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Introduction

® Among the multiples faces of Al (methods, applications, tools, ...) we
will focus today on
® the problem of predicting time series,
a main application around video or audio transmission over the Internet,
® our own tools in these areas,
® some recent trends and relevant techniques.

e More specifically, we will describe

® the problem of measuring the Perceptual Quality,

the more difficult problem of predicting it,

our Al-based tools and solutions,

® some recent interesting related technologies, and our current projects.

® Main keywords:
supervised learning, time series prediction, recurrent neural networks;
Perceptual Quality and other networking problems, PSQA;
Random Neurons, ESQNs.
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1 — Measuring Perceptual Quality
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1 — Measuring Perceptual Quality

Context

e Consider any kind of application or service centered on transporting
audio and/or video signals over the Internet.

e This means a very large part of Internet traffic in volume.

® The media can be sent one-way (e.g., a video streaming service) or
two-ways (e.g., an IP-telephony application).

e For many reasons (compression techniques used, congestion in the
network — leading to delays, or to losses, external perturbation agents
such as interferences in some networking technologies, etc.)
transmission can suffer from content degradation.
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1 — Measuring Perceptual Quality

Perceptual quality

® Perceptual quality refers to the (subjective) perception (the view, the
feeling) the user has on the “value” of this media transmission system,
on the quality of what she receives, on the impact of the degradations
due to the transmission over the network.
e Two main characteristics:
® |t is, by definition, a subjective concept.
® |t lacks a formal definition.
e Critical problem (solved): how to measure it? Nad then, how to
measure it automatically?
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1 — Measuring Perceptual Quality

Perceptual quality (cont.)

® Observe that somehow perceptual quality is at the heart of the
designer goals for these systems, it is her ultimate target,
complemented by some other aspects of system's properties (e.g.
security).
e When designing any system of the before mentioned kind (dominating
today's Internet traffic), our message is
® instead of tuning the control parameters in order to reduce the mean
response time, or to maximize the system's throughput,
® tune them to maximize quality itself.
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1 — Measuring Perceptual Quality

Subjective testing

Subjective testing is the standard way of measuring perceived quality.

A panel of appropriately chosen human observers is built, and a set of
media sequences is shown to the panel members.

Following specific rules (absolute rating, comparisons...) the observers
say how they perceive the quality of the sequences.

In case of interactive applications, observers can work by pairs, or in
some cases, interact with a robot.
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1 — Measuring Perceptual Quality

Subjective testing (cont.)

® The result is a table M where component Mj, ; is the value given by
human h to sequence ©.

e A statistical procedure is then followed to filter these results in order
to remove outliers.

e At the end, if the set of surviving observers is S, the quality of
sequence o, its MOS (Mean Opinion Score) value is

MOS(o M,

® The procedure is surprisingly robust: with the same set of sequences
but a different panel, the same subjective test gives results extremely
close to the first one: if puy and p) are the MOS values of sequence o

in both panels, the number >~ (ps — u(’y)z is pretty “small”.
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1 — Measuring Perceptual Quality

Subjective testing (cont.)

® For each type of media, there are norms specifying how to perform the
corresponding subjective test. A reference here is the production of
the ITU (International Telecommunication Union).

e For instance, some norms ask users to watch video sequences
potentially degraded by some noisy effect, and rate them from 1 to 5
according to the following table:

MOS score description

degradation imperceptible
degradation perceptible but not annoying
degradation slightly annoying
degradation annoying

= N W D> Ol

degradation very annoying
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1 — Measuring Perceptual Quality

Subjective testing (cont.)

® The norms specify also other constraints concerning details such as the
lengths of the sequences, the timing of the subjective testing session,
its own length, the experimental conditions (e.g. monitor contrast or
viewing distance in case of video), the suggested panel’s size, etc.

¢ |n video, most subjective tests norms belong to the following classes:

® Single Stimulus (SS): only the distorted signal is shown to the panel,
® Double Stimulus Continuous Quality Scale (DSCQS): both the original
and distorted sequences are shown simultaneously

Double Stimulus Impairment Scale (DSIS): first the original sequence
and then the distorted one are shown.
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1 — Measuring Perceptual Quality

Subjective testing (cont.)

