N
N

N

HAL

open science

On the Use of Graph Neural Networks for Virtual
Network Embedding

Anouar Rkhami, Tran Anh Quang Pham, Yassine Hadjadj-Aoul, Abdelkader

Outtagarts, Gerardo Rubino

» To cite this version:

Anouar Rkhami, Tran Anh Quang Pham, Yassine Hadjadj-Aoul, Abdelkader Outtagarts, Gerardo
Rubino. On the Use of Graph Neural Networks for Virtual Network Embedding. ISNCC 2020 -

International Symposium on Networks, Computers and Communications, Oct 2020, Montreal, Canada.

pp.1-6, 10.1109/ISNCC49221.2020.9297270 . hal-03122961

HAL Id: hal-03122961
https://inria.hal.science/hal-03122961
Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03122961
https://hal.archives-ouvertes.fr

On the Use of Graph Neural Networks
for Virtual Network Embedding

Anouar Rkhami!, Tran Anh Quang Pham', Yassine Hadjadj-Aoul?, Abdelkader Outtagarts®, and Gerardo Rubino'

"nria, Univ. Rennes, CNRS, IRISA
2Univ. Rennes, Inria, CNRS, IRISA
3Nokia-Bell Labs, France

Abstract—Resource allocation of 5G network slices is one of the
most important challenges for network operators. It can be for-
mulated using the Virtual Network Embedding (VNE) problem,
which was and remains an active field of studies, also known
because of its NP-hardness. Owing to its complexity, several
heuristics, meta-heuristics and Deep Learning-based solutions
have been proposed. However, these solutions are inefficient either
due to their slowness or to not taking into account the structure
of data which results in an inefficient exploration of the solutions
space. To overcome these issues, in this work we unveil the
potential of Graph Convolutional Neural (GCN) networks and
Deep Reinforcement Learning techniques in solving the VNE
problem. The key point of our approach is modeling of the
VNE problem as an episodic Markov Decision Process which
is solved in a Reinforcement Learning fashion using a GCN-
based neural architecture. The simulation results highlight the
efficiency of our approach through an increased performance
over time, while outperforming state-of-art solutions in terms of
the services’ acceptance ratio.

Index Terms—Virtual Network Embedding, Deep Reinforce-
ment Learning, Graph Neural Networks, 5G.

I. INTRODUCTION

With the recent emergence of the fifth generation of mobile
networks (5G) and the diversification of the services to be sup-
ported, Infrastructure Providers (InPs) are compelled to adapt
to these new changes, requiring in particular the deployment
of constrained services almost instantaneously [1].

As hardware solutions are too rigid and unsuitable for
real-time deployment, InPs are moving towards new scalable
software solutions available with the advent of the Network
Function Virtualization (NFV) paradigm [2]. NFV enables
the co-existence of several virtual network requests (VNRs)
on top of the same substrate network (SN). The problem of
embedding a VNR into the SN, which is known as the Virtual
Network Embedding (VNE) problem, is considered as the
main resource allocation challenge in network virtualization.
Indeed, it has been qualified as a very high computational
complexity problem [3].

One of the most important challenges in VNE is the
placement of network services efficiently and automatically,
which would make it possible to converge to a fully automated
network, also referred to as a zero-touch network [4].

Several solutions have already been proposed in the liter-
ature to address these types of problems [5]. Most existing

techniques solve them using classical combinatorial optimiza-
tion methods. These tools, although effective for very small
network instances, reach their limits even for fairly small-scale
networks. Moreover, it is difficult to apply them in a real
context because of the lack of accurate models [6] for several
metrics, such as latency and loss, which actually result from
the placement. Other approaches propose heuristics that can
be executed in near real time, at the cost of a very partial
exploration of the space of solutions [7]. Metaheuristics, and
in particular evolutionary algorithms, have also been proposed
to attack these difficulties [8]. These techniques, although
efficient, can present some convergence issues and therefore be
slow. On the other hand, with these techniques you can solve
problems without learning how to solve them, so you don’t
benefit from past experiences. More recently, techniques based
on Deep Reinforcement Learning (DRL) have been used [9].
These techniques show some effectiveness. However, in some
cases they rely on a manual feature extraction or they use
neural networks which are not suitable to graph-structured
data. Moreover, they put particular assumptions on the shape
of the substrate and virtual networks. Besides, these techniques
are very slow, which could be an obstacle to their adoption to
control real networks.

