, which generalizes our IBE scheme, relies
on a puncturable PRF, a PRG and an indistinguishability obfuscator, and is
described in Figure 14.

We now show that our predicate encryption scheme is weakly and selectively
attribute hiding. The reason that we can only achieve a weak level of attribute
hiding is that keys for constrained keys for circuits that evaluate to 0 at the
punctured pointed can be obtained under a punctured key. We prove the follow-
ing theorem in Appendix G. We note that the attribute space of our PE scheme
matches the input space of the puncturable PRF, and hence it supports a large
universe of attributes.

Theorem 6. Scheme PE in Figure 14 is Sel-WAI-CPA secure if its underlying
pseudorandom generator PRG, two-point puncturable pseudorandom function
PPRF, and obfuscator Obf are secure. More precisely, for any ppt adversary
A against PE there are ppt adversaries B1, B2, and B3 against Obf , PPRF,
and PRG respectively such that

Advsel-wai-cpa
PE,A (λ) ≤ (2 +Q(λ)) ·Advind

Obf ,B1
(λ)+

Advind
PPRF,B2

(λ) + 2 ·Advind
PRG,B3

(λ) ,

where Q(λ) denotes the number of queries of A to its key extraction oracle.

38



G Proof of Theorem 6

Theorem 7 (Theorem 6, restated). Scheme PE in Figure 14 is Sel-WAI-CPA
secure if its underlying pseudorandom generator PRG, two-point puncturable
pseudorandom function PPRF, and obfuscator Obf are secure. More precisely,
for any ppt adversary A against the Sel-WAI-CPA security of PE there are ppt
adversaries B1, B2, and B3 against Obf , PPRF, and PRG respectively such that

Advsel-wai-cpa
PE,A (λ) ≤ (2+Q(λ))·Advind

Obf ,B1
(λ)+Advind

PPRF,B2
(λ)+2·Advind

PRG,B3
(λ) .

where Q(λ) denotes the number of queries of A to its key extraction oracle.

Proof. We prove the theorem via a sequence of games as follows:

G0: This is the weak Sel-WAI-CPA game (Figure 11) with respect to scheme
PE in Figure 14:

2 · Pr[GA0 ]− 1 = Advsel-wai-cpa
PE,A (λ) .

G1: This game modifies the generation of the master public key as follows.
After the first phase of A when the adversary outputs (γ0, γ1, st) the game
generates a key MSK, computes a punctured key MSK∗ at the challenge
attribute set {γ0, γ1} and defines yi := PRG(PPRF(MSK, γi)) for i = 0, 1.
The master public key is generated by obfuscating the circuit

C̃gen[MSK∗, y0, y1](γ) :=


PRG(PPRF(MSK∗, γ)) if γ 6∈ {γ0, γ1}
y0 if γ = γ0

y1 if γ = γ1

Note that this is functionally equivalent to the original circuit Cgen[MSK].

We show that G0 and G1 are indistinguishable. Let A be an adversary that
distinguishes game G0 from game G1. We use A to build an adversary B against
Obf as follows. Algorithm B picks a random bit b and runs A until it outputs
(γ0, γ1, st). It then samples a PPRF key MSK and punctures it at {γ0, γ1} to
compute MSK∗. It also computes yi := PRG(PPRF(MSK, γi)) for i = 0, 1.
Algorithm B uses these values to generate two circuits Cgen and C̃gen as above
and queries them to its (obfuscation) LR oracle to receive an obfuscated circuit
which B defines to be the MPK. Algorithm B answers the encryption queries of
A on (M0,M1) by computing a ciphertext using MPK and Mb. Key-extraction
queries on P are handled using the (un-punctured) key MSK. When A returns
a bit b′, algorithm B returns (b = b′). It is easily to see that according to the
bit chosen by B’s (obfuscation) game, algorithm A is run either with respect to
game G0 or G1 and the output of B matches the output of these games when
run with A. Hence

Pr[GA0 ]− Pr[GA1 ] ≤ Advind
Obf ,B(λ) .

39



G2: Instead of obfuscating the circuit Csk[MSK,P] at key extraction, this game
uses the punctured key MSK∗ at {γ0, γ1} and predicate P to form the circuit
below and return an obfuscation of it.

