
HAL Id: hal-03126627
https://inria.hal.science/hal-03126627v2

Preprint submitted on 3 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global types and event structure semantics for
asynchronous multiparty sessions

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

To cite this version:
Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini. Global types and event structure
semantics for asynchronous multiparty sessions. 2021. �hal-03126627v2�

https://inria.hal.science/hal-03126627v2
https://hal.archives-ouvertes.fr


GLOBAL TYPES AND EVENT STRUCTURE SEMANTICS
FOR ASYNCHRONOUS MULTIPARTY SESSIONS

ILARIA CASTELLANI, MARIANGIOLA DEZANI-CIANCAGLINI, AND PAOLA GIANNINI

INRIA, Université Côte d’Azur, Sophia Antipolis, France
e-mail address: ilaria.castellani@inria.fr

Dipartimento di Informatica, Università di Torino, Italy
e-mail address: dezani@di.unito.it

Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Italy
e-mail address: paola.giannini@uniupo.it

Abstract. We propose an interpretation of multiparty sessions with asynchronous commu-
nication as Flow Event Structures. We introduce a new notion of asynchronous type for such
sessions, ensuring the expected properties for multiparty sessions, including progress. Our
asynchronous types, which reflect asynchrony more directly than standard global types and
are more permissive, are themselves interpreted as Prime Event Structures. The main result is
that the Event Structure interpretation of a session is equivalent, when the session is typable,
to the Event Structure interpretation of its asynchronous type.

1. Introduction

Session types describe interactions among a number of participants, which proceed according
to a given protocol. They extend classical data types by specifying, in addition to the type
of exchanged data, also the interactive behaviour of participants, namely the sequence of
their input/output actions towards other participants. The aim of session types is to ensure
safety properties for sessions, such as the absence of communication errors (no type mismatch
in exchanged data) and deadlock-freedom (no standstill until every participant is terminated).
Sometimes, a stronger property is targeted, called progress (no participant waits forever).

Initially conceived for describing binary protocols in the π-calculus [71, 41], session
types have been later extended to multiparty protocols [42, 43] and embedded into a range
of functional, concurrent, and object-oriented programming languages [1]. While binary
sessions can be described by a single session type, multiparty sessions require two kinds of
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types: a global type that describes the whole session protocol, and local types that describe the
contributions of the individual participants to the protocol. The key requirement in order to
achieve the expected safety properties is that all local types be obtained as projections from
the same global type.

Communication in sessions is always directed from a given sender to a given receiver.
It can be synchronous or asynchronous. In the first case, sender and receiver need to
synchronise in order to exchange a message. In the second case, messages may be sent
at any time, hence a sender is never blocked. The sent messages are stored in a queue,
where they may be fetched by the intended receiver. Asynchronous communication is often
favoured for multiparty sessions, since such sessions may be used to model web services or
distributed applications, where the participants are spread over different sites.

Session types have been shown to bear a strong connection with models of concurrency
such as communicating automata [32], as well as with message-sequence charts [43],
graphical choreographies [49, 75], and various brands of linear logics [12, 74, 77, 63, 13].

In a companion paper [15], we investigated the relationship between synchronous
multiparty sessions and Event Structures (ESs) [80], a well-known model of concurrency
which is grounded on the notions of causality and conflict between events. We considered
a simple calculus, where sessions are described as networks of sequential processes [33],
equipped with standard global types [42]. We proposed an interpretation of sessions as
Flow Event Structures (FESs) [5, 7], as well as an interpretation of global types as Prime Event
Structures (PESs) [78, 59]. We showed that for typed sessions these two interpretations agree,
in the sense that they yield isomorphic domains of configurations.

In the present paper, we undertake a similar endeavour in the asynchronous setting.
This involves devising a new notion of asynchronous type for asynchronous networks. We
start by considering a core session calculus as in the synchronous case, where processes
are only able to exchange labels, not values, hence local types coincide with processes and
global types may be directly projected to processes. Moreover, networks are now endowed
with a queue and they act on this queue by performing outputs or inputs: an output stores a
message in the queue, while an input fetches a message from the queue. The present paper
differs from [15] not only for the operational semantics, but also for the typing rules and
more essentially for the event structure semantics of sessions and types.

To illustrate the difference between synchronous and asynchronous sessions and
motivate the introduction of our new asynchronous types for the latter, let us discuss a
simple example. Consider the network:

N = p[[ q!`; q?`′ ]] ‖ q[[ p!`′; p?` ]]
where each of the participants p and q wishes to first send a message to the other one and
then receive a message from the other one.

In a synchronous setting this network is stuck, because a network communication arises
from the synchronisation of an output with a matching input, and here the output q!` of p
cannot synchronise with the input p?` of q, since the latter is guarded by the output p!`′.
Similarly, the output p!`′ of q cannot synchronise with the input q?`′ of p. Indeed, this
network is not typable because any global type for it should have one of the two forms:

G1 = p→ q : `; q→ p : `′ G2 = q→ p : `′; p→ q : `
However, neither of the Gi projects down to the correct processes for both p and q in N. For
instance, G1 projects to the correct process q!` · q?`′ for p, but its projection on q is p?` · p!`′,
which is not the correct process for q.
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In an asynchronous setting, on the other hand, this network is run in parallel with a
queueM, which we indicate by N ‖ M, and it can always move for whatever choice ofM.
Indeed, the moves of an asynchronous network are no more complete communications but
rather “communication halves”, namely outputs or inputs. For instance, if the queue is
empty, then N ‖ ∅ can move by first performing the two outputs in any order, and then the
two inputs in any order. If instead the queue contains a message from p to q with label `1,
followed by a message from q to p with label `2, which we indicate byM = 〈p, `1, q〉·〈q, `2, p〉,
then the network will be stuck after performing the two outputs, since the two messages on
top of the queue will not be those expected by p and q. Hence we look for a notion of type
that accepts the network N ‖ ∅ but rejects the network N ‖ 〈p, `1,q〉 · 〈q, `2,p〉.

The idea for our new asynchronous types is quite simple: to split communications into
outputs and inputs, and to add a queue to the type, thus mimicking very closely the
behaviour of asynchronous networks. Hence, our asynchronous types have the form G ‖ M.
Clearly, we must impose some well formedness conditions on such asynchronous types,
taking into account also the content of the queue. Essentially, this amounts to requiring
that each input appearing in the type be justified by a preceding output or by a message
in the queue, and vice versa, that each output or message in the queue be matched by a
corresponding input.

Having introduced this new notion of type, it becomes now possible to type the network
N ‖ ∅ with the asynchronous type G ‖ ∅, where G = pq!`; qp!`′; pq?`; qp?`′, or with the
other asynchronous types obtained from it by swapping the outputs and/or the inputs.
Instead, the network N ‖ 〈p, `1, q〉 · 〈q, `2, p〉 will be rejected, because the asynchronous type
G ‖ 〈p, `1,q〉 · 〈q, `2,p〉 is not well formed, since its two inputs do not match the first two
messages in the queue.

A different solution was proposed in [57] by means of an asynchronous subtyping
relation on local types which allows outputs to be anticipated. In our setting this boils down
to a subtyping relation on processes yielding both q!`; q?`′ ≤ q?`′; q!` and p!`′; p?` ≤ p?`; p!`′.
With the help of this subtyping, both G1 and G2 become types for the network N ‖ ∅ above.
Unfortunately, however, this subtyping turned out to be undecidable [9, 50].

To define our interpretations of asynchronous networks and asynchronous types into
Flow and Prime Event Structures, respectively, we follow the same schema as for their
synchronous counterparts in our previous work [15]. In particular, the events of the ESs
are defined syntactically and they record the “history” of the particular communication
occurrence they represent. More specifically, the events of the FES associated with a network
– which we call network events – record the local history of their communication, namely
the past actions of the involved participant. By contrast, the events of the PES associated
with an asynchronous type – which we call type events – record the global causal history
of their communication, namely the whole sequence of past communications that caused
it, and thus they must be considered up to a permutation equivalence. However, while
in [15] an event represented a communication between two participants, here it represents
an output or an input pertaining to a single participant. For network events, some care must
be taken in defining the flow relation1, and in particular the “cross-flow” between an output
and the matching input, which are events pertaining to different participants. A further
complication is due to the presence of the queue. For network events, the messages on
the queue may justify input events and thus affect the cross-flow relation. For type events,

1In FESs, the flow relation represents a direct causality between events.
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queues appear inside events and affect the permutation equivalence. Therefore, our ES
semantics for the asynchronous setting is far from being a trivial adaptation of that given
in [15] for the synchronous setting.

To sum up, the contribution of this paper is twofold:
1) We propose an original syntax for asynchronous types, which, in our view, models

asynchronous communication in a more natural way than existing approaches. In the
literature, typing rules for asynchronous multiparty session types use the standard syntax of
global types, as introduced in [43]. Typability of asynchronous networks is enhanced by the
subtyping first proposed in [57], which, however, was later shown to be undecidable [9, 50].
Our type system is more permissive than the standard one [43] – in particular, since it
allows outputs to take precedence over inputs as in [57], a characteristics of asynchronous
communication – but it remains decidable. We show that our asynchronous types ensure
classical safety properties as well as progress.

2) We present an Event Structure semantics for asynchronous networks and for our
new asynchronous types. Networks are interpreted as FESs and asynchronous types are
interpreted as PESs. Our main result here is an isomorphism between the configuration
domains of the FES of a typed network and the PES of its asynchronous type.

The paper is organised as follows. Section 2 introduces our calculus for asynchronous
multiparty sessions. Section 3 introduces asynchronous types and the associated type
system, establishing its main properties. In Section 4 we recap from previous work the
necessary material about Event Structures. In Section 5 we recall our interpretation of
processes as PESs, taken from our companion paper [15]. In Section 6 we present our
interpretation of asynchronous networks as FESs. In Section 7 we define our interpretation
of asynchronous types as PESs. Finally, in Section 8 we prove the equivalence between the
FES semantics of a network and the PES semantics of its asynchronous type. We conclude
with a discussion on related work and future research directions in Section 9. The Appendix
contains the proofs of three technical lemmas and the glossary of symbols.

2. A Core Calculus forMultiparty Sessions

We now formally introduce our calculus, where multiparty sessions are represented as
networks of sequential processes with queues. The operational semantics is based on
asynchronous communication, where message emission is non-blocking and sent messages
are stored in a queue while waiting to be read by their receivers.

We assume the following base sets: participants, ranged over by p, q, r and forming the
set Part, and labels, ranged over by `, `′, . . . and forming the set Lab.

Let π ∈ {p!`, p?` | p ∈ Part, ` ∈ Lab} denote an atomic action. The action p!` represents an
output of label ` to participant p, while the action p?` represents an input of label ` from
participant p.

Definition 2.1 (Processes). Processes are defined by:
P ::=coind

⊕
i∈I p!`i; Pi | Σi∈Ip?`i; Pi | 0

where I is non-empty and `h , `k for all h, k ∈ I, h , k, i.e. labels in choices are all different.
Processes of the shape

⊕
i∈I p!`i; Pi and Σi∈Ip?`i; Pi are called output and input processes,

respectively.
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The symbol ::=coind, in the definition above and in later definitions, indicates that the
productions should be interpreted coinductively. Namely, they define possibly infinite
processes. However, we assume such processes to be regular, that is, with finitely many
distinct subprocesses. In this way, we only obtain processes which are solutions of finite
sets of equations, see [20]. So, when writing processes, we shall use (mutually) recursive
equations.

In the following, we will omit trailing 0’s when writing processes.
Processes can be seen as trees where internal nodes are decorated by p! or p?, leaves by

0, and edges by labels `.
In a full-fledged calculus, labels would carry values, namely the exchanges between

participants would be of the form `(v). For simplicity, we consider only labels here. This will
allow us to project global types directly to processes, without having to explicitly introduce
local types, see Section 3.

In our calculus, sent labels are stored in a queue together with sender and receiver
names, from where they are subsequently fetched by the receiver2.

We define messages to be triples 〈p, `, q〉, where p is the sender and q is the receiver, and
message queues (or simply queues) to be possibly empty sequences of messages:

M ::= ∅ | 〈p, `,q〉 · M
The order of messages in the queue is the order in which they will be read. Since the

only reading order that matters is that between messages with the same sender and the
same receiver, we consider message queues modulo the structural equivalence given by:

M · 〈p, `,q〉 · 〈r, `′, s〉 · M′ ≡ M · 〈r, `′, s〉 · 〈p, `,q〉 · M′ if p , r or q , s
The equivalence ≡ says that a global queue may be split into a set of reading queues, one for
each participant (in which messages with different senders are not ordered), or even further,
into a set of channel queues, one for each unidirectional channel pq or ordered pair (p, q) of
participants.
Note in particular that 〈p, `,q〉 · 〈q, `′,p〉 ≡ 〈q, `′,p〉 · 〈p, `,q〉. These two equivalent queues
represent a situation in which both participants p and q have sent a label to the other one,
and neither of them has read the label sent by the other one. This situation may indeed
happen in a network with asynchronous communication. Since the two sends occur in
parallel, the order of the corresponding messages in the queue should be irrelevant. This
point will be further illustrated by Example 2.4.

Networks are comprised of located processes of the form p[[ P ]] composed in parallel,
each with a different participant p, and by a message queue.

Definition 2.2 (Networks). Networks are defined by:
N ‖ M

where N = p1[[ P1 ]] ‖ · · · ‖ pn[[ Pn ]] with ph , pk for any h , k, andM is a message queue.

We assume the standard structural congruence on networks, stating that parallel
composition is associative and commutative and has neutral element p[[ 0 ]] for any fresh p.

If P , 0 we write p[[ P ]] ∈ N as short for N ≡ p[[ P ]] ‖ N′ for some N′. This abbreviation
is justified by the associativity and commutativity of parallel composition.

To define the operational semantics of networks, we use an LTS whose transitions are
decorated by outputs or inputs. Therefore, we define the set of input/output communications

2We need a queue instead of a multiset, because we want labels between two participants to be read in the
same order in which they are sent.
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p[[
⊕

i∈I q!`i; Pi ]] ‖ N ‖ M
pq!`k
−−−→ p[[ Pk ]] ‖ N ‖ M · 〈p, `k,q〉 where k ∈ I [Send]

q[[ Σ j∈Jp?` j; Q j ]] ‖ N ‖ 〈p, `k,q〉 · M
pq?`k
−−−−→ q[[ Qk ]] ‖ N ‖ M where k ∈ J [Rcv]

Figure 1: LTS for networks.

(communications for short), ranged over by β, β′, to be {pq!`,pq?` | p,q ∈ Part, ` ∈ Lab},
where pq!` represents the emission of a label ` from participant p to participant q, and pq?`
the actual reading by participant q of the label ` sent by participant p. To memorise this
notation, it is helpful to view pq as the channel from p to q and the exclamation/question
mark as the mode (write/read) in which the channel is used. The LTS semantics of networks
is specified by the two Rules [Send] and [Rcv] given in Figure 1, and defined modulo ≡.
Rule [Send] allows a participant p with an internal choice (a sender) to send to a participant
q one of its possible labels `i by adding it to the queue. Symmetrically, Rule [Rcv] allows
a participant q with an external choice (a receiver) to read the first label `k sent to her
by participant p, provided this label is among the ` j’s specified in the choice. Thanks to
structural equivalence, this message can always be moved to the top of the queue.

A key role in this paper is played by (possibly empty) sequences of communications.
As usual we define them as traces.

Definition 2.3 (Traces). (Finite) traces are defined by:
τ ::= ε | β · τ

We use |τ | to denote the length of the trace τ.

When τ = β1 · . . . · βn (n ≥ 1) we write N ‖ M τ
−→ N′ ‖ M′ as short for

N ‖ M
β1
−→ N1 ‖ M1 · · ·

βn
−→ Nn ‖ Mn = N′ ‖ M′

In the following example, we consider the semantics of the network N ‖ ∅ discussed in
the introduction.

Example 2.4 . Consider the network: N ‖ ∅, where N = p[[ q!`; q?`′ ]] ‖ q[[ p!`′; p?` ]]. Then N ‖ ∅
can move by first performing the two sends, in any order, and then the two reads, in any order. A
possible execution of N ‖ ∅ is:

N ‖ ∅
pq!`
−−−→ p[[ q?`′ ]] ‖ q[[ p!`′; p?` ]] ‖ 〈p, `,q〉
qp!`′
−−−→ p[[ q?`′ ]] ‖ q[[ p?` ]] ‖ 〈p, `,q〉 · 〈q, `′,p〉

≡ p[[ q?`′ ]] ‖ q[[ p?` ]] ‖ 〈q, `′,p〉 · 〈p, `,q〉
qp?`′
−−−−→ p[[ 0 ]] ‖ q[[ p?` ]] ‖ 〈p, `,q〉
pq?`
−−−→ p[[ 0 ]] ‖ q[[ 0 ]] ‖ ∅

Note the use of ≡, allowing label `′ to be read by p before label ` is read by q.

We now introduce the notion of player, which will be extensively used in the rest of the
paper. A player of a communication β is a participant who is active in β.

Definition 2.5 (Players of communications and traces). We denote by play(β) the set of players
of communication β defined by

play(pq!`) = {p} play(pq?`) = {q}
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The function play is extended to traces in the obvious way:
play(ε) = ∅ play(β · τ) = play(β) ∪ play(τ)

In Section 3 we will use the same notation for the players of a global type. In all cases,
the context should make it easy to understand which function is in use.

Notice that the notion of player is characteristic of asynchronous communications,
where only one of the involved participants is active, namely the sender for an output
communication and the receiver for an input communication. Instead, in synchronous
communications both participants (also called roles in the literature) are active.

3. Asynchronous Types

In this section we introduce our new asynchronous and global types for asynchronous
communication. The underlying idea is quite simple: to split the communication constructor
of standard global types into an output constructor and an input constructor. This will allow
us to type networks in which all participants make all their outputs before their inputs, like
the network of Example 2.4, whose asynchronous types will be presented in Example 3.8.

Definition 3.1 (Global and asynchronous types). (1) Global types are defined by:

G ::=coind �i∈Ipq!`i; Gi | pq?`; G | End
where I is non-empty and `h , `k for all h, k ∈ I, h , k, i.e. labels in choices are all different.

(2) Asynchronous types are pairs made of a global type and a queue, written G ‖ M.

As for processes, ::=coind indicates that global types are coinductively defined regular terms.
The global type�i∈Ipq!`i; Gi specifies that p sends a label `k with k ∈ I to q and then the
interaction described by the global type Gk takes place. Dually, the global type pq?`; G
specifies that q receives label ` from p and then the interaction described by the global type
G takes place. We will omit trailing End’s.

Global types can be naturally seen as trees where internal nodes are decorated by pq! or
pq?, leaves by End, and edges by labels `. The sequences of decorations of nodes and edges
on the path from the root to an edge of the tree are traces, in the sense of Definition 2.3. We
denote by Tr+(G) the set of such traces in the tree of G. By definition, Tr+(End) = ∅ and each
trace in Tr+(G) is non-empty.

As may be expected, networks will be typed by asynchronous types, see Figure 4. A
standard guarantee that should be ensured by asynchronous types is that each participant
whose behaviour is not terminated can do some action. Moreover, since communications
are split into outputs and inputs in the syntax of global types, we must make sure that
each input has a matching output in the type, and vice versa. To account for all these
requirements we will impose well-formedness conditions on asynchronous types.

We start by defining the projection of global types onto participants (Figure 2). We
proceed by defining the depth of participants in global types (Definition 3.2) and the
balancing predicate for asynchronous types (Figure 3). We then present the typing rules
(Figure 4). For establishing the expected properties of the type system we introduce an LTS
for asynchronous types (Figure 5) and show that well-formedness of asynchronous types is
preserved by transitions (Lemma 3.13).

This section is divided in two subsections, the first focussing on well-formedness and
the second presenting the type system and showing that it enjoys the properties of subject
reduction and session fidelity and that moreover it ensures progress.
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G� r = 0 if r < play(G)

(�i∈Ipq!`i; Gi)� r =


⊕

i∈I q!`i; Gi �p if r = p,
G1 �q if r = q and I = {1}
−→π; Σi∈Ip?`i; Pi if r = q and |I| > 1 and Gi �q = −→π; p?`i; Pi,

G1 � r if r < {p,q} and r ∈ play(G1) and Gi � r = G1 � r for all i ∈ I

(pq?`; G)� r =

p?`; G� r if r = q
G� r if r , q and r ∈ play(G)

Figure 2: Projection of global types onto participants.

3.1. Well-formed Asynchronous Types.

We start by formalising the set of players of global types, which will be largely used in
the definitions and results presented in this section.

The set of players of a global type G, play(G), is the smallest set such that:
play(�i∈Ipq!`i; Gi) = {p} ∪

⋃
i∈I play(Gi)

play(pq?`; G) = {q} ∪ play(G)
play(End) = ∅

The regularity assumption ensures that the set of players of a global type is finite.
As mentioned earlier, the projection of global types on participants yields processes.

Its coinductive definition is given in Figure 2, where we use −→π to denote any sequence,
possibly empty, of input/output actions separated by “;”. We write |I| for the cardinality of I.
The projection of a global type on a participant which is not a player of the type is the
inactive process 0. In particular, the projection of End is 0 on all participants.
The projection of an output choice type on the sender produces an output process sending
one of its possible labels to the receiver and then acting according to the projection of the
corresponding branch.
The projection of an output choice type on the receiver q has two clauses: one for the case
where the choice has a single branch, and one for the case where the choice has more than
one branch. In the first case, the projection is simply the projection of the continuation of
the single branch on q. In the second case, the projection is defined if the projection of the
continuation of each branch on q starts with the same sequence of actions −→π , followed by an
input of the label sent by p on that branch and then by a possibly different process in each
branch. In fact, participant q must receive the label chosen by participant p before behaving
differently in different branches. The projection on q is then the initial sequence of actions
−→π followed by an external choice on the different sent labels. The sequence −→π is allowed to
contain another input of a (possibly equal) label from p, for example:

(pq!`1; pq!`; pq?`; pq?`1; pq?`� pq!`2; pq!`′; pq?`; pq?`2; pq?`′)�q =
p?`; (p?`1; p?` + p?`2; p?`′)

In Example 3.14 we will show why we need to distinguish these two cases.
The projection of an output choice type on the other participants is defined only if it produces
the same process for all branches of the choice.
The projection of an input type on the receiver is an input action followed by the projection
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of the rest of the type. For the other participants the projection is simply the projection of
the rest of the type.
Note that our projection adopts the strict requirement of [42] for participants not involved
in a choice, namely it requires their behaviours to be the same in all branches of a choice. A
more permissive projection (in line with [69]) for the present global types is given in [26].
Our choice here is motivated by simplicity, in order to focus on the event structure semantics.

We need to show that projection is well defined, i.e. that it is a partial function. The proof
is easier for global types which are bounded according to Definition 3.2, see Lemma 3.5.

We discuss now how to ensure that each player will eventually do some communication.
We require that the first occurrence of each player of a global type appears at a bounded
depth in all its traces. This condition is sufficient, as shown by the proof of progress for
typed networks (Theorem 3.19). To formalise it, we define the depth of a participant p in a
global type G, depth(G,p), which uses the length function | | of Definition 2.3, the function
play given after Definition 2.5 and the new function ord given below.

Definition 3.2 (Depth). Let the two functions ord(τ,p) and depth(G,p) be defined by:

ord(τ,p) =

n if τ = τ1 · β · τ2 and |τ1 | = n − 1 and p < play(τ1) and p ∈ play(β)
0 otherwise

depth(G,p) =

sup{ord(τ,p) | τ ∈ Tr+(G)} if p ∈ play(G)
0 otherwise

We say that a global type G is bounded if depth(G′, p) is finite for all subtrees G′ of G and for all p.

To show that G is bounded it is enough to check depth(G′,p) for all subtrees G′ of G and
p ∈ play(G′), since for any other p we have depth(G′,p) = 0.

Note that the depth of a participant which is a player of G does not necessarily decrease
in the subtrees of G. As a matter of fact, this depth can be finite in G but infinite in one of its
subtrees, as shown by the following example.

Example 3.3 . Consider G = rq!`; rq?`; G′ where
G′ = pq!`1; pq?`1; pr!`3; pr?`3 � pq!`2; pq?`2; G′

Then we have:
depth(G, r) = 1 depth(G,p) = 3 depth(G,q) = 2

whereas
depth(G′, r) = ∞ depth(G′,p) = 1 depth(G′,q) = 2

since pq!`2 · pq?`2 · · · pq!`2 · pq?`2︸                               ︷︷                               ︸
n

·pq!`1 · pq?`1 · pr!`3 · pr?`3 ∈ Tr+(G′) for all n ≥ 0 and

sup{4 + 2n | n ≥ 0} = ∞.

However, the depth of a participant which is a player of G but not the player of its root
communication decreases in the immediate subtrees of G, as stated in the following lemma.

Lemma 3.4 . (1) If G =�i∈Ipq!`i; Gi and r ∈ play(G) and r , p, then depth(G, r) > depth(Gi, r)
for all i ∈ I.

(2) If G = pq?`; G′ and r ∈ play(G) and r , q, then depth(G, r) > depth(G′, r).

We can now show that the definition of projection given in Figure 2 is sound.

Lemma 3.5 . If G is bounded, then G� r is a partial function for all r.
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Proof. We redefine the projection ↓r as the largest relation between global types and processes
such that (G,P) ∈↓r implies:

i) if r < play(G), then P = 0;
ii) if G =�i∈Irq!`i; Gi, then P =

⊕
i∈I q!`i; Pi and (Gi,Pi) ∈↓r for all i ∈ I;

iii) if G = pr!`; G′, then (G′,P) ∈↓r;
iv) if G = �i∈Ipr!`i; Gi and |I| > 1, then P = −→π; Σi∈Ip?`i; Pi and (Gi,

−→π; p?`i; Pi) ∈↓r for all
i ∈ I;

v) if G =�i∈Ipq!`i; Gi and r < {p,q} and r ∈ play(Gi), then (Gi,P) ∈↓r for all i ∈ I;
vi) if G = pr?`; G′, then P = p?`; P′ and (G′,P′) ∈↓r;

vii) if G = pq?`; G′ and r , q and r ∈ play(G′), then (G′,P) ∈↓r.
We define equality E of processes to be the largest symmetric binary relation R on processes
such that (P,Q) ∈ R implies:
(a) if P =

⊕
i∈I p!`i; Pi , then Q =

⊕
i∈I p!`i; Qi and (Pi,Qi) ∈ R for all i ∈ I;

(b) if P = Σi∈Ip?`i; Pi , then Q = Σi∈Ip?`i; Qi and (Pi,Qi) ∈ R for all i ∈ I.
It is then enough to show that the relation Rr = {(P,Q) | ∃G . (G,P) ∈↓r and (G,Q) ∈↓r}

satisfies Clauses (a) and (b) (with R replaced by Rr), since this will imply Rr ⊆ E. Note
first that (0, 0) ∈ Rr because (End, 0) ∈↓r, and that (0, 0) ∈ E because Clauses (a) and (b) are
vacuously satisfied by the pair (0, 0), which must therefore belong to E.
The proof is by induction on d = depth(G, r). We only consider Clause (b), the proof for
Clause (a) being similar and simpler. So, assume (P,Q) ∈ Rr and P = Σi∈Ip?`i; Pi.
Case d = 1. In this case G = pr?`; G′ and P = p?`; P′ and (G′,P′) ∈↓r. From (G,Q) ∈↓r we get
Q = p?`; Q′ and (G′,Q′) ∈↓r. Hence Q has the required form and (P′,Q′) ∈ Rr.
Case d > 1. By definition of ↓r, there are five possible subcases.
(1) Case G = pr!`; G′ and (G′,P) ∈↓r. From (G,Q) ∈↓r we get (G′,Q) ∈↓r. Then (P,Q) ∈ Rr.
(2) Case G = �i∈Ipr!`i; Gi and (Gi,p?`i; Pi) ∈↓r for all i ∈ I and |I| > 1. From (G,Q) ∈↓r we

get Q = −→π; Σi∈Ip?`i; Qi and (Gi,
−→π; p?`i; Qi) ∈↓r for all i ∈ I. Since (p?`i; Pi,

−→π; p?`i; Qi) ∈ Rr
for all i ∈ I, by induction Clause (b) is satisfied. Thus −→π = ε and (Pi,Qi) ∈ Rr for all i ∈ I.