® The panel must also be built following some rules (similar to those
followed to make opinion polls). The idea is to build a representative
sample of the users of the considered application/service, or of the
subfamily of users we are interested in.

e Obviously, subjective testing is costly, takes time, and by construction
is not usable for real time perceived quality assessment.

e Comment: one of the goals of my team at Inria is to use quality
assessment techniques for monitoring and for control purposes. So,
only methods that work automatically qualify.
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1 — Measuring Perceptual Quality

Objective testing

® Objective testing means evaluating the perceived quality
automatically, without using any panel of users.

e To give an example, consider video sequences. Some objective testing
methods (coming from the coding area) are based on the PNSR (Peak
Signal To Noise Ratio) of two images A and B:

® for instance, assume the two images are composed of M rows and N

columns of 8-bits pixels (monochrome case).
® The MSE (Mean Squared Error) between the two images is

MSE(A, B) MN Z Z( 71)2 € [0..2552].

i=1 j=1
® The PSNR between the two images is defined only if they are different
(MSE # 0) and its value (in dB) is
2552 )

PSNRdB(A, B) =10 loglo(m
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1 — Measuring Perceptual Quality

Problems with PSNR approach

Noise in the sky )
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1 — Measuring Perceptual Quality

Problems with PSNR approach...

Same amount of noise in the grass )

G. Rubino (INRIA Rennes, France) ML and time series Coimbatore, Feb. 21, 2020 15/78



1 — Measuring Perceptual Quality

Objective testing (cont.)

e \We can classify objective testing in three categories:

® full reference methods: the original sequence is needed,;

® partial reference methods: some values related to the original sequence
are needed;

® no reference methods: the original sequence is not needed.

® Some objective testing techniques are said to be signal-based: we
must explore the content of the sequence to assess its quality.

e Other methods are said to be parametric: the quality is evaluated
based on some parameters related to the system (source parameters
and/or network parameters).
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1 — Measuring Perceptual Quality

Objective testing (cont.)

® The main advantage of objective methods is that they by-pass the use
of panels of observers.

® |n VolIP there are some important examples such as the E-model, and
others.

e However, in general objective metrics often correlate poorly with
subjective ones (“the truth”).
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1 — Measuring Perceptual Quality

Example in audio
Bad correlation between an objective metric and subjective tests in audio.

0.9 o

0.6 4

MHB 2

0.9 4

Mean Opinion Score
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1 — Measuring Perceptual Quality

Example in VoIP

Bad correlation between an objective metric and subjective tests in Voice
over IP.

120

100 4 - s000 @ o
<«

[uy}
o
|

E-model rating
m
o

20

a 1 2 3 4 5

Mean Opinion Score
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1 — Measuring Perceptual Quality

Resuming

e Consider any kind of application or service consisting basically in
transporting audio and/or video signals over the Internet.

¢ The media can be sent one-way (e.g., a video streaming service) or
two-ways (e.g., an IP-telephony application).

e For many reasons (compression techniques used, congestion in the
network leading to delays, and/or to losses, external perturbation
agents such as interferences in some networking technologies, etc.)
transmission can suffer from content degradation.

® Perceptual quality (PQ) refers to the (subjective) perception (the
view, the feeling) the user has on the quality of this media
transmission system, on the quality of what she receives, on the
impact of the degradations due to the transmission over the network.
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1 — Measuring Perceptual Quality

e Two main characteristics:
® |t is, by definition, a subjective concept.
® |t lacks a formal definition.
e Somehow perceptual quality is at the heart of the designer's goals for
these systems, it is her ultimate target, complemented by some other
aspects of system's properties (e.g. security).

e |t is measured daily using panels of humans, following specific norms.
The area is called subjective testing, and the resulting PQ numerical
value (we say a MOS value, for Mean Opinion Score) is very robust.