C̃sk[MSK∗,P](γ) :=

{
PPRF(MSK∗, γ) if P(γ) = 1

⊥ otherwise.

Note that by the legitimacy rules of the weak AI-CPA game, P(γ0) =
P(γ1) = 0 for all extracted P. Hence the above circuit is functionally equiv-
alent to Csk[MSK,P] for any extracted P.13

Let A be an adversary that distinguishes G1 from G2. We use A to build an
adversary B against the multi-challenge Obf as follows. Algorithm B picks a
random bit b and runs A until it outputs (γ0, γ1). It then samples a PPRF
key MSK and punctures it at {γ0, γ1} to get MSK∗. It also computes yb :=
PRG(PPRF(MSK, γb)) for b = 0, 1. Algorithm B uses these values to generate
C̃gen[MSK∗, y0, y1] and obfuscates it to obtain MPK (as in G1). For each key-
extraction query P, algorithm B generates Csk[MSK,P] and C̃sk[MSK∗,P] as
above and submits them to its (obfuscation) LR oracle to obtain an obfuscated
circuit SK. It answers the query using SK. Algorithm B answers the encryption
query ofA on (M0,M1) by choosing a bit b at random and computing a ciphertext
using MPK and (γb,Mb). When A returns a bit b′, algorithm B returns (b = b′).
It is easily to see that according to the bit chosen by B’s (obfuscation) game,
algorithm A is run either with respect to game G1 or G2 and the output of B
matches the output of these games when run with A. Hence

Pr[GA1 ]− Pr[GA2 ] ≤ Advind
Obf ,B(λ) ≤ Q(λ) ·Advind

Obf ,B′(λ) ,

where B′ is a single-challenge adversary against the obfuscator.

G3: This game no longer sets yb := PRG(CPRF(MSK, γb)) but rather com-
putes these values by sampling Sb←←{0, 1}λ and setting yb := PRG(Sb).

Let A be an adversary that distinguishes G2 from G3. We use A to build an
adversary B against the security of the doubly puncturable PRF as follows. Al-
gorithm B picks a random bit b and runs A until it outputs (γ0, γ1). It requests
a punctured key MSK∗ at {γ0, γ1} and also queries its challenge oracle twice on
γ0 and γ1 to receive two values S0 and S1. (Note that these queries are valid.)
Algorithm B sets yb := PRG(Sb), forms the circuit C̃gen[MSK∗, y0, y1] and ob-
fuscates it to get MPK. It resumes A on MPK and answers its key-extraction
queries on P by retuning an obfuscation of the circuit C̃sk[MSK∗,P]. The en-
cryption queries are answered by choosing a bit b at random and encrypting
(γb,Mb) under MPK. When A returns a bit b′, algorithm B returns (b = b′). It
is easily to see that according to the bit chosen by B’s game, algorithm A is run
either with respect to game G1 or G2, and the output of B matches the output
of these games when run with A. Hence

Pr[GA2 ]− Pr[GA3 ] ≤ Advind
PPRF,B(λ) .

13 As in the IBE reduction we avoid hardwiring any PRF values that will be used as
PRG seeds in the later games.

40



G4: This game modifies the generation of y0 further: instead of computing it as
PRG(S0), it directly samples y0←←{0, 1}2λ.

Let A be an adversary that distinguishes G3 from G4. We use A to build an
adversary B against the security of PRG as follows. Algorithm B receives a
value y0 which is either PRG(S0) or is truly random. Algorithm B picks a bit
b and runs A until it outputs an identity (ID0, ID1). It generates a PRF key
MSK, computes a punctured key MSK∗ at {γ0, γ1}, and uses MSK∗, y0 and
y1 := PRG(S1) for a random S1 to compute MPK. Algorithm B resumes A on
MPK and answers its extraction queries by obfuscating C̃sk[MSK∗,P] as in G3.
For the LR query (M0,M1), B chooses a random bit b and encrypts (γb,Mb)
using MPK. When A terminates with a bit b′, algorithm B returns (b = b′). It
is easy to see that if y0 is PRG(S0), algorithm A is run in game G2 and when
it is truly random it is run with respect to G3. Hence,

Pr[GA3 ]− Pr[GA4 ] ≤ Advind
PRG,B(λ) .

G5: This game modifies the generation of y1 analogously to that of y0 in G4.