(3) Case G =� j∈Jqr!`′j; G j with q , p and P = p?`;−→π; Σ j∈Jq?`′j; P′j and (G j, p?`;−→π; q?`′j; P′j) ∈↓r

for all j ∈ J. From (G,Q) ∈↓r we get Q =
−→
π′; Σ j∈Jq?`′j; Q′j and (G j,

−→
π′; q?`′j; Q′j) ∈↓r for

all j ∈ J. Since (p?`;−→π; q?`′j; P′j ,
−→
π′; q?`′j; Q′j) ∈ Rr for all j ∈ J, by induction Clause (b) is

satisfied. Thus
−→
π′ = p?`;−→π and (−→π; q?`′j; P′j ,

−→π; q?`′j; Q′j) ∈ Rr for all j ∈ J.
(4) Case G = � j∈Jqs!`′j; G j and r , s and r ∈ play(G j) and (G j,P) ∈↓r for j ∈ J. From

(G,Q) ∈↓r we get (G j,Q) ∈↓r for all j ∈ J. Then (P,Q) ∈ Rr.
(5) Case G = qs?`; G′ and r ∈ play(G′). Then (G′,P) ∈↓r. From (G,Q) ∈↓r we get (G′,Q) ∈↓r.

Then (P,Q) ∈ Rr.

To ensure the correspondence between outputs and inputs, in Figure 3 we define the
balancing predicate `b on asynchronous types, and we say that G ‖ M is balanced if `b G ‖ M.
The intuition is that every initial input should come with a corresponding message in the
queue (Rule [In]), ensuring that the input can take place. Then, each message in the queue
can be exchanged for a corresponding output that will prefix the type (Rule [Out]): this
output will then precede the previously inserted input and thus ensure again that the input
can take place. In short, balancing holds if the messages in the queue and the outputs
in the global type are matched by inputs in the global type and vice versa. We say that a
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`
b End ‖ ∅ [End]

`
b G ‖ M

`
b pq?`; G ‖ 〈p, `,q〉 · M

=============================== [In]

`
b Gi ‖ M · 〈p, `i,q〉 for all i ∈ I if�i∈Ipq!`i; Gi is cyclic thenM = ∅

`
b�i∈Ipq!`i; Gi ‖ M

============================================================================================ [Out]

Figure 3: Balancing predicate.

global type is cyclic if its tree contains itself as proper subtree. So the condition “if the global
type is cyclic then the queue is empty” in Rule [Out] ensures that there is no message left
in the queue at the beginning of a new cycle, namely that all messages put in the queue
by cyclic global types have matching inputs in the same cycle. For instance we can apply
Rule [Out] to the asynchronous type G′ ‖ ∅ of Example 3.6(3), but not to the asynchronous
type G ‖ 〈p, `, q〉 of Example 3.6(2). Similarly, in Example 3.6(4), Rule [Out] can be used for
G2 ‖ ∅ but not for G2 ‖ 〈p, `,q〉.
The double line indicates that the rules are interpreted coinductively [65] (Chapter 21). The
condition in Rule [Out] guarantees that we get only regular proof derivations, therefore the
judgement `b G ‖ ∅ is decidable.

If we derive `b G ‖ ∅ we can ensure that in G ‖ ∅ all outputs are matched by corresponding
inputs and vice versa, see the Progress Theorem (Theorem 3.19). The progress property
holds also for standard global types [31, 19].

The next example illustrates the use of the balancing predicate on a number of
asynchronous types.

Example 3.6 . (1) The asynchronous type qp?`; pq!`′; pq?`′ ‖ 〈q, `,p〉 is balanced, as shown by
the following derivation:

`
b End ‖ ∅

`
b pq?`′ ‖ 〈p, `′,q〉

`
b pq!`′; pq?`′ ‖ ∅

`
b qp?`; pq!`′; pq?`′ ‖ 〈q, `,p〉

(2) Let G = pq!`; pq!`; pq?`; G. Then G ‖ ∅ is not balanced. Indeed, we cannot complete the proof
tree for `b G ‖ ∅ because, since G is cyclic, we cannot apply Rule [Out] to infer the premise
`

b G ‖ 〈p, `,q〉 in the following deduction:
`

b G ‖ 〈p, `,q〉

`
b pq?`; G ‖ 〈p, `,q〉 · 〈p, `,q〉

`
b pq!`; pq?`; G ‖ 〈p, `,q〉

`
b G ‖ ∅

11



(3) Let G′ = (pq!`1; pq?`1; G′ � pq!`2; pq?`2). Then G′ ‖ ∅ is balanced, as we can see from the
infinite (but regular) proof tree that follows:

...

`
b G′ ‖ ∅

`
b pq?`1; G′ ‖ 〈p, `1,q〉

`
b End ‖ ∅

`
b pq?`2 ‖ 〈p, `2,q〉

`
b G′ ‖ ∅

(4) Let G1 = pq!`; pq!`; pq?`; G2 and G2 = pr!`; pr?`; G2. Then G1 ‖ ∅ is not balanced. Indeed,
we cannot complete the proof tree for `b G1 ‖ ∅, since G2 is cyclic, so we cannot apply Rule
[Out] to infer the premise `b G2 ‖ 〈p, `,q〉 in the following deduction:

`
b G2 ‖ 〈p, `,q〉

`
b pq?`; G2 ‖ 〈p, `,q〉 · 〈p, `,q〉

`
b pq!`; pq?`; G2 ‖ 〈p, `,q〉

`
b G1 ‖ 〈p, `,q〉

Instead, G2 ‖ ∅ is balanced:
...

`
b G2 ‖ ∅

`
b pr?`; G2 ‖ 〈p, `, r〉

`
b G2 ‖ ∅

It is interesting to notice that balancing of asynchronous types does not imply pro-
jectability of their global types. For example, the type G ‖ ∅where

G = pq!`1; pq?`1; rq!`1; rq?`1 � pq!`2; pq?`2; rq!`2; rq?`2
is balanced, but G is not projectable on participant r for any of the projection definitions in
the literature. Notably, type G prescribes that r should behave differently according to the
message exchanged between p and q, an unreasonable requirement.

As suggested by one of the reviewers, one could show that by projecting the global type
of a balanced asynchronous type one obtains a live type environment as defined in [36].
However, while our balancing is decidable, liveness of type environments is not.

Projectability, boundedness and balancing are the three properties that single out the
asynchronous types we want to use in our type system.

Definition 3.7 (Well-formed asynchronous types). We say that the asynchronous type G ‖ M
is well formed if it is balanced, G�p is defined for all p and G is bounded.

Clearly, it is sufficient to check that G�p is defined for all p ∈ play(G), since for any
other p we have G�p = 0.

3.2. Type System.

We are now ready to present our type system. The unique typing rule for networks is
given in Figure 4, where we assume the asynchronous type to be well formed.
We first define a preorder on processes, P ≤ Q, meaning that process P can be used where we
expect process Q. More precisely, P ≤ Q if either P is equal to Q, or we are in one of two
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0 ≤ 0 [ ≤ -0]
Pi ≤ Qi for all i ∈ I⊕
i∈Ip!`i; Pi ≤

⊕
i∈I p!`i; Qi

==================================[ ≤-out]
Pi ≤ Qi for all i ∈ I

Σi∈I∪Jp?`i; Pi ≤Σi∈Ip?`i; Qi

====================================[ ≤-In]

Pi ≤ G�pi for all i ∈ I play(G) ⊆ {pi | i ∈ I}

`Πi∈Ipi[[ Pi ]] ‖ M : G ‖ M
[Net]

Figure 4: Preorder on processes and network typing rule.

situations: either both P and Q are output processes, sending the same labels to the same
participant, and after the send P continues with a process that can be used when we expect
the corresponding one in Q; or they are both input processes receiving labels from the same
participant, and P may receive more labels than Q (and thus have more behaviours) but
whenever it receives the same label as Q it continues with a process that can be used when
we expect the corresponding one in Q. The rules are interpreted coinductively, since the
processes may be infinite. However, derivability is decidable since processes have finitely
many distinct subprocesses.

Clearly, our preorder on processes plays the same role as the subtyping relation on
local types in other work. In the original standard subtyping of [35] a better type has more
outputs and less inputs, while in the subtyping of [30] a better type has less outputs and
more inputs. The subtyping of [35] allows channel substitution, while the subtyping of
[30] allows process substitution, as observed in [34]. This justifies our structural preorder
on processes, which is akin to a restriction of the subtyping of [30]. The advantage of this
restriction is a strong version of Session Fidelity, see Theorem 3.18. On the other hand, in [3]
it is shown that such a restriction does not change the class of networks that can be typed
by standard global types (but may change the types assigned to them). The proof in [3]
easily adapts to our asynchronous types.

A network N ‖ M is typed by the asynchronous type G ‖ M if for every participant p
such that p[[ P ]] ∈ N the process P behaves as specified by the projection of G on p. In Rule
[Net], the condition play(G) ⊆ {pi | i ∈ I} ensures that all players of G appear in the network.
Moreover it permits additional participants that do not appear in G, allowing the typing of
sessions containing p[[ 0 ]] for a fresh p — a property required to guarantee invariance of
types under structural congruence of networks.

Example 3.8 . The network of Example 2.4 can be typed by G ‖ ∅ for four possible choices of G:
pq!`; qp!`′; pq?`; qp?`′ pq!`; qp!`′; qp?`′; pq?`
qp!`′; pq!`; pq?`; qp?`′ qp!`′; pq!`; qp?`′; pq?`

since each participant only needs to do the output before the input. Notice that this network cannot
be typed with the standard global types of [43].

The network p[[ r!` ]] ‖ q[[ p?`1 + p?`2 ]] ‖ r[[ p?` ]] ‖ 〈p, `1,q〉 can be typed by the asynchronous
type

pq?`1; pr!`; pr?` ‖ 〈p, `1,q〉

Figure 5 gives the LTS for asynchronous types. It shows that a communication can
be performed also under a choice or an input guard, provided it is independent from it.
In Rule [IComm-In], for β to be independent from the input guard it is enough to require
that its player be different from that of the input, and that β be able to occur as if it were
performed after the input, namely using the queue that would result from executing it. In
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�i∈Ipq!`i; Gi ‖ M
pq!`k
−−−→ Gk ‖ M · 〈p, `k,q〉 where k ∈ I [Ext-Out]

pq?`; G ‖ 〈p, `,q〉 · M
pq?`
−−−→ G ‖ M [Ext-In]

Gi ‖ M · 〈p, `i,q〉
β
−→ G′i ‖ M

′
· 〈p, `i,q〉 for all i ∈ I p < play(β)

[IComm-Out]
�i∈Ipq!`i; Gi ‖ M

β
−→�i∈Ipq!`i; G′i ‖ M

′

G ‖ M
β
−→ G′ ‖ M′ q < play(β)

[IComm-In]
pq?`; G ‖ 〈p, `,q〉 · M

β
−→ pq?`; G′ ‖ 〈p, `,q〉 · M′

Figure 5: LTS for asynchronous types.

Rule [IComm-Out] there is an additional subtlety, since we must also make sure that β is
not the matching input for any of the outputs in the guarding choice. This is achieved by
the condition in the premise, which requires β to be able to occur after each of the outputs
using the resulting queue, while not consuming the message added by that output.

We say that G ‖ M
β
−→ G′ ‖ M′ is a top transition if it is derived using either Rule

[Ext-Out] or Rule [Ext-In]. We show that top transitions preserve the well-formedness of
asynchronous types:

Lemma 3.9 . If G ‖ M
β
−→ G′ ‖ M′ is a top transition and G ‖ M is well formed, then G′ ‖ M′ is

well formed too.

Proof. If the transition is derived using Rule [Ext-Out], then G =�i∈Ipq!`i; Gi and for some
k ∈ I we have G′ = Gk and M′ ≡ M · 〈p, `k,q〉. We show that Gk ‖ M · 〈p, `k,q〉 is well
formed. Since G�p is defined for all p, by definition of projection also Gk �p is defined for
all p. Since G is bounded and Gk is a subtree of G, also Gk is bounded. Finally, `b G ‖ M
implies `b Gk ‖ M · 〈p, `k,q〉 by inversion on Rule [Out] of Figure 3.

If the transition is derived using Rule [Ext-In], then G = pq?`; G′ and the proof is similar
and simpler.

The following lemma (proved in the Appendix) detects the immediate transitions of an
asynchronous type from the projections of its global type.

Lemma 3.10 . Let G ‖ M be well formed.

(1) If G�p =
⊕

i∈I q!`i; Pi, then G ‖ M
pq!`i
−−−→ Gi ‖ M · 〈p, `i,q〉 and Gi�p = Pi for all i ∈ I.

(2) If G � q = Σi∈Ip?`i; Pi and M ≡ 〈p, `,q〉 · M′ for some `, then I = {k} and ` = `k and

G ‖ M
pq?`k
−−−−→ G′ ‖ M′ and G′�q = Pk.

We can also detect the projections of a global type from the immediate transitions of the
asynchronous type obtained by putting the global type in parallel with a compliant queue.
Again the proof is in the Appendix.

Lemma 3.11 . Let G ‖ M be well formed.
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(1) If G ‖ M
pq!`
−−−→ G′ ‖ M′, thenM′ ≡ M · 〈p, `,q〉 and G�p =

⊕
i∈I q!`i; Pi and ` = `k and

G′�p = Pk for some k ∈ I and G� r ≤ G′� r for all r , p.

(2) If G ‖ M
pq?`
−−−→ G′ ‖ M′ thenM ≡ 〈p, `,q〉 · M′ and G�q = pq?`; G′�q and G� r ≤ G′� r

for all r , q.

The previous lemma will be used to show that transitions of well-formed asynchronous
types preserve projectability of their global types. The LTS preserves well-formedness if
also balancing is maintained.

Lemma 3.12 . If `b G ‖ M and G ‖ M
β
−→ G′ ‖ M′, then `b G′ ‖ M′.

Proof. By induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′ of Figure 5.

Base Cases. Immediate from Lemma 3.9.
Inductive Cases. Let G ‖ M

β
−→ G′ ‖ M′ with Rule [IComm-Out]. Then we get G =

�i∈Ipq!`i; Gi and G′ =�i∈Ipq!`i; G′i and Gi ‖ M · 〈p, `i,q〉
β
−→ G′i ‖ M

′
· 〈p, `i,q〉 for all i ∈ I.

From Rule [Out] of Figure 3, we get `b Gi ‖ M·〈p, `i, q〉 for all i ∈ I. By induction hypotheses
for all i ∈ I we can derive `b G′i ‖ M · 〈p, `i,q〉. Therefore using Rule [Out] we conclude
`

b G′ ‖ M′.
Similarly for Rule [IComm-In].

We are now able to show that transitions preserve well-formedness of asynchronous
types.

Lemma 3.13 . If G ‖ M is a well formed asynchronous type and G ‖ M
β
−→ G′ ‖ M′, then G′ ‖ M′

is a well formed asynchronous type too.

Proof. Let β = pq!`. By Lemma 3.11(1) we have that G′ � r is defined for all r ∈ play(G).
Similarly for β = pq?`, using Lemma 3.11(2). The proof that depth(G′′, r) is finite for all r
and G′′ subtree of G′ is easy by induction on the transition rules of Figure 5.
Finally, from Lemma 3.12 we have that G′ ‖ M′ is balanced.

The two clauses of the projection of an output choice on the receiver, see Figure 2, are
needed for the LTS to preserve projectability of well-formed asynchronous types, as the
following example shows.

Example 3.14 . Let G = pq!`; pq?`; G′, where G′ = qr!`1; qr?`1; pq?`�qr!`2; qr?`2; pq?`. The
asynchronous type G ‖ 〈p, `, q〉 is well formed. Assume we modify the definition of projection of an
output choice on the receiver by removing its first clause and the restriction of the second to |J| > 1.
Then G � q is defined since (pq?`; G′) � q = p?`; (r!`1; p?` ⊕ r!`2; p?`) has the required shape.

Applying Rule [IComm-Out] we get G ‖ 〈p, `,q〉
pq?`
−−−→ pq!`; G′ ‖ ∅. The projection (pq!`; G′)�q

would not be defined since G′�q = r!`1; p?` ⊕ r!`2; p?` does not have the required shape.

By virtue of Lemma 3.13, we will henceforth only consider well-formed asynchronous
types.

We end this section with the expected results of Subject Reduction, Session Fidelity [42,
43] and Progress [31, 19], which rely as usual on Inversion and Canonical Form lemmas.

Lemma 3.15 (Inversion). If ` N ‖ M : G ‖ M, then P ≤ G�p for all p[[ P ]] ∈ N.
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Lemma 3.16 (Canonical Form). If ` N ‖ M : G ‖ M and p ∈ play(G), then p[[ P ]] ∈ N and
P ≤ G�p .

Theorem 3.17 (Subject Reduction). If ` N ‖ M : G ‖ M and N ‖ M
β
−→ N′ ‖ M′, then

G ‖ M
β
−→ G′ ‖ M′ and ` N′ ‖ M′ : G′ ‖ M′.

Proof. Let β = pq!`. By Rule [Send] of Figure 1, p[[
⊕

i∈I q!`i; Pi ]] ∈ N and p[[ Pk ]] ∈ N′ and
M
′ =M · 〈p, `k,q〉 and ` = `k for some k ∈ I. Moreover r[[ R ]] ∈ N iff r[[ R ]] ∈ N′ for all r , p.

From Lemma 3.15 we get
(1)
⊕

i∈I q!`i; Pi ≤ G�p , which implies G�p =
⊕

i∈I q!`i; P′i with Pi ≤ P′i for all i ∈ I from
Rule [ ≤ -out] of Figure 4 , and

(2) R ≤ G� r for all r , p such that r[[ R ]] ∈ N.

By Lemma 3.10(1) G ‖ M
pq`k
−−−→ Gk ‖ M · 〈p, `k, q〉 and Gk �p = P′k, which implies Pk ≤ Gk �p .

By Lemma 3.11(1) G� r ≤ Gk � r for all r , p. By transitivity of ≤we have R ≤ Gk � r for all
r , p. We can then choose G′ = Gk.
Let β = pq?`. By Rule [Rcv] of Figure 1, q[[ Σ j∈Jp?` j; Q j ]] ∈ N and q[[ Qk ]] ∈ N′ and
M = 〈p, `k,q〉 · M′ and ` = `k for some k ∈ J. Moreover r[[ R ]] ∈ N iff r[[ R ]] ∈ N′ for all r , q.
From Lemma 3.15 we get
(1) Σ j∈Jp?` j; Q j ≤ G�q , which implies G�q = Σ j∈Ip?` j; Q′j with I ⊆ J and Qi ≤ Q′i for all

i ∈ I from Rule [ ≤ -in] of Figure 4, and
(2) R ≤ G� r for all r , q such that r[[ R ]] ∈ N.

By Lemma 3.10(2), sinceM = 〈p, `k,q〉 · M′, we get G ‖ M
pq?`k
−−−−→ Gk ‖ M

′ and I = {k} and
Gk �q = Q′k, which implies Qk ≤ Gk �p . By Lemma 3.11(2) G� r ≤ Gk � r for all r , q. By
transitivity of ≤we have R ≤ Gk � r for all r , q. We can then choose G′ = Gk.

Theorem 3.18 (Session Fidelity). If ` N ‖ M : G ‖ M and G ‖ M
β
−→ G′ ‖ M′, then

N ‖ M
β
−→ N′ ‖ M′ and ` N′ ‖ M′ : G′ ‖ M′.

Proof. Let β = pq!`. By Lemma 3.11(1) M′ ≡ M · 〈p, `,q〉, G � p =
⊕

i∈I p!`i; Pi, ` = `k,
G′ � p = Pk for some k ∈ I and G � r ≤ G′ � r for all r , p. From Lemma 3.16 we get
N ≡ p[[ P ]] ‖ N′′ and
(1) P =

⊕
i∈I q!`i; P′i with P′i ≤ Pi for all i ∈ I, from Rule [ ≤ -out] of Figure 4, and

(2) R ≤ G� r for all r[[ R ]] ∈ N′′.
We can then choose N′ = p[[ P′k ]] ‖ N′′.
Let β = pq?`. By Lemma 3.11(2) M ≡ 〈p, `,q〉 · M′, G � q = p?`; P, G′ � q = P and
G� r ≤ G′� r for all r , q. From Lemma 3.16 we get N ≡ q[[ Q ]] ‖ N′′ and
(1) Q = p?`; P′ + Q′ with P′ ≤ P, from Rule [ ≤ -in] of Figure 4, and
(2) R ≤ G� r for all r[[ R ]] ∈ N′′.
We can then choose N′ = q[[ P′ ]] ‖ N′′.

We are now able to prove that in a typable network, every participant whose process is
not terminated may eventually perform an action, and every message that is stored in the
queue is eventually read. This property is generally referred to as progress [44].

Theorem 3.19 (Progress). A typable network N ‖ M satisfies progress, namely:
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(1) p[[ P ]] ∈ N implies N ‖ M
τ · β
−−→ N′ ‖ M′ with play(β) = {p};

(2) M ≡ 〈p, `,q〉 · M1 implies N ‖ M
τ ·pq?`
−−−−−→ N′ ‖ M′.

Proof. By hypothesis ` N ‖ M : G ‖ M for some G.
(1) If P is an output process, then it can immediately move. Let then P be an input

process. From p[[ P ]] ∈ N we get p ∈ play(G) and therefore depth(G,p) > 0. Moreover,
since G is bounded, it must be depth(G, p) < ∞. We prove by induction on depth(G, p) that

0 < depth(G,p) < ∞ implies G ‖ M
τ · β
−−→ G′ ‖ M′ with play(β) = {p}. By Session Fidelity

(Theorem 3.18) it will follow that N ‖ M
τ · β
−−→ N′ ‖ M′. Let d = depth(G,p).

Case d = 1. Here G = qp?`; G′. Since G ‖ M is balanced,M ≡ 〈q, `,p〉 · M′ by Rule [In] of

Figure 3. Then G ‖ M
qp?`
−−−→ G′ ‖ M′ by Rule [Ext-In] of Figure 5.

Case d > 1. Here we have either G =�i∈Irs!`i; Gi with r , p or G = rs?`; G′′′ with s , p. By
Lemma 3.4 this implies depth(Gi,p) < d for all i ∈ I in the first case, and depth(G′′′,p) < d
in the second case. Hence in both cases, by applying Rule [Ext-Out] or Rule [Ext-In] of

Figure 5, we get G ‖ M
β′
−→ G′′ ‖ M′′. Since either G′′ = Gk for some k ∈ I or G′′ = G′′′we get

play(β′) , {p} and depth(G′′,p) < d. In case G is a choice of outputs we get p ∈ play(G′′) by
projectability of G if p , s and by balancing of G ‖ M if p = s. Thus 0 < depth(G′′, p) < d < ∞.

We may then apply induction to get G′′ ‖ M′′
τ · β
−−→ G′ ‖ M′ with play(β) = {p}. Therefore

G ‖ M
β′ · τ · β
−−−−−→ G′ ‖ M′ is the required transition sequence.

(2) Let the input depth of the input pq?` in G, notation idepth(G,pq?`), be inductively
defined by:

idepth(�i∈Irs!`i; Gi,pq?`) = 1 + supi∈I{idepth(Gi,pq?`)}

idepth(rs?`′; G′,pq?`) =

1 if pq?` = rs?`′

1 + idepth(G′,pq?`) otherwise
By hypothesisM ≡ 〈p, `, q〉 ·M1. Notice that `b G ‖ 〈p, `, q〉 ·M1 implies that idepth(G, pq?`)
is finite, since proof derivations are regular and only Rule [In] of Figure 3 adds messages to
the queue together with the corresponding inputs. More precisely idepth(G,pq?`) is the
number of rule applications between the rule which introduces 〈p, `, q〉 and the conclusion
in the derivation of `b G ‖ 〈p, `,q〉 · M1.

We prove by induction on idepth(G,p) that G ‖ M
τ ·pq?`
−−−−−→ G′ ‖ M′. By Session Fidelity

(Theorem 3.18) it will follow that N ‖ M
τ ·pq?`
−−−−−→ N′ ‖ M′. Let id = idepth(G,p).

Case id = 1. Here G = pq?`; G′, which implies G ‖ M
pq?`
−−−→ G′ ‖ M1 by Rule [Ext-In] of

Figure 5.
Case id > 1. As in the proof of Statement (1), by applying Rule [Ext-Out] or Rule [Ext-In] of
Figure 5 we get

G ‖ M
β
−→ G′′ ‖ M′′

where β , pq?` and thus idepth(G′′,pq?`) < id. By induction G′′ ‖ M′′
τ ·pq?`
−−−−−→ G′ ‖ M′. We

conclude that G ‖ M
β · τ ·pq?`
−−−−−−−→ G′ ‖ M′ is the required transition sequence.

The proof of Theorem 3.19 shows that the desired transition sequences use only Rules
[Ext-Out] and [Ext-In] and the output choice is arbitrary. Moreover the lengths of these
transition sequences are bounded by depth(G,p) and idepth(G,pq?`), respectively.
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4. Event Structures

We recall now the definitions of Prime Event Structure (PES) from [59] and Flow Event
Structure (FES) from [5]. The class of FESs is more general than that of PESs: for a precise
comparison of various classes of event structures, we refer the reader to [6]. As we shall see
in Sections 5 and 6, while PESs are sufficient to interpret processes, the generality of FESs is
needed to interpret networks.

Definition 4.1 (Prime Event Structure). A prime event structure (PES) is a tuple S = (E,≤, # )
where:
(1) E is a denumerable set of events;
(2) ≤⊆ (E × E) is a partial order relation, called the causality relation;
(3) # ⊆ (E × E) is an irreflexive symmetric relation, called the conflict relation, satisfying the

property: ∀e, e′, e′′ ∈ E : e # e′ ≤ e′′ ⇒ e # e′′ (conflict hereditariness).

Definition 4.2 (Flow Event Structure). A flow event structure (FES) is a tuple S = (E,≺, # )
where:
(1) E is a denumerable set of events;
(2) ≺⊆ (E × E) is an irreflexive relation, called the flow relation;
(3) # ⊆ (E × E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its reflexive and
transitive closure is just a preorder, not necessarily a partial order). Intuitively, the flow
relation represents a possible direct causality between two events. Observe also that in a
FES the conflict relation is not required to be irreflexive nor hereditary; indeed, FESs may
exhibit self-conflicting events, as well as disjunctive causality (an event may have conflicting
causes).

Any PES S = (E,≤, # ) may be regarded as a FES, with ≺ given by < (the strict ordering)
or by the covering relation of ≤.

We now recall the definition of configuration for event structures. Intuitively, a
configuration is a set of events having occurred at some stage of the computation. Thus,
the semantics of an event structure S is given by its poset of configurations ordered by set
inclusion, where X1 ⊂ X2 means that S may evolve from X1 to X2.

Definition 4.3 (PES configuration). Let S = (E,≤, # ) be a prime event structure. A configuration
of S is a finite subset X of E such that:
(1) X is downward-closed: e′ ≤ e ∈ X ⇒ e′ ∈ X;
(2) X is conflict-free: ∀e, e′ ∈ X,¬(e # e′).

The definition of configuration for FESs is slightly more elaborated. For a subset X of
E, let ≺X be the restriction of the flow relation to X and ≺∗

X
be its transitive and reflexive

closure.