® At our team in INRIA, we decided to look for automatic and real time
measuring techniques.
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1 — Measuring Perceptual Quality

® There are objective testing methods, avoiding using panels:
® some come from coding, and compare the received signal to the
original one; we say that they are methods with reference (they need to
access the original signal);
® others consist of analyzing the received signal only, looking for
impairments; they are no reference methods.
® Both have strong limitations:
® Jccuracy, the most important one,
® and lack of real time capabilities.

e Comment: new objective techniques have been developed where
accuracy has been improved. More on this later.
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2 — The PSQA technology

Outline

2 — The PSQA technology

G. Rubino (INRIA Rennes, France) ML and time series Coimbatore, Feb. 21, 2020 23/78



2 — The PSQA technology

PSQA: Pseudo Subjective Quality Assessment

In the Dionysos team we promote our solution called PSQA to all the

initial problems and many more, for all types of media considered, and

for both one-way and two-ways communications.

e PSQA is a metric with no reference, automatic, (so far, “optimally”)
accurate, and it works in real time if necessary or useful.

e PSQA is network-dependent and application-dependent.

® |t is a parametric approach (a “black-box" approach), mapping QoS
parameters and source-based parameters into perceptual quality (into
a MOS value).
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2 — The PSQA technology

PSQA (cont.)

® The mapping is based on statistical learning tools and it is built in
such a way that it has nice mathematical properties. We can use it in
many ways, for instance,
® for sensitivity analysis: which is the dominating factor having an
impact on quality? where is it significantly dominating?
® for inverse problems: which values of the considered factors lead to a
high enough MOS value?
® etc.

e More specifically, so far PSQA functions are a particular class of
rational functions coming from the Random Neural Network (or
G-network) area.
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2 — The PSQA technology

PSQA (cont.)

e Example in video (simplified version): a PSQA monitoring module
measures, at the receiver’s position, the instantaneous packet loss rate
LR, the Bit Rate of the connexion BR and the Frame Rate FR, and
calls a PSQA function v1(LR,BR,FR) which provides in a few msec
the perceptual quality value.

e Example in VolP: a PSQA monitoring module measures, at the
receiver's position, the instantaneous packet loss rate LR, the average
size of a burst of loss packets MLBS, the Bit Rate of the connexion
BR, and the Offset of the FEC (Forward Error Correction) OFEC, and
calls a PSQA function v,(LR,MLBS,BR,OFEC) which provides in a
few msec the perceptual quality value.

G. Rubino (INRIA Rennes, France) ML and time series Coimbatore, Feb. 21, 2020 26 /78



2 — The PSQA technology

How PSQA works

e First of all, we select

(i) measurable QoS metrics characterizing the state of the network
(logically speaking, instantaneous measures), and assumed, a priori, to
have an impact on the Perceptual Quality,

(i) and metrics related to the channel or to the source, again, expected to
have impact on the PQ.

® Example in video: (i) the instantaneous packet loss rate LR, (ii) the
Bit Rate BR and the Frame Rate FR.

e Example in VoIP: (i) the instantaneous packet loss rate LR, the
average size of a burst of loss packets MLBS, (ii) the Bit Rate BR
and the Offset of the FEC (Forward Error Correction) OFEC.
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2 — The PSQA technology

® let X =(x1,...,X,) denote the vector whose components are the n
chosen metrics. We call it configuration.

e Configurations live in some product space S; X --- X S,,.

® Qur postulate: PQ depends only on X (when “things go well”) and not
on signal content.

e \We select a few short signals (following standards) representative of
the application or service target, 01,...,0k.

e We build a pretty small set of K configurations (K = 100, 200, ...) by
a mix of random sampling and quasi-Monte Carlo (or weak
discrepancy sequences). Call them v1,...,Vk.

e Last, we build a platform allowing to send signals o; through a
simulated or deployed network where we can simultaneously control all
components of the configurations.
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2 — The PSQA technology

® Then we send different original o; using the platform, when the
configuration is y; using one configuration at a time, and obtain a
possibly degraded sequence (rj. We show it to a panel of humans and
we obtain its PQs Q.

e \We thus obtain a set of K sequences, with variable but known PQ
(MOS values) coming from subjective testing sessions, and for each,
we know which configuration was used to obtain it.

® Then, we use a RNN (a G-network), of the classical feedforward type
with 3 layers, to learn the mapping from configurations to PQ (a
mapping from QoS x"channel state” to MOS values). Data: the M
pairs (VJ-, Qj).