In this work, we propose an end-to-end solution based on
DRL and Graph Convolutional Neural networks (GCNs) [10]
to train an agent to solve the VNE problem.

The contributions of this paper can be summarized as
follows:

o formalization of the VNE problem as an MDP,

« features’ extraction automation using GCN-based neural

architecture,

« proposition of a more efficient placement strategy.

The rest of this paper is structured as follows. The formulation
of VNR embedding problem is presented in Sec. III. The pro-
posed framework is presented in Sec. IV. The comparison of
the proposed framework and other approaches is presented in
Sec. V. Finally, we discuss the advantages and disadvantages
of the proposed framework in Sec. VL.

II. BACKGROUND

Graph Neural Networks (GNNs), are a type of neural
networks dedicated to graph structured data. They were in-

[Notation | Description]
Gg*,g° The substrate network and VNR graphs
N* Nv Set of substrate nodes and VNFs
L°, LY Set of substrate links and VLs

P? Set of substrate paths
Cns Available CPU at substrate node n®
bys Available bandwidth of substrate link /s

Cnv CPU request of VNF n"
byv Bandwidth request of VL [,
TABLE 1
NOTATIONS

troduced in [11] and several variants of it were proposed [10],
[12], [13]. The most known one is the Graph Convolutional
Networks (GCN), which generalizes the convolution operation
from euclidean data (images and grid shaped data) to non-
euclidean data (graphs). The key objective of GCNs is to
learn a function that generates for each node in a graph a
vector representation by aggregating its own features and its
neighbors features.

Let G = (V, E) be a graph, where V is the set of its nodes
and E the set of edges. We assume that each node n € V
is characterized by an input feature vector in,. The graph
convolution operation takes as input the feature vector in,, and
outputs a new vector out,, according to the following equation:

outy, :f(z

meN (n) memn

ianl) 1)

58
[t
:‘

where N\ (n) represents the set composed of node n and its
neighbours, d,, is the degree of node m plus one, W' is the
weight matrix of the [GCN layer, and f is an activation
function.

III. PROBLEM DEFINITION

In this section, we describe the model of the SN, the
VNR and their resources. Then, we define formally the VNE
problem. The notations used in this section are shown in
Table L.

A. Networks and resources Models

The susbtrate network is defined by an undirected graph
G® = (N*,1L*), where N® represents the set of substrate nodes
and L° the set of substrate links. The number of the substrate
nodes and substrate links are |N¥| and |L*| respectively. Each
substrate node n° has a computing capacity c,s and each
substrate link [° has a bandwidth capacity b;s. Similarly, the
VNR is represented by a directed graph G¥ = (N”,ILV), where
Nv represents the set of VNFs and LV represents the set of
virtual links. The numbers of VNFs and VLs are [N”| and |L"|
respectively. Each VNF n" has a computing demand denoted
as c¢,v, and each VL [Y has a bandwidth demand b;».

B. VNE Problem

The VNE problem can be divided into two stages: the virtual
node mapping VNM and the virtual link mapping VLM. The
former is defined as a function fy: NV — N¥ that maps a

virtual node to a substrate node. It must be injective, that is,
two VNFs of the same VNR can not be hosted by the same
substrate network. On the other hand, VLM can be modeled
as a function fyr: LY — P° that maps a virtual link to a
physical path (set of physical links).

At the node mapping level, a virtual node is successfully
deployed if the substrate node that hosts it has sufficient CPU
resources, i.e. if

Cno < Cpa(nv), YNY € NV, 2)

At the link mapping stage, a VL is successfully deployed
if its virtual nodes are deployed and if each physical link
belonging to the physical path on which it is mapped has
sufficient bandwidth, i.e, if

b < min b

vIv e LY. 3)
15€ fumv)

f vLM(Iv))?
In this work, the aim is to maximize the number of accepted
VNRs. A VNR is accepted if and only if the placement of
its VNFs and VLs satisfies, respectively, the constraints (2)
and (3).

IV. PROPOSED METHOD

We formulate the VNE problem as a Reinforcement Learn-
ing problem, in which an agent finds iteratively a sub-optimal
placement of a VNR on top of the SN.