Once again, using a reduction similar to that for the IBE scheme we deduce that
for any ppt A there is a ppt B such that

Pr[GA4 ]− Pr[GA5 ] ≤ Advind
PRG,B(λ) .

G6: This game generates the challenge ciphertexts by always encrypting M0 for
attribute γ0 (independently of b).

Let A be an adversary that distinguishes G5 and G6. We use A to build an
adversary B against the security of Obf as follows. Algorithm B picks a ran-
dom bit b and runs A answers until it outputs (γ0, γ1). It generates a PRF key
MSK and computes a punctured key MSK∗ at {γ0, γ1}. It then samples random
y0, y1←←{0, 1}2λ and computes MPK as obfuscation of C̃gen[MSK∗, y0, y1]. It an-
swers the key extraction queries on P by returning obfuscations of the circuits
C̃sk[MSK∗, y0, y1,P]. It answers the encryption queries (M0,M1) by calling its
own (obfuscation) LR oracle on (Cenc[yb,Mb],C

enc[yb,Mb]) and receives CT. It
resumes A on CT and answers its extraction queries as before. When A outputs
a bit b′, algorithm B returns (b = b′). It is easy to see that according to the
challenge bit in the obfuscation game, A is run in game G5 or G6. Hence

Pr[G5]− Pr[G6] ≤ Advind
Obf ,B(λ) .

It remains to show that the circuits queried by B to its challenge oracle are
functionally equivalent. The argument is as before: Since y0 and y1 are truly
random bit strings of length 2λ, for each value of SK and b we have that
Pr[PRG(SK) = yb] = 1/22λ. Hence by the union bound

Pr
[
∃SK ∈ {0, 1}λ, b ∈ {0, 1} : PRG(SK) = yb

]
≤ 2λ+1/22λ = 2/2λ .

41



This means with probability at least 1− 2/2λ over the choice of yb the circuits
Cgen[yb,Mb] both implement the all-zero circuit. Note also that the two circuits
are of equal size as long as the two messages are of equal size.

Finally note that the MPK and all oracle responses in G6 are independent of
the bit b. Hence the for any (even unbounded) IND-CPA adversary Pr[GA6 ] = 0.
The theorem follows.

Through standard generic constructions, our scheme gives rise to a weakly
secure functional encryption scheme (where the adversary is confined to keys SKf

for f which satisfy f(M0) = f(M1) = 0). A fully attribute-hiding PE scheme,
on the other hand, is sufficient to obtain a full-fledged functional encryption
scheme. Although iO is sufficient to obtain functional encryption [GGH+13], it
requires the double-encryption technique of Naor and Yung [NY90] and thus
also non-interactive zero-knowledge proofs. We leave it as open problem to see
if simpler and analogous constructions for functional encryption from iO also
exist.

H Proof of Theorem 3

Proof. For a fixed n we will use a sequence of sets S0,S1, . . . ,S`(n) with Si ⊆
{0, . . . , n}, where two consecutive sets only differ in exactly one element j, and
j − 1 is contained in both sets. Formally, we require

(A) S0 = {0} and n ∈ S`(n);
(B) ∀ i ∈ {0, . . . , `(n)} ∃ j : Si 4Si+1 = {j} and j − 1 ∈ Si ∩ Si+1

(where “4” denotes symmetric difference) For notational convenience, we also
define S−1 := ∅. A simple example of such a sequence would be {Si}ni=−1 with
Si := {0, . . . , i}. Fuchsbauer et al. [FKPR14] give a sequence S0, . . . ,S`(n) with

`(n) = nlog 3 and |Si| ≤ log n+2 (defined in Appendix I). This logarithmic bound
on Si will be used to guarantee that the total size of the hardwired values grows
slowly and hence when preparing the master public key circuit, it only needs to
be padded to a logarithmic length in the maximum depth of identities.

We prove the theorem via a sequence of games illustrated in Figure 15. Game
Gi,δ,L for i = −1, . . . , `(n), δ = ±1, and L = 1, . . . , 5 contains all boxed state-

ments that have a label ≤ L . Fix an adversary A and its coins, and let n(0)

and n(1) be the lengths of the identity vectors ID
(0)

and ID
(1)

that A outputs.