® In the example of video, we obtain a function v(LR, BR, FR). In the
VolIP example, we obtain a function v(LR, MLBS, BR, OFEC).
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2 — The PSQA technology

Training results for PSQA (video example)

o @
T T

-

Predicted MOS

H i H i L i
0 1 2 3 4 5 L) 7 8 9
Actual MOS

(a) Training DB

(Results are not surprising.)
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2 — The PSQA technology

Validation results for PSQA (video example)

Very good accuracy of the tool:

a o o ~ ®
T T T T

Predicted MOS

W
T

i i i

4 5
Actual MOS

G. Rubino (INRIA Rennes, France)

(b) Testing DB
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2 — The PSQA technology

Comparing RNN with ANN

Under exactly the same (reasonable) conditions and with the same data
(an example, there are many other ones):

BR=0.7, FR=30 fps, RA=0.1

BR=0.7, FR=30 fps, RA=0.1

(a) Correctly trainined

(b) Example of an over-trained ANN
G. Rubino (INRIA Rennes, France)

o
ML and time series
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3 — Our Neural Networks
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3 — Our Neural Networks

Classic artificial neurons

® Let us see a “classic artificial neuron” as a parametric real function of
a real variable.

1

U —> > z: for instance, z = ————
14 e uth

bias b

e Consider b as a parameter of the function implemented by the neuron.

® There are many other activation functions used in practice:
z =tanh(u—b), z=1(u > b), RELU, ...
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3 — Our Neural Networks

Random Neurons

e A Random Neuron is a parametric positive real function of two real
positive variables (we also say “ports”), one called the “positive port”,
the other one being the “negative port”.

u>0

v>0

rate r >0

e The real r > 0, the rate of the neuron, is a parameter of the function.

® There are several variants of this model. In the main and original one,
we must use z = min(u/(r + v), 1).

e |nventor: E. Gelenbe, Imperial College, in the late 80s.

® Observe that there is nothing random here. The name comes from the
origin of the model (queueing theory).
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3 — Our Neural Networks

A Random Neural Network (RNN) is a set of interconnected RNs. The
and w; ; for the

connections are weighted by

wit

nonnegative reals denoted i

weights of the connection from i to j arriving at the positive and negative

ports respectively.

neuron 1

G. Rubino (INRIA Rennes, France)

neuron 2

—> 22

for instance, u» = z; wy
V2 =2z1wp,

neuron 3

—> Z3

ML and time series Coimbatore, Feb. 21, 2020
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3 — Our Neural Networks
Jonctions at input ports are additive:

neuron 1

neuron 3

neuron 2

_ + +
uz = z1wy 3 + 2 Wy 3
vz = 21W£3 +22W£3

recall that weights w;; are nonnegative
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3 — Our Neural Networks

Feed Forward RNNs

® In this case (for instance, a simple multi-layer architecture), the
output coming out of the last layer is a rational function of the inputs.

® This allows many nice mathematical processing of the trained
networks.
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3 — Our Neural Networks

The 3-layer Random Neural Network

Output units, O

X

)\

A
A WN*MMM%«(

7

Hidden units, H

X
4
XD

N
2K

Input units, Z
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3 — Our Neural Networks

Random Neural Networks implement rational functions

® Assume the negative ports of input neurons aren’t used. Assume a
single output neuron, so, a scalar network output.

e Call x; the signal arriving at the positive port of input neuron i. Then,
we can explicitly write the network output as a function of the inputs.

Xji o
D ieT —Win
5 fi w
heH X;i _ "ho
rht 2 ez Wi
1
Zo = <
i
2ier 7 Wish
; _
o+ ZhGH Wh,o

Xi
ht+ 2 jer Wi
1
® This shows that the output is a rational function of the input. This
allows many treatments. Also, for learning, costs (errors) are rational
functions of weights, again, allowing some specific mathematical
treatments.
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4 — Predicting the Perceptual Quality
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4 — Predicting the Perceptual Quality

Main issue

e With PSQA, we know how to measure the PQ very accurately and in
real time, and as you saw, to measure PQ we actually need to measure
QoS metrics and channel metrics, the input variables of our PSQA
function.

e So, to predict PQ, we need to predict the values of those input
variables.