In what follows we present an overview of the Markov
Decision Process (MDP) formulation of the VNE problem,
the neural architecture of the RL agent we used to solve it
and its training process.

A. Deep Reinforcement Learning overview

Reinforcement Learning (RL) is the area of machine learn-
ing that deals with sequential decision-making tasks. It is
formulated as the interaction of an agent with an environment
to optimize a given total amount of return. This interaction
can be modelled as a Markov Decision Process (MDP) M
= (S, A, P, R) with a state space S, an action space A,
transition dynamics P and a reward function R. At each time
step t, the agent observes a state s; and performs an action
a, then it receives a reward r; as well as the next state of the
environment s;4;. If the agent receives a special state called
terminal, the interaction stops. The objective of the agent is
to maximize the expected cumulative discounted return:

Ry =E[Y ~'r], v€[0,1]. €)
t

The parameter -y is the discount factor, by which we ensure the
convergence of the cumulative return in the infinite horizon
setups. The behavior of the agent is defined by a policy m
which maps a state s to a distribution over the actions A.
Each state s is associated with a value function V™ (s) that
maps it to a scalar corresponding to the expected reward the
agent will receive in this state and acting according to the

policy
V7 (s) = Ex[R¢|s: = s]. 5)

In traditional RL, both the policy and the value functions
are modeled by tables. However, in most real scenarios, the
state and action spaces are large, therefore instead of the
tabular representation, the policy and the value functions are
approximated by Deep Neural Networks (DNNs). DNNs are
proposed for two main reasons: to overcome the slowness of
the tabular-based solutions and to extract automatically useful
features from the state representation. The combination of RL
with DNNs is known as Deep Reinforcement Learning (DRL).
To learn the policy function, several DRL algorithms were
introduced. They can be divided into three main categories:
value-based methods, policy-based methods and actor-critic
methods. The policy-based solutions parameterize the policy
function directly by a neural architecture and try to find the
optimal policy using gradient ascent, while the value-based
solutions estimate the value of each state using a DNN and
then infer the optimal policy using this estimation. Finally, the
actor-critic methods are a combination of the above methods:
the agent learns both functions to find the optimal policy. One
of the most widely used actor-critic algorithms is A2C [14].

B. VNE as MDP

In this section, we describe our MDP formulation of the
VNE problem and its main components, namely: the state
representation, the actions, the rewards and the transition
dynamics.

State Representation: The state s is represented by the two
graphs (G*®,GY). Each node n® € N* has two features: (1)
available cpu cys, (2) sum of bandwidth defined as the total
available bandwidth of links to which belongs n°®. On the other
hand each VNF n” € N” is characterized by four features: (1)
cpu required by the VNF, (2) total bandwidth required by the
links to which belongs the VNEF, (3) a flag indicating whether
this node is the current node to place, (4) a flag indicating
whether the VNF was placed. At the initial state s, the current
flag of the first VNF is assigned to 1 and the others to -1, and
the placement flag is set to -1 to all VNFs.

Action Space: At the time step ¢ in the MDP, the agent has to
select a substrate node to host the positive-flagged VNF (+1).
Note that the VNFs of the same VNR should not be placed at
the same substrate node. Hence the action space at time step ¢
is defined as follows:

Ay = N°\S; (6)

where S, represents the set of substrate nodes selected before
the time step ¢. Initially, the action space Ay is equal to N*.

State Transition Dynamics: At time step ¢, the agent observes
the state s; and selects an action a; = n° to place the current
VNF n”. The MDP then transits to a new state s;4; in which
the node features of the two graphs experience the following
updates:

o If the selected substrate node has sufficient CPU resource,
the VNF n" will be placed at the substrate node n°. Then,
the CPU resource of n® is updated by c,s := cps — cpo

o After each successful VNF placement, the VLs related to
the VNF and having both head and tail VNFs successfully
deployed are considered. The shortest path [° € P® be-
tween the head VNF and the tail VNF is computed. If the
bandwidth required by this VL is less than the one offered
by all physical links belonging to the obtained physical
path, then the available bandwidth of each physical link
in this physical path is updated as follows:

bis = bys — bpo, VI° € P (7

« If the previous conditions are satisfied, the placement flag
of the current node is set to 1, and another non visited
VNF is chosen as the current node.

The placement process of the VNR will at most ends in |[NY|
steps.