Definition 4.4 (FES configuration). Let S = (E,≺, # ) be a flow event structure. A configuration
of S is a finite subset X of E such that:
(1) X is downward-closed up to conflicts: e′ ≺ e ∈ X, e′ < X ⇒ ∃ e′′ ∈ X. e′ # e′′ ≺ e;
(2) X is conflict-free: ∀e, e′ ∈ X,¬(e # e′);
(3) X has no causality cycles: the relation ≺∗

X
is a partial order.
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Condition (2) is the same as for prime event structures. Condition (1) is adapted to
account for the more general – non-hereditary – conflict relation. It states that any event
appears in a configuration with a “complete set of causes”. Condition (3) ensures that any
event in a configuration is actually reachable at some stage of the computation.

If S is a prime or flow event structure, we denote by C(S) its set of configurations. Then,
the domain of configurations of S is defined as follows:

Definition 4.5 (ES configuration domain). Let S be a prime or flow event structure with
set of configurations C(S). The domain of configurations of S is the partially ordered set
D(S)=def(C(S),⊆).

We recall from [6] a useful characterisation for configurations of FESs, which is based
on the notion of proving sequence, defined as follows:

Definition 4.6 (Proving sequences). Given a flow event structure S = (E,≺, # ), a proving
sequence in S is a sequence e1; · · · ; en of distinct non-conflicting events (i.e. i , j ⇒ ei , e j and
¬(ei # e j) for all i, j) satisfying:

∀i ≤ n∀e ∈ E : e ≺ ei ⇒ ∃k < i . either e = ek or e # ek ≺ ei

Note that any prefix of a proving sequence is itself a proving sequence.
We have the following characterisation of configurations of FESs in terms of proving

sequences.

Proposition 4.7 (Representation of configurations as proving sequences [6]). Given a flow
event structure S = (E,≺, # ), a subset X of E is a configuration of S if and only if it can be
enumerated as a proving sequence e1; · · · ; en.

Since PESs may be viewed as particular FESs, we may use Definition 4.6 and Propo-
sition 4.7 both for the FESs associated with networks (see Section 6) and for the PESs
associated with asynchronous global types (see Section 7). Note that for a PES the condition
of Definition 4.6 simplifies to

∀i ≤ n∀e ∈ E : e < ei ⇒ ∃k < i . e = ek

To conclude this section, we recall from [18] the definition of downward surjectivity
(or downward-onto, as it was called there), a property that is required for partial functions
between two FESs in order to ensure that they preserve configurations. We will make use of
this property in Section 6.

Definition 4.8 (Downward surjectivity). Let Si = (Ei,≺i, # i), be a flow event structure, i = 0, 1.
Let ei, e′i range over Ei, i = 0, 1. A partial function f : E0 → E1 is downward surjective if it
satisfies the condition:

e1 ≺1 f (e0) =⇒ ∃e′0 ∈ E0 . e1 = f (e′0)

Downward surjectivity ensures that the set of causes of an event belonging to the codomain
of the function is itself included in the codomain of the function.

5. Event Structure Semantics of Processes

In this section, we present an ES semantics for processes, and show that the obtained ESs
are PESs. This semantics, which is borrowed from our companion paper [15], will be the
basis for defining the ES semantics for networks in Section 6.
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We start by introducing process events, which are non-empty sequences of atomic
actions π as defined at the beginning of Section 2.

Definition 5.1 (Process event). Process events (p-events for short) η, η′ are defined by:
η ::= π | π · η

We denote by PE the set of p-events.

Note the difference with the sequences −→π used in Figure 2, where actions are separated by
“;”.

Let ζ denote a (possibly empty) sequence of actions, and v denote the prefix ordering
on such sequences. Each p-event η may be written either in the form η = π · ζ or in the form
η = ζ ·π. We shall feel free to use any of these forms. When a p-event is written as η = ζ ·π,
then ζ may be viewed as the causal history of η, namely the sequence of actions that must
have been executed by the process for η to be able to happen.

We define the action of a p-event to be its last atomic action:
act(ζ ·π) = π

A p-event η is an output p-event if act(η) is an output and an input p-event if act(η) is an
input.

Definition 5.2 (Causality and conflict relations on p-events). The causality relation ≤ and the
conflict relation # on the set of p-events PE are defined by:
(1) η v η′ ⇒ η ≤ η′;
(2) π , π′ ⇒ ζ ·π · ζ′ # ζ ·π′ · ζ′′.

Definition 5.3 (Event structure of a process). The event structure of process P is the triple
S
P(P) = (PE(P),≤P, # P)

where:
(1) PE(P) ⊆ PE is the set of sequences of decorations along the nodes and edges of a path from the

root to an edge in the tree of P;
(2) ≤P is the restriction of ≤ to the set PE(P);
(3) # P is the restriction of # to the set PE(P).

In the following we shall feel free to drop the subscript in ≤P and # P.

Note that the set PE(P) may be denumerable, as shown by the following example.

Example 5.4 . If P = q!`; P ⊕ q!`′, then
PE(P) = {q!` · . . . · q!`︸        ︷︷        ︸

n

| n ≥ 1} ∪ {q!` · . . . · q!`︸        ︷︷        ︸
n

·q!`′ | n ≥ 0}

We conclude this section by showing that the ESs of processes are PESs.

Proposition 5.5 . Let P be a process. Then SP(P) is a prime event structure with an empty
concurrency relation.

Proof. We show that ≤ and # satisfy Properties (2) and (3) of Definition 4.1. Reflexivity,
transitivity and antisymmetry of ≤ follow from the corresponding properties of v. As
for irreflexivity and symmetry of # , they follow from Clause (2) of Definition 5.2 and the
symmetry of inequality. To show conflict hereditariness, suppose that η # η′ ≤ η′′. From
Clause (2) of Definition 5.2 there are π, π′, ζ, ζ′ and ζ′′ such that π , π′ and η = ζ ·π · ζ′ and
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η′ = ζ ·π′ · ζ′′. From η′ ≤ η′′ we derive that η′′ = ζ ·π′ · ζ′′ · ζ1 for some ζ1. Therefore again
from Clause (2) we obtain η # η′′.

6. Event Structure Semantics of Networks

We present now the ES semantics of networks. In the ES of a network, asynchronous
communication will be modelled by two causally related events, the first representing an
asynchronous output, namely the enqueuing of a message in the queue, and the second
representing an asynchronous input, namely the dequeuing of a message from the queue.

We start by defining the o-trace of a queueM, notation otr(M), which is the sequence of
output communications corresponding to the messages in the queue. We use ω to range
over o-traces.

Definition 6.1 . The o-trace corresponding to a queue is defined by
otr(∅) = ε otr(〈p, `,q〉 · M) = pq!` ·otr(M)

O-traces are considered modulo the following equivalence �, which mimics the struc-
tural equivalence on queues.

Definition 6.2 (o-trace equivalence �). The equivalence � on o-traces is the least equivalence
such that

ω ·pq!` · rs!`′ ·ω′ � ω · rs!`′ ·pq!` ·ω′ if p , r or q , s

Network events are p-events associated with a participant.

Definition 6.3 (Network events). (1) Network events ρ, ρ′, also called n-events, are p-events
located at some participant p, written p :: η.

(2) We define i/o(ρ) =

pq!` if ρ = p :: ζ ·q!`
pq?` if ρ = q :: ζ ·p?`

and we say that ρ is an output n-event representing the communication pq!` or an input
n-event representing the communication pq?`, respectively.

(3) We denote byNE the set of n-events.

In order to define the flow relation between an output n-event p :: ζ · q!` and the matching
input n-event q :: ζ · p?`, we introduce a duality relation on projections of action sequences,
see Definition 6.5. We first define the projection of traces on participants, producing action
sequences (Definition 6.4(1)), and then the projection of action sequences on participants,
producing sequences of undirected actions of the form !` and ?` (Definition 6.4(2)).

In the sequel, we will use the symbol † to stand for either ! or ?. Then p†` will stand for
either p!` or p?`. Similarly,†` will stand for either !` or ?`.

Definition 6.4 (Projections). (1) The projection of a trace on a participant is defined by:

ε@ r = ε (β · τ) @ r =


q!` · τ@ r if β = rq!`
p?` · τ@ r if β = pr?`
τ@ r otherwise

(2) The projection of an action sequence on a participant is defined by:

ε� r = ε (π · ζ)� r =

†` · ζ� r if π = r†`
ζ� r otherwise
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We use χ to range over sequences of output actions and ϑ to range over sequences of
undirected actions.

We now introduce a partial order relation v on sequences of undirected actions, which
reflects the fact that in an asynchronous semantics it is better to anticipate outputs, as first
observed in [57]. This relation, as well as the standard duality relation Z on projections,
will be used to define our specific duality relation vZw on projections of action sequences.

Definition 6.5 (Partial order and duality relations on undirected action sequences). The
three relations v, Z and vZw on undirected action sequences are defined as follows:
(1) The relation v on undirected action sequences is defined as the smallest partial order such that:

ϑ · !` · ?`′ ·ϑ′ v ϑ · ?`′ · !` ·ϑ′

(2) The relation Z on undirected action sequences is defined by:
ε Z ε ϑ Z ϑ′ ⇒ !`.ϑ Z ?`.ϑ′and ?`.ϑ Z !`.ϑ′

(3) The relation vZw on undirected action sequences is defined by:
ϑ1 vZw ϑ2 if ϑ′1 Z ϑ

′

2 for some ϑ′1, ϑ
′

2 such that ϑ1 v ϑ′1 and ϑ2 v ϑ′2

For example !`1 · !`2 · ?`3 v ?`3 · !`1 · !`2, which implies !`1 · !`2 · ?`3 vZw !`3 · ?`1 · ?`2.
We may now define the flow and conflict relations on n-events. Notably the flow

relation is parametrised on an o-trace representing the queue.

Definition 6.6 (ω-flow and conflict relations on n-events). The ω-flow relation ≺ω and the
conflict relation # on the set of n-eventsNE are defined by:
(1) (a) η < η′ ⇒ p :: η ≺ω p :: η′;

(b) (ω@ p · ζ)�q vZw (ω@ q · ζ′′)�p and (ζ′ ·p?`)�p v (ζ′′ ·p?` ·χ)�p for some ζ′′ and
χ⇒ p :: ζ ·q!` ≺ω q :: ζ′ ·p?`;

(2) η # η′ ⇒ p :: η # p :: η′.

Clause (1a) defines flows within the same “locality” p, which we call local flows, while
Clause (1b) defines flows between different localities, which we call cross-flows: these are
flows between an output of p towards q and the corresponding input of q from p. The
condition in Clause (1b) expresses a sort of “weak duality” between the history of the
output and the history of the input: the intuition is that if q has some outputs towards p
occurring in ζ′, namely before its input p?`, then when checking for duality these outputs
can be moved after p?`, namely in χ, because q does not need to wait until p has consumed
these outputs to perform its input p?`. This condition can be seen at work in Examples 6.12
and 6.13.

The reason for parametrising the flow relation with an o-trace ω is that the cross-flow
relation depends on ω, which in the FES of a network N ‖ Mwill be image through otr of
the queueM.

For example, we have a cross-flow ρ ≺ω ρ′ between the following n-events, where
ω = pq!`1 ·pq!`2 ·qs!`5 ·qp!`3:

ρ = p :: r?`4 ·q?`3 ·q!` ≺ω q :: p!`′ ·p?`1 ·p?`2 ·p?` = ρ′

since in this case ζ = r?`4 ·q?`3 and ζ′ = p!`′ ·p?`1 ·p?`2, and thus, taking ζ′′ = p?`1 ·p?`2
and χ = p!`′, we obtain

(ω@ p · ζ)�q = !`1 · !`2 · ?`3 v ?`3 · !`1 · !`2 Z !`3 · ?`1 · ?`2 = (ω@ q · ζ′′)�p
and

(ζ′ ·p?`)�p = !`′ · ?`1 · ?`2 · ?` v ?`1 · ?`2 · ?` · !`′ = (ζ′′ ·p?` ·χ)�p
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When ρ = p :: η ≺ω q :: η′ = ρ′ and p , q, then by definition ρ is an output and ρ′ is an
input. In this case we say that the output ρ ω-justifies the input ρ′, or symmetrically that the
input ρ′ is ω-justified by the output ρ. An input n-event may also be justified by a message
in the queue. Both justifications are formalised by the following definition.

Definition 6.7 (Justifications of n-events). (1) The input n-event ρ is ω-justified by the output
n-event ρ′ if ρ′ ≺ω ρ and they are located at different participants.

(2) The input n-event ρ = q :: ζ · p?` is ω-queue-justified if there exists ω′ such that ω′ · pq!` is a
prefix of ω (modulo �) and p :: (ω′@ p ) ·q!` ≺ε ρ.

The condition p :: (ω′@ p ) ·q!` ≺ε ρ ensures that the inputs from p in ζ will consume
exactly the messages from p to q in the queue ω′. For example, if ω = pq!` · pq!`, then both
q :: p!`′ ·p?` and q :: p!`′ ·p?` ·p?` are ω-queue-justified. On the other hand, if ω = pq!`,
then q :: p?` ·p?` is not ω-queue-justified.

To define the set of n-events associated with a network, we filter the set of all its potential
n-events by keeping only
– those n-events whose constituent p-events have all their predecessors appearing in some

other n-event of the network and
– those input n-events that are either queue justified or justified by output n-events of the

network.

Definition 6.8 (Narrowing). Given a set E of n-events and an o-trace ω, we define the narrowing
of E with respect to ω (notation nr(E, ω)) as the greatest fixpoint of the function fE,ω on sets of
n-events defined by:

fE,ω(X) = {ρ ∈ E | ρ = p :: η ·π ⇒ p :: η ∈ X and
(ρ is an input n-event⇒ ρ is either ω-queue-justified

or ω-justified by some ρ′ ∈ X )}

Thus, nr(E, ω) is the greatest set X ⊆ E such that X = fE,ω(X).
Note that we could not have taken nr(E, ω) to be the least fixpoint of fE,ω rather than its

greatest fixpoint. Indeed, the least fixpoint of fE,ω would be the empty set.
It is easy to verify that the n-events which are discarded by the narrowing while their

local predecessors are not discarded must be input events. More precisely:

Fact 6.9 . If ρ ∈ E and ρ < nr(E, ω) and either ρ = p :: π or ρ = p :: η · π with p :: η ∈ nr(E, ω),
then ρ is an input event.

We have now enough machinery to define the ES of networks.

Definition 6.10 (Event structure of a network). The event structure of the network N ‖ M is
the triple:

S
N (N ‖ M) = (NE(N ‖ M),≺ωN‖M, # N‖M)

where ω = otr(M) and
(1) NE(N ‖ M) = nr(DE(N), ω), whereDE(N) = {p :: η | η ∈ PE(P) with p[[ P ]] ∈ N};
(2) ≺ωN‖M is the restriction of ≺ω to the setNE(N ‖ M);
(3) # N‖M is the restriction of # to the setNE(N ‖ M).
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The following example shows how the operation of narrowing prunes the set of potential
n-events of a network ES. It also illustrates the interplay between the two conditions in the
definition of narrowing.

Example 6.11 . Consider the network N ‖ ∅, where N = p[[ q?`; r!`′ ]] ‖ r[[ p?`′ ]]. The set of
potential n-events of SN (N ‖ ∅) is {p :: q?`, p :: q?`; r!`′, r :: p?`′}. The n-event p :: q?` is cancelled,
since it is neither ∅-queue-justified nor ∅-justified by another n-event of the ES. Then p :: q?`; r!`′

is cancelled since it lacks its predecessor p :: q?`. Lastly r :: p?`′ is cancelled, since it is neither
∅-queue-justified nor ∅-justified by another n-event of the ES. Notice that p :: q?`; r!`′ would have
∅-justified r :: p?`′, if it had not been cancelled. We conclude thatNE(N ‖ ∅) = ∅.

Example 6.12 . Consider the ES associated with the network N ‖ ∅, with
N = p[[ q!`; q?`′; q!`; q?`′ ]] ‖ q[[ p!`′; p?`; p!`′; p?` ]]

The n-events of SN (N ‖ ∅) are:
ρ1 = p :: q!` ρ′1 = q :: p!`′

ρ2 = p :: q!` ·q?`′ ρ′2 = q :: p!`′ ·p?`
ρ3 = p :: q!` ·q?`′ ·q!` ρ′3 = q :: p!`′ ·p?` ·p!`′

ρ4 = p :: q!` ·q?`′ ·q!` ·q?`′ ρ′4 = q :: p!`′ ·p?` ·p!`′ ·p?`
The ε-flow relation is given by the cross-flows ρ1 ≺

ε ρ′2, ρ3 ≺
ε ρ′4, ρ

′

1 ≺
ε ρ2, ρ′3 ≺

ε ρ4, as well as by
the local flows ρi ≺

ε ρ j and ρ′i ≺
ε ρ′j for all i, j such that i ∈ {1, 2, 3}, j ∈ {2, 3, 4} and i < j. The

conflict relation is empty.
The configurations of SN (N ‖ ∅) are:

{ρ1} {ρ′1} {ρ1, ρ′1} {ρ1, ρ′1, ρ2} {ρ1, ρ′1, ρ
′

2} {ρ1, ρ′1, ρ2, ρ′2}
{ρ1, ρ′1, ρ2, ρ3} {ρ1, ρ′1, ρ

′

2, ρ
′

3} {ρ1, ρ′1, ρ2, ρ′2, ρ3} {ρ1, ρ′1, ρ2, ρ′2, ρ
′

3} {ρ1, ρ′1, ρ2, ρ′2, ρ3, ρ′3}
{ρ1, ρ′1, ρ2, ρ′2, ρ3, ρ′3, ρ4} {ρ1, ρ′1, ρ2, ρ′2, ρ3, ρ′3, ρ

′

4} {ρ1, ρ′1, ρ2, ρ′2, ρ3, ρ′3, ρ4, ρ′4}

The network N ‖ ∅ can evolve in two steps to the network:
N′ ‖ M′ = p[[ q?`′; q!`; q?`′ ]] ‖ q[[ p?`; p!`′; p?` ]] ‖ 〈p, `,q〉 · 〈q, `′,p〉

The n-events of SN (N′ ‖ M′) are:
ρ5 = p :: q?`′ ρ′5 = q :: p?`
ρ6 = p :: q?`′ ·q!` ρ′6 = q :: p?` ·p!`′

ρ7 = p :: q?`′ ·q!` ·q?`′ ρ′7 = q :: p?` ·p!`′ ·p?`
Let ω = pq!` ·qp!`′. The ω-flow relation is given by the cross-flows ρ6 ≺

ω ρ′7 , ρ′6 ≺
ω ρ7, and by

the local flows ρi ≺
ω ρ j and ρ′i ≺

ω ρ′j for all i, j such that i ∈ {5, 6}, j ∈ {6, 7} and i < j. The input
n-events ρ5 and ρ′5, which are the only ones without causes, are ω-queue-justified. The conflict
relation is empty.

The network N′ ‖ M′ can evolve in five steps to the network:
N′′ ‖ M′′ = q[[ p?` ]] ‖ 〈p, `,q〉

The only n-event of SN (N′′ ‖ M′′) is q :: p?`.

Example 6.13 . Let N = p[[ q!`1; r!` ⊕ q!`2; r!` ]] ‖ q[[ p?`1 + p?`2 ]] ‖ r[[ p?` ]]. The n-events of
S
N (N ‖ ∅) are:

ρ1 = p :: q!`1 ρ′1 = q :: p?`1
ρ2 = p :: q!`2 ρ′2 = q :: p?`2
ρ3 = p :: q!`1 · r!` ρ′′1 = r :: p?`
ρ4 = p :: q!`2 · r!`

The ε-flow relation is given by the local flows ρ1 ≺
ε ρ3, ρ2 ≺

ε ρ4, and by the cross-flows ρ1 ≺
ε ρ′1,
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ρ3 ≺
ε ρ′′1 , ρ2 ≺

ε ρ′2, ρ4 ≺
ε ρ′′1 . The conflict relation is given by ρ1 #ρ2, ρ1 #ρ4, ρ2 #ρ3, ρ3 #ρ4 and

ρ′1 #ρ′2. Notice that ρ3 and ρ4 are conflicting causes of ρ′′1 . Figure 6 illustrates this event structure.
The configurations are

{ρ1} {ρ1, ρ3} {ρ1, ρ′1} {ρ1, ρ3, ρ′1} {ρ1, ρ3, ρ′′1 } {ρ1, ρ3, ρ′1, ρ
′′

1 }

{ρ2} {ρ2, ρ4} {ρ2, ρ′2} {ρ2, ρ4, ρ′2} {ρ2, ρ4, ρ′′1 } {ρ2, ρ4, ρ′2, ρ
′′

1 }

The network N ‖ M can evolve in one step to the network:
N′ ‖ M′ = p[[ r!` ]] ‖ q[[ p?`1 + p?`2 ]] ‖ r[[ p?` ]] ‖ 〈p, `1,q〉

The n-events of SN (N′ ‖ M′) are ρ5 = p :: r!`, ρ′3 = q :: p?`1 and ρ′′2 = r :: p?`. Let ω = pq!`1.
The ω-flow relation is given by the cross-flow ρ5 ≺

ω ρ′′2 . Notice that the input n-event ρ′3 is
ω-queue-justified, and that there is no n-event corresponding to the branch p?`2 of q, since such an
n-event would not be ω-queue-justified. Hence the conflict relation is empty. The configurations are

{ρ5} {ρ′3} {ρ5, ρ′3} {ρ5, ρ′′2 } {ρ5, ρ′3, ρ
′′

2 }

It is easy to show that the ESs of networks are FESs.

Proposition 6.14 . Let N ‖ M be a network. Then SN (N ‖ M) is a flow event structure.

Proof. Let ω = otr(M). The relation ≺ω is irreflexive since:
(1) η < η′ implies p :: η , p :: η′;
(2) p , q implies p :: ζ ·q!` , q :: ζ′ ·p?`.
Symmetry of the conflict relation between n-events follows from the corresponding property
of conflict between p-events.

In the remainder of this section we show that projections of n-event configurations
give p-event configurations. We start by formalising the projection function of n-events to
p-events and showing that it is downward surjective.

Definition 6.15 (Projection of n-events to p-events). The projection function projp(·) is defined
by:

projp(ρ) =

η if ρ = p :: η
undefined otherwise

The projection function projp(·) is extended to sets of n-events in the obvious way:
projp(X) = {η | ∃ρ ∈ X . projp(ρ) = η}

Proposition 6.16 (Downward surjectivity of projections). Let
p[[ P ]] ∈ N and SN (N ‖ M) = (NE(N ‖ M),≺ω, # ) and SP(P) = (PE(P),≤P, # P)

Then the partial function projp : NE(N ‖ M)→ PE(P) is downward surjective.

Proof. Follows immediately from the fact that NE(N ‖ M) is the narrowing of a set of
n-events p :: η with ω = otr(M) and p[[ P ]] ∈ N and η ∈ PE(P).

The operation of narrowing on network events makes sure that each configuration of
the ES of a network projects down to configurations of the ESs of the component processes.

Proposition 6.17 (Projection preserves configurations). Let p[[ P ]] ∈ N. If X ∈ C(SN (N ‖ M)),
then projp(X) ∈ C(SP(P)).

Proof. Let X ∈ C(SN (N ‖ M)) and Y = projp(X). We want to show that Y ∈ C(SP(P)),
namely thatY satisfies Conditions (1) and (2) of Definition 4.3.
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(1) Downward-closure. Let η ∈ Y. SinceY = projp(X), there exists ρ ∈ X such that ρ = p :: η.
Suppose η′ < η. From Proposition 6.16 there exists ρ′ ∈ NE(N ‖ M) such that ρ′ = p :: η′.
Let ω = otr(M). By Definition 6.6(1a) we have then ρ′ ≺ω ρ. Since X is left-closed up to
conflicts, we know that either ρ′ ∈ X or there exists ρ′′ ∈ X such that ρ′′ #ρ′ and ρ′′ ≺ ρ.
We examine the two cases in turn:
– ρ′ ∈ X. Then, since η′ = projp(ρ′), we have η′ ∈ projp(X) = Y and we are done.
– ∃ρ′′ ∈ X . ρ′′ #ρ′ and ρ′′ ≺ ρ. From ρ′′ #ρ′ we get ρ′′ = p :: η′′ and η′′ # η′. This

implies η′′ # η. By Definition 6.6(2) this implies ρ #ρ′, contradicting the hypothesis
that X is conflict-free. So this case is impossible.

(2) Conflict-freeness. Ad absurdum, suppose there exist η, η′ ∈ Y such that η # η′. Then,
since Y = projp(X), there must exist ρ, ρ′ ∈ X such that ρ = p :: η and ρ′ = p :: η′. By
Definition 6.6(2) this implies ρ #ρ′, contradicting the hypothesis that X is conflict-free.

Notice that there are configurations of C(SP(P)) which cannot be obtained by projecting
configurations of C(SN (N ‖ M)) in spite of the condition p[[ P ]] ∈ N. A simple example is
p[[ q?` ]] ‖ ∅.

7. Event Structure Semantics of Asynchronous Types

We define now the event structure associated with an asynchronous type. The events of
this ES will be equivalence classes of pairs whose elements are particular traces. The first
element of all these pairs will be the o-trace corresponding to the queue of the type, while
their second elements will be particular subtraces of the traces of its global type.

For traces τ, as given in Definition 2.3, we use the following notational conventions:
– We denote by τ[i] the i-th element of τ, i > 0.
– If i ≤ j, we define τ[i ... j] = τ[i] · · · τ[ j] to be the subtrace of τ consisting of the ( j − i + 1)

elements starting from the i-th one and ending with the j-th one. If i > j, we define τ[i ... j]
to be the empty trace ε.

If not otherwise stated we assume that τ has n elements, so τ = τ[1 ...n].
In the traces appearing in events, we want to require that every input matches a

corresponding output. This is checked using the multiplicity of pq† in τ, defined by induction
as follows:

m(pq†, ε) = 0 m(pq†, β · τ) =

m(pq†, τ) + 1 if β = pq†`
m(pq†, τ) otherwise

where † ∈ {!, ?} (as in Definition 6.4).
An input of q from p matches a preceding output from p to q in a trace if it has the same
label ` and the number of inputs from p to q in the subtrace before the given input is equal
to the number of outputs from p to q in the subtrace before the given output.
This is formalised using the above multiplicity and the positions of communications in
traces.

Definition 7.1 (Matching). The input τ[ j] = pq?` matches the output τ[i] = pq!` in τ, dubbed
i ∝ τ j, if i < j and m(pq!, τ[1 ... i − 1]) = m(pq?, τ[1 ... j − 1]).

For example, if τ = pq!`; pq!`; pq!`; pq?`; pq?`, then 1 ∝ τ4 and 2 ∝ τ5, while no input matches
the output at position 3.
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As mentioned earlier, o-traces will be used to represent queues and general traces are
paths in global type trees. We want to define an equivalence relation on general traces,
which allows us to exchange the order of adjacent communications when this order is not
essential. This is the case if the communications have different players and in addition they
are not matching according to Definition 7.1. However, the matching relation must also
take into account the fact that some outputs are already on the queue. So we will consider
well-formedness with respect to a prefixing o-trace. We proceed as follows:
– we start with well-formed traces (Definition 7.2);
– we define the swapping relation Bω which allows two communications to be interchanged

in a trace τ, when these communications are independent in the trace ω · τ (Definition 7.3);
– then we show that Bω preserves ω-well-formedness (Lemma 7.4);
– finally we define the equivalence ≈ω on ω-well-formed traces (Definition 7.5).

In a well-formed trace each input must have a corresponding output. We also need a
notion of well-formedness for a suffix of a trace w.r.t. the whole trace.

Definition 7.2 (Well-formedness).

(1) A trace τ is well formed if every input matches an output in τ.
(2) A trace τ is τ′-well formed if τ′ · τ is well formed.