® Some of them will be rather static, and their values come for free.
Others need measures. The hardest part of this prediction problems is
to predict future values of a time series (for instance, traffic intensity,
or loss rates).
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4 — Predicting the Perceptual Quality

Time series prediction

e Predicting the future of a time series is an old topic in statistics. The
applications are uncountable (economy, finance, engineering,
meteorology, climate, ...).

e With the explosion of Al techniques (and the associated results), Al
entered the game, and using learning methods have provided new
efficient prediction tools.

e We will describe here the subarea of Machine Learning where we
worked, and then, our own tools there.

A couple of facts related to the topic:

® Recurrent neural networks are good for memorizing information, so,
well-behaving for time series predictions.
® Recurrent neural networks are harder to train than Feed Forward ones.
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4 — Predicting the Perceptual Quality

Reservoir Computing (RC)

® RC neural networks are an attempt to develop models that uses the
potential for memorization of recurrent neural networks without the
difficulties in the training process of these networks.

® They appeared at the beginning of the 2000s.

® The two most popular RC models are

® the Echo State Network (ESN)
(see H. Jaeger, “The echo state approach to analyzing and training recurrent
neural networks,” German National Research Centre for Information
Technology, Tech. Rep. 148, 2001)

® and the Liquid State Machine (LSM)
(see W. Maass, “Liquid state machines: Motivation, theory, and
applications,” in Computability in Context: Computation and Logic in the
Real World, Imperial College Press, 2010, pp. 275-296).

1
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4 — Predicting the Perceptual Quality

The origin of the terminology:
® |n the LSM literature, the reservoir is often referred to as the liquid
term used in neurosciences for the brain.

® In the ESN community, the dynamic reservoir and its states are
termed echoes of its input history.

e |t is an intuitive metaphor of the excited states as ripples on the
surface of a pool of water.

G. Rubino (INRIA Rennes, France) ML and time series Coimbatore, Feb. 21, 2020 45 /78



4 — Predicting the Perceptual Quality

Echo State Networks (ESNs)

We focus on the ESN implementation of the RC idea.

® An untrained recurrent part called reservoir.

® A memory-less supervised learning tool called readout.

Three-layered
recurrent neural
networks:
® |nput layer
e Hidden layer
e Qutput layer

The learning process is restricted to the output weights (readout).
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4 — Predicting the Perceptual Quality

ESN properties

Some aspects of the ESN model:

e The iterative computation of x(t) can be unstable due to the
recurrences.

® The stability behavior is controlled by the spectral radius of the
weights in the reservoir.

e |n addition, the spectral radius has some impact on the memory
capability of the model.

® The Echo State Property (ESP): an ESN has the ESP if for t > 1,
x(t) basically depends on the input history only (and not on how the
reservoir was built).
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4 — Predicting the Perceptual Quality

ESP

The Echo State Property

Even though the trajectories of the reservoir states are random
initialized, the model should be independent of the initial network
trajectories in the long term.

® The network needs to have some type of fading memory with respect
of the initial conditions and initial dynamics.

® These characteristics are established in the ESP.

® The ESP establishes that the trajectories of reservoir states depend
only of the input driven network, they don't depend on the initial
conditions of the network.

e |f the spectral radius of the reservoir's weights is < 1, we have the
ESP (sufficient condition); a necessary condition is to have it < 1.
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4 — Predicting the Perceptual Quality

Some practical issues

Stability of the recurrences in an ESN model:

e A simple procedure for creating an ESN is to randomly initialize the
reservoir weight matrix and then to scale it using a factor «.

® The selection of the scaling factor is important for the ESP.

e Previous sufficient condition can be very conservative; it can also
produce a negative impact on the long memory capacity of the
reservoir.

® |n practice, the reservoir weights are scaled such that o < than the
inverse of the spectral radius.

e Concerning the activation function, no strong constraints.

G. Rubino (INRIA Rennes, France) ML and time series Coimbatore, Feb. 21, 2020 49 /78



4 — Predicting the Perceptual Quality

Tuning ESNs

Main adjustable parameters of a RC model:

® Number of neurons: influences in
less accuracy more accuracy
the accuracy (larger networks

increases the accuracy). - +

® Spectral radius of the weight matrix
is a parameter of memorization
capabilities. 0 1

less memory more memory
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5 — Our ESQN tool

Outline
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5 — Our ESQN tool

Our work in predicting time series for PSQA 2.0

e As Random Neural Networks behaved so well for our PQ-measuring
applications, we decided to keep close also for predicting PQ.