Reward design: The objective is to maximize the number
of accepted requests. To guide the agent to this objective
we introduce intermediate and final rewards. When a VNF
is placed successfully, it receives an intermediate reward of 0.
Final rewards quantify the quality of the final decision made
by the agent. Thus, the agent obtains a unit of reward when
it successfully places a VNR. Otherwise, it gets a reward of
—1 if the VNR is not placed successfully, i.e. if there exists
a resource violation at some step in the process.

C. The agent architecture

To solve the MDP defined above, we adopted the actor-
critic framework [15]. The DRL agent has to approximate
the policy and the state value functions. To implement the
actor-critic framewrok, we can either use two distinct neural
network architectures or one neural network architecture with
two heads, one representing the policy function and the other
one the value function. We adopt the last approach, because it
lets the actor and critic share the same low level features and
use them in different ways.

The two functions are parameterized by neural networks.
Their inputs must be then a real-valued vector. However, as
we stated earlier the state is represented by two graphs (SN and
VNR), hence we must encode the graph-structured information
of the state into a real-valued vector.

To achieve this, we proposed an end-to-end architecture
represented in Fig. 1. It takes the state of the environment as
an input and encodes it to a real valued vector which is fed to
the two heads described above. Finally, the output corresponds
to the prediction of the policy and the value functions. The key
idea is that learning a good representation of the state will led
to a fast and accurate optimal policy prediction.

Y. Bai [16] proposed a GCN-based architecture to solve the
graph similarity computation task using supervised learning.
We adapt their architecture to our problem for the state
encoding steps. The encoding of the state into a real valued
vector involves three main steps:

o Node-level encoding using GCNs. This stage transforms

each node of the graph into a vector encoding its features
and structural properties. Based on the raw features on

each node of the two graphs G° and G", we use GCNs
to aggregate neighborhood information of each node
(Eq. (1)). After multiple layers of GCNs, we obtain
two matrices U® € RIN'IXP and Uv e RIN'IXD that
represent, respectively, the node-level encoding of SN and
VNR. Each row u,, represents the encoding of node n
and D is an hyperparemeter representing the dimension
of u,,. Note that we used two different GCNs modules to
encode SN and VNR.
Graph level encoding using attention layers. After
getting the node level encoding matrices U® and U",
we can directly use them to encode the graph structure.
However, this can be computationally expensive. To over-
come this issue and make the representation of the graph
independent of its size, we can perform a weighted sum
of node representations. The choice of nodes that get
higher weights depends on the current node we want to
place. Thus, we use an attention mechanism to learn these
weights instead of considering fixed ones. For each graph,
we first compute a graph context ct, then we compute the
attention weight for each node in the graph.
For the VNR we define the context ct, as the node
representation of the current VNF followed by a nonlinear
transformation, ct,, = g, (u. x W), where u,. € R? is the
node representation of the current VNF, W, € RP*P is a
learnable weight matrix and g, is an activation function.
Based on ct, we compute one attention weight a,» for
each VNF n" as the inner product between the context
ct,, and its encoding u,v: ape = ul ct,. Finally the VNR
encoding h, is given by

Z Ao Uy (8)

Regarding the SN we define its context ct; by a simple
average of nodes encoding followed by a non linear
transformation cts = gs((N~* anil‘ un)Ws), where Wy
is a learnable weight matrix and wu,, is the encoding of
the n'” susbtrate node. Similarly we define the encoding
of the SN as a weighted sum of the substrate nodes
encodings. The weight of each node equals the inner

product between its encoding and the context,

hs = Z Apys Upys - 9

State level encoding using neural tensor networks
(NTN). The previous stages let the agent learn how to
model the two graphs of the state. The last step consists
in learning how to model their relation. Following [17]
and based on the vector representation of SN and VNR,
we use Neural Tensor Networks (NTN) to achieve this:

g(hasho) = Fs(hTWE Sy + V] +03), (10)
where ngltK] is a weight tensor, [] denotes the concate-
nation operation, V' is a weight vector, b3 is a bias, and
f3 is an activation function; K is a hyperparameter.

D. Training process

As stated before, we adopt the actor-critic setup. To update
the parameters of the architecture we presented above, we used
the Advantage Actor Critic (A2C) algorithm.

V. SIMULATION RESULTS

In this section, we present the simulation setup as well as
an analysis of the obtained results.