As an example, the trace τ = pq!` · pq!`′ · pq?`′ is not well formed since 2 6∝ τ 3. On the other
hand, τ is pq!`′-well formed, since pq!`′ · τ is well formed given that 1 ∝pq!`′ · τ4.

Notice that any o-trace is well formed and any well-formed trace of length 1 must be
an output. A well-formed trace of length 2 can consist of either two outputs or an output
followed by the matching input. Note also that, if τ′ is an o-trace, then the τ′-well formedness
condition is akin to (half of) the balancing condition for asynchronous types.

Definition 7.3 (Swapping). Let τ beω-well formed. We say that τ ω-swaps to τ′, notation τBωτ′,
if

τ = τ[1 ... i − 1] · β · β′ · τ′′ τ′ = τ[1 ... i − 1] · β′ · β · τ′′ and
play(β) ∩ play(β′) = ∅ and ¬(i + |ω | ∝ω·τ i + 1 + |ω |)

For instance, if ω = pq!` and τ = pq!` ·pq?`, then τ ω-swaps to τ′ = pq?` ·pq!` because the
input in τ matches the output in ω.

Lemma 7.4 . If τ is ω-well formed and τBωτ′, then τ′ is ω-well formed too.

Proof. Let τ = τ[1 ... i − 1] · β · β′ · τ1 and τ′ = τ[1 ... i − 1] · β′ · β · τ1. We want to prove that
ω · τ′ is well formed. To this end, we will show that if β or β′ is an input, then it matches an
output that occurs in the prefix (ω · τ)[1 ... i − 1 + |ω |] of ω · τ′. Note that it must be β , β′,
since by hypothesis play(β) ∩ play(β′) = ∅.
Suppose β′ is an input. Since τ isω-well formed, β′matches an output in (ω · τ)[1 ... i−1+|ω|] · β.
This output cannot be β, since by hypothesis ¬(i + |ω | ∝ω·τ i + 1 + |ω |). Hence β′ matches an
output which occurs in the prefix (ω · τ)[1 ... i − 1 + |ω |] of ω · τ′.
Suppose now β = pq?` and m(pq?, (ω · τ)[1 ... i − 1 + |ω |]) = m. Since τ is ω-well formed, β
matches an output (ω · τ)[ j] = pq!` in the prefix (ω · τ)[1 ... i−1+|ω|] ofω · τ. Then 1 ≤ j < i+|ω|
and m(pq!, (ω · τ)[1 ... j − 1 + |ω | ]) = m. Since β , β′, also m(pq?, (ω · τ′)[1 ... i + |ω | ]) = m.
Then β matches (ω · τ)[ j] also in ω · τ′.
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From the previous lemma and the observation that if τ is ω-well formed and τ′ is
obtained by swapping the i-th and (i + 1)-th element of τ, then play(τ′[i])∩ play(τ′[i + 1]) = ∅

and ¬(i + |ω | ∝ω·τ
′

i + 1 + |ω |), we deduce that the swapping relation is symmetric. This
allows us to define ≈ω as the equivalence relation induced by the swapping relation.

Definition 7.5 (Equivalence≈ω onω-well-formed traces). The equivalence≈ω onω-well-formed
traces is the reflexive and transitive closure of Bω.

Observe that for o-traces all the equivalences ≈ω collapse to ≈ε and ≈ε ⊂�, where �
is the o-trace equivalence given in Definition 6.2. Indeed, it should be clear that ≈ε ⊆�.
To show ≈ε ,�, consider ω = pq!` ·pr!`′ and ω′ = pr!`′ ·pq!`. Then ω � ω′ but ω 0ε ω′.
This agrees with the fact that o-traces represent messages in queues, while general traces
represent future communication actions.

Another constraint that we want to impose on traces in order to build events is that each
communication must be a cause of at least one of those that follow it. This happens when:
– either the two communications have the same player, in which case we say that the first

communication is required in the trace (Definition 7.6);
– or the first communication is an output and the second is the matching input.
We call pointedness the property of a trace in which each communication, except the last
one, satisfies one of the two conditions above. Like well-formedness, also pointedness is
parameterised on traces. We first define required communications.

Definition 7.6 (Required communication). We say that τ[i] is required in τ, notation req(i, τ),
if play(τ[i]) ⊆ play(τ[(i + 1) ...n]), where n = |τ | .

Note that by definition the last element τ[n] is not required in τ.

Definition 7.7 (Pointedness). The trace τ is τ′-pointed if τ is τ′-well formed and for all i,
1 ≤ i < n, one of the following holds:
(1) either req(i, τ)
(2) or i + |τ′ | ∝ τ

′
· τ j + |τ′ | for some j > i.

Observe that the two conditions of the above definition are reminiscent of the two
kinds of causality - local flow and cross-flow - discussed for network events in Section 6
(Definition 6.6). Indeed, Condition (1) holds if τ[i] is a local cause of some τ[ j], j > i, while
Condition (2) holds if τ[i] is a cross-cause of some τ[ j], j > i.

Note also that the conditions of Definition 7.7 must be satisfied only by every τ[i] with
i < n, thus they hold vacuously for any single communication and for the empty trace. This
does not imply that a single-communication trace τ is τ′-pointed for any τ′, since to this
end τ also needs to be τ′-well formed. For instance, the trace qp?` is not ε-well formed
nor pq!`-well formed (beware not to confuse qp?` with pq?`). If τ = τ1 · β · β′ is τ′-pointed,
then either play(β) = play(β′) or β′ matches β in τ′ · τ, i.e., |τ1| + 1 + |τ′| ∝ τ

′
· τ
|τ1| + 2 + |τ′|.

Also, if a trace τ is τ′-pointed for some τ′, we know that each communication in τ must be
executed before the last one. Indeed, the reader familiar with ESs will have noticed that
pointed traces are very similar in spirit to ES prime configurations.

Example 7.8 . Let ω = pq!` · rq!` and τ = pq!` · pq?` · rq?`. The trace τ is not ω-pointed, since
the output pq!` in τ is not matched by any input in ω · τ (the input pq?` in τ matches the output
pq!` in ω) and it is not required in τ because its player p is neither the player of pq?` nor the player
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of rq?`. So the condition of Definition 7.7 is not satisfied for the output pq!` in τ. Instead the trace
τ′ = pq?` · rq?` is ω-pointed, as well as the trace τ′′ = rq?` · pq?`.

Pointedness is preserved by suffixing.

Lemma 7.9 . If τ is τ′-pointed and τ = τ1 · τ2, then τ2 is τ′ · τ1-pointed.

Proof. Immediate, since (τ′ · τ1) · τ2 = τ′ · (τ1 · τ2) and τ2 is a suffix of τ and therefore its
elements are a subset of those of τ.

Note on the other hand that if τ is τ′-pointed and τ′ = τ′1 · τ
′

2, then it is not true that τ′2 · τ is
τ′1-pointed, because in this case the set of elements of τ′2 · τ is a superset of that of τ. For
instance, if τ′1 = ε, τ′2 = pq!` and τ = rs!`′ · rs?`′, then τ′2 · τ is not τ′1-pointed.

A useful property of ω-pointedness is that it is preserved by the equivalence ≈ω, which
does not change the rightmost communication in ω-pointed traces. We use last(τ) to denote
the last communication of τ.

Lemma 7.10 . Let τ be ω-pointed and τ ≈ω τ′. Then τ′ is ω-pointed and last(τ′) = last(τ).

Proof. Let τ ≈ω τ′. By Definition 7.5 τ′ is obtained from τ by m swaps of adjacent
communications. The proof is by induction on the number m of swaps.
Case m = 0. The result is obvious.
Case m > 0. In this case there is τ1 obtained from τ by m−1 swaps of adjacent communications
and there are β, β′, τ2 such that

τ1 = τ1[1 ... i − 1] · β · β′ · τ2 ≈ω τ1[1 ... i − 1] · β′ · β · τ2 = τ′

and play(β) ∩ play(β′) = ∅ and ¬(i + |ω | ∝ω·τ1 i + 1 + |ω |)
By induction hypothesis τ1 is ω-pointed and last(τ1) = last(τ).

To show that τ′ is ω-pointed, observe that play(β) ∩ play(β′) = ∅ implies:
play(β) ⊆ play(β′) ∪ play(τ2) ⇔ play(β) ⊆ play(τ2)
play(β′) ⊆ play(τ2) ⇔ play(β′) ⊆ play(β) ∪ play(τ2)

From this we deduce req(i, τ1) ⇐⇒ req(i, τ′) and req(i + 1, τ1) ⇐⇒ req(i + 1, τ′), so if both
τ1[i] and τ1[i + 1] are required in τ1 we are done.
Otherwise, suppose that i + |ω | ∝ω·τ1 j + |ω | where either req( j, τ1) or j = n. If req( j, τ1) then
also req( j, τ′), as we just saw. Now, j cannot be i+1 since by hypothesis¬(i+|ω| ∝ω·τ1 i+1+|ω|).
This implies i + 1 + |ω | ∝ω·τ

′

j + |ω | . Similarly we can show that i + 1 + |ω | ∝ω·τ1 j + |ω |
implies i + |ω | ∝ω·τ

′

j + |ω | . Therefore τ′ is ω-pointed.

To show that last(τ) = last(τ′), assume ad absurdum that τ2 = ε. Then τ1[1 ... i − 1] · β · β′ is
ω-pointed and thus, as observed after Definition 7.7, we have either play(β)∩ play(β′) , ∅ or
i + |ω | ∝ω·τ1 i + 1 + |ω | . In both cases β and β′ cannot be swapped. So it must be τ2 , ε.

We now relate asynchronous types with pairs of o-traces and traces.

Lemma 7.11 . If `b G ‖ M and ω = otr(M) and τ ∈ Tr+(G), then τ is ω-well formed.

Proof. We prove by induction on τ that `b G ‖ M implies that ω · τ is well formed.
Case τ = β. If β is an output the result is obvious. If β = pq?`, by Rule [In] of Figure 3, we
getM ≡ 〈p, `,q〉 · M′. Therefore ω = pq!` ·ω′ and ω · β is well formed.
Case τ = β · τ′ with τ′ ∈ Tr+(G′). If β = pq!`, then G =�i∈Ipq!`i; Gi and ` = `k and G′ = Gk
for some k ∈ I. From `b G ‖ M and Rule [Out] of Figure 3, we get `b G′ ‖ M · 〈p, `,q〉. By
induction hypothesis on τ′, otr(M · 〈p, `,q〉) · τ′ is well formed. So since otr(M · 〈p, `,q〉) =
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ω · pq!` we get that ω · τ is well formed.
If β = pq?`, then G = pq?`; G′. From `b G ‖ M and Rule [In] of Figure 3, we get
M ≡ 〈p, `,q〉 · M′ and `b G′ ‖ M′. Let ω′ = otr(M′). Then ω � pq!` · ω′. By induction
hypothesis on τ′ the trace ω′ · τ′ is well formed. We want now to show that also the trace
τ′′ = ω · τ = pq!` ·ω′ ·pq?` · τ′ is well formed, namely that in τ′′ every input matches an
output. Note that the first input in τ′′ is τ′′[|ω| + 1] = pq?`. This input matches the output
τ′′[1] = pq!`. For inputs τ′′[i] with i > |ω | + 1, we know that τ′′[i] = (ω′ · τ′)[i − 2], where
(ω′ · τ′)[i−2] matches some output (ω′ · τ′)[ j] inω′ · τ′. Then τ′′[i] matches τ′′[ j+1] if j ≤ |ω′ |
and τ′′[ j + 2] otherwise. This proves that ω · τ is well formed.

We have now enough machinery to define events of asynchronous types, which are
equivalence classes of pairs whose first elements are o-traces ω (representing queues) and
whose second elements are traces τ (representing paths in the global type components of
the asynchronous types). The traces ω and τ are considered respectively modulo � and
modulo ≈ω. The trace τ is ω-well formed, reflecting the balancing of asynchronous types.
The communication represented by an event is the last communication of τ.

Definition 7.12 (Type events). (1) The equivalence ∼ on pairs (ω, τ), where τ , ε is ω-pointed,
is the least equivalence such that

(ω, τ) ∼ (ω′, τ′) if ω � ω′ and τ ≈ω τ′
(2) A type event (t-event) δ = [ω, τ]∼ is the equivalence class of the pair (ω, τ). The communication

of δ, notation i/o(δ), is defined to be last(τ).
(3) We denote by TE the set of t-events.

Notice that the function i/o can be applied both to an n-event (Definition 6.3(2)) and to
a t-event (Definition 7.12(2)). In all cases the result is a communication.

Given an o-trace ω and an arbitrary trace τ, we want to build a t-event [ω, τ′]∼
(Definition 7.14). To this aim we scan τ from right to left and remove all and only the
communications τ[i] which make τ violate the ω-pointedness property.

Definition 7.13 (Trace filtering). The filtering of τ · τ′ by ωwith cursor at τ, denoted by τ dω τ′,
is defined by induction on τ as follows:

ε dω τ′ = τ′ (τ′′ · β) dω τ′ =

τ′′ dω (β · τ′) if β · τ′ is (ω · τ′′)-pointed
τ′′ dω τ′ otherwise

For example pq?` ·qp?` dpq!` ε = pq?` dpq!` ε = ε dpq!` pq?` = pq?`. The resulting trace can
also be empty, in case the last communication is an input and τ · τ′ is not ω-well formed.
For instance, qp?` dpq!` ε = ε dpq!` ε = ε because qp?` is not pq!`-well formed. It is easy to
verify that τ dω τ′ is a subtrace of τ · τ′, and that if τ is ω-pointed, then τ dω ε = τ.

Definition 7.14 (t-event of a pair). Let τ , ε be ω-well formed. The t-event generated by ω and
τ, notation ev(ω, τ), is defined to be ev(ω, τ) = [ω, τ dω ε]∼.

Hence the trace of the event ev(ω, τ) is the filtering of τ by ω with cursor at the end of τ.
This definition is sound since ω � ω′ implies τ dω τ′ = τ dω′ τ′. Moreover the communication
of ev(ω, τ) is the last communication of τ.

Lemma 7.15 . If ev(ω, τ) is defined, then τ dω ε , ε and i/o(ev(ω, τ)) = last(τ dω ε) = last(τ).
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Proof. Let τ , ε be ω-well formed and τ = τ′ · β. Then β is (ω · τ′)-well formed by Defini-
tion 7.2. This implies that β is (ω · τ′)-pointed by Definition 7.7, and thus τ dω ε = (τ′ · β) dω ε =
τ′ dω β. This gives i/o(ev(ω, τ)) = last(τ dω ε) = last(τ).

Since the o-traces in the t-events of an asynchronous type correspond to the queue,
we define the causality and conflict relations only between t-events with the same o-
traces. Causality is then simply prefixing of traces modulo ≈ω, while conflict is induced
by the conflict relation on the p-events obtained by projecting the traces on participants
(Definition 6.4(1)).

Definition 7.16 (Causality and conflict relations on t-events). The causality relation ≤ and the
conflict relation # on the set of t-events TE are defined by:
(1) [ω, τ]∼ ≤ [ω, τ′]∼ if τ′ ≈ω τ · τ1 for some τ1;
(2) [ω, τ]∼ # [ω, τ′]∼ if τ@ p # τ′@ p for some p.

Concerning Clause (1), note that the relation ≤ is able to express cross-causality as well as
local causality, thanks to the hypothesis of ω-well formedness of τ in any t-event [ω, τ]∼.
Indeed, this hypothesis implies that, whenever τ ends by an input pq?`, then the matched
output pq!` must appear either in ω, in which case the output has already occurred, or
at some position i in τ. In the latter case, the t-event ev(ω, τ[1 ... i]), which represents the
output pq!`, is such that ev(ω, τ[1 ... i]) ≤ [ω, τ]∼.

As regards Clause (2), note that if τ ≈ω τ′, then τ@ p = τ′@ p for all p, because ≈ω does
not swap communications with the same player. Hence, conflict is well defined, since it
does not depend on the trace chosen in the equivalence class. The condition τ@ p # τ′@ p
states that participant p does the same actions in both traces up to some point, after which it
performs two different actions in τ and τ′.

We get the events of an asynchronous type G ‖ M by applying the function ev to the
pairs made of the o-trace representing the queueM and a trace in the tree of G. Lemma 7.11
and Definition 7.14 ensure that ev is defined. We then build the ES associated with an
asynchronous type G ‖ M as follows.

Definition 7.17 (Event structure of an asynchronous type). The event structure of the
asynchronous type G ‖ M is the triple

S
T (G ‖ M) = (TE(G ‖ M),≤G‖M, # G‖M)

where:
(1) TE(G ‖ M) = {ev(ω, τ) | ω = otr(M) & τ ∈ Tr+(G)};
(2) ≤G‖M is the restriction of ≤ to the set TE(G ‖ M);
(3) # G‖M is the restriction of # to the set TE(G ‖ M).

Example 7.18 . The network of Example 6.13 can be typed by the asynchronous type G ‖ ∅
with G = pq!`1; pq?`1; pr!`; pr?` � pq!`2; pq?`2; pr!`; pr?`. The t-events of ST (G ‖ ∅) are:

δ1 = [ε,pq!`1]∼ δ′1 = [ε,pq!`1 · pq?`1]∼
δ2 = [ε,pq!`2]∼ δ′2 = [ε,pq!`2 · pq?`2]∼
δ3 = [ε,pq!`1 · pr!`]∼ δ′′1 = [ε,pq!`1 · pr!` · pr?`]∼
δ4 = [ε,pq!`2 · pr!`]∼ δ′′2 = [ε,pq!`2 · pr!` · pr?`]∼

The causality relation is given by δ1 ≤ δ3, δ1 ≤ δ′1, δ2 ≤ δ4, δ2 ≤ δ′2, δ3 ≤ δ′′1 , δ4 ≤ δ′′2 , δ1 ≤ δ′′1 ,
δ2 ≤ δ′′2 . The conflict relation is given by δ1 # δ2 and all the conflicts inherited from it. Figure 7
illustrates this event structure.
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The following example shows that, due to the fact that global types are not able to
represent concurrency explicitly, two forking traces in the tree representation of G do not
necessarily give rise to two conflicting events in ST (G ‖ M).

Example 7.19 . Let G = pq!`; (rs!`1; pq?`; rs?`1�rs!`2; pq?`; rs?`2). Then ST (G ‖ ∅) contains
the t-event [ε,pq!` ·pq?`]∼ generated by the two forking traces in Tr+(G):

pq!` · rs!`1 ·pq?` pq!` · rs!`2 ·pq?`
Note on the other hand that if we replace r by q in G, namely if we consider the global type G′ =
pq!`; (qs!`1; pq?`; qs?`1�qs!`2; pq?`; qs?`2), thenST (G′ ‖ ∅) contains δ = [ε, pq!` · qs!`1 · pq?`]∼
and δ′ = [ε,pq!` ·qs!`2 ·pq?`]∼. Here δ # δ′ because

(pq!` ·qs!`1 ·pq?`) @ q = s!`1 ·p?` # s!`2 ·p?` = (pq!` ·qs!`2 ·pq?`) @ q
So, here the two occurrences of pq?` in the type are represented by two distinct events that are in
conflict.

We end this section by showing that the obtained ES is a PES.

Proposition 7.20 . Let G ‖ M be an asynchronous type. Then ST (G ‖ M) is a prime event
structure.

Proof. We show that ≤ and # satisfy Properties (2) and (3) of Definition 4.1. Reflexivity and
transitivity of ≤ follow easily from the properties of concatenation and the properties of the
two equivalences in Definitions 6.2 and 7.5. As for antisymmetry note that, by Clause (1) of
Definition 7.16, if [ω, τ]∼ ≤ [ω, τ′]∼ and [ω, τ′]∼ ≤ [ω, τ]∼, then τ · τ1 ≈ω τ′ and τ′ · τ2 ≈ω τ
for some τ1 and τ2. Hence τ · τ1 · τ2 ≈ω τ, which implies τ1 = τ2 = ε, i.e. τ ≈ω τ′.
The conflict between t-events inherits irreflexivity, symmetry and hereditariness from the
conflict between p-events. In particular, for hereditariness, suppose that [ω, τ]∼ # [ω, τ′]∼ ≤
[ω, τ′′]∼. Then τ′′ ≈ω τ′ · τ1 for some τ1 and τ′′@ p = (τ′ · τ1) @ p = (τ′@ p ) · (τ1 @ p ) # τ@ p
since τ′@ p # τ@ p .

8. Equivalence of the two Event Structure Semantics

In the previous two sections, we defined the ES semantics of networks and types, respectively.
As expected, the FES of a network is not isomorphic to the PES of its type, unless the former
is itself a PES. As an example, consider the network FES pictured in Figure 6 (where the
arrows represent the flow relation) and its type PES pictured in Figure 7 (where the arrows
represent the covering relation of causality and inherited conflicts are not shown). The
rationale is that events in the network FES record the local history of a communication, while
events in the type FES record its global causal history, which contains more information.
Indeed, while the network FES may be obtained from the type PES simply by projecting
each t-event on the player of its last communication, the inverse construction is not as direct:
essentially, one needs to construct the configuration domain of the network FES, and from
this, by selecting the complete prime configurations according to the classic construction of
[59], retrieve the type PES. To show that this is indeed the type PES, however, we would need
to rely on well-formedness properties of the network FES, namely on semantic counterparts
of the well-formedness properties of types. We will not follow this approach here. Instead,
we will compare the FESs of networks and the PESs of their types at a more operational
level, by looking at the configuration domains they generate.
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N = p[[ q!`1; r!` ⊕ q!`2; r!` ]] ‖ q[[ p?`1 + p?`2 ]] ‖ r[[ p?` ]]

p :: q!`1

p :: q!`1 · r!`

r :: p?`

p :: q!`2

p :: q!`2 · r!`

q :: p?`1 q :: p?`2

#

#
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Figure 6: FES of the network N ‖ ∅ in Example 6.13.

G = pq!`1; pq?`1; pr!`; pr?`� pq!`2; pq?`2; pr!`; pr?`

[ε,pq!`1]∼

[ε,pq!`1; pr!`]∼

[ε,pq!`1; pr!`; pr?`]∼ [ε,pq!`2; pr!`; pr?`]∼

[ε,pq!`2]∼

[ε,pq!`2; pr!`]∼

[ε,pq!`1; pq?`1]∼ [ε,pq!`2; pq?`2]∼

#

? ?

? ?

········· ·········

�
�	

@
@R

Figure 7: PES of the asynchronous type G ‖ ∅ in Example 7.18.

In the rest of this section we establish our main theorem for typed networks, namely
the isomorphism between the configuration domain of the FES of the network and the
configuration domain of the PES of its asynchronous type. To prove the various results
leading to this theorem, we will largely use the characterisation of configurations as proving
sequences, as given in Proposition 4.7. Let us briefly sketch how these results are articulated.

The proof of the isomorphism is grounded on the Subject Reduction Theorem (Theo-
rem 3.17) and the Session Fidelity Theorem (Theorem 3.18). These theorems state that if
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` N ‖ M : G ‖ M, then N ‖ M τ
−→ N′ ‖ M′ if and only if G ‖ M τ

−→ G′ ‖ M′, and in both
directions ` N′ ‖ M′ : G′ ‖ M′. We can then relate the ESs of networks and asynchronous
types by connecting them through the traces of their transition sequences, and by taking into
account the queues by means of the mapping otr given by Definition 6.1. This is achieved as
follows.

If N ‖ M τ
−→ and otr(M) = ω, then the function nec (Definition 8.6) applied to ω and τ

gives a proving sequence in SN (N ‖ M) (Theorem 8.10). Vice versa, if ρ1; · · · ;ρn is a proving
sequence in SN (N ‖ M), then N ‖ M τ

−→ N′ ‖ M′ where τ = i/o(ρ1) · · · i/o(ρn) and i/o is the
mapping given in Definition 6.3(2) (Theorem 8.11).

Similarly, if G ‖ M τ
−→ G′ ‖ M′ and otr(M) = ω, then the function tec (Definition 8.22)

applied toω and τ gives a proving sequence inST (G ‖ M) (Theorem 8.27). Lastly, if δ1; . . . ; δn

is a proving sequence in ST (G ‖ M), then G ‖ M τ
−→ G′ ‖ M′, where τ = i/o(δ1) · . . . · i/o(δn)

and i/o is the mapping given in Definition 7.12(2) (Theorem 8.28).
It is then natural to split this section in three subsections: the first establishing the

relationship between network transition sequences and proving sequences of their event
structure, the second doing the same for asynchronous types and finally a third subsection
in which the isomorphism between the two configuration domains is proved relying on
these relationships.

8.1. Transition Sequences of Networks and Proving Sequences of their ESs.

We start by showing how network communications affect n-events in the associated ES.
To this aim we define two partial operators � and ♦, which applied to a communication β
and an n-event ρ yield another n-event ρ′ (when defined). The intuition is that ρ′ represents
the event ρ as it will be after the communication β, or as it was before the communication
β, respectively. So, in particular, if {p} = play(β) and ρ is not located at p, it will remain
unchanged under both mappings � and ♦. We shall now explain in more detail how these
operators work.

The operator �, when applied to β and ρ, yields the n-event ρ′ obtained from ρ after
executing the communication β, if this event exists. We call β�ρ the residual of ρ after β. So,
if β = pq!` and ρ is located at p and its p-event starts with the action q!`, then the p-event of
ρ′ is obtained by removing this action, provided the result is still a p-event (this will not be
the case if the p-event of ρ is a simple action); otherwise, the operation is not defined. If
β = pq?` and ρ is located at q and its p-event starts with the action p?`, the p-event of ρ′ is
obtained by removing p?`, if possible; otherwise, the operation is not defined.

The operator ♦, when applied to β and ρ, yields the n-event ρ′ obtained from ρ before
executing the communication β. We call β♦ρ the retrieval of ρ before β. So, if β = pq!` and ρ
is located at p, the p-event of ρ′ is obtained by adding q!` in front of the p-event of ρ. If
β = pq?` and ρ is located at q, the p-event of ρ′ is obtained by adding p?` in front of the
p-event of ρ. We use the projection τ@ r of a trace on a participant given in Definition 6.4(1).

Definition 8.1 (Residual and retrieval of an n-event with respect to a communication).
(1) The residual of an event r :: η w.r.t. the communication β is defined by

β� (r :: η) = r :: η′ if η = (β@ r ) · η′

(2) The retrieval of an event r :: η w.r.t. the communication β is defined by
β♦ (r :: η) = r :: (β@ r ) · η
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Notice that in Clause (1) of the above definition η′ , ε, see Definition 5.1. So β� (r :: η) is not
defined if {r} = play(β) and either η is just an atomic action or β@ r is not the first action of η.

Observe also that the operators � and ♦ preserve the communication of n-events, namely
i/o(β�ρ) = i/o(β♦ρ) = i/o(ρ).

Residual and retrieval are inverse of each other.

Lemma 8.2 . (1) If β�ρ is defined, then β♦ (β�ρ) = ρ.
(2) β� (β♦ρ) = ρ.

The residual and retrieval operators on n-events are mirrored by (partial) mappings on
o-traces, which it is handy to define explicitly.

Definition 8.3 . The partial mappings β I ω and β . ω are defined by:
(1) pq!` I ω = ω ·pq!` and pq?` I ω = ω′ if ω � pq!` ·ω′;
(2) pq!` . ω = ω′ if ω � ω′ ·pq!` and pq?` . ω = pq!` ·ω.

It is easy to verify that if β I ω is defined, then β . β I ω � ω, and if β . ω is defined, then
β I β . ω � ω.

We can show that the operators I and . applied to a communication β modify the
queues in the same way as the (forward or backward) execution of β would do in the
underlying network.

Lemma 8.4 . If N ‖ M
β
−→ N′ ‖ M′, then β I otr(M) � otr(M′) and β . otr(M′) � otr(M).