® \We took one of the most promising ideas in ML applied to the
problem, and worked on its adaptation in the Random Neural Network
world.

® The result is described in next slides.
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5 — Our ESQN tool

Echo State Queueing Networks (ESQNs)

Echo State Queueing Networks: applying the RC idea to a G-network.
® Three sets of neurons, recurrent topology “in the middle".
® Input at time t, a(t) = (a1 (t),...,an,(t)):
pul(t) = ay(t)/ry, (in general, a,(t) < r,), for u € (1..N,).
e For all reservoir units u = N, +1,..., N; + N,

N, N;+Nx
S T wi, Y eult—1w
=1 N;+1
pu(t) = a Na ( = N3+NX (1)
a
ru+Z vr Wy, + Z pv(t—1)w,
v=1 v v=N,+1

Weights notation as classical NNs: u sending spikes to v is denoted
by va{f. Notation r, is for the rate of unit (neuron) u.
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5 — Our ESQN tool

® The input space in then projected into a new “larger” space.

® \We compute a linear regression from the projected space to the output
space.

® Thus, the network output y(t) = (91(t),...,9n,(t)) is computed for
any m € [1..Np]:

Na+Nx
ym(t) = wig+ Y wirtpi(t) (2)
i=14+N,

e The output weights can be computed using, for instance, a
Regression. Remark: we can replace this simple structure by, for
instance, a classical feedforward 3-level RNN (to be explored).

® Details in Basterrech and G. Rubino, “Echo State Queueing Networks: a
combination of Reservoir Computing and Random Neural Networks”, Prob.
in the Eng. and Informational Sciences, 2017.
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5 — Our ESQN tool

ESQN

Examples: simulated dataset

Example of ESQN estimation of the 80 validation instances of Narma series data

07l ESQN i
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Time steps

Figure: NARMA validation data set. The reservoir was randomly initialized and it

had 80 units.

NARMA is a simulated dataset that is often analyzed in the RC literature.
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5 — Our ESQN tool

ESQN

Examples: Internet traffic prediction

Validation 10th order Narma series data

0 50 100 150 200 250 300 350 400
Time steps

ESON poditon o th validaion 101 ordorNarma sries data

lh
200 H ’M}“ | W‘ | L |
gl

Figure: Fixed 10th order NARMA times series. Comparison between the original
dataset and the forecasted samples on the validation dataset.
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5 — Our ESQN tool

ESQN

Examples: Internet traffic prediction

Example of ESQN estimation of 100 validation instances of data of the European ISP
o. T T T T T T T

+ Target
—— ESQN

035 B B B 4

A

Functional value

|
oasf W@T i
IR

4000 4010 4020 4030 4040 _ 4050 4060 4070 4080 4090 4100
Time steps

Figure: Normalized Internet traffic data from an European Internet Service
Provider. The reservoir has 40 neurons and it was randomly initialized.
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5 — Our ESQN tool

ESQN

Examples: Internet traffic prediction

Example of ESQN estimation for he last 10 instances of he validation UKERNA data

o aa ]
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Figure: ESQN estimation for UKERNA validation data set. The reservoir weights
were randomly initialized. The reservoir size is 40.
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We can see that ESN

Figure: ESQN and ESN model accuracy (NMSE) for different reservoir
initializations for the Internet traffic prediction (UKERNA validation data set).

G. Rubino (INRIA Rennes, France)

5 — Our ESQN tool

ESQN

Examples: Internet traffic prediction

is more stable than ESQN:

30 runs with differents weights of UKERNA data (1 day time scale)

* I + =
+ EsQ

10 15 20
Difterent weight initalizations
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5 — Our ESQN tool

ESQN

Sensitivity of the global parameters.

10th Fixed NARMA: NMSE computed with 150 reservoir units

05

Sparsity of reservoir weights (W+)

Spectral radius of reservoir weights (W+)

Figure: Simulated dataset. The NMSE according to the spectral radius and the
sparsity of the reservoir weights.
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5 — Our ESQN tool

ESQN

Sensitivity of the global parameters.