Gi for −1 ≤ i ≤ `(n0): These games are defined as the original game, except

that the public keys for all identities ID
(0)

[j] (i.e., the length-j prefix of chal-

lenge identity ID
(0)

) for j ∈ Si are replaced by random values. These values

y
(0)
j are hardwired into the circuits Cgen and Cdel. The games are formally

defined in Figure 15 (ignoring all boxes). Since S−1 = ∅, we have that G−1
is the Sel-AI-CPA game and thus

2 · Pr
[
GA−1

]
− 1 = Advsel-ai-cpa

HIBE,A (λ) .

42



Game Gi , Gi,δ, 1 , Gi,δ, 2 , Gi,δ, 3 , Gi,δ, 4 , Gi,δ, 5 :

(ID
(0)
, ID

(1)
, st)←←A(1λ); b←←{0, 1}

K←←{0, 1}λ; k←←{0, 1}λ; crs←←{0, 1}rS(λ)

for j ∈ Si
h
(0)
j ← H(k, ID

(0)

[j] )

y
(0)
j ←←{0, 1}

2n(λ)

let j∗ s.t. Si+δ = Si ∪ {j∗}
h
(0)
j∗ ← H(k, ID

(0)

[j∗])

y
(0)
j∗ := PRG(PPRF(K, h

(0)
j∗ ))

K∗←←Cons
(
K,C[{h(0)

j∗ }]
)

1

s
(0)
j∗ ←←{0, 1}

n(λ); y
(0)
j∗ := PRG(s

(0)
j∗ ) 4

y
(0)
j∗ ←←{0, 1}

2n(λ)
5

C
gen←← iO(1λ,Cgen)

C
gen←← iO(1λ, C̃gen) 1

C
del←←diO(1λ,Cdel)

C
del←←diO(1λ, C̃del) 2

MPK← (C
gen
,C

del
)

b′←←ALR,Ext(MPK, st)
for (M0,M1) ∈ L1

if |M0| 6= |M1| then b′ ← 0

for ID = (ID1, . . . , IDn) ∈ L2, j = 1, . . . , n

if ID = ID
(0)

[j] ∨ ID = ID
(1)

[j] then b′ ← 0
return (b = b′)

Circ. Cgen(h)

for j ∈ Si
if h = h

(0)
j return y

(0)
j

PK← PRG(PPRF(K, h))
return PK

Circ. Cdel(SK, h, h′, π)

if Ver(crs, (k, h, h′), π) = 0 return ⊥
PK← ⊥
for j ∈ Si

if h = h
(0)
j then PK← y

(0)
j

if PK = ⊥
PK← PRG(PPRF(K, h))

if PRG(SK) 6= PK return ⊥
return PPRF(K, h′)

Proc. LR(M0,M1):
// assume |M0| = |M1|

PK← C
gen

(ID
(b)

)

CT←← iO(1λ,Cenc[PK,Mb])
L1 ← L1 ∪ {(M0,M1)}
return CT

Circ. Cenc[PK,M](SK)

if PRG(SK) = PK return M
return ⊥

Proc. Ext(ID):

// assume ID /∈ {ID(0)

[j] , ID
(1)

[j] }j
SK← PPRF(K,H(k, ID))

SK← PPRF(K∗,H(k, ID)) 3

L2 ← L2 ∪ {ID}
return SK

Circ. C̃gen(h)

for j ∈ Si+δ
if h = h

(0)
j return y

(0)
j

PK← PRG(PPRF(K∗, h))
return PK

Circ. C̃del(SK, h, h′, π)

if Ver(crs, (k, h, h′), π) = 0 return ⊥
PK← ⊥
for j ∈ Si+δ

if h = h
(0)
j then PK← y

(0)
j

if PK = ⊥
PK← PRG(PPRF(K∗, h))

if PRG(SK) 6= PK return ⊥
return PPRF(K∗, h′)

Fig. 15. The selective AI-CPA security of the HIBE scheme from Figure 4 (where we
have simplified procedure Ext).

43



We now show that Gi and Gi+1 are indistinguishable. Suppose Si ⊂ Si+1 = Si+δ
with δ = 1. We show this by defining intermediate hybrid games Gi,1,1, . . . ,Gi,1,5

and showing that in the following sequence, two consecutive games are indistin-
guishable.