Proof. From N ‖ M
β
−→ N′ ‖ M′ we getM′ ≡ M · 〈p, `,q〉 if β = pq!` andM ≡ 〈p, `,q〉 · M′

if β = pq?`. In the first case, we have otr(M′) � otr(M) ·pq!` � β I otr(M), whence also
β . otr(M′) � β . β I otr(M) � otr(M). In the second case, we have otr(M) � pq!` ·otr(M′) �
β . otr(M′), whence also β I otr(M) � β I β . otr(M′) � otr(M′).

The residual and retrieval operators preserve the ω-flow and conflict relations. For the
flow relation the parametrising o-traces are obtained by the previously defined mappings.

Lemma 8.5 .
(1) If ρ ≺ω ρ′ and β�ρ and β�ρ′ and β I ω are defined, then β�ρ ≺βIω β�ρ′.
(2) If ρ ≺ω ρ′ and β . ω is defined, then β♦ρ ≺β.ω β♦ρ′.
(3) If ρ #ρ′ and both β�ρ and β�ρ′ are defined, then β�ρ # β�ρ′.
(4) If ρ #ρ′, then β♦ρ # β♦ρ′.

Proof. (1) If ρ ≺ω ρ′, then
– either ρ = p :: η and ρ′ = p :: η′ and η < η′,
– or ρ = p :: ζ ·q!` and ρ′ = q :: ζ′ ·p?` and (ω@ p · ζ)�q vZw (ω@ q · ζ′′)�p

for some ζ′′ and χ such that (ζ′ ·p?`)�p - (ζ′′ ·p?` ·χ)�p .
In the first case, from the fact that β�ρ and β�ρ′ are defined and Definition 8.1(1) we get
β�ρ = p :: η1 and β�ρ′ = p :: η′1 where η = β@ p · η1 and η′ = β@ p · η′1. Since η1 < η′1 we
conclude β�ρ ≺βIω β�ρ′.
In the second case, let ω′ = β I ω.
If play(β) 1 {p,q}, then β@ p = β@ q = ε and β�ρ = ρ and β�ρ′ = ρ′. Moreover, by
Definition 8.3(1) (ω′@ p ) � q = (ω@ p ) � q and (ω′@ q ) � p = (ω@ q ) � p . Therefore
(ω@ p · ζ)�q vZw (ω@ q · ζ′′)�p implies (ω′@ p · ζ)�q vZw (ω′@ q · ζ′′)�p which proves
that β�ρ ≺ω

′

β�ρ′.
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If play(β) = {p}, then either β = pr!`′ or β = rp?`′.
If β = pr!`′, then β@ p = r!`′ and β@ q = ε. By Definition 8.1(1), since β�ρ is defined we
have ζ = r!`′ · ζ1. Then β�ρ = p :: ζ1 ·q!` and β�ρ′ = ρ′. Moreover, by Definition 8.3(1)
ω′@ p = (ω@ p) · r!`′ and ω′@ q = ω@ q. Therefore ω@ p · ζ = ω@ p · r!`′ · ζ1 = ω′@ p · ζ1
and ω@ q · ζ′′ = ω′@ q · ζ′′. Then, from the fact that (ω@ p · ζ) � q v Zw (ω@ q · ζ′′) � p it
follows that (ω′@ p · ζ1)�q vZw (ω′@ q · ζ′′)�p .
If β = rp?`′, then β@ p = r?`′ and β@ q = ε. By Definition 8.1(1), since β�ρ is defined we
have ζ = r?`′ · ζ1. Then β�ρ = p :: ζ1 · q!` and β�ρ′ = ρ′. We now distinguish two subcases,
according to whether r = q or r , q.
If r = q, then by Definition 8.3(1) ω@ p = ω′@ p and ω@ q = p!`′ · (ω′@ q). Therefore we
get ω@ p · ζ = (ω′@ p) ·q?`′ · ζ1 and ω@ q · ζ′′ = p!`′ · ω′@ q · ζ′′. Then, from the fact that
(ω@ p · ζ) � q v Zw (ω@ q · ζ′′) � p and (ω′@ p) � q cannot contain inputs, it follows that
(ω′@ p)�q · ζ1 �q vZw (ω′@ q · ζ′′)�p .
If r , q, then by Definition 8.3(1) ω@ p = ω′@ p and ω@ q = ω′@ q. In this case we get
(ω@ p · ζ)�q = (ω′@ p · r?`′ · ζ1)�q = (ω′@ p · ζ1)�q and ω@ q · ζ′′ = ω′@ q · ζ′′. Then, from
(ω@ p · ζ)�q vZw (ω@ q · ζ′′)�p it follows that (ω′@ p · ζ1)�q vZw (ω′@ q · ζ′′)�p .
If play(β) = {q} the proof is similar.

(2) The proof is similar to that of Fact (1).
(3) Let ρ = p :: η and ρ′ = p :: η′ and η # η′. From β�ρ and β�ρ′ defined we get

η = β@ p · η1 and η′ = β@ p · η′1 and β�ρ = p :: η1 and β�ρ′ = p :: η′1 by Definition 8.1(1).
Since η # η′ implies η1 # η′1 we conclude β�ρ # β�ρ′.

(4) The proof is similar to that of Fact (3).

We now define the total function nec, which yields sequences of n-events starting from
a trace. The definition makes use of the projection given in Definition 6.4(1).

Definition 8.6 (n-events from traces). We define the sequence of n-events corresponding to
the trace τ by

nec(τ) = ρ1; · · · ;ρn
where

ρi = pi :: ηi if {pi} = play(τ[i]) and ηi = τ[1 ... i] @ pi

It is immediate to see that, if τ = pq!` or τ = pq?`, then nec(τ) consists only of the n-event
p :: q!` or of the n-event q :: p?`, respectively, because τ[1 ... 1] = τ[1].

We show now that two n-events appearing in the sequence generated from a given trace
τ cannot be in conflict. Moreover, from nec(τ) we can recover τ by means of the function i/o
of Definition 6.3(2).

Lemma 8.7 . Let nec(τ) = ρ1; · · · ;ρn.
(1) If 1 ≤ k, l ≤ n, then ¬(ρk #ρl);
(2) τ[i] = i/o(ρi) for all i, 1 ≤ i ≤ n.

Proof. (1) Let ρi = pi :: ηi for all i, 1 ≤ i ≤ n. If pk , pl, then ρk and ρl cannot be in conflict. If
pk = pl, then by Definition 8.6 either ηk < ηl or ηk < ηl. So in all cases we have ¬(ρk #ρl).

(2) Immediate from Definition 8.6.

The following lemma relates the operators � and ♦ with the mapping nec. This will be
handy for the proof of Theorem 8.10.
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Lemma 8.8 . (1) Let τ = β · τ′. If nec(τ) = ρ1; · · · ;ρn and nec(τ′) = ρ′2; · · · ;ρ′n, then β�ρi = ρ′i
for all i, 2 ≤ i ≤ n.

(2) Let τ = β · τ′. If nec(τ) = ρ1; · · · ;ρn and nec(τ′) = ρ′2; · · · ;ρ′n, then β♦ρ′i = ρi for all i,
2 ≤ i ≤ n.

Proof. (1) Note that τ[i] = τ′[i − 1] for all i, 2 ≤ i ≤ n. Then we can assume ρi = pi :: ηi for
all i, 1 ≤ i ≤ n and ρ′i = pi :: η′i for all i, 2 ≤ i ≤ n. By Definition 8.6 ηi = τ[1 ... i] @ pi =
(β · τ′[1 ... i − 1]) @ pi for all i, 1 ≤ i ≤ n and η′i = τ′[1 ... i − 1] @ pi for all i, 2 ≤ i ≤ n. Then we
get β�ρi = β� (pi :: β@ pi · η′i ) = pi :: η′i = ρ′i for all i, 2 ≤ i ≤ n.

(2) From Fact (1) and Lemma 8.2(1).

We end this subsection with the two theorems for networks discussed at the beginning
of the whole section. We first show that two n-events which ω-justify the same n-event of
the same network must be in conflict.

Lemma 8.9 . Let ρ, ρ1, ρ2 ∈ NE(N ‖ M), ω = otr(M) and ρi ≺
ω ρ for i ∈ {1, 2}, where each

ρi ≺
ω ρ is derived by Clause (1b) of Definition 6.6. Then ρ1 #ρ2.

Proof. Clause (1b) of Definition 6.6 prescribes ρ = q :: ζ ·p?`, ρi = p :: ζi ·q!`
(*) (ω@ p · ζi)�q vZw (ω@ q · ζ′i )�p

(**) (ζ ·p?`)�p v (ζ′i ·p?` ·χi)�p
for some ζ′i and χi, where i ∈ {1, 2}. Let n be the number of occurrences of p?` in ζ, ni be the
number of occurrences of q!` in ζi and n′i be the number of occurrences of p?` in ζ′i . From (*)
we get ni = n′i and from (**) we get n = n′i for i ∈ {1, 2}. Then ni = n j for {i, j} = {1, 2}. Assume
ad absurdum ρi ≺

ω ρ j for some i, j ∈ {1, 2}, i , j. Then ρi ≺
ω ρ j is derived by Clause (1a) of

Definition 6.6, thus ζi ·q!` @ ζ j ·q!`, that is ζi ·q!` v ζ j. This means that ζ j contains at least
one more occurrence of q!` than ζi, namely ni < n j, which is a contradiction.

Theorem 8.10 . If N ‖ M τ
−→ N′ ‖ M′, then nec(otr(M), τ) is a proving sequence in SN (N ‖ M).

Proof. The proof is by induction on τ. Let ω = otr(M).

Case τ = β. Assume first that β = pq!`. From N ‖ M
β
−→ N′ ‖ M′ we get p[[

⊕
i∈I q!`i; Pi ]] ∈ N

with ` = `k for some k ∈ I. Thus p[[ Pk ]] ∈ N′ andM′ ≡ M · 〈p, `,q〉. By Definition 5.3(1)
q!` ∈ PE(

⊕
i∈I q!`i; Pi). By Definition 6.10(1) p :: q!` ∈ NE(N ‖ M). By Definition 8.6

nec(β) = ρ1 = p :: q!`. Clearly, ρ1 is a proving sequence in SN (N ‖ M), since ρ ≺ω ρ1 would
imply ρ = p :: η for some η such that η < q!`, which is not possible.
Assume now that β = pq?`. In this case we get q[[ Σi∈Ip?`i; Qi ]] ∈ N with ` = `k for some k ∈ I.
Thus q[[ Qk ]] ∈ N′ andM ≡ 〈p, `,q〉 · M′. With a similar reasoning as in the previous case,
we obtain nec(β) = ρ1 = q :: p?`. Since ω � pq!` ·ω′, where ω′ = otr(M′), it is immediate to
see that ρ1 is ω-queue-justified. As in the previous case, there is no event ρ inNE(N ‖ M)
such that ρ ≺ω ρ1, and thus ρ1 is a proving sequence in SN (N ‖ M).
Case τ = β · τ′ with τ′ , ε. In this case, from N ‖ M τ

−→ N′ ‖ M′ we get

N ‖ M
β
−→ N′′ ‖ M′′ τ

′

−→ N′ ‖ M′

for some N′′,M′′. Let ω′ = otr(M′′). By Lemma 8.4 ω = β . ω′. Let nec(τ) = ρ1; · · · ;ρn
and nec(τ′) = ρ′2; · · · ;ρ′n. By induction nec(τ′) is a proving sequence in SN (N′′ ‖ M′′). By
Lemma 8.8(2) β♦ρ′j = ρ j for all j, 2 ≤ j ≤ n. We show that ρ j ∈ NE(N ‖ M) for all j, 2 ≤ j ≤ n.
Let ad absurdum k (2 ≤ k ≤ n) be the minimum index such that ρk < NE(N ‖ M). By Fact 6.9,
ρk should be an input which is notω-queue justified and β♦ρ′ should be undefined for all ρ′
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ω′-justifying ρ′k. Since ρ′k ∈ NE(N′′ ‖ M′′), either ρ′k is ω′- queue-justified or ρ′k is ω′-justified
by some output, which must be an event ρ′l for some l < k, 2 ≤ l ≤ n given that ρ′2; · · · ;ρ′n
is a proving sequence. In the first case ρk is ω- queue-justified. In the second case, we get
β♦ρ′l ∈ NE(N ‖ M) since l < k. So, in both cases we reach a contradiction. Finally, from the
proof of the base case we know that ρ1 = p :: β@ p ∈ NE(N ‖ M) where {p} = play(β).
What is left to show is that ρ1; · · · ;ρn is a proving sequence in SN (N ‖ M). By Lemma 8.7(1)
no two events in this sequence can be in conflict. Let ρ ∈ NE(N ‖ M) and ρ ≺ω ρh for some
h, 1 ≤ h ≤ n. As argued in the base case, this implies h > 1. We distinguish two cases,
depending on whether β�ρ is defined or not.
If β�ρ is defined, let ρ′ = β�ρ.
If ρ′ ∈ NE(N′′ ‖ M′′), then by Lemma 8.5(1) we have ρ′ ≺ω

′

β�ρh. By Lemma 8.8(1)
β�ρ j = ρ′j for all j, 2 ≤ j ≤ n. Thus we have ρ′ ≺ω

′

ρ′h. Since nec(τ′) is a proving sequence

in SN (N′′ ‖ M′′), by Definition 4.6 there is l < h such that either ρ′ = ρ′l or ρ′ #ρ′l ≺ ρ
′

h. In
the first case we have ρ = β♦ρ′ = β♦ρ′l = ρl. In the second case, from ρ′ #ρ′l we deduce
ρ #ρl by Lemma 8.5(4), and from ρ′l ≺

ω′ ρ′h we deduce ρl ≺
ω ρh by Lemma 8.5(2).

If instead ρ′ < NE(N′′ ‖ M′′), we distinguish two cases according to whether ρ ≺ω ρh is
deduced by Clause (1a) or by Clause (1b) of Definition 6.6. If ρ ≺ω ρh by Clause (1a) of
Definition 6.6, then ρ′ ≺ω

′

ρ′h again by Clause (1a) of Definition 6.6 as proved in Lemma 8.5(1).
Then ρ′ < NE(N′′ ‖ M′′) implies ρ′h < NE(N′′ ‖ M′′) by narrowing, so this case is impossible.
If ρ ≺ω ρh by Clause (1b) of Definition 6.6, then ρh is an input and ρ ω-justifies ρh. Then also
ρ′h is an input and by definition of proving sequence there is ρ′k for some k, 2 ≤ k ≤ n which
ω′-justifies ρ′h. Then ρk ω-justifies ρh by Lemma 8.5(2). Since ρ and ρk both ω-justify ρh we
get ρ #ρk by Lemma 8.9.
If β�ρ is undefined, then by Definition 8.1(1) either ρ = ρ1 or ρ = p :: π · ζ with π , β@ p ,
which implies ρ #ρ1. In the first case we are done. So, suppose ρ #ρ1. Let π′ = β@ p .
Since ρ and ρ1 are n-events in NE(N ‖ M), we may assume π = q!` and π′ = q!`′ and
therefore β = pq!`′. Indeed, we know that play(β) = {p}, and β cannot be an input qp?`′

since in this case there should be ρ0 = p :: q?` ∈ NE(N ‖ M) by narrowing, and the two
input n-events ρ0 and ρ1 = p :: q?`′ could not be both ω-queue-justified. Note that ρ cannot
be a local cause of ρh, i.e ρ ≺ω ρh cannot hold by Clause (1a) of Definition 6.6, because
ρh = p :: π · ζ · η would imply ρh #ρ1, contradicting what said above. Therefore ρ is a
cross-cause of ρh, i.e ρ ≺ω ρh holds by Clause (1b) of Definition 6.6, so ρ = p :: π · ζ′ · r!`′′ and
ρh = r :: ζ′′ · p?`′′. We know that ρh = β♦ρ′h. By Definition 8.1(2) we have ρ′h = r :: ζ′′ · p?`′′,
because r is the receiver of a message sent by p and thus by construction r , p. Since
ρ′h is an input n-event in NE(N′′ ‖ M′′), it must either be justified by the queue ω · β or
have a cross-cause in NE(N′′ ‖ M′′). Since ρh is not ω-queue-justified (because ρ ≺ω ρh),
the only way for ρ′h to be ω · β-queue-justified would be that pr!`′′ = β, that is r = q and
`′′ = `′, and that (∗) (ω@ p ) �q vZw ζ0 �p and (ζ′′ · p?`′) �p v (ζ0 · p?`′ · χ) �p for some
ζ0 and χ, see Definition 6.7. This means that ζ0 �p is the subsequence of ζ′′ �p obtained
by keeping all and only its inputs. Now, if ρ′h = q :: ζ′′ · p?`′, then ρh = q :: ζ′′ · p?`′. Since
ρ = p :: q!`·ζ′·q!`′ is a cross-cause ofρh, we have (∗∗) (ω@ p · q!`·ζ′)�q vZw (ω@ q · ζ1 · χ′)�p
and (ζ′′ · p?`′)�p v (ζ1 · p?`′ · χ′)�p for some ζ1 and χ′, see Clause (1b) of Definition 6.6.
It follows that the inputs in ζ1 �p coincide with the inputs in ζ′′ �p and thus with those
in ζ0 � p . From (*) we know that all inputs in ζ0 � p match some output in (ω@ p ) � q .
Therefore no input in (ω@ q · ζ1 · χ′) � p can match the output q!` in (ω@ p ·q!` · ζ′) � q ,
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contradicting (**). Hence ρ′h must have a cross-cause in NE(N′′ ‖ M′′). Let ρ′ be such a
cross-cause. Then ρ′ = p :: ζ2 · r!`′′ for some ζ2. Since nec(τ′) is a proving sequence in
S
N (N′′ ‖ M′′), by Definition 4.6 there is l < h such that either ρ′ = ρ′l or ρ′ #ρ′l ≺ ρ

′

h. In the
first case β♦ρ′ = β♦ρ′l = ρl ≺ ρh, and (β♦ρ′) #ρ because β♦ρ′ = p :: π′ · ζ2 · r!`′′. In the
second case, let ρ′l = p :: η for some η. From ρ′ #ρ′l ≺ ρ

′

h we derive β♦ρ′ # β♦ρ′l ≺ β♦ρ
′

h by
Lemma 8.5(4) and (2). This implies ρl = β♦ρ′l = p :: π′ · η. Hence ρ #ρl ≺ ρh.

Theorem 8.11 . If ρ1; · · · ;ρn is a proving sequence in SN (N ‖ M), then N ‖ M τ
−→ N′ ‖ M′ where

τ = i/o(ρ1) · · · i/o(ρn).

Proof. The proof is by induction on the length n of the proving sequence. Let ω = otr(M).
Case n = 1. Let i/o(ρ1) = β where β = pq?`. The proof for β = pq!` is similar and simpler. By
Definition 6.10(1) ρ1 = q :: ζ · p?`. Note that it must be ζ = ε, since otherwise we would have
q :: ζ ∈ NE(N ‖ M) by narrowing, where q :: ζ ≺ω ρ1 by Definition 6.6(1)(a), contradicting
the hypothesis that ρ1 is minimal. Moreover, ρ1 cannot be ω-justified by an output n-event
ρ ∈ NE(N ‖ M), because this would imply ρ ≺ω ρ1, contradicting again the minimality
of ρ1. Hence, by Definition 6.10(1) ρ1 = q :: p?` must be ω-queue-justified, which means
that ω � pq!` ·ω′. ThusM ≡ 〈p, `,q〉 · M′, where otr(M′) = ω′. By Definition 5.3(1) and
Definition 6.10(1) we have N ≡ q[[ Σi∈Ip?`i; Qi ]] ‖ N0 where `k = ` for some k ∈ I. We may

then conclude that N ‖ M
β
−→ q[[ Qk ]] ‖ N0 ‖ M

′ = N′ ‖ M′.

Case n > 1. Let i/o(ρ1) = β and N ‖ M
β
−→ N′′ ‖ M′′ be the corresponding transition as

obtained from the base case. Let ω′ = otr(M′′). By Lemma 8.4 ω′ = β I ω. We show that
β�ρ j is defined for all j, 2 ≤ j ≤ n. If β�ρk were undefined for some k, 2 ≤ k ≤ n, then by
Definition 8.1(1) either ρk = ρ1 or ρk = p :: π · ζ where {p} = play(β) and π , β@ p , which
implies ρk #ρ1. So both cases are impossible. Thus we may define ρ′j = β�ρ j for all j,
2 ≤ j ≤ n. We show that ρ′j ∈ NE(N′′ ‖ M′′) for all j, 2 ≤ j ≤ n. Let ad absurdum k (2 ≤ k ≤ n)
be the minimum index such that ρ′k < NE(N′′ ‖ M′′). By Fact 6.9, ρ′k should be an input
which is notω′-queue justified and β�ρ′ should be undefined for all ρ′ ω-justifying ρ′k. Since
ρk ∈ NE(N ‖ M), either ρk is ω-queue justified or ρk is ω-justified by some output, which
must be an event ρl for some l < k, 2 ≤ l ≤ n given that ρ1, . . . , ρn is a proving sequence. In
the first case ρ′k is ω′-queue justified. In the second case we get β�ρl ∈ NE(N′′ ‖ M′′) since
l < k. So in both cases we reach a contradiction.
We show that ρ′2; · · · ;ρ′n is a proving sequence in SN (N′′ ‖ M′′). By Lemma 8.2(1) ρ j = β♦ρ′j
for all j, 2 ≤ j ≤ n. Then by Lemma 8.5(4) no two n-events in the sequence ρ′2; · · · ;ρ′n can be
in conflict.
Let ρ ∈ NE(N′′ ‖ M′′) and ρ ≺ω

′

ρ′h for some h, 2 ≤ h ≤ n. Let ρ′ = β♦ρ. By Lemma 8.5(2)
β♦ρ ≺ω β♦ρ′h = ρh. Therefore ρ′ ≺ω ρh. If ρ′ ∈ NE(N ‖ M), since ρ1; · · · ;ρn is a proving
sequence in SN (N ‖ M), by Definition 4.6 there is l < h such that either ρ′ = ρl or ρ′ #ρl ≺ ρh.
In the first case, by Lemma 8.2(2) we get ρ = β�ρ′ = β�ρl = ρ′l . In the second case, by
Lemma 8.5(1) and (3) we get ρ #ρ′l ≺

ω ρ′h. If ρ′ < NE(N ‖ M) we distinguish two cases
according to whether ρ ≺ω

′

ρ′h is deduced by Clause (1a) or Clause (1b) of Definition 6.6. If
ρ ≺ω

′

ρ′h by Clause (1a) of Definition 6.6, then ρ′ ≺ω ρh again by Clause (1a) of Definition 6.6
as proved in Lemma 8.5(1). Then ρ < NE(N ‖ M) implies ρh < NE(N ‖ M) by narrowing, so
this case is impossible. If ρ ≺ω

′

ρ′h by Clause (1b) of Definition 6.6, then ρ′h is an input and ρ
ω′-justifies ρ′h. Then also ρh is an input and by definition of proving sequence there is ρk for
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some k < h, 2 ≤ k ≤ n which ω-justifies ρh. Then ρ′k ω
′-justifies ρ′h by Lemma 8.5(2). Since ρ

and ρ′k both ω′-justify ρ′h we get ρ #ρ′k by Lemma 8.9.
We have shown that ρ′2; · · · ;ρ′n is a proving sequence in SN (N′′ ‖ M′′). By induction

N′′ ‖ M′′ τ
′

−→ N′ ‖ M′ where τ′ = i/o(ρ′2) · · · i/o(ρ′n). Since i/o(ρ′j) = i/o(ρ j) for all j, 2 ≤ j ≤ n,

we have τ = β · τ′. Hence N ‖ M
β
−→ N′′ ‖ M′′ τ′

−→ N′ ‖ M′ is the required transition
sequence.

Remark 8.12 . We can show that if N ‖ M
β
−→ N′ ‖ M′ and ρ ∈ NE(N′ ‖ M′), then β♦ρ ∈

NE(N ‖ M). The use of this property would simplify the proof of Theorem 8.11, since we would

avoid to consider the case β♦ρ < NE(N ‖ M). Instead, the fact that N ‖ M
β
−→ N′ ‖ M′ and

ρ ∈ NE(N ‖ M) and β�ρ is defined does not imply β�ρ ∈ NE(N′ ‖ M′). An example is

p[[ q?` ]] ‖ q[[ r!`1; p!` ⊕ r!`2 ]] ‖ r[[ q?`1 + q?`2 ]] ‖ ∅
qr!`2
−−−→

p[[ q?` ]] ‖ q[[ 0 ]] ‖ r[[ q?`1 + q?`2 ]] ‖ 〈q, `2, r〉
with β = qr!`2 and ρ = p :: q?`. Our choice is justified both by the shortening of the whole proofs
and by the uniformity between the proofs of Theorems 8.10 and 8.11.

8.2. Transition Sequences of Asynchronous Types and Proving Sequences of their ESs.

We introduce two operators • and ◦ for t-events, which play the same role as the
operators � and ♦ for n-events. In defining these operators we must make sure that, in the
resulting t-event [ω′, τ′]∼, the trace τ′ is ω′-pointed, see Definition 7.12(1) and (2).

Let us start with the formal definition, and then we shall explain it in detail.

Definition 8.13 (Residual and retrieval of a t-event with respect to a communication).

(1) (Residual of a t-event after a communication) The operator • applied to a communication and a
t-event is defined by:

β • [ω, τ]∼ =

[β I ω, τ′]∼ if τ ≈ω β · τ′ with τ′ , ε
[β I ω, τ]∼ if play(β) * play(τ)

(2) (Retrieval of a t-event before a communication) The operator ◦ applied to a communication and a
t-event is defined by:

β ◦ [ω, τ]∼ =

[β . ω, β · τ]∼ if β · τ is β . ω-pointed
[β . ω, τ]∼ if play(β) * play(τ)

Note that the operators • and ◦ preserve the communication of t-events, namely i/o(β • δ) =
i/o(β ◦ δ) = i/o(δ), and transform the o-trace using the operators I and ., see Definition 8.3.
We now explain the transformation of the trace τ.

Consider first the case of β • [ω, τ]∼. If the communication β can be brought to the head
of the trace τ using the equivalence ≈ω, we obtain the residual of [ω, τ]∼ after β by removing
the message β from the head of the trace, provided this does not result in the empty trace
(otherwise, the residual is undefined). Then, letting ω′ = β I ω, it is easy to see that the
trace τ′ is ω′-pointed, since it is a suffix of τ = β · τ′ which is ω-pointed (see Lemma 7.9). On
the other hand, if play(β) * play(τ), then the residual of [ω, τ]∼ after β is simply obtained by
leaving the trace unchanged. In this case, letting again ω′ = β I ω, the ω′-pointedness of τ
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follows immediately from its ω-pointedness. For instance, consider the t-event [pr!`′, pr?`′]∼
where ω = pr!`′ and τ = pr?`′. Observe that p occurs in τ, but p < play(τ). Then we have
pq!` • [pr!`′,pr?`′]∼ = [pr!`′ ·pq!`,pr?`′]∼.
Next, consider the definition of β ◦ [ω, τ]∼. The resulting trace will be the prefixing of τ by β
if it is β . ω-pointed. Otherwise the resulting trace is τ if play(β) is not a player of τ. For
instance, for the t-event [pq!`,pq?`]∼, where ω = pq!` and τ = pq?`, we have p < play(τ),
but 1 ∝pq!` ·pq?` 2, thus pq!` ◦ [pq!`,pq?`]∼ = [ε,pq!` ·pq?`]∼. On the other hand, for the
t-event [pq!`, rs!`′ · rs?`′]∼, where ω = pq!` and τ = rs!`′ · rs?`′, we have p < play(τ) and
¬(1 ∝pq!` · rs!`′ · rs?`′ 2) and ¬(1 ∝pq!` · rs!`′ · rs?`′ 3), so pq!` ◦ [pq!`, rs!`′ · rs?`′]∼ = [ε, rs!`′ · rs?`′]∼.