A. Simulation Setup

To evaluate the performance of the proposed approach, we
consider the following setup:

o The substrate network is modeled by the network topol-
ogy of BtEurope'. It contains 24 nodes and 37 links.
The capacity of the substrate nodes and links is drawn
uniformly from the interval [50, 100].

o To generate the virtual requests, we used the Erd6s—Rényi
model [18]. In this model the generated graph is defined
by the number of nodes n and the probability p of
creating an edge between the nodes. With, for instance,
p = 2lnn/n, the generated graph is in general connected
(more precisely, the probability that it is the case goes
to one as n — 00). The requested resources (CPU and
BW) of VNRs are drawn randomly following a uniform
distribution from the interval [1, 10]. The system operates
in an episodic manner; during each episode, VNRs come
to the system sequentially: once a VNR is processed,
the next one arrives. There are 3000 episodes and during
each one 30 VNRs come to the system. At the end of
each episode VNRs leave the system. We execute 5 runs
with different seeds.

o For the model architecture, it is written in Python with
the Pytorch library?, and the DGL library?. The neural
architecture is constructed with the following hyperpa-
rameters. We set the numbers of GCN layers to 3, and we
use tanh as the activation function. For the NTN layer
we set K to 8. We use then 2 fully connected layers
and finally we have two heads, each one modeled by
a fully connected layer that represent, respectively, the
policy network and the value network. The learning rate
is set to 1073 and the discount factor -y is set to 0.99. To
train the model, the Adam optimizer was used [19].

B. Impact of the hidden units

The number of hidden units used in each layer of the agent’s
neural architecture impacts both the quality of the solution
obtained and the computational cost to get it.

In this section we study the effect of the number of hidden
units on the performance of the DRL agent in order to find a
trade-off between these two metrics. We consider four different
agents: agentl6, agent32, agent64 and agent128 which have,
respectively, 16, 32, 64 and 128 hidden units in all their hidden
layers.

Thttp://www.topology-zoo.org/dataset.html
Zhttps://pytorch.org/
3https://www.dgl.ai/

- -~

“mm ~

/ \
>
' © /7
oo 7

)

7

\

Fig. 1. An overview illustration of the proposed end-to-end agent neural architecture. Given the state of the environment,the agent has to approximate two

functions: the policy function 7 and the value function V.

The results illustrated in Figures 2, 3 and 4 show, re-
spectively, the performance in terms of number of accepted
requests, number of VNFs deployed and number of VLs
deployed. As we see in these figures, the agents with 64
and 128 hidden units are better than the other ones and their
performance is more stable.

Figure 5 shows the required time to finish one episode for
each configuration. The more hidden units we have the more
time we need to finish the episode. The time required to finish
one episode with the agent with 128 hidden units is greater
than the one with 64 hidden units, while the performance is
quite the same. Consequently we use the agent with 64 hidden
units to compare its performance against other solutions.

—— DRL agent 64
—— DRL agent 128

—— DRL agent 32 DRL agent 16

154

144

134 /

Accepted requests

114

104

[500 1000 1500 2000 2500 3000
Episodes

Fig. 2. Number of accepted requests vs Number of hidden units.

—— DRL agent 64
—— DRL agent 128

—— DRL agent 32 DRL agent 16

Deployed VNFs

0 500 1000 1500 2000 2500 3000
Episodes

Fig. 3. Number of accepted VNFs vs Number of hidden units.

—— DRL agent 64
—— DRL agent 128

—— DRL agent 32 DRL agent 16

440

420 4

IS
S
=3

Deployed VLS

w
&
o

360 -

0 500 1000 1500 2000 2500 3000
Episodes

Fig. 4. Number of accepted VLs vs Number of hidden units.

#Hidden Units Vs Execution_time

—_—

Agents

Fig. 5. Execution time VS Number of hidden units.

C. Performance Benchmarking

To benchmark the performance of our DRL-based solution,
we compare it against the following approaches:

« Random agent: It preforms randomly to choose the
substrate nodes that will host the VNFs. Based on the
obtained VNF mapping, the agent uses the shortest path
algorithm to find the link mapping of the Vls,

« First Fit: It adopts the First-Fit (FF) algorithm to allocate
the VNFs and runs the shortest path algorithm to find the
physical path mapping for each VL. For each VNF, FF
selects the first substrate node with enough resources.