Gi, Gi,1,1, Gi,1,2, Gi,1,3, Gi,1,4, Gi,1,5, Gi+1

If Si+1 ⊂ Si then again we have Si+1 ⊂ S(i+1)+δ with δ = −1 and we sim-
ply invert the sequence of hybrids and show that in the following sequence all
neighboring games are indistinguishable.

Gi+1, Gi+1,−1,1, Gi+1,−1,2, Gi+1,−1,3, Gi+1,−1,4, , Gi+1,−1,5, Gi

Gi,δ,1: Let j∗ be the element that distinguishes Si and Si+δ, i.e., Si+δ = Si∪{j∗}.
This game modifies the generation of MPK by replacing the obfuscation of
Cgen by an obfuscation of C̃gen, which computes the public key for identities

ID with H(k, ID) = h
(0)
j∗ := H(k, ID

(0)

[j∗]) by using a hard-coded value y
(0)
j∗ (in

addition to the hard-coded (and also random) values y
(0)
j with j ∈ Si). It

uses a key K∗ punctured at h
(0)
j∗ for all other identities. Circuit C̃gen is also

padded to the maximum size of any such circuit. (See Figure 15.) Note that

C̃gen and Cgen are functionally equivalent and have the same size.

Suppose there exists an adversary A that distinguishes game Gi from game
Gi,δ,1. We build an adversary B against iO as follows: B simulates Gi,δ,1 for

A, constructs both Cgen and C̃gen, queries them to its (obfuscation) LR oracle
to receive an obfuscated circuit which B defines to be C

gen
. B continues the

simulation of the game and when A returns a bit b′, algorithm B returns (b = b′).
Depending on the bit chosen by B’s (obfuscation) game, A is run either in game
Gi or Gi,δ,1 and the output of B matches the output of these games. Hence

Pr
[
GAi
]
− Pr

[
GAi,δ,1

]
≤ Advind

iO,B(λ) .

Gi,δ,2: This game again modifies the generation of MPK by replacing the ob-

fuscation of Cdel by an obfuscation of C̃del. The latter differs from Cdel in

two aspects: First, if h = h
(0)
j∗ , it uses the hard-coded value y

(0)
j∗ to compute

PK instead of using the key K. Since h
(0)
j∗ is never evaluated in the 6th line

of C̃del, K can be replaced by a punctured key K∗ without affecting behav-
ior. Second, if all checks pass, C̃del now returns PPRF(K∗, h′) (i.e., using

a punctured key instead of K). Circuit C̃del is also padded to the maximum
size of any such circuit.

The second change modifies the behavior of C̃del, in particular Cdel and C̃del

differ on inputs (SK, h, h′, π) of the following form:

1. Proof π is valid for the statement (h, h′)

2. If h = h
(0)
j for some j ∈ Si+δ then PRG(SK) = y

(0)
j

44



3. Otherwise PRG(SK) = PRG(PPRF(K, h))

4. h′ = h
(0)
j∗ (i.e., K∗ is punctured at h′)

Suppose there exists an adversary A that distinguishes game Gi,δ,1 from game
Gi,δ,2. We build an adversary B against diO, which simulates Gi,δ,1 for A, except

that it constructs both Cdel and C̃del and queries its (obfuscation) LR oracle to

receive an obfuscated circuit which B defines to be C
del

. When A returns a bit b′,
algorithm B returns (b = b′). Depending on the bit chosen by B’s (obfuscation)
game, A is run either in Gi,δ,1 or Gi,δ,2 and the output of B matches the output
of these games when run with A. Hence

Pr
[
GAi,δ,1

]
− Pr

[
GAi,δ,2

]
≤ Advind

diO,B(λ) .

In order to argue that Advind
diO,B(λ) is negligible, it remains to show that B is

diO-legitimate; that is, for every ppt extractor E we have Adveq
B,E(λ) ∈ Negl.

Suppose there exists an extractor E that given B’s coins returns an input on
which Cdel and C̃del differ, i.e., E returns (SK, h, h′, π) that satisfies items (1)–
(4) above. Then we show that E can be used to construct a BS that breaks the
extractability of SNARK or a BH that breaks the collision-resistance of H.