UKERNA data (day scale, training data): Computed with 150 reservoir units

Sparsity of reservoir weights (W)

3 04 05 06 07
Spectral radius of reservoir weights (W+)

Figure: Internet traffic prediction. The NMSE according to the spectral radius
and the sparsity of the reservoir negative weights matrix.
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5 — Our ESQN tool

ESQN

Sensitivity of the global parameters.

European ISP - 5 minutes time scale. Computed with 150 reservoir units
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Figure: Internet traffic prediction. The NMSE according to the spectral radius
and the sparsity of the reservoir negative weights matrix.
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5 — Our ESQN tool

ESQN

Sensitivity of the global parameters.

‘The ESQN model accuracy for different reservoir sizes for NARMA series data

NMSE average of 20 runs - Validation set
°

0 50 100 150 200 250 300 350 400 450 500
Reservoir size

Figure: The ESQN model performance for different reservoir sizes which are
computed for 10th NARMA validation data set. The reservoir weights were
randomly initialized. Figure shows the NMSE average achieved in 20 runs with
different ESQN initial weights.
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5 — Our ESQN tool

Echo State Queueing Network

Input sequence — Henon map
T T T

Input value

0 L I L L L L L L L
5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100
time.

Example of classic ESN dynamics

0.08
neuron 5
0.06 ,\/_/\/\/\/\/\//\/\/\/—/\/\/\/\/ neuron 15
neuron 30
0.04 neuron 50

e
9
5}

Neuron state value

)

20.02 L L L L L L L L L |
5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100
time.

Note: Henon Map as input data. ESN has 50 fully connected reservoir

neurons and spectral radius (p) equal to 0.5.
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5 — Our ESQN tool

Echo State Queueing Network

Input sequence — Henon map

1 T T T

Input value

0 L I L L L L
5050 5055 5060 5065 5070 5075 5080

time
G210 Example of ESQN dynamics
o 4r
=
g
2 3r
] !
@ ¥
N ! ;
82/ A W/ A
Ry \
11/ \

L L
5090 5095 5100

neuron 5

neuron 15
neuron 30
neuron 50

0 L L L L L L
5050 5055 5060 5065 5070 5075 5080
time.

L L |
5090 5095 5100

Note: Henon Map as input data. ESQN has 50 fully connected reservoir
neurons with weights randomly fixed between [0, 0.1].
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5 — Our ESQN tool

Echo State Queueing Network

Projection of reservoir state in 2D
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PCA component 2
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5 — Our ESQN tool

Comments

Note about the previous picture:

Figure shows a projection of the sequence of reservoir states using PCA.
The spectral radius of the reservoir matrix (in the graphics was mentioned
as p, is the usual notation). This is an important global parameter of the
model. It is used for controlling the memory capacity of the model, and it
controls the stability of the recurrent dynamics. The graphic illustrates the
different behavior of the ESN model according to the spectral radius, and
also compares with the reservoir states of the ESQN. There are four
collections of points that correspond to the projection of the reservoir state
of different ESN models. The collection of black dots corresponds to the
projection of the ESQN reservoir state to 2D. The weights of the ESQN
were randomly fixed in [0,0.1].
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Echo State Queueing Network

Projection of reservoir state in 2D
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PCA component 2
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5 — Our ESQN tool

Comments

This figure is similar than previous one:

In this case the reservoir of the ESQN has weights in [0,0.25]. The graphic
shows how the ESQN dynamics depend in the initial values assigned to the
ESQN reservoir. It is visible that the dynamics are very different for values
in [0,0.1] and values in [0,0.25]. Probably, the interval also depends on the
number of neurons. As a consequence, how to fix the reservoir can affect
the results. The procedure for fixing the initial weights of the ESQN
reservoir have been only empirical in our case, we are trying to figure out a
general automatic procedure.
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Outline

6 — Final remarks and some conclusions
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6 — Final remarks and some conclusions

Summary about the ESQN tool

e \We have done some preliminary experimental work, to explore ESQN’s
behavior, based on similar work done (by many people) for the ESN
model.

e So far, ESQNs behave very well, most often better than worse than
standard ESNs.