It is easy to verify that the definitions of • and ◦ given in Definition 8.13 may be rewritten
in the more concise form given in the following lemma.

Lemma 8.14 . (1) If β • [ω, β dω τ]∼ is defined, then ω · β · τ is well formed and
β • [ω, β dω τ]∼ = [β I ω, τ]∼

(2) If β ◦ [ω, τ]∼ is defined, then (β . ω) · β · τ is well formed and
β ◦ [ω, τ]∼ = [β . ω, β d(β.ω) τ]∼

Lemma 8.16 (proved in the Appendix) is the analogous of Lemma 8.2 as regards the first
two statements. The remaining two statements establish some commutativity properties
of the mappings • and ◦ when applied to two communications with different players.
These properties rely on the corresponding commutativity properties for the mappings
I and . on o-traces, given in Lemma 8.15. Note that these properties are needed for •
and ◦ whereas they were not needed for � and ♦, because the Rules [IComm-Out] and
[IComm-In] of Figure 5 allow transitions to occur inside asynchronous types, whereas the
LTS for networks only allows transitions for top-level communications. In fact Statements
(3) and (4) of Lemma 8.16 are used in the proof of Lemma 8.21. We define pq?` = pq!`.

Lemma 8.15 . Let play(β1) ∩ play(β2) = ∅.
(1) If both β2 I ω and β2 I (β1 . ω) are defined, then β1 . (β2 I ω) � β2 I (β1 . ω).
(2) If both β1 .ω and β2 .ω are defined, then β1 . (β2 . ω) is defined and β1 . (β2 . ω) � β2 . (β1 . ω).

Proof. (1) Since ω2 = β2 I ω is defined, by Definition 8.3(1) ω � β2 · ω2 when β2 is an input.
Since β2 I (β1 . ω) is defined, ω1 = β1 . ω is defined and by Definition 8.3 ω � ω1 · β1 when
β1 is an output and ω � β2 ·ω0 · β1 for some ω0 such that ω1 � β2 ·ω0 and ω2 � ω0 · β1, when
β1 is an output and β2 is an input. Using Definition 8.3 we compute:

β1 . (β2 I ω) � β2 I (β1 . ω) �


ω1 · β2 if both β1 and β2 are outputs
ω0 if β1 is an output and β2 is an input
β1 · ω · β2 if β1 is an input and β2 is an output
β1 · ω2 if both β1 and β2 are inputs

(2) Since ωi = βi . ω is defined for i ∈ {1, 2}, by Definition 8.3(2) ω � ωi · βi when βi is an
output. Then from play(β1) ∩ play(β2) = ∅ we get ω � ω′ · β1 · β2 � ω′ · β2 · β1 for some ω′

when both β1 and β2 are outputs. Using Definition 8.3(2) we compute:

β1 . (β2 . ω) � β2 . (β1 . ω) �


ω′ if both β1 and β2 are outputs
βi · ω j if βi is an input and β j is an output
β1 · β2 · ω if both β1 and β2 are inputs

Lemma 8.16 . (1) If β • δ is defined, then β ◦ (β • δ) = δ.
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(2) If β ◦ δ is defined, then β • (β ◦ δ) = δ.
(3) If both β2•δ, β2•(β1 ◦ δ) are defined, and play(β1)∩play(β2) = ∅, then β1◦(β2 • δ) = β2•(β1 ◦ δ).
(4) If both β1 ◦ δ, β2 ◦ δ are defined, and play(β1) ∩ play(β2) = ∅, then β1 ◦ (β2 ◦ δ) is defined and

β1 ◦ (β2 ◦ δ) = β2 ◦ (β1 ◦ δ).

We shall now relate the operators • and ◦with the function ev, which builds t-events,
see Definition 7.14. To this end, we first prove the following lemma, which shows how the
filtering of a trace gets affected when the trace is prefixed by a communication.

Lemma 8.17 . (1) Let β I ω be defined and ω′ = β I ω. Let τ, τ′ be such that τ′ is (ω · β · τ)-
pointed. Then

(β · τ) dω τ′ = β dω (τ dω′ τ′)
(2) Let β . ω be defined and ω′ = β . ω. Let τ, τ′ be such that τ′ is (ω′ · β · τ)-pointed. Then

(β · τ) dω′ τ′ = β dω′ (τ dω τ′)

Proof. (1) We show (β · τ) dω τ′ = β dω (τ dω′ τ′) by induction on τ.
Case τ = ε. In this case both the LHS and RHS reduce to β dω τ′, for whatever ω.
Case τ = τ′′ · β′. By Definition 7.13 we obtain for the LHS:

(β · τ′′ · β′) dω τ′ =

(β · τ′′) dω (β′ · τ′) if β′ · τ′ is (ω · β · τ′′)-pointed
(β · τ′′) dω τ′ otherwise

By Definition 7.13 (applied to the internal filtering) we obtain for the RHS:

β dω ((τ′′ · β′) dω′ τ′) =

β dω (τ′′ dω′ (β′ · τ′)) if β′ · τ′ is (ω′ · τ′′)-pointed
β dω (τ′′ dω′ τ′) otherwise

We distinguish two cases, according to whether β is an input or an output.
Suppose first that β is an output. Then ω′ = ω · β. The side condition, i.e. the requirement
that β′ · τ′ be (ω′ · τ′′)-pointed, is the same in both cases. We may then immediately conclude
that LHS = RHS using the induction hypothesis.

Suppose now that β is an input. Then ω = β ·ω′. Observe that, since (ω′ · τ”) is obtained
from (ω · β · τ′′) = (β ·ω′ · β · τ′′) by erasing a pair of matching communications, (β′ · τ′) is
(ω′ · τ′′)-pointed if and only if (β′ · τ′) is (ω · β · τ′′)-pointed. Then we may again conclude by
induction.

(2) follows from (1) since β I (β . ω) = ω.

We may now prove the following:

Lemma 8.18 . (1) If τ , ε and β I ω is defined, then β • ev(ω, β · τ) = ev(β I ω, τ).
(2) If β . ω is defined, then β ◦ ev(ω, τ) = ev(β . ω, β · τ).

Proof. Definition 7.14 and Lemmas 8.14 and 8.17 with τ′ = ε imply (1) and (2) since:
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(1) β • ev(ω, β · τ) = β • [ω, (β · τ) dω ε]∼ by Definition 7.14
= β • [ω, β dω (τ dω′ ε)]∼ by Lemma 8.17(1)
= [ω′, τ dω′ ε]∼ by Lemma 8.14(1)

ev(ω′, τ) = [ω′, τ dω′ ε]∼ by Definition 7.14
where ω′ = β I ω

(2) β ◦ ev(ω, τ) = β ◦ [ω, τ dω ε]∼ by Definition 7.14
= [ω′, β dω′ (τ dω ε)]∼ by Lemma 8.14(2)
= [ω′, (β · τ) dω′ ε]∼ by Lemma 8.17(2)

ev(ω′, β · τ) = [ω′, (β · τ) dω′ ε]∼ by Definition 7.14
where ω′ = β . ω

The next lemma shows that the residual and retrieval operators on t-events preserve
causality and that the retrieval operator preserves conflict. It is the analogous of Lemma 8.5,
but without the statement corresponding to Lemma 8.5(3), which is true but not required
for later results. The difference is due to the fact that ESs of networks are FESs, while
those of asynchronous types are PESs. This appears clearly when looking at the proof
of Theorem 8.11 which uses Lemma 8.5(3), while that of Theorem 8.28 does not need the
corresponding property.

Lemma 8.19 . (1) If δ1 < δ2 and both β • δ1, β • δ2 are defined, then β • δ1 < β • δ2.
(2) If δ1 < δ2 and β ◦ δ1 is defined, then β ◦ δ1 < β ◦ δ2.
(3) If δ1 # δ2 and both β ◦ δ1, β ◦ δ2 are defined, then β ◦ δ1 # β ◦ δ2.

Proof. (1) Let δ1 = [ω, τ]∼ and δ2 = [ω, τ · τ′]∼. If β • δ1 = [ω′, τ]∼ and β • δ2 = [ω′, τ · τ′]∼ for
some ω′, then β • δ1 < β • δ2.
Let β be an output. If τ ≈ω β · τ1 with τ1 , ε, then β•δ1 = [ω ·β, τ1]∼ and β•δ2 = [ω ·β, τ1 · τ′]∼.
Therefore β • δ1 < β • δ2. Let play(β) * play(τ) and τ · τ′ ≈ω β · τ2 with τ2 , ε. This implies
β · τ2 ≈ω β · τ · τ′2 for some τ′2. It follows that τ2 ≈ω·β τ · τ′2. Then we get β • δ1 = [ω · β, τ]∼
and β • δ2 = [ω · β, τ2]∼ = [ω · β, τ · τ′2]∼, which imply β • δ1 < β • δ2.

Let β be an input. The proof is similar.
(2) Since δ1 < δ2 and β ◦ δ1 is defined, then also β ◦ δ2 is defined. Let δ1 = [ω, τ]∼ and

δ2 = [ω, τ · τ′]∼. If β ◦ δ1 = [ω′, τ]∼ and β ◦ δ2 = [ω′, τ · τ′]∼ for some ω′, then β ◦ δ1 < β ◦ δ2.
Let β be an output. Thenω � ω′ ·β. If β◦δ1 = [ω′, β ·τ]∼, then it must be β◦δ2 = [ω′, β ·τ · τ′]∼.
Thus β ◦ δ1 < β ◦ δ2. The only other case is β ◦ δ1 = [ω′, τ]∼ and β ◦ δ2 = [ω′, β · τ · τ′]∼. Since
β◦δ1 = [ω′, τ]∼, the trace β ·τ is notω′-pointed, so play(β) * play(τ) and τ does not contain the
matching input of β. Therefore β ·τ · τ′ ≈ω′ τ · β ·τ′ and β◦δ2 = [ω′, β ·τ · τ′]∼ = [ω′, τ · β ·τ′]∼,
so β ◦ δ1 < β ◦ δ2.
Let β be an input. If β ◦ δ1 = [β · ω, β · τ]∼, then it must be β ◦ δ2 = [β · ω, β · τ · τ′]∼. We
get β ◦ δ1 < β ◦ δ2. The only other case is β ◦ δ1 = [β · ω, τ]∼ and β ◦ δ2 = [β · ω, β · τ · τ′]∼.
If β ◦ δ1 = [β · ω, τ]∼, then play(β) * play(τ). Therefore β · τ · τ′ ≈β·ω τ · β · τ

′ and β ◦ δ2 =

[β · ω, β · τ · τ′]∼ = [β · ω, τ · β · τ′]∼, so β ◦ δ1 < β ◦ δ2.
(3) Let δ1 = [ω, τ]∼ and δ2 = [ω, τ′]∼ and τ@ p # τ′@ p . We select some interesting cases.

Note first that τ@ p # τ′@ p implies p ∈ play(τ) ∩ play(τ′).
If β is an output , then ω � ω′ · β. If both β · τ and β · τ′ are ω′-pointed or not ω′-pointed,
then the result is immediate. If β · τ is ω′-pointed while β · τ′ is not ω′-pointed, then
play(β) * play(τ′). This implies p < play(β). Similarly, if β is an input and play(β) ⊆ play(τ)
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while play(β) * play(τ′), then p < play(β). In both cases we get (β · τ) @ p = τ@ p and
(β · τ′) @ p = τ′@ p , so we conclude β ◦ δ1 # β ◦ δ2.

The next lemma shows that the operator • starting from t-events of G ‖ M builds
t-events of asynchronous types whose global types are subtypes of G composed in parallel
with the queues given by the balancing of Figure 3. Symmetrically, ◦ builds t-events of
an asynchronous type G ‖ M from t-events of the immediate subtypes of G composed in
parallel with the queues given by the balancing of Figure 3.

Lemma 8.20 . (1) If δ ∈ TE(�i∈Ipq!`i; Gi ‖ M) and pq!`k • δ is defined, then
pq!`k • δ ∈ TE(Gk ‖ M · 〈p, `k,q〉) where k ∈ I.

(2) If δ ∈ TE(pq?`; G ‖ 〈p, `,q〉 · M) and pq?` • δ is defined, then pq?` • δ ∈ TE(G ‖ M).
(3) If δ ∈ TE(G ‖ M · 〈p, `,q〉), then

pq!` ◦ δ ∈ TE(�i∈Ipq!`i; Gi ‖ M) where ` = `k and G = Gk for some k ∈ I.
(4) If δ ∈ TE(G ‖ M), then pq?` ◦ δ ∈ TE(pq?`; G ‖ 〈p, `,q〉 · M).

Proof. (1) By Definition 7.17(1), if δ ∈ TE(�i∈Ipq!`i; Gi ‖ M), then δ = ev(ω, τ) where
ω = otr(M) and τ ∈ Tr+(�i∈Ipq!`i; Gi), which gives τ ≈ω pq!`h · τh with τh ∈ Tr+(Gh) for some
h ∈ I. By hypothesis pq!`k • δ is defined, which implies τ ≈ω pq!`k · τk and τk , ε. Then
Lemma 8.18(1) gives pq!`k • δ = ev(ω ·pq!`k, τk). We conclude that

pq!`k • δ ∈ TE(Gk ‖ M · 〈p, `k,q〉)
(2) Similar to the proof of (1).
(3) By Definition 7.17(1), if δ ∈ TE(G ‖ M · 〈p, `,q〉), then δ = ev(ω ·pq!`, τ) where

ω = otr(M) and τ ∈ Tr+(G). By Lemma 8.18(2) pq!` ◦ δ = ev(ω,pq!` · τ). Then, again by
Definition 7.17(1), pq!` ◦ δ ∈ TE(�i∈Ipq!`i; Gi ‖ M) where ` = `k and G = Gk for some k ∈ I,
since pq!`k · τ ∈ Tr+(�i∈Ipq!`i; Gi).

(4) Similar to the proof of (3).

The operators • and ◦ modify t-events in the same way as the transitions in the LTS
would do. This is formalised and proved in the following lemma. Notice that ♦ enjoys this
property, while � does not, see Remark 8.12.

Lemma 8.21 . Let G ‖ M
β
−→ G′ ‖ M′. Then otr(M) � β . otr(M′) and

(1) if δ ∈ TE(G ‖ M) and β • δ is defined, then β • δ ∈ TE(G′ ‖ M′);
(2) if δ ∈ TE(G′ ‖ M′), then β ◦ δ ∈ TE(G ‖ M).

Proof. Lemma 8.4 and Session Fidelity (Theorem 3.18) imply otr(M) � β . otr(M′).

(1) By induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′ , see Figure 5.

Base Cases. If the applied rule is [Ext-Out], then G =�i∈Ipq!`i; Gi and β = pq!`k and G′ = Gk
andM′ ≡ M · 〈p, `k,q〉 for some k ∈ I. By assumption β • δ is defined. By Lemma 8.20(1)
β • δ ∈ TE(G′ ‖ M′).
If the applied rule is [Ext-In], then G = pq?`; G′ and β = pq?` andM ≡ 〈p, `,q〉 · M′. By
assumption β • δ is defined. By Lemma 8.20(2) β • δ ∈ TE(G′ ‖ M′).
Inductive Cases. If the last applied rule is [IComm-Out], then G = �i∈Ipq!`i; Gi and

G′ =�i∈Ipq!`i; G′i and Gi ‖ M · 〈p, `i,q〉
β
−→ G′i ‖ M

′
· 〈p, `i,q〉 for all i ∈ I and p < play(β).

By Definition 7.17(1) δ ∈ TE(G ‖ M) implies δ = ev(ω, τ) where ω = otr(M) and τ ∈ Tr+(G).
Then τ = pq!`k · τ

′ and δ = [ω, τ0]∼ with τ0 = (pq!`k · τ
′) dω ε for some k ∈ I by Definition 7.14.

We get either τ0 ≈ω pq!`k · τ
′

0 or p < play(τ0) by Definition 7.13. Then pq!`k • δ is defined
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unless τ0 ≈ω pq!`k · τ
′

0 and τ′0 = ε by Definition 8.13(1). We consider the two cases.
Case τ0 ≈ω pq!`k · τ

′

0 and τ′0 = ε. We get β • δ = [β I ω, pq!`k]∼ since play(β) ∩ play(pq!`k) = ∅,
which implies β • δ ∈ TE(G′ ‖ M′) by Definition 7.17(1).
Case τ0 ≈ω pq!`k · τ

′

0 and τ′0 , ε or p < play(τ0). Let δ′ = pq!`k • δ. By Lemma 8.20(1)
δ′ ∈ TE(Gk ‖ M · 〈p, `k,q〉). By assumption β • δ is defined. We first show that β • δ′ is
defined. Since β • δ and pq!`k • δ are defined, by Definition 8.13(1) we have four cases:
(a) τ0 ≈ω β · τ1 for some τ1 and τ0 ≈ω pq!`k · τ

′

0;
(b) τ0 ≈ω β · τ1 and p < play(τ0);
(c) play(β) ∩ play(τ0) = ∅ and τ0 ≈ω pq!`k · τ

′

0;
(d) play(β) ∩ play(τ0) = ∅ and p < play(τ0).

Let ω′ = pq!`k I ω = ω · pq!`k and ω′′ = β I ω′.
In Case (a) we have τ0 ≈ω β ·pq!`k · τ

′

1 ≈ω pq!`k · β · τ
′

1 for some τ′1. Let τ2 = β · τ′1. Then
δ = [ω,pq!`k · τ2]∼ and therefore δ′ = [ω′, τ2]∼ = [ω′, β · τ′1]∼. Hence β • δ′ = [ω′′, τ′1]∼.
In Case (b) we have δ = [ω, β · τ1]∼ and p < play(β · τ1). Therefore δ′ = [ω′, β · τ1]∼. Hence
β • δ′ = [ω′′, τ1]∼.
In Case (c) we have δ′ = [ω′, τ′0]∼ and β • δ′ = [ω′′, τ′0]∼ since play(β) ∩ play(τ0) = ∅ implies
play(β) ∩ play(τ′0) = ∅.
In Case (d) we have δ′ = [ω′, τ0]∼ and β • δ′ = [ω′′, τ0]∼.
So in all cases we conclude that β • δ′ is defined.
By induction β•δ′ ∈ TE(G′k ‖ M

′
· 〈p, `k, q〉). By Lemma 8.20(3) pq!`k ◦ (β•δ′) ∈ TE(G′ ‖ M′).

Since δ′ is defined, Lemma 8.16(1) implies pq!`k ◦ δ
′ = δ. Since β • δ′ and β • (pq!`k ◦ δ

′) are
defined and p < play(β), by Lemma 8.16(3) we get pq!`k ◦ (β • δ′) = β • (pq!`k ◦ δ

′) = β • δ.
We conclude that β • δ ∈ TE(G′ ‖ M′).
If the last applied rule is [IComm-In] the proof is similar.

(2) By induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′, see Figure 5.

Base Cases. If the applied rule is [Ext-Out], then G =�i∈Ipq!`i; Gi and β = pq!`k and G′ = Gk
andM′ ≡ M · 〈p, `k,q〉 for some k ∈ I. By Lemma 8.20(3) β ◦ δ ∈ TE(G ‖ M).
If the applied rule is [Ext-In], then G = pq?`; G′ and β = pq?` andM ≡ 〈p, `,q〉 · M′. By
Lemma 8.20(4) β ◦ δ ∈ TE(G ‖ M).
Inductive Cases. If the last applied rule is [IComm-Out], then G = �i∈Ipq!`i; Gi and

G′ =�i∈Ipq!`i; G′i and Gi ‖ M · 〈p, `i,q〉
β
−→ G′i ‖ M

′
· 〈p, `i,q〉 for all i ∈ I and p < play(β).

By Definition 7.17(1) δ ∈ TE(G′ ‖ M′) implies δ = ev(ω, τ) whereω = otr(M′) and τ ∈ Tr+(G′).
Then τ = pq!`k · τ

′ and δ = [ω, τ0]∼ with τ0 = (pq!`k · τ
′) dω ε for some k ∈ I by Definition 7.14.

We get either τ0 ≈ω pq!`k · τ
′

0 or p < play(τ0) by Definition 7.13. Then pq!`k • δ is defined
unless τ0 ≈ω pq!`k · τ

′

0 and τ′0 = ε by Definition 8.13(1). We consider the two cases.
Case τ0 ≈ω pq!`k · τ

′

0 and τ′0 = ε. We get β ◦ δ = [β . ω, pq!`k]∼ since p < play(β), which implies
β ◦ δ ∈ TE(G ‖ M) by Definition 7.17(1).
Case τ0 ≈ω pq!`k · τ

′

0 and τ′0 , ε or p < play(τ0). Let δ′ = pq!`k • δ. By Lemma 8.20(1)
δ′ ∈ TE(G′k ‖ M

′
· 〈p, `k,q〉). By induction β ◦ δ′ ∈ TE(Gk ‖ M · 〈p, `k,q〉). Since δ′ is

defined, Lemma 8.16(1) implies pq!`k ◦ δ
′ = δ. Since β ◦ δ′ and pq!`k ◦ δ

′ are defined, by
Lemma 8.16(4) and p < play(β) we get pq!`k◦(β◦δ′) = β◦(pq!`k◦δ

′) = β◦δ. By Lemma 8.20(3)
pq!`k ◦ (β ◦ δ′) ∈ TE(G ‖ M). We conclude that β ◦ δ ∈ TE(G ‖ M).
If the last applied rule is [IComm-In] the proof is similar.
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The function tec, which builds a sequence of t-events corresponding to a pair (ω, τ), is
simply defined applying the function ev to ω and to prefixes of τ.

Definition 8.22 (t-events from pairs of o-traces and traces). Let τ , ε be ω-well formed. We
define the sequence of global events corresponding to ω and τ by

tec(ω, τ) = δ1; · · · ; δn
where δi = ev(ω, τ[1 ... i]) for all i, 1 ≤ i ≤ n.

The following lemma establishes the soundness of the above definition.

Lemma 8.23 . If τ , ε is ω-well formed, then:
(1) τ[1 ... i] is ω-well formed for all i, 1 ≤ i ≤ n;
(2) ev(ω, τ[1 ... i]) is defined and i/o(ev(ω, τ[1 ... i])) = τ[i] for all i, 1 ≤ i ≤ n.

Proof. The proof of (1) is immediate since by Definitions 7.1 and 7.2 every prefix of an
ω-well formed trace is ω-well formed. Fact (2) follows from Fact (1), Definition 7.14 and
Lemma 7.15.

As for the function nec (Lemma 8.7), the t-events in a sequence generated by the
function tec are not in conflict, and we can retrieve τ from tec(ω, τ) by using the function
i/o given in Definition 7.12(2).

Lemma 8.24 . Let τ , ε be ω-well formed and tec(ω, τ) = δ1; · · · ; δn.
(1) If 1 ≤ k, l ≤ n, then ¬(δk # δl);
(2) τ[i] = i/o(δi) for all i, 1 ≤ i ≤ n.

Proof. (1) Let δi = [ω, τi]∼ for all i, 1 ≤ i ≤ n. By Definitions 8.22 and 7.14 τi = τ[1 ... i] dω ε.
By Definition 7.13 if τi @ p , ε, then there are ki ≤ i and τ′i such that play(τ[ki]) = {p},
p < play(τ′i ) and τi = τ[1 ... ki − 1] dω τ[ki] · τ′i . By the same definition all τ[ j] with j ≤ ki and
play(τ[ j]) = {p} occur in τi, in the same order as in τ. Theferore τi @ p is a prefix of τ@ p for
all p and all i, 1 ≤ i ≤ n. This implies that τh @ p cannot be in conflict with τl @ p for any p
and any h, l, 1 ≤ h, l ≤ n.

(2) Immediate from Definitions 8.22, 7.14 and Lemma 7.15.

The following lemma, together with Lemma 8.23, ensures that tec(ω, τ) is defined when
G ‖ M τ

−→ G′ ‖ M′ and ω = otr(M).

Lemma 8.25 . If G ‖ M τ
−→ G′ ‖ M′ and ω = otr(M), then τ is ω-well formed.

Proof. The proof is by induction on τ.
Case τ = β. If β = pq!`, then the result is immediate.

If β = pq?`, then from G ‖ M
β
−→ G′ ‖ M′ we getM ≡ 〈p, `, q〉 ·M′ by Lemma 3.11(2), which

implies ω � pq!` ·ω′. Then the trace ω · β = pq!` ·ω′ ·pq?` is well formed, since pq?` is the
first input of q from p and pq!` is the first output of p to q, and therefore 1 ∝ω · β |ω | + 1.
Hence β is ω-well formed.

Case τ = β · τ′ with τ′ , ε. Let G ‖ M
β
−→ G′′ ‖ M′′ τ′

−→ G′ ‖ M′ and ω′ = otr(M′′).

By induction τ′ is ω′-well formed. If β = pq!`, then from G ‖ M
β
−→ G′′ ‖ M′′ we get

M
′′ =M · 〈p, `, q〉 by Lemma 3.11(1). Therefore otr(M′′) = ω · β = ω′. Since τ′ is (ω · β)-well

formed, i.e. ω · β · τ′ is well formed, we may conclude that τ = β · τ′ is ω-well formed.
If β = pq?`, as in the base case we get M ≡ 〈p, `,q〉 · M′′ by Lemma 3.11(2), and thus
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ω = pq!` ·ω′. We know that τ′ is ω′-well formed, i.e. ω′ · τ′ is well formed. Therefore we
have that pq!` ·ω′ · pq?` · τ′ is well formed, since 1 ∝ω · τ |ω | + 1, and we may conclude that τ
is ω-well formed.

The following lemma mirrors Lemma 8.8.

Lemma 8.26 . (1) Let τ = β · τ′ and ω′ = β I ω. If tec(ω, τ) = δ1; · · · ; δn and tec(ω′, τ′) =
δ′2; · · · ; δ′n, then β • δi = δ′i for all i, 2 ≤ i ≤ n.

(2) Let τ = β · τ′ and ω = β . ω′. If tec(ω, τ) = δ1; · · · ; δn and tec(ω′, τ′) = δ′2; · · · ; δ′n, then
β ◦ δ′i = δi for all i, 2 ≤ i ≤ n.

Proof. (1) By Definition 8.22 δi = ev(ω, β · τ′[1 ... i]) and δ′i = ev(ω′, τ′[1 ... i]) for all i, 2 ≤ i ≤ n.
Then by Lemma 8.18(1) β ◦ δ′i = δi for all i, 2 ≤ i ≤ n.

(2) By Fact (1) and Lemma 8.18(2).

We end this subsection with the two theorems for asynchronous types discussed at the
beginning of the whole section, which relate the transition sequences of an asynchronous
type with the proving sequences of the associated PES.

Theorem 8.27 . If G ‖ M τ
−→ G′ ‖ M′, then tec(otr(M), τ) is a proving sequence in ST (G ‖ M).

Proof. Let ω = otr(M). By Lemma 8.25 τ is ω-well formed. Then by Lemma 8.23 tec(ω, τ)
is defined and by Definition 8.22 tec(ω, τ) = δ1; · · · ; δn, where δi = ev(ω, τ[1 ... i]) for all i,
1 ≤ i ≤ n. We proceed by induction on τ.
Case τ = β. In this case, tec(ω, β) = δ1 = ev(ω, β). By Definition 7.14 we have ev(ω, β) =
[ω, β dω ε]∼. By Definition 7.13 [ω, β dω ε]∼ = [ω, β]∼ since β is ω-well formed.