We define BS to be an algorithm that samples coins for B, runs E on them to
obtain (SK, h, h′, π) and returns statement (h, h′) and π. By the extractability
property of the SNARK, for this BS there exists an extractor ES that on input
the coins of BS outputs a witness (ID, ID′). In particular if item (1) above holds,
we have

5. h = H(k, ID) and h′ = H(k , ID|ID′) and ID′ 6= ε.

By definition we have h
(0)
j∗ = H(k , ID

(0)

[j∗]); combining this with items (4) and (5)
yields

H(k, ID|ID′) = H(k, ID
(0)

[j∗]) .

We now argue that with overwhelming probability we have that

6. ID|ID′ = ID
(0)

[j∗] .

If this was not the case then we could build an adversary BH that breaks the
public-coin collision resistance of H as follows. Algorithm BH receives k , which
it uses to define k ∈ {0, 1}λ for the scheme. It samples the remaining randomness
used by B and combines it with the received r to form coins rB for B. It samples
coins rE for E , which together define coins rBS

for BS , on which BH runs ES to

obtain (ID, ID′). Finally, BH returns (ID|ID′, ID
(0)

[j∗]).

If j∗ = 0, we have ID
(0)

[j∗] = ε, so (6) contradicts (5) and thus we have shown
that no differing-input extractor exists.

If j∗ ≥ 1, then (6) implies ID = ID
(0)

[j∗−1], thus h = H(k, ID) = H(k, ID
(0)

[j∗−1])

= h
(0)
j∗−1. By property (B) of the set system {S0, . . .} (see beginning of the proof),

45



we have j∗−1 ∈ Si, meaning y
(0)
j∗−1 is a random value for which with overwhelm-

ing probability there is no pre-image SK under PRG, i.e., with PRG(SK) =

y
(0)
j∗−1. This however contradicts item (2), showing no differing-input extractor

exists.

Gi,δ,3: This game modifies the previous game by using the key K∗ punctured at

H(k, ID
(0)

[j∗]) instead of K when answering A’s queries to Ext.

Since A is not allowed to query a key for ID
(0)

[j∗], the two games only differ if A
queries the oracle for an identity ID with H(k, ID) = H(k, ID

(0)

[j∗]). We can thus
construct an adversary BH, using the given randomness for k, simulates the rest

of the game and outputs a collision (ID, ID
(0)

[j∗]). Hence

Pr
[
GAi,δ,2

]
− Pr

[
GAi,δ,3

]
≤ Advcr

H,B(λ) .

Gi,δ,4: This game no longer sets y
(0)
j∗ := PRG(PPRF(K, h

(0)
j∗ )), but instead

computes it by sampling s
(0)
j∗ ←←{0, 1}n(λ) and then setting y

(0)
j∗ := PRG(s

(0)
j∗ ).

Let A be an adversary that distinguishes Gi,δ,3 and Gi,δ,4. We use A to build
an adversary B against the selective security of the puncturable PRF as fol-

lows. Algorithm B runs A until it outputs a pair (ID
(0)
, ID

(1)
). It then queries

a punctured key K∗ at H(k, ID
(0)

[j∗]) and it queries its PPRF challenge oracle

on h
(0)
j∗ = H(k, ID

(0)

j∗ ) to receive s
(0)
j∗ (which is either PPRF(K, h

(0)
j∗ ) or truly

random.) Note that B’s query is legitimate. Algorithm B then simulates the rest
of Gi,δ,3. Note that B can do this because K, the un-punctured key, is not used

anywhere. When A terminates with a bit b′, algorithm B returns (b = b′). If s
(0)
j∗

is PPRF(K, h
(0)
j∗ ) then A is run in game Gi,δ,3, and when it is random then A

is run with respect to Gi,δ,4. Hence,

Pr
[
GAi,δ,3

]
− Pr

[
GAi,δ,4

]
≤ Advind

PPRF,B(λ) .

Gi,δ,5: This game modifies y
(0)
j∗ further: instead of setting it to PRG(s

(0)
j∗ ) it

directly samples y
(0)
j∗ ←←{0, 1}2n(λ).