Figures 6, 7 and 8 show, respectively, the number of

accepted requests as well as the number of deployed VLs
and VNFs. With respect to the three metrics, our approach
outperforms the random agent and the First Fit procedures.
Unlike the latter algorithm, our approach explores efficiently
the possible actions until it finds the optimal ones, while First
Fit tries to place the VNFs on the first substrate nodes that
have enough resources. Therefore it explores just a part of
the possible solutions, resulting in a huge consumption of
the residual bandwidth of the physical links, and then in an
increased probability of rejection of new arriving requests.
—— random

—— DRL agent 64 —— First_fit

15
144
@ 134
g
]
g 124
-
2
g 111
S
<<
104
9
0 500 1000 1500 2000 2500 3000
Episodes
Fig. 6. Number of accepted requests.
—— DRL agent 64 —— First_fit —— random
440
420
400
4
>
T 380
B
S
5
S 360
3404
320
0 500 1000 1500 2000 2500 3000
Episodes
Fig. 7. Number of deploed VLS.
—— DRL agent 64 —— First_fit — random
167.5
165.0
162.5
w
&
< 160.0
b
S
21575
S
&
155.0
152.5
150.0

o

500 1000 1500 2000 2500 3000
Episodes

Fig. 8. Number of deployed VNFs.

VI. CONCLUSIONS

In this paper, we have proposed a methodology to address
the VNE issue. The proposed approach is based on the use of
a Deep Reinforcement Learning technique. In particular, we

have proposed the use of GCNs, which allow us to take into
account the structuring of the data of the problem, and showed
how to adapt the tool to the considered VNE problem. The
paper also exhibits a new strategy of placement, significantly
improving the performance of this type of task. The proposed
solution has proven to be very effective compared to existing
conventional approaches.

REFERENCES

[1] “Network Functions Virtualisation (NFV): Architectural framework,”
ETSI GS NFV, vol. 2, no. 2, p. V1, 2013.

[2] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive
survey of Network Function Virtualization,” Computer Networks, vol.
133, pp. 212 - 262, 2018.

[3] A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, “A Scalable
Approach for Service Chain Mapping With Multiple SC Instances in a
Wide-Area Network,” IEEE Journal on Selected Areas in Communica-
tions, vol. 36, no. 3, pp. 529-541, March 2018.

[4] B. Koley, “The zero touch network,” 2016.

[5] 1. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys Tutorials, vol. 20,
no. 3, pp. 2429-2453, thirdquarter 2018.

[6] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,

“Experience-driven Networking: A Deep Reinforcement Learning based

Approach,” in IEEE INFOCOM, April 2018, pp. 1871-1879.

M. Mechtri, C. Ghribi, and D. Zeghlache, “A Scalable Algorithm for the

Placement of Service Function Chains,” IEEE Transactions on Network

and Service Management, vol. 13, no. 3, pp. 533-546, Sep. 2016.

S. Khebbache, M. Hadji, and D. Zeghlache, “A multi-objective non-

dominated sorting genetic algorithm for VNF chains placement,” in

Proc. IEEE CCNC, Jan 2018, pp. 1-4.

S. Haeri and L. Trajkovi¢, “Virtual network embedding via Monte Carlo

tree search,” IEEE Transactions on Cybernetics, vol. 48, no. 2, pp. 510-

521, 2018.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,

“The graph neural network model,” IEEE Transactions on Neural

Networks, vol. 20, no. 1, pp. 61-80, 2008.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-

gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn:

Generating realistic graphs with deep auto-regressive models,” arXiv

preprint arXiv:1802.08773, 2018.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep

reinforcement learning,” 2016.

V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances

in neural information processing systems, 2000, pp. 1008-1014.

Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:

A neural network approach to fast graph similarity computation,” in

Proceedings of the Twelfth ACM International Conference on Web

Search and Data Mining. ACM, 2019, pp. 384-392.

R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural

tensor networks for knowledge base completion,” in Advances in neural

information processing systems, 2013, pp. 926-934.

[18] P. Erdgs, “On random graphs,” Publicationes

icae, vol. 6, pp. 290-297, 1959. [Online].

https://ci.nii.ac.jp/naid/10018689248/en/

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[7

—

[8

[t}

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

Mathemat-

Available:

[19]