We use now a further induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′, see

Figure 5.
Base Subcases. The rule applied is [Ext-Out] or [Ext-In]. Therefore β ∈ Tr+(G). By
Definition 7.17(1) this implies ev(ω, β) ∈ TE(G ‖ M).
Inductive Subcases. If the last applied Rule is [IComm-Out], then G = �i∈Ipq!`i; Gi and

G′ =�i∈Ipq!`i; G′i and Gi ‖ M · 〈p, `i, q〉
β
−→ G′i ‖ M

′
· 〈p, `i, q〉 for all i ∈ I and p < play(β). We

have otr(M · 〈p, `i, q〉) = ω · pq!`i. By induction we get tec(ω · pq!`i, β) = δ′i = [ω · pq!`i, β]∼ ∈
TE(Gi ‖ M · 〈p, `i,q〉). By Lemma 8.20(3) pq!`i ◦ δ′i ∈ TE(G ‖ M). Now, from p < play(β) it
follows that pq!`i is not a local cause of β, namely ¬(req(1, pq!`i · β)). From Lemma 8.25 β is
ω-well-formed. So, if β is an input, its matched output must be in ω. Hence pq!`i is not a
cross-cause of β, namely ¬(1 + |ω | ∝ω ·pq!`i · β 2 + |ω |). Therefore pq!`i · β is not ω-pointed. By
Definition 8.13(2) we get pq!`i ◦ δ′i = [ω, β]∼ = δ1. We conclude again that δ1 ∈ TE(G ‖ M)
and clearly δ1 is a proving sequence in ST (G ‖ M) since β has no proper prefix.
If the last applied Rule is [IComm-In] the proof is similar.

Case τ = β · τ′ with τ′ , ε. From G ‖ M τ
−→ G′ ‖ M′ we get G ‖ M

β
−→ G′′ ‖ M′′ τ

′

−→ G′ ‖ M′

for some G′′,M′′. Let ω′ = otr(M′′). By Lemma 8.25 τ′ is ω′-well formed. Thus tec(ω′, τ′)
is defined by Lemma 8.23. Let tec(ω′, τ′) = δ′2; · · · ; δ′n. By induction tec(ω′, τ′) is a proving
sequence inST (G′′ ‖ M′′). By Lemma 8.26(2) δ j = β◦δ′j for all j, 2 ≤ j ≤ n. By Lemma 8.21(2)
this implies δ j ∈ TE(G ‖ M) for all j, 2 ≤ j ≤ n. From the proof of the base case we know
that δ1 = [ω, β]∼ ∈ TE(G ‖ M). What is left to show is that tec(ω, τ) is a proving sequence in
S
T (G ‖ M). By Lemma 8.24(1) no two events in this sequence can be in conflict.

Let δ ∈ TE(G ‖ M) and δ < δk for some k, 1 ≤ k ≤ n. Note that this implies j > 1. If β • δ
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is undefined, then by Definition 8.13(1) either δ = δ1 or δ = [ω, τ]∼ with τ 0ω β · τ′ and
play(β) ⊆ play(τ). In the first case we are done. In the second case τ@ play(β) # β@ play(β) ,
which implies δ1 # δ. Since δ < δk and conflict is hereditary, it follows that δ1 # δk, which
contradicts what said above. Hence this second case is not possible. If β • δ is defined, by
Lemma 8.21(1) β • δ ∈ TE(G′′ ‖ M′′) and by Lemma 8.19(1) β • δ < β • δk. Let δ′ = β • δ.
By Lemma 8.26(1) β • δ j = δ′j for all j, 2 ≤ j ≤ n. Thus we have δ′ < δ′k. Since tec(ω′, τ′) is

a proving sequence in ST (G′′ ‖ M′′), by Definition 4.6 there is h < k such that δ′ = δ′h. By
Lemma 8.16(1) we derive δ = β ◦ δ′ = β ◦ δ′h = δh.

Theorem 8.28 . If δ1; . . . ; δn is a proving sequence in ST (G ‖ M), then G ‖ M τ
−→ G′ ‖ M′ where

τ = i/o(δ1) · . . . · i/o(δn).

Proof. The proof is by induction on the length n of the proving sequence. Let ω = otr(M).
Case n = 1. Let i/o(δ1) = β. Since δ1 is the first event of a proving sequence, it can have no
causes, so it must be δ1 = [ω, β]∼. We show this case by induction on d = depth(G,play(β)).
Subcase d = 1. If β = pq!` we have G =�i∈Ipq!`i; Gi with `k = ` for some k ∈ I. We deduce

G ‖ M
β
−→ Gk ‖ M · 〈p, `,q〉 by applying Rule [Ext-Out]. If β = pq?` we have G = pq?`; G′.

Since G ‖ M is well formed, by Rule [In] of Figure 3 we getM ≡ 〈p, `,q〉 · M′. We deduce

G ‖ M
β
−→ G′ ‖ M′ by applying Rule [Ext-In].

Subcase d > 1. We are in one of the two situations:
(1) G =�i∈Irs!`i; Gi with r < play(β);
(2) G = rs?`′; G′′ with s < play(β).
In Situation (1), r < play(β) implies that rs!`i • δ1 is defined for all i ∈ I by Definition 8.13(1).
By Lemma 8.20(1) rs!`i • δ1 ∈ TE(Gi ‖ M · 〈p, `i,q〉) for all i ∈ I. Lemma 3.4(1) implies
depth(G,play(β)) > depth(Gi,play(β)) for all i ∈ I. By induction hypothesis we have

Gi ‖ M · 〈p, `i, q〉
β
−→ G′i ‖ M

′
· 〈p, `i, q〉 for all i ∈ I. Then we may apply Rule [IComm-Out] to

deduce
�i∈Irs!`i; Gi ‖ M

β
−→�i∈Irs!`i; G′i ‖ M

′

In Situation (2), since G ‖ M is well formed we get M ≡ 〈r, `′, s〉 · M′′ by Rule [In] of
Figure 3. Hence ω � rs!`′ ·ω′. This and s < play(β) imply that rs?`′ • δ1 is defined by
Definition 8.13(1). By Lemma 8.20(2) rs?`′ • δ1 ∈ TE(G′′ ‖ M′′). Lemma 3.4(2) gives

depth(G,play(β)) > depth(G′′,play(β)). By induction hypothesis G′′ ‖ M′′
β
−→ G′′′ ‖ M′′′.

Then we may apply Rule [IComm-In] to deduce

rs?`′; G′′ ‖ 〈r, `′, s〉 · M′′
β
−→ rs?`′; G′′′ ‖ 〈r, `′, s〉 · M′′′

Case n > 1. Let i/o(δ1) = β, and G ‖ M
β
−→ G′′ ‖ M′′ be the corresponding transition as

obtained from the base case. We show that β • δ j is defined for all j, 2 ≤ j ≤ n. If β • δk were
undefined for some k, 2 ≤ k ≤ n, then by Definition 8.13(1) either δk = δ1 or δk = [ω, τ]∼ with
τ 0ω β · τ′ and play(β) ⊆ play(τ). In the second case β@ play(β) # τ@ play(β) , which implies
δk # δ1. So both cases are impossible. If β • δ j is defined, by Lemma 8.21(1) we may define
δ′j = β • δ j ∈ TE(G′′ ‖ M′′) for all j, 2 ≤ j ≤ n. We show that δ′2; · · · ; δ′n is a proving sequence

in ST (G′′ ‖ M′′). By Lemma 8.16(1) δ j = β ◦ δ′j for all j, 2 ≤ j ≤ n. Then by Lemma 8.19(3)
no two events in this sequence can be in conflict.
Let δ ∈ TE(G′′ ‖ M′′) and δ < δ′h for some h, 2 ≤ h ≤ n. By Lemma 8.21(2) β ◦ δ and β ◦ δ′h
belong to TE(G ‖ M). By Lemma 8.19(2) β ◦ δ < β ◦ δ′h. By Lemma 8.16(1) β ◦ δ′h = δh. Let
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δ′ = β ◦ δ. Then δ′ < δh implies, by Definition 4.6 and the fact that ST (G ‖ M) is a PES, that
there is l < h such that δ′ = δl. By Lemma 8.16(2) we get δ = β • δ′ = β • δl = δ′l .
We have shown that δ′2; · · · ; δ′n is a proving sequence in ST (G′′ ‖ M′′). By induction

G′′ ‖ M′′ τ′
−→ G′ ‖ M′ where τ′ = i/o(δ′2) · . . . · i/o(δ′n). Let τ = i/o(δ1) · . . . · i/o(δn). Since

i/o(δ′j) = i/o(δ j) for all j, 2 ≤ j ≤ n, we have τ = β · τ′. Hence G ‖ M
β
−→ G′′ ‖ M′′ τ

′

−→ G′ ‖ M′

is the required transition sequence.

8.3. Isomorphism.

We are finally able to show that the ES interpretation of a network is equivalent, when
the session is typable, to the ES interpretation of its asynchronous type.

To prove our main theorem, we will also use the following separation result from [6]
(Lemma 2.8 p. 12). Recall from Section 4 that C(S) denotes the set of configurations of S.

Lemma 8.29 (Separation [6]). Let S = (E,≺, # ) be a flow event structure and X,X′ ∈ C(S) be
such that X ⊂ X′. Then there exist e ∈ X′\X such that X ∪ {e} ∈ C(S).

We may now establish the isomorphism between the domain of configurations of the
FES of a typable network and the domain of configurations of the PES of its asynchronous
type. In the proof of this result, we will use the characterisation of configurations as proving
sequences, as given in Proposition 4.7. We will also take the freedom of writing ρ1; · · · ;ρn ∈

C(SN (N ‖ M)) to mean that ρ1; · · · ;ρn is a proving sequence such that {ρ1, . . . , ρn} ∈

C(SN (N ‖ M)), and similarly for δ1; · · · ; δn ∈ C(ST (G ‖ M)).

Theorem 8.30 . If ` N ‖ M : G ‖ M, thenD(SN (N ‖ M)) ' D(ST (G ‖ M)).

Proof. Let ω = otr(M). We start by constructing a bijection between the proving sequences
of SN (N ‖ M) and the proving sequences of ST (G ‖ M). By Theorem 8.11, if ρ1; · · · ;ρn ∈

C(SN (N ‖ M)), then N ‖ M τ
−→ N′ ‖ M′ where τ = i/o(ρ1) · · · · · i/o(ρn). By applying

iteratively Subject Reduction (Theorem 3.17), we obtain
G ‖ M τ

−→ G′ ‖ M′ and ` N′ ‖ M′ : G′ ‖ M′

By Theorem 8.27, we get tec(ω, τ) ∈ C(ST (G ‖ M)).
By Theorem 8.28, if δ1; · · · ; δn ∈ C(ST (G ‖ M)), then G ‖ M τ

−→ G′ ‖ M′, where τ =
i/o(δ1) · · · i/o(δn). By applying iteratively Session Fidelity (Theorem 3.18), we obtain

N ‖ M τ
−→ N′ ‖ M′ and ` N′ ‖ M′ : G′ ‖ M′

By Theorem 8.10, we get nec(τ) ∈ C(SN (N ‖ M)).
Therefore we have a bijection between D(SN (N ‖ M)) and D(ST (G ‖ M)), given by
nec(τ)↔ tec(ω, τ) for any τ generated by the (bisimilar) LTSs of N ‖ M and G ‖ M.
We now show that this bijection preserves inclusion of configurations. By Lemma 8.29 it is
enough to prove that if ρ1; · · · ;ρn ∈ C(SN (N ‖ M)) is mapped to δ1; · · · ; δn ∈ C(ST (G ‖ M)),
then ρ1; · · · ;ρn;ρ ∈ C(SN (N ‖ M)) iff δ1; · · · ; δn; δ ∈ C(ST (G ‖ M)), where δ1; · · · ; δn; δ is
the image of ρ1; · · · ;ρn;ρ under the bijection. So, suppose ρ1; · · · ;ρn ∈ C(SN (N ‖ M)) and
δ1; · · · ; δn ∈ C(ST (G ‖ M)) are such that

ρ1; · · · ;ρn = nec(τ)↔ tec(ω, τ) = δ1; · · · ; δn

Then i/o(ρ1) · · · i/o(ρn) = τ = i/o(δ1) · · · i/o(δn).
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By Theorem 8.11, if ρ1; · · · ;ρn;ρ ∈ C(SN (N ‖ M)) with i/o(ρ) = β, then

N ‖ M
τ · β
−−→ N′ ‖ M′

By applying iteratively Subject Reduction (Theorem 3.17) we get

G ‖ M
τ · β
−−→ G′ ‖ M′ and ` N′ ‖ M′ : G′ ‖ M′

We conclude that tec(ω, τ · β) ∈ C(ST (G ‖ M)) by Theorem 8.27.

By Theorem 8.28, if δ1; · · · ; δn; δ ∈ C(ST (G ‖ M)) with i/o(δ) = β, then

G ‖ M
τ · β
−−→ G′ ‖ M′

By applying iteratively Session Fidelity (Theorem 3.18) we get

N ‖ M
τ · β
−−→ N′ ‖ M′ and ` N′ ‖ M′ : G′ ‖ M′

We conclude that nec(τ · β) ∈ C(SN (N ‖ M)) by Theorem 8.10.

9. RelatedWork and Conclusions

Session types, as originally proposed in [41, 43] for binary sessions, are grounded on types
for the π-calculus. Early proposals for typing channels in the π-calculus include simple
sorts [56], input/output types [66] and usage types [47]. In particular, the notion of progress
for multiparty sessions [31, 19] is inspired by the notion of lock-freedom as developed for
the π-calculus in [46, 48]. The more recent work [27] provides further evidence of the strong
relationship between binary session types and channel types in the linear π-calculus. The
notion of lock-freedom for the linear π-calculus was also revisited in [61].

Multiparty sessions disciplined by global types were introduced in the keystone
papers [42, 43]. These papers, as well as most subsequent work on multiparty session types
(for a survey see [44]), were based on more expressive session calculi than the one we use
here, where sessions may be interleaved and participants exchange pairs of labels and
values. In that more general setting, global types are projected onto session types and in
turn session types are assigned to processes. Here, instead, we consider only single sessions
and pure label exchange: this allows us to project global types directly to processes, as
in [70], where the considered global types are those of [43]. We chose to concentrate on this
very simple calculus, as our working plan was already quite challenging. A discussion on
possible extensions of our work to more expressive calculi may be found at the end of this
section.

Standard global types are too restrictive for typing processes which communicate
asynchronously. A powerful typability extension is obtained by the use of the subtyping
relation given in [57]. This subtyping allows inputs and outputs to be exchanged, stating
that anticipating outputs is better. The rationale is that outputs are not blocking, while
inputs are blocking in asynchronous communication. Unfortunately, this subtyping is
undecidable [9, 50], and thus type systems equipped with this subtyping are not effective.
Decidable restrictions of this subtyping relation have been proposed [9, 50, 10]. In particular,
subtyping is decidable when both internal and external choices are forbidden in one of the
two compared processes [9]. This result is improved in [10], where both the subtype and the
supertype can contain either internal or external choices. More interestingly, the work [8]
presents a sound (though not complete) algorithm for checking asynchronous subtyping. A
very elegant formulation of asynchronous subtyping is given in [36]: it allows the authors
to show that any extension of this subtyping would be unsound. In the present paper we
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achieve a gain in typability for asynchronous networks by using a more fine-grained syntax
for global types. Our type system is decidable, since projection is computable and the
preorder on processes is decidable. Notice that there are networks that can be typed using
the algorithm in [8] but cannot be typed in our system, like the video streaming example
discussed in that paper. Asynchronous types are made more permissive in [26], where
both projection and balancing are refined, the first one allowing the participants which are
not involved in a choice to have different behaviours in the branches of the choice and the
second one allowing unbounded queues. The type system of [26] does not type the video
streaming example in [8], but it types a network for which the algorithm of [8] fails.

Since their introduction in [78] and [59], Event Structures have been widely used to give
semantics to process calculi. Several ES interpretations of Milner’s calculus CCS have been
proposed, using various classes of ESs: Stable ESs in [79], Prime ESs or variations of them
in [4, 28, 29], and Flow ESs in [5, 37]. Other calculi such as TCSP (Theoretical CSP [11, 60])
and LOTOS have been provided respectively with a PES semantics [53, 2] and with a Bundle
ES semantics [51, 45]. More recently, ES semantics have been investigated also for the
π-calculus [21, 76, 22, 23, 24, 25]. We refer the reader to our companion paper [15] for a
more extensive discussion on ES semantics for process calculi.

It is noteworthy that all the above-mentioned ES semantics were given for calculi
with synchronous communication. This is perhaps not surprising since ESs are generally
equipped with a synchronisation algebra when modelling process calculi, and a communication
is represented by a single event resulting from the synchronisation of two events. This is
also the reason why, in our previous paper [15], we started by considering an ES semantics
for a synchronous session calculus with standard global types.

An asynchronous PES semantics for finite synchronous choreographies was recently
proposed in [52]. In that paper like in the present one, a communication is represented
by two distinct events in the ES, one for the output and the other for the matching input.
However, in our work the output and the matching input are already decoupled in the types,
and their matching relation needs to be reconstructed in order to obtain the cross-causality
relation in the PES. Instead, in [52] the definition of cross-causality is immediate, since the
standard synchronous type construct gives rises to a pair of events which are by construction
in the cross-causality relation. Moreover, only types are interpreted as ESs in [52]. To sum
up, while asynchrony is an essential feature of sessions in our calculus, and therefore it is
modelled also in their abstract specifications (asynchronous types), asynchrony is rather
viewed as an implementation feature of sessions in [52], and therefore it is not modelled in
their abstract specifications (choreographies), which remain synchronous.

We should also mention that a denotational semantics based on concurrent games [67]
has been proposed for the asynchronous π-calculus in [68]. Notice, however, that in the
asynchronous π-calculus an output can never be a local cause of any other event, since
the output construct has no continuation. Therefore the asynchrony of the asynchronous
π-calculus is more liberal than that of our calculus and of session calculi in general, which
adopt the definition of asynchrony of standard protocols such as TCP/IP, where the order of
messages between any given pair of participants is preserved.

While asynchronous types are interpreted as PESs, the simplest kind of ES, networks
are interpreted as FESs, a subclass of Winskel’s Stable Event Structures [80] that allows for
disjunctive causality and therefore provides a more compact representation of networks in
the presence of forking computations.
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This work builds on the companion paper [15], where synchronous rather than asyn-
chronous communication was considered. In that paper too, networks were interpreted
as FESs, and global types, which were the standard ones, were interpreted as PESs. The
key result was again an isomorphism between the configuration domain of the FES of a
typed network and that of the PES of its global type. Thus, the present paper completes the
picture set up in [15] by exploring the “asynchronous side” of the same construction.

As regards future work, we already sketched some possible directions in [15], including
the investigation of reversibility, which would benefit from previous work on reversible
session calculi [72, 73, 54, 55, 58, 16] and reversible Event Structures [64, 25, 39, 40, 38].
We also plan to investigate the extension of our asynchronous calculus with delegation.
In the literature, delegation is usually modelled using the channel passing mechanism
of the π-calculus, which requires interleaved sessions. We feel that the extension of our
event structure semantics to interleaved sessions requires a deep rethinking, especially for
the definition of narrowing. So we plan to use the alternative notion of delegation for a
session calculus without channels, called “internal delegation”, proposed in [17]. Note that
delegation remains essentially a synchronous mechanism, even in the asynchronous setting:
indeed, unlike ordinary outputs that become non-blocking, delegation remains blocking for
the principal, who has to wait until the deputy returns the delegation to be able to proceed.
As a matter of fact, this is quite reasonable: not only does it prevent the issue of “power
vacancy” that would arise if the role of the principal disappeared from the network for
some time, but it also seems natural to assume that the principal delegates a task only when
she has the guarantee that the deputy will accept it, and that both of them reside in the same
locality (where communication may be assumed to be synchronous).

To conclude, we would like to mention a valuable suggestion made by one of our
reviewers, which would lead to a more abstract ES model than the one we propose here.
Indeed, an important feature of a denotational model such as Event Structures is abstraction.
Clearly, our PES semantics for types abstracts from their syntax: for instance, it maps to the
same PES all the types given in Example 3.8 for the characteristic network of Example 2.4.
As regards our FES semantics for networks, it abstracts from the syntax of networks via the
narrowing operation, which prunes off all the input events that are not justified by an output
event or by a message in the queue, as well as their successors. As a consequence, the (non
typable) network p[[ q?`; r!`′ ]] ‖ r[[ p?`′ ]] ‖ ∅ is interpreted as the FES with an empty set of
events, and so are infinitely many other networks of the same kind. A second abstraction is
obtained when we step from FESs to their configuration domains. For instance, consider
the 3-philosopher network made of three participants each of which wants to receive a
message from its left neighbour before sending a message to its right neighbour. This
deadlocked network is interpreted as a FES with 6 events with a circular dependency among
the three output events (this is allowed in FESs, since the flow relation is not required to be
transitive); however, none of these events will be able to occur in any configuration, so the
only configuration of this FES will be the empty one. Now, the reviewer argued that a further
abstraction could be realised by allowing two adjacent outputs towards different receivers
to be swapped, taking inspiration from some recent work on deorderings for optimising
imperative languages [62]. The suggestion was to introduce such a relaxation right in the
beginning, when defining the PES semantics of processes. However, our standpoint is
that processes should be agnostic to the mode of communication adopted by the network3,

3Indeed, we use here exactly the same PES semantics for processes as we did for the synchronous case in [15].
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hence we would rather consider introducing such a relaxation in the FES semantics for
networks. To this end, we could redefine the local flow relation (Clause (1a) of Definition 6.6)
as follows:

(1a) η′ = η ·π & ( (η = ζ ·q!` & π = r!`′)⇒ q = r)⇒ p :: η ≺ω p :: η′

In other words, a network would inherit an immediate causality between two events η and
η′ of one of its participants if either one of the two actions of η and η′ is an input or they
are both outputs towards the same participant. Of course, similar adaptations would have
to be performed also on the definition of narrowing and on the permutation equivalence
on traces which is used to define type events. This would imply a substantial redesign of
our model, therefore we did not attempt to do it in the present paper. We acknowledge the
reviewer for his helpful suggestion and we plan to investigate in the near future this more
abstract model.

A related goal would be to devise semantic counterparts for our well-formedness
conditions on asynchronous types, namely structural conditions characterising well-typed
network FESs, along the lines of a previous proposal for binary sessions as Linear Logic
proofs based on causal nets [14]. This would allow us to reason entirely on the semantic side,
and in particular to establish the isomorphism of the configuration domains of well-typed
networks and their types in a direct way, without recourse to the Subject Reduction and
Session Fidelity results.

Acknowledgments. We are indebted to Francesco Dagnino for suggesting a simplification in
the definition of balancing for asynchronous global types. The present version of the paper
greatly benefitted from the key suggestions of the reviewers. In particular, several definitions
have been clarified, network events have been simplified, and both the comparison with
the literature and the discussion on future work have been expanded.

Appendix

Proof of Lemma 3.10.

(1) The proof is by induction on d = depth(G,p).
Case d = 1. By definition of projection (see Figure 2), G � p =

⊕
i∈I q!`i; Pi implies

G = �i∈Ipq!`i; Gi with Gi �p = Pi for all i ∈ I. Then by Rule [Ext-Out] we may conclude

G ‖ M
pq!`i
−−−→ Gi ‖ M · 〈p, `i,q〉 for all i ∈ I.

Case d > 1. In this case either i) G =� j∈Jrs!`′j; G j with r , p or ii) G = rs?`; G with s , p.
i) There are three subcases.
If s = p and |J| = 1, say J = {1}, then G = rp!`′1; G1. By definition of projection and by
assumption G�p = G1�p =

⊕
i∈I q!`i; Pi. By Lemma 3.4(1) depth(G,p) > depth(G1,p). By

Lemma 3.9 G1 ‖ M · 〈r, `′1,p〉 is well formed. Then by induction

G1 ‖ M · 〈r, `′1,p〉
pq!`i
−−−→ G′i ‖ M · 〈r, `

′

1,p〉 · 〈p, `i,q〉
and G′i �p = Pi for all i ∈ I. SinceM · 〈r, `′1,p〉 · 〈p, `i,q〉 ≡ M · 〈p, `i,q〉 · 〈r, `′1,p〉, by Rule

[IComm-Out] we get G ‖ M
pq!`i
−−−→ rp!`′1; G′i ‖ M · 〈p, `i,q〉 for all i ∈ I. By definition of

projection (rp!`′1; G′i )�p = G′i �p and so (rp!`′1; G′i )�p = Pi for all i ∈ I.
If s = p and |J| > 1, by definition of projection and the assumption that G � p is a
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choice of output actions on q we have that G � p = q!`; P with P = −→π; Σ j∈Jr?`′j; Q j and

G j � p = q!`;−→π;r?`′j; Q j for all j ∈ J. By Lemma 3.4(1) depth(G,p) > depth(G j,p) for
all j ∈ J. By Lemma 3.9 G j ‖ M · 〈r, `′j, s〉 is well formed. This implies by induction

G j ‖ M · 〈r, `′j, s〉
pq!`
−−−→ G′j ‖ M · 〈r, `

′

j, s〉 · 〈p, `,q〉 and G′j �p = −→π;r?`′j; Q j for all j ∈ J. Since
M · 〈r, `′j, s〉 · 〈p, `,q〉 ≡ M · 〈p, `,q〉 · 〈r, `

′

j, s〉, by Rule [IComm-Out] we get

G ‖ M
pq!`
−−−→ � j∈Jrp!`′j; G′j ‖ M · 〈p, `,q〉. Lastly (� j∈Jrp!`′j; G′j) � p = −→π; Σ j∈Jr?`′j; Q j since

G′j�p = −→π;r?`′j; Q j. We may then conclude that (� j∈Jrp!`′j; G′j)�p = P.
If s , p, then by definition of projection G � p = G j � p for all j ∈ J. By Lemma 3.4(1)

depth(G,p) > depth(G j,p) for all j ∈ J. Then by induction G j ‖ M
pq!`i
−−−→ Gi, j ‖ M · 〈p, `i,q〉

and Gi, j�p = Pi for all i ∈ I and all j ∈ J. By Rule [IComm-Out]

G ‖ M
pq!`i
−−−→� j∈Jrs!`′j; Gi, j ‖ M · 〈p, `i,q〉

for all i ∈ I. By definition of projection (� j∈Jrs!`′j; Gi, j)�p = Gi, j�p = Pi for all i ∈ I.
ii) The proof of this case is similar and simpler than the proof of Case i). It uses Lemmas 3.4(2)
and 3.9 and Rule [IComm-In], instead of Lemmas 3.4(1) and 3.9 and Rule [IComm-Out].
Note that, in order to apply Rule [IComm-In], we needM ≡ 〈r, `, s〉 · M′. This derives from
balancing of rs?`; G′ ‖ M using Rule [In] of Figure 3.

(2) The proof is by induction on d = depth(G,q).
Case d = 1. By definition of projection and the hypothesis G�q = Σi∈Ip?`i; Pi , it must be
G = pq?`; G′ and |I| = 1, say I = {k}, and ` = `k and G′ �q = Pk. Then by Rule [Ext-In] we

deduce G ‖ 〈p, `k,q〉 · M′
pq?`k
−−−−→ G′ ‖ M′.

Case d > 1. In this case either i) G =� j∈Jrs!`′j; G j with r , q or ii) G = rs?`; G′ with s , q.
i) There are two subcases, depending on whether s = q or s , q. The most interesting case
is the first one, namely G =� j∈Jrq!`′j; G j. By definition of projection G�q = −→π; Σ j∈Jr?`′j; Q j

where G j�q = −→π; r?`′j; Q j. By assumption G�q = Σi∈Ip?`i; Pi, thus it must be either −→π = ε

or |I| = 1, say I = {k}, and −→π = p?`k;
−→
π′.