Let A be an adversary that distinguishes Gi,δ,4 from Gi,δ,5. We use A to build an
adversary B against the security of PRG as follows. Algorithm B receives a value

y
(0)
j∗ which is either PRG(s

(0)
j∗ ) for a uniformly random s

(0)
j∗ , or is a truly random

value. Algorithm B simulates Gi,δ,4 for A, except that it uses the given y
(0)
j∗

(instead of running the code in boxes 4 and 5 in Figure 15). When A terminates

with a bit b′, algorithm B returns (b = b′). If y
(0)
j∗ is PRG(s

(0)
j∗ ), algorithm A is

run in game Gi,δ,4 and when it is truly random it is run in Gi,δ,5. Hence,

Pr
[
GAi,δ,4

]
− Pr

[
GAi,δ,5

]
≤ Advind

PRG,B(λ) .

46



We have thus arrived at a game, Gi,δ,5, in which all values y
(0)
j for j ∈ Si+δ are

random. The only difference to game Gi+δ is that the latter uses circuits Cgen

and Cdel and oracle Ext, which have an un-punctured key K for the PPRF
evaluations. Analogously to game hops 0 → 1, 1 → 2. and 2 → 3, we can show
that there exist iO adversary B1, diO adversary B2, and H-adversary B3 with

Pr
[
GAi,δ,5

]
− Pr

[
GAi+δ

]
≤ Advind

iO,B1
(λ) + Advind

diO,B2
(λ) + Advcr

H,B3
(λ) .

So far we have thus shown that the Sel-AI-CPA game is indistinguishable
from game G`(n(0)), in particular there exist B1, . . . ,B5 with

Pr
[
GA(λ)

]
− Pr

[
G`(n(0))

]
≤ 2(`(n(0)) + 1) ·

(
Advind

iO,B1
(λ) + Advind

diO,B2
(λ)

+ Advcr
H,B3

(λ)
)

+ (`(n(0)) + 1) ·
(
Advind

PPRF,B4
(λ) + Advind

PRG,B5
(λ)
)
.

By property (A) of our set system S−1, . . . ,S`(n(0)), in G`(n(0)) the value y
(0)

`(n(0))
,

which corresponds to the public key for challenge identity ID
(0)

, is random.
We now define a similar sequence of games G(1)

−1 := G`(n(0)),G
(1)

0 , . . . ,G(1)

`(n(1))

where G(1)

i is defined by setting all values y (0)

j for j ∈ S`(n(0)) and all values

y (1)

j for j ∈ Sj to be random. An analogous argument to the one above now

shows that G(1)

−1 is indistinguishable from G(1)

`(n(1))
. Together, this shows that the

original game is indistinguishable from G(1)

`(n(1))
, a game in which the public keys

corresponding the challenge identities, i.e., the vales y (0)

`(n(0))
and y (1)

`(n(1))
with

overwhelming probability do not have preimages under PRG.

G(2) : This game is defined like G(1)

`(n(1))
but generates the challenge ciphertext

by always encrypting M0 for identity ID
(0)

.

Let A be an adversary that distinguishes G(1)

`(n(1))
and G(2) . We use A to build

an adversary B against the security of iO as follows. B simulates G(1)

`(n(1))
for

A answering its LR queries on (M0,M1) by setting PK(i) ← y
(i)

n(i) for i = 0, 1

(which implements PK(i) ← C
gen

(ID
(i)

)) and calling its (obfuscation) LR ora-

cle on Cenc[PK(b),Mb] and Cenc[PK(0),M0] and returning the received CT to A.
When A outputs b′ then B returns (b = b′). According to the challenge bit in
the obfuscation game, A is run in game G(1)

`(n(1))
or G(2) . Hence

Pr
[
(G(1)

`(n(1))
)A
]
− Pr

[
(G(2))A

]
≤ Advind

iO,B(λ) .

It remains to show that the circuits queried by B to its challenge oracle are

functionally equivalent. Since y
(0)

n(0) and y
(1)

n(1) are truly random bit strings of

length 2n(λ), with overwhelming probability there do not exist SK(0), SK(1)

with PRG(SK(i)) = y
(i)

n(i) . With overwhelming probability over the choice of y
(0)

n(0)

and y
(1)

n(1) the circuits Cenc[PK(b),Mb] and Cenc[PK(0),M0] are both functionally
equivalent to a circuit that always outputs ⊥. (And they are of the same size,
since |Mb| = |M0|.)