® \We used a basic implementation of ESQN, which is compared to fine
tuned code used in ESNs.

e \We also started to explore the performances of the model and the role
played but some potentially important parameters.
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On some of the parameters of ESQN:

® The impact of the reservoir size is similar to the impact of the number
of neurons in a classical network.

® The spectral radius behave in ESQNs as in ESNs: close to 1 is fine for
problems with long range data correlation needing long memory
capabilities, and close to 0 it is ok in the opposite case.

® The impact of the sparsity of the reservoir is unclear. Typical
recommendations for ESNs are about 15%-20% and we found that
this seems also appropriate for ESQNs.
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Concluding remarks

® The analysis of the RC approach is still fairly open, and the situation
is similar for the ESQN model.

® There are several important parameters to adjust: reservoir's size,
reservoir's connections, reservoir's weights, then, spectral radius of the
reservoir matrix.
e ESNs and ESQNs work very well in many cases for time series
modeling.
® This good behavior is not well understood.
® Both ESNs and ESQNs require some expertise for setting their
parameters.
e \We would like to find conditions for the initialization of the weights in
order of guaranteeing good predictions (something such as ESP for
ESNs).

A good (optimal?) structure for the readout is to be found.
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On the ML side

e \We are exploring the use/interest of Random Neurons in deep
architectures. Some encouraging preliminary results available
(NIPS 2017 DL workshop, December 9th, 2017).

e Analysis of several theoretical questions around Reservoir Computing
with our ESQN model (mainly around convergence, stability, etc.).

® In PSQA, the labels come from subjective tests (that is, from panel of
human subjects). We have a project whose goal is the elimination of
the (main) use of those panels. This leads to
® Big Data problems, coming from the extensive use of automatic but
less performant tools to provide quality assessments of huge amounts
of sequences,
® and then, to the exploration of the use of specific deep architectures for
the learning phase (not necessarily related to RNNs).
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Some basic references

® Maths behind our main application:
“Quantifying the Quality of Audio and Video Transmissions over the
Internet: The PSQA Approach’, G. Rubino, in Design and Operations of
Communication Networks: A Review of Wired and Wireless Modelling and
Management Challenges, edited by J. Barria, Imperial College Press, 2005.

® Practical aspects of our uses of RNN in learning:
" Evaluating Users’ Satisfaction in Packet Networks Using Random Neural
Networks”, G. Rubino, P. Tirilly and M. Varela, Springer-Verlag Lecture
Notes in Computer Science, no. 4132, 2006.

e An example of using RNNs in combinatorial optimization:
“A GRASP algorithm with RNN-based local search for designing a WAN
access network, H. Cancela, F. Robledo and G. Rubino, Electronic Notes in
Discrete Mathematics 18 (1), 59-65, December 2004.
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® An example of application of PSQA:
“Controlling Multimedia QoS in the Future Home Network Using the PSQA
Metric", J.-M. Bonnin, G. Rubino and M. Varela, in The Computer Journal,
49(2):137-155, 2006.

® On the design of a P2P streaming network based on PSQA:
“A robust P2P streaming architecture and its application to a high quality
live-video service", H. Cancela, F. Robledo Amoza, P. Rodriguez-Bocca,
G. Rubino and A. Sabiguero, in Electronic Notes in Discrete Mathematics
30: 219-224, 2008,

plus another paper with a demo,

" Automatic Quality of Experience Measuring on Video Delivering Networks",
D. De Vera, P. Rodriguez-Bocca and G. Rubino, in SIGMETRICS
Performance Evaluation Review, Vol. 36, Issue 2, associated with a
demonstration at Sigmetrics'08 awarded with the Best Demonstration Prize.
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e An example of improvement on the initial RNN tool:
“Levenberg-Marquardt Training Algorithms for Random Neural Networks",
S. Basterrech, S. Mohammed, G. Rubino and M. Soliman, in The Computer
Journal, Vol. 54, N. 1, 125-135, 2011.

e An example of extension of the initial RNN tool:

"“Echo State Queueing Networks: a combination of Reservoir Computing and
Random Neural Networks”, S. Basterrech and G. Rubino, in Probability in
the Engineering and Informational Sciences, Vol. 31, No. 4, pp. 1-16, 2017.
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