If −→π = ε, we have that r = p and J = I and `′i = `i and Qi = Pi for all i ∈ I. This means that
G =�i∈Ipq!`i; Gi and Gi�q = p?`i; Pi. LetMi ≡ 〈p, `, q〉 · M′i whereM′i =M′ · 〈p, `i, q〉. By
Lemma 3.9 Gi ‖ Mi is well formed for all i ∈ I. By Lemma 3.4(1) depth(G,q) > depth(Gi,q)

for all i ∈ I. By induction hypothesis, Gi ‖ Mi
pq?`
−−−→ G′i ‖ M

′

i and ` = `i and G′i �q = Pi for
all i ∈ I. This implies that |I| = 1, say I = {k}. Then G = pq!`; Gk and by Rule [IComm-Out]

we deduce G ‖ M
pq?`
−−−→ G′ ‖ M′, where G′ = pq!`; G′k. Whence by definition of projection

G�q = Gk �q = p?`k; Pk and G′�q = G′k �q = Pk.

If −→π = p?`k;
−→
π′, then G � q = p?`k; Pk, where Pk =

−→
π′; Σ j∈Jr?`′j; Q j. LetM j ≡ 〈p, `,q〉 · M′j

where M′j = M′ · 〈r, `′j,q〉. For all j ∈ J, G j ‖ M j is well formed by Lemma 3.9 and
depth(G,q) > depth(G j,q) by Lemma 3.4(1). By induction hypothesis we get ` = `k and

G j ‖ M j
pq?`
−−−→ G′j ‖ M

′

j for all j ∈ J. Let G′ = � j∈Jrq!`′j; G′j. Then G ‖ M
pq?`
−−−→ G′ ‖ M′ by

Rule [IComm-Out] and G′�q =
−→
π′; Σ j∈Jr?`′j; Q j = Pk.

ii) The proof of this case is similar and simpler than the proof of Case i). It uses Lemmas 3.4(2)
and 3.9 and Rule [IComm-In], instead of Lemmas 3.4(1) and 3.9 and Rule [IComm-Out].
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Note that, in order to apply Rule [IComm-In], we needM ≡ 〈r, `, s〉 · M′. This derives from
balancing of rs?`; G′ ‖ M using Rule [In] of Figure 3.

Proof of Lemma 3.11.

(1) By induction on the inference of the transition G ‖ M
pq!`
−−−→ G′ ‖ M′.

Base Case. The applied rule must be Rule [Ext-Out], so G = �i∈Ipq!`i; Gi and ` = `k and
G′ = Gk for some k ∈ I, and

�i∈Ipq!`i; Gi ‖ M
pq!`k
−−−→ Gk ‖ M · 〈p, `k,q〉

By definition of projection G�p =
⊕

i∈I q!`i; Gi�p and G′�p = Gk �p . Again by definition
of projection, if r < {p,q} or r = q and |I| = 1, we have G� r = G1 � r and so G� r = G′ � r .
If r = q and |I| > 1, then G�q = −→π; Σi∈Ip?`i; Qi where Gi �q = −→π; p?`i; Qi for all i ∈ I and so
G�q ≤ Gk �q .
Inductive Cases. If the applied rule is [IComm-Out], then G = � j∈Jst!`′j; G j and G′ =

� j∈Jst!`′j; G′j and

G j ‖ M · 〈s, `′j, t〉
pq!`
−−−→ G′j ‖ M

′
· 〈s, `′j, t〉 j ∈ J p , s

� j∈Jst!`′j; G j ‖ M
pq!`
−−−→� j∈Jst!`′j; G′j ‖ M

′

By Lemma 3.9 G j ‖ M · 〈s, `′j, t〉 is well formed. By induction hypothesisM′ · 〈s, `′j, t〉 ≡
M · 〈s, `′j, t〉 · 〈p, `,q〉, which impliesM′ ≡ M · 〈p, `,q〉. If p , t, by definition of projection
G�p = G1�p and G j�p = G1�p for all j ∈ J. Similarly G′�p = G′1�p and G′j�p = G′1�p
for all j ∈ J. By induction hypothesis G1 �p =

⊕
i∈I q!`i; Pi and ` = `k and G′1 �p = Pk for

some k ∈ I. This implies G�p =
⊕

i∈I q!`i; Pi and G′�p = Pk.
If p = t and |J| = 1 the proof is as in the previous case by definition of projection.
If p = t and |J| > 1, then the definition of projection gives G � p = −→π; Σ j∈Js?`′j; Q j and

G j � p = −→π; s?`′j; Q j and G′ � p =
−→
π′; Σ j∈Js?`′j; Q′j and G′j � p =

−→
π′; s?`′j; Q′j for all j ∈ J. By

induction hypothesis −→π = q!`;
−→
π′, which implies G�p = q!`; G′�p .

For r < {p, s, t} by definition of projection G � r = G1 � r and G j � r = G1 � r for all j ∈ J.
Similarly G′ � r = G′1 � r and G′j � r = G′1 � r for all j ∈ J. By induction hypothesis
G1� r ≤ G′1� r , which implies G� r ≤ G′� r .
For participant s we have G�s =

⊕
j∈J t!`′j; G j�s ≤

⊕
j∈J t!`′j; G′j�s = G′�s .

For participant t , p if |J| = 1 the proof is the same as for r < {p, s, t}. If |J| > 1, then we
have G � t = −→π; Σ j∈Js?`′j; R j where G j � t = −→π; s?`′j; R j and G′ � t =

−→
π′; Σ j∈Js?`′j; R′j where

G′j � t =
−→
π′; s?`′j; R′j. From G j � t ≤ G′j � t for all j ∈ J we get

−→
π′ = −→π and R j ≤ R′j for all j ∈ J.

This implies G� t ≤ G′� t .
If the applied rule is [IComm-In] the proof is similar and simpler.

(2) The proof is similar to the proof of (1). The most interesting case is the application of
Rule [IComm-Out]

G j ‖ M · 〈s, `′j, t〉
pq?`
−−−→ G′j ‖ M

′
· 〈s, `′j, t〉 j ∈ J q , s

� j∈Jst!`′j; G j ‖ M
pq?`
−−−→� j∈Jst!`′j; G′j ‖ M

′
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By Lemma 3.9 G j ‖ M · 〈s, `′j, t〉 is well formed. By induction hypothesis M · 〈s, `′j, t〉 ≡
〈p, `,q〉 · M′ · 〈s, `′j, t〉, which impliesM ≡ 〈p, `,q〉 · M′. If q , t, by definition of projection
G�q = G1�q and G j�q = G1�q for all j ∈ J. Similarly G′�q = G′1�q and G′j�q = G′1�q
for all j ∈ J. By induction hypothesis G1�q = pq?`; G′1�q . This implies G�q = pq?`; G′�p .
If q = t and |J| = 1 the proof is as in the previous case by definition of projection.
If q = t and |J| > 1, then the definition of projection gives G � q = −→π; Σ j∈Js?`′j; Q j and

G j � q = −→π; s?`′j; Q j and G′ � q =
−→
π′; Σ j∈Js?`′j; Q′j and G′j � q =

−→
π′; s?`′j; Q′j for all j ∈ J. By

induction hypothesis −→π = p?`;
−→
π′, which implies G�q = p?q`; G′�p .

The proof of G� r ≤ G′� r for all r , q is as in Case (1).

Proof of Lemma 8.16.

Statements (1) and (2) immediately follow from Lemma 8.14. In the proofs of the
remaining statements we convene that “β is required in τ1 · β · τ2” is short for “the shown
occurrence of β is required in τ1 · β · τ2” and similarly for “β matches an output in τ1 · β · τ2”.

(3) Let δ = [ω, τ]∼. Since both β2 • δ and β2 • (β1 ◦ δ) are defined, by Lemma 8.14 both
β2 I ω and β2 I (β1 . ω) must be defined. Then, by Lemma 8.15(1) β2 I (β1 . ω) � β1.(β2 I ω).
So we set ω′ = β1 . (β2 I ω). Let ω1 = β1 . ω . By Definition 8.13(2) we get

δ1 = β1 ◦ δ =

[ω1, β1 · τ]∼ if β1 · τ is ω1-pointed
[ω1, τ]∼ otherwise

Let ω2 = β2 I ω. By Definition 8.13(1) we get

δ2 = β2 • δ =

[ω2, τ′]∼ if τ ≈ω β2 · τ′

[ω2, τ]∼ if play(β2) ∩ play(τ) = ∅
The remainder of this proof is split into two cases, according to the shape of δ2.
Case δ2 = [ω2, τ]∼. Then play(β2) ∩ play(τ) = ∅. By Definition 8.13(2) we get

β1 ◦ δ2 =

[ω′, β1 · τ]∼ if β1 · τ is ω′-pointed
[ω′, τ]∼ otherwise

Since play(β2) ∩ play(β1 · τ) = ∅, by Definition 8.13(1) we get

β2 • δ1 =

[ω′, β1 · τ]∼ if β1 · τ is ω1-pointed
[ω′, τ]∼ otherwise

We have to show that
(∗∗) β1 · τ is ω′-pointed iff β1 · τ is ω1-pointed

If β1 is an input, it must be required in τ for both ω′-pointedness and ω1-pointedness, so
this case is obvious.
Let β1 = pq!`.
If β2 is an output, then ω′ � ω1 · β2 by Definition 8.3(1). Since β2 , pq!`′ for all `′, an input
in τ matches β1 in ω1 · β2 · β1 · τ iff it matches β1 in ω1 · β1 · τ.
If β2 is an input, then ω1 � β2 · ω′ by Definition 8.3(1). If β2 , pq?`′ for all `′, then an input
in τmatches β1 in ω′ · β1 · τ iff it matches β1 in β2 ·ω′ · β1 · τ. Let β2 = pq?`′ for some `′. Since
play(β2) ∩ play(τ) , ∅, there is no input β0 in τ such that β0 matches β1 in ω′ · β1 · τ or in
β2 · ω′ · β1 · τ. This concludes the proof of (∗∗).
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Case δ2 = [ω2, τ′]∼. Then τ ≈ω β2 · τ′. By Definition 8.13(2) we get

β1 ◦ δ2 =

[ω′, β1 · τ′]∼ if β1 · τ′ is ω′-pointed
[ω′, τ′]∼ otherwise

and, since δ = [ω, β2 · τ′]∼, by the same definition we get

β1 ◦ δ =

[ω1, β1 · β2 · τ′]∼ if β1 · β2 · τ′ is ω1-pointed
[ω1, β2 · τ′]∼ otherwise

We first show that β2 · β1 · τ′ ≈ω1 β1 · β2 · τ′. Since β1 ◦ δ is defined, the trace ω1 · β1 · β2 · τ′ is
well formed by Lemma 8.14(2). So β1 cannot be a matching input for β2. To show that β2

cannot be a matching input for β1 observe that, if it were, then β1 = β2. Since β2 • (β1 ◦ δ) is
defined we have that ω1 ≡ β2 · ω′ by Definition 8.3(1). Therefore β2 cannot be a matching
input for β1 in β2 · ω′ · β1 · β2 · τ′, since it is the matching input of the first β2. From this and
play(β1) ∩ play(β2) = ∅we get that β2 · β1 · τ′ ≈ω1 β1 · β2 · τ′. Therefore

β1 ◦ δ =

[ω1, β2 · β1 · τ′]∼ if β1 · β2 · τ′ is ω1-pointed
[ω1, β2 · τ′]∼ otherwise

and by Definition 8.13(1)

β2 • δ1 =

[ω′, β1 · τ′]∼ if β1 · β2 · τ′ is ω1-pointed
[ω′, τ′]∼ otherwise

We have to show that
(∗ ∗ ∗) β1 · τ′ is ω′-pointed iff β1 · β2 · τ′ is ω1-pointed

Note that β1 is required in τ′ iff it is required in β2 · τ′ since play(β2)∩ play(β1) = ∅. Therefore
the result is immediate when β1 is an input.
Let β1 be an output.
If β2 is an output, then ω′ � ω1 · β2 by Definition 8.3(1). Suppose that β1 · τ′ is ω′-pointed,
where τ′ = τ′0 ·β0 ·τ′′0 and β0 matches β1 inω1 ·β2 ·β1 ·τ′0 ·β0 ·τ′′0 . Then, since β2 ·β1 ·τ′ ≈ω1 β1 ·β2 ·τ′,
we have that β0 matches β1 in ω1 · β1 · β2 · τ′0 · β0 · τ′′0 . In a similar way we can prove that, if
an input β0 matches β1 in ω1 · β1 · β2 · τ′0 · β0 · τ′′0 , then β0 matches β1 in ω1 · β2 · β1 · τ′0 · β0 · τ′′0 .
If β2 is an input, then ω1 � β2 · ω′ by Definition 8.3(1). Suppose that β1 · τ′ is ω′-pointed,
where τ′ = τ′0 · β0 · τ′′0 and β0 matches β1 in ω′ · β1 · τ′0 · β0 · τ′′0 . Then β0 matches β1 in
β2 ·ω′ · β1 · β2 · τ′0 · β0 · τ′′0 , since β2 is the first input in the trace and it matches β2. In a similar
way we can prove that, if an input β0 matches β1 in β2 ·ω′ · β1 · β2 · τ′0 · β0 · τ′′0 , then β0 matches
β1 in ω′ · β1 · τ′0 · β0 · τ′′0 . Therefore (∗ ∗ ∗) holds.

(4) Let δ = [ω, τ]∼. Since βi ◦ δ is defined for i ∈ {1, 2}, by Lemma 8.14(2) ωi = βi . ω is
defined for i ∈ {1, 2}. Then by Lemma 8.15(2) β1 . (β2 . ω) � β2 . (β1 . ω). Let ω′ = β1 . (β2 . ω).
Using Lemma 8.14(2) we get for i ∈ {1, 2}

δi = βi ◦ [ω, τ]∼ = [ωi, βi dωi τ]∼
Using again Lemma 8.14(2) we get

β2 ◦ δ1 = β2 ◦ [ω1, β1 dω1 τ]∼ = [ω′, β2 dω′ ( β1 dω1 τ)]∼
Similarly

β1 ◦ δ2 = β1 ◦ [ω2, β2 dω2 τ]∼ = [ω′, β1 dω′ ( β2 dω2 τ)]∼
We want to prove that

(∗) β1 dω′ ( β2 dω2 τ) ≈ω′ β2 dω′ ( β1 dω1 τ)
In the proof of (*) we will use the following facts, where h, k = 1, 2 and h , k:
(a) βh · βk · τ ≈ω′ βk · βh · τ;
(b) if βh · τ is ω′-pointed and βk · τ is not ωk-pointed, then βh · τ is ωh-pointed;
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(c) if βh · τ is ωh-pointed and βk · τ is not ωk-pointed, then βh · τ is ω′-pointed;
(d) βh · βk · τ is ω′-pointed iff βh · τ is ωh-pointed and βk · τ is ωk-pointed.

Fact (a). We show that βh · βk · τ ω′-swaps to βk · βh · τ. By hypothesis play(βh) ∩ play(βk) = ∅,
so it is enough to show that βk does not match βh in the traceω′ ·βh ·βk ·τ = (βh.(βk.ω))·βh ·βk ·τ.
Suppose that βh is an output and βk is an input such that βk = βh. Since δh = βh ◦ δ is defined
and βh is an output, it must beω � ωh · βh. Then, since δk = βk ◦δ is defined and βk is an input
and βk = βh, we get βk . ω = βk ·ω � βk ·ωh · βh � βh ·ωh · βh. Then ω′ = βh . (βk . ω) � βh ·ωh.
Clearly, βk matches the initial output βh in the trace ω′ · βh · βk · τ, since βk is the first input in
the trace and the initial βh is the first complementary output in the trace. Therefore βk does
not match its adjacent output βh.
Fact (b). If βh is required in βh · τ - a condition that is always true when βh is an input and
βh · τ is ω′-pointed - then βh · τ is ω0-pointed for all ω0.
We may then assume that βh is an output that is not required in βh · τ.
If βk is an output, then ωh � ω

′
· βk. If an input matches βh in ω′ · βh · τ, then the same input

matches βh in ωh · βh · τ, since play(βh) ∩ play(βk) = ∅.
If βk is an input, then ω′ � βk · ωh. Suppose βh = pq!` and βk = rs?`′. Observe that it must
be q , s, because otherwise no input pq?` could occur in τ, since βk · τ is not ωk-pointed,
contradicting the hypotheses that βh · τ is ω′-pointed and βh is not required in βh · τ. Then
the presence of βk = rs!` cannot affect the multiplicity of pq! or pq? in any trace. Therefore,
if an input matches βh in ω′ · βh · τ, then the same input matches βh in ωh · βh · τ.
Fact (c). Again, we may assume that βh is an output that is not required in βh · τ.
If βk is an output, then ωh � ω

′
· βk. If an input matches βh in ωh · βh · τ, then the same input

matches βh in ω′ · βh · τ, since play(βh) ∩ play(βk) = ∅.
If βk is an input, then ω′ � βk · ωh. Let βh = pq!` and βk = rs?`′. Again, it must be q , s,
because otherwise no input pq?` could occur in τ, since βk · τ is notωk-pointed, contradicting
the hypotheses that βh · τ is ωh-pointed and βh is not required in βh · τ. Therefore, if an input
matches βh in ωh · βh · τ, then the same input matches βh in ω′ · βh · τ.
Fact (d). From play(βh)∩play(βk) = ∅ it follows that βh is required in βh · βk ·τ iff βh is required
in βh · τ, and similarly for βk. Let us then assume that βh and βk are not both required in
βh · βk · τ, i.e., that at least one of them is an output not required in βh · βk · τ.
If both βh and βk are outputs, then ωh � ω

′
· βk. Then an input matches βh in ω′ · βh · βk · τ iff

the same input matches βh in ωh · βh · τ, since βh · βk · τ ≈ω′ βk · βh · τ by Fact (a).
Let βh = pq!` and βk = rs?`′, where βh is not required in βh · βk · τ. Then ω′ � βk · ωh.
Therefore an input matches βh in ω′ · βh · βk · τ iff the same input matches βh in ωh · βh · τ,
since βh · βk · τ ≈ω′ βk · βh · τ by Fact (a).
We proceed now to prove (*). We distinguish three cases, according to whether:

i) each βi · τ is ωi-pointed, for i = 1, 2;
ii) no βi · τ is ωi-pointed, for i = 1, 2;

iii) βh · τ is ωh-pointed and βk · τ is not ωk-pointed, for h, k = 1, 2 and h , k.
Case i). Suppose each βi · τ is ωi-pointed, for i = 1, 2. Then β1 dω′ ( β2 dω2 τ) ≈ω′ β1 dω′ β2 · τ
and β2 dω′ ( β1 dω1 τ) ≈ω′ β2 dω′ β1 · τ. By Fact (d) both β1 · β2 · τ and β2 · β1 · τ are ω′-pointed.
Then β1 dω′ β2 · τ ≈ω′ β1 · β2 · τ and β2 dω′ β1 · τ ≈ω′ β2 · β1 · τ. By Fact (a) β1 · β2 · τ ≈ω′ β2 · β1 · τ.
Case ii). Suppose no βi · τ is ωi-pointed, for i = 1, 2. Then β1 dω′ ( β2 dω2 τ) ≈ω′ β1 dω′ τ and
β2 dω′ ( β1 dω1 τ) ≈ω′ β2 dω′ τ. By Fact (b), no βi · τ can be ω′-pointed, for i ∈ {1, 2}. Hence
β1 dω′ τ ≈ω′ τ ≈ω′ β2 dω′ τ.
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Case iii). Suppose βh · τ is ωh-pointed and βk · τ is not ωk-pointed, for h, k = 1, 2 and h , k.
Then βh dω′ ( βk dωk τ) ≈ω′ βh dω′ τ and βk dω′ ( βh dωh τ) ≈ω′ βk dω′ βh · τ. By Fact (c) βh · τ is
ω′-pointed. Hence βh dω′ τ ≈ω′ βh · τ. By Fact (d) βk · βh · τ is not ω′-pointed. Therefore
βk dω′ βh · τ ≈ω′ βh · τ.

Glossary of symbols.

symbol meaning

β input/output communication pq!`,pq?`
δ type event
ε empty trace
ζ sequence of input/output actions
η process event (nonempty sequence of input/output actions)
ϑ sequence of undirected actions !`, ?`
π input/output action p!`,p?`
ρ network event
τ trace (sequence of input/output communications)
χ sequence of output actions
ω sequence of output communications
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[36] Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko Yoshida. Precise subtyping for
asynchronous multiparty sessions. Proc. ACM Program. Lang., 5(POPL):1–28, 2021.

[37] Rob J. van Glabbeek and Ursula Goltz. Well-behaved flow event structures for parallel composition and
action refinement. Theoretical Computer Science, 311(1-3):463–478, 2004.

[38] Eva Graversen. Event Structure Semantics of Reversible Process Calculi. PhD thesis, Imperial College London,
2021.

[39] Eva Graversen, Iain Phillips, and Nobuko Yoshida. Towards a categorical representation of reversible
event structures. In Vasco T. Vasconcelos and Philipp Haller, editors, PLACES, volume 246 of EPTCS, pages
49–60. Open Publishing Association, 2017.

[40] Eva Graversen, Iain Phillips, and Nobuko Yoshida. Event structure semantics of (controlled) reversible
CCS. In Jarkko Kari and Irek Ulidowski, editors, Reversible Computation, volume 11106 of LNCS, pages
122–102. Springer, 2018.

[41] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline for
structured communication-based programming. In Chris Hankin, editor, ESOP, volume 1381 of LNCS,
pages 122–138. Springer, 1998.

[42] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In George C.
Necula and Philip Wadler, editors, POPL, pages 273–284. ACM Press, 2008.

[43] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. Journal of
ACM, 63(1):9:1–9:67, 2016.

[44] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou,
Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi
Zavattaro. Foundations of session types and behavioural contracts. ACM Computing Surveys, 49(1):3:1–3:36,
2016.

[45] Joost-Pieter Katoen. Quantitative and qualitative extensions of event structures. PhD thesis, University of
Twente, 1996.

[46] Naoki Kobayashi. A type system for lock-free processes. Information and Computation, 177(2):122–159, 2002.
[47] Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Informatica, 42(4-5):291–347,

2005.
[48] Naoki Kobayashi. A new type system for deadlock-free processes. In Christel Baier and Holger Hermanns,

editors, CONCUR, volume 4137 of LNCS, pages 233–247. Springer, 2006.
[49] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical choreogra-

phies. In Sriram K. Rajamani and David Walker, editors, POPL, pages 221–232. ACM Press, 2015.
[50] Julien Lange and Nobuko Yoshida. On the undecidability of asynchronous session subtyping. In Javier

Esparza and Andrzej S. Murawski, editors, FOSSACS, volume 10203 of LNCS, pages 441–457, 2017.
[51] Rom Langerak. Bundle event structures: a non-interleaving semantics for LOTOS. In Michel Diaz and

Roland Groz, editors, Formal Description Techniques for Distributed Systems and Communication Protocols,
pages 331–346. North-Holland, 1993.

[52] Ugo de’ Liguoro, Hernán C. Melgratti, and Emilio Tuosto. Towards refinable choreographies. In Julien
Lange, Anastasia Mavridou, Larisa Safina, and Alceste Scalas, editors, ICE, volume 324 of EPTCS, pages
61–77. Open Publishing Association, 2020.

[53] Rita Loogen and Ursula Goltz. Modelling nondeterministic concurrent processes with event structures.
Fundamenta Informaticae, 14(1):39–74, 1991.

[54] Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible choreographies: a monitors-
as-memories approach. In Wim Vanhoof and Brigitte Pientka, editors, PPDP, pages 127–138. ACM Press,
2017.

[55] Claudio Antares Mezzina and Jorge A. Pérez. Reversibility in session-based concurrency: A fresh look.
Journal of Logic and Algebraic Methods in Programming, 90:2–30, 2017.

[56] Robin Milner. The polyadic π-calculus: a tutorial. In Friedrich L. Bauer, Wilfried Brauer, and Helmut
Schwichtenberg, editors, Logic and Algebra of Specification, NATO ASI. Springer, 1991.

61



[57] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially commutative
asynchronous sessions. In Giuseppe Castagna, editor, ESOP, volume 5502 of LNCS, pages 316–332. Springer,
2009.

[58] Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery. In Peng
Wu and Sebastian Hack, editors, CC, pages 98–108. ACM Press, 2017.

[59] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures and domains, part I.
Theoretical Computer Science, 13(1):85–108, 1981.

[60] Ernst-Rüdiger Olderog. TCSP: theory of communicating sequential processes. In Wilfried Brauer, Wolfgang
Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 255 of LNCS, pages 441–465.
Springer, 1986.

[61] Luca Padovani. Type reconstruction for the linear π-calculus with composite regular types. Logical Methods
in Computer Science, 11(4), 2015.

[62] Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. Modular
relaxed dependencies in weak memory concurrency. In Peter Müller, editor, ESOP, volume 12075 of LNCS,
pages 599–625. Springer, 2020.

[63] Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations and observa-
tional equivalences for session-based concurrency. Information and Computation, 239:254–302, 2014.

[64] Iain C.C. Phillips and Irek Ulidowski. Reversibility and asymmetric conflict in event structures. Journal of
Logical and Algebraic Methods in Programming, 84(6):781 – 805, 2015.

[65] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
[66] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathematical

Structures in Computer Science, 6(5):376–385, 1996.
[67] Silvain Rideau and Glynn Winskel. Concurrent strategies. In Martin Grohe, editor, LICS, pages 409–418.

IEEE Computer Society, 2011.
[68] Ken Sakayori and Takeshi Tsukada. A truly concurrent game model of the asynchronous π-calculus. In

Javier Esparza and Andrzej S. Murawski, editors, FOSSACS, volume 10203 of LNCS, pages 389–406, 2017.
[69] Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc. ACM Program.

Lang., 3(POPL):30:1–30:29, 2019.
[70] Paula Severi and Mariangiola Dezani-Ciancaglini. Observational Equivalence for Multiparty Sessions.

Fundamenta Informaticae, 167:267–305, 2019.
[71] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its typing system. In

Chris Hankin, editor, PARLE, volume 817 of LNCS, pages 122–138. Springer, 1994.
[72] Francesco Tiezzi and Nobuko Yoshida. Towards reversible sessions. In Alastair F. Donaldson and Vasco T.

Vasconcelos, editors, PLACES, volume 155 of EPTCS, pages 17–24. Open Publishing Association, 2014.
[73] Francesco Tiezzi and Nobuko Yoshida. Reversing single sessions. In Simon J. Devitt and Ivan Lanese,

editors, RC, volume 9720 of LNCS, pages 52–69. Springer, 2016.
[74] Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic linear type

theory. In Peter Schneider-Kamp and Michael Hanus, editors, PPDP, pages 161–172. ACM Press, 2011.
[75] Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies. Journal of Logic and

Algebraic Methods in Programming, 95:17–40, 2018.
[76] Daniele Varacca and Nobuko Yoshida. Typed event structures and the linearπ-calculus. Theoretical Computer

Science, 411(19):1949–1973, 2010.
[77] Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418, 2014.
[78] Glynn Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1980.
[79] Glynn Winskel. Event structure semantics for CCS and related languages. In Mogens Nielsen and

Erik Meineche Schmidt, editors, ICALP, volume 140 of LNCS, pages 561–576. Springer, 1982.
[80] Glynn Winskel. An introduction to event structures. In Jaco W. de Bakker, Willem P. de Roever, and

Grzegorz Rozenberg, editors, REX: Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, volume 354 of LNCS, pages 364–397. Springer, 1988.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

62


	1. Introduction
	2. A Core Calculus for Multiparty Sessions
	3. Asynchronous Types
	3.1. Well-formed Asynchronous Types
	3.2. Type System

	4. Event Structures
	5. Event Structure Semantics of Processes
	6. Event Structure Semantics of Networks
	7. Event Structure Semantics of Asynchronous Types
	8. Equivalence of the two Event Structure Semantics
	8.1. Transition Sequences of Networks and Proving Sequences of their ESs
	8.2. Transition Sequences of Asynchronous Types and Proving Sequences of their ESs
	8.3. Isomorphism

	9. Related Work and Conclusions
	Appendix
	Proof of Lemma 3.10 
	Proof of Lemma 3.11
	Proof of Lemma 8.16
	Glossary of symbols

	References