47



Finally note that G(2) is independent of the bit b and hence for any (even
unbounded) adversary A we have Pr[(G(2))A] = 0. The theorem follows.

I A Low-Weight Sequence of Sets

We describe the pebbling sets from [FKPR14] that we use in the proof of The-
orem 3. For ease of notation we will work with ternary numbers, which we rep-
resent as strings of digits from {0, 1, 2} within angular brackets 〈·〉. We denote
repetition of digits as 0n = 0 . . . 0 (n times). Addition will also be in ternary,
e.g., 〈202〉+ 〈1〉 = 〈210〉.

Let N = 2n be a power of 2. In the proof of Theorem 3 we will construct sets
S〈0〉, . . . ,S〈1 0n〉 ⊂ {0, . . . , N}. These sets will define the positions in the path
to the challenge where we replace real values by random ones. The following
definition measures how “close” sets (that differ in one element) are.

Neighboring sets. Let k > 0. Two distinct sets S,S ′ ⊂ {0, . . . , N} are called
k-neighboring if

1. S 4 S ′ := (S ∪ S ′) \ (S ∩ S ′) = {j} for some j ∈ {0, . . . , N}, i.e., they differ
in exactly one element j.

2. j − k ∈ S.
3. ∀ i ∈ [k − 1] : j − i 6∈ S.

We define the first set (with index 0 = 〈0〉) and the last set (with index 3n =
〈10n〉) as

S〈0〉 := {0} and S〈1 0n〉 := {0, N} .
These will correspond to the real game, where only the root (at depth ‘0’) is
random, and the random game, where the value at depth N is random too. The
remaining (intermediate) sets are defined recursively as follows. For ` = 0, . . . , n,
we define the `-th level of sets to be all the sets of the form S〈? 0n−`〉 (i.e., whose
index in ternary ends with (n − `) zeros). Thus, S〈0〉 and S〈1 0n〉 are the (only)
level-0 sets.

Let SI ,SI′ be two consecutive level-` sets, by which we mean that I ′ =
I + 〈1 0n−`〉. By construction, these sets will differ in exactly one element {j}
(i.e., SI 6= SI′ ; and SI ∪ {j} = SI′ or SI′ ∪ {j} = SI). Then the two level-(`+ 1)
sets between the level-` sets SI ,SI′ are defined as

SI+〈1 0n−(`+1)〉 := SI ∪ {j − N
2`+1 } and SI′−〈1 0n−(`+1)〉 := SI′ ∪ {j − N

2`+1 } .

A concrete example for N = 2n = 23 = 8 is illustrated in Figure 16 (where the
SI is defined by the dark nodes).

An important fact we will use is that consecutive level-` sets are (N/2`)-
neighboring; in particular, consecutive level-n sets (the 4 lines in the box in
Figure 16 illustrate 4 consecutive sets) are thus 1-neighboring, i.e.,

∀ I ∈ {〈0〉, . . . , 〈2n〉} : SI 4SI+〈1〉 = {j} and j − 1 ∈ SI ,

meaning they satisfy the desired property.

48



S〈0〉

S〈100〉

S〈200〉

S〈1000〉

S〈210〉

S〈220〉

S〈211〉

S〈212〉

0 1 2 3 4 5 6 7 8

0 41 2 3 5 6 7 8

0 4 81 2 3 5 6 7

0 2 4 81 3 5 6 7

0 2 3 4 81 5 6 7

0 2 3 81 4 5 6 7

0 2 81 3 4 5 6 7

0 81 2 3 4 5 6 7

Fig. 16. Example illustrating some of the set from S〈0〉, . . . ,S〈1000〉 = S27 where n = 3.

49


	Simpler Constructions of Asymmetric Primitives from Obfuscation
	Introduction
	Motivation
	Contributions
	Related works

	Preliminaries
	Public-Key Encryption
	Construction
	A DDH-based instantiation

	Identity-Based Encryption
	Construction
	Extensions to bounded HIBE and predicate encryption

	Unbounded HIBE
	Definitions
	Basic tools
	Public-key encryption
	Identity-based encryption
	Hierarchical IBE
	SNARKs
	Predicate encryption

	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 2
	Bounded HIBE
	Predicate Encryption
	Proof of Theorem 6
	Proof of Theorem 3
	A Low-Weight Sequence of Sets


