N

N
N

HAL

open science

From TTP to IoC: Advanced Persistent Graphs for
Threat Hunting
Aimad Berady, Mathieu Jaume, Valérie Viet Triem Tong, Gilles Guette

» To cite this version:

Aimad Berady, Mathieu Jaume, Valérie Viet Triem Tong, Gilles Guette. From TTP to IoC: Advanced
Persistent Graphs for Threat Hunting. IEEE Transactions on Network and Service Management,

2021, Special Issue on Latest Developments for Security Management of Networks and Services, 18
(2), pp-1321 - 1333. 10.1109/TNSM.2021.3056999 . hal-03131262

HAL Id: hal-03131262
https://inria.hal.science/hal-03131262
Submitted on 4 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03131262
https://hal.archives-ouvertes.fr

From TTP to IoC:
Advanced Persistent Graphs for Threat Hunting

Aimad Berady, Mathieu Jaume, Valérie Viet Triem Tong, and Gilles Guette

Abstract—Defenders fighting against Advanced Persistent
Threats need to discover the propagation area of an adversary
as quickly as possible. This discovery takes place through a
phase of an incident response operation called Threat Hunting,
where defenders track down attackers within the compromised
network. In this article, we propose a formal model that dissects
and abstracts elements of an attack, from both attacker and
defender perspectives. This model leads to the construction of two
persistent graphs on a common set of objects and components
allowing for (1) an omniscient actor to compare, for both defender
and attacker, the gap in knowledge and perceptions; (2) the
attacker to become aware of the traces left on the targeted
network; (3) the defender to improve the quality of Threat
Hunting by identifying false-positives and adapting logging policy
to be oriented for investigations. In this article, we challenge this
model using an attack campaign mimicking APT29, a real-world
threat, in a scenario designed by the MITRE Corporation. We
measure the quality of the defensive architecture experimentally
and then determine the most effective strategy to exploit data
collected by the defender in order to extract actionable Cyber
Threat Intelligence, and finally unveil the attacker.

Index Terms—Advanced Persistent Threat, Tactics Techniques
Procedures, Threat Hunting, IOC, SIEM

I. INTRODUCTION

HE rise of collective awareness of Advanced Persistent

Threats (APT) has required companies to reconsider their
approach to cybersecurity. The resilience level of a company’s
information system can be challenged today through a Red
versus Blue exercise that simulates a realistic attack campaign,
aimed at reproducing the behavior of the adversary. In these
exercises, the Blue Team seeks the Red Team in a Threat
Hunting operation [1]], while the Red Team tries to carry out
their attack as stealthily as possible. These exercises allow for
testing the security controls, sensors, Security Information and
Event Management (SIEM), and incident response processes.
In such a game an attacker, the Red Team, intends to break into
the infrastructure defended by the Blue Team. Such exercises
of attacking and defending are inspired by similar military
maneuvers whose objectives are to test the soldier readiness
and attack effectiveness through simulations. In cybersecurity,
these exercises help organizations keep their assets safe. The
Red Team is composed of highly trained individuals playing

A. Berady and V. Viet Triem Tong are with CentraleSupélec,
Inria, Univ Rennes, CNRS, IRISA, F-35042 Rennes, France (e-mails:
{aimad.berady } { valerie.viet_triem_tong} @irisa.fr)

M. Jaume is with Sorbonne Université, CNRS, LIP6, F-75005 Paris,
France (e-mail: mathieu.jaume @lip6.fr)

G. Guette is with Univ Rennes, Inria, CentraleSupélec, CNRS, IRISA,
F-35042 Rennes, France (e-mail: gilles.guette @univ-rennes].fr)

the role of potential attackers motivated by a strategic objec-
tive (e.g., stealing sensitive information, using organizations’
capabilities for malicious purposes, defeating the availability
of victim’s services). The Blue Team defends the company,
and has to ensure that its assets are not compromised, in the
event of the Red Team finding a vulnerability and exploiting it.
The Blue Team thus needs to rapidly remediate the incident
to control the Red Team’s network propagation and contain
the threat. To estimate the effectiveness of their respective
games, we can naively measure the time it took the Red
Team to dominate the target and the time it took the Blue
Team to detect and respond to the attack. We believe that this
measure would be greatly improved with knowledge of the
compromised components, by the Red Team, from the victim’s
network (i.e., its propagation area) and how aware the Blue
Team was of this.

In this article, we formalize both defensive processes and the
attacker’s offensive approaches, allowing for confronting their
respective perceptions during the same attack campaign. The
attacker’s perception of the campaign is built from (1) the exe-
cution of his procedures chosen from among his 7actics, Tech-
niques and Procedures (TTP) [2]; (2) his exposed resources
during these executions; and (3) the victim’s components
he compromised. The defender’s perception of the attack is
built from (1) the collected traces on the targeted information
system; and (2) the exploitation of these traces through his
defensive procedures. The benefits of the proposed model are
twofold. First of all, it provides a high-level representation of
the attack campaign, allowing to quickly assess the attacker
and defender progressions. This representation can also be
used by an omniscient third party to measure the success
of a Red versus Blue exercise. Second, the model highlights
how the defender can improve the efficiency of his detection
process by tweaking the input (configurations and rules)
of some of his defensive procedures. Here, we conduct an
experiment with our model, using an attack campaign issued
from the public project Mordor [3]. This attack campaign
mimics the real-world threat APT29 in a scenario designed
by MITRE for the purposes of ATT&CK Evaluations [4]. The
confrontation of these two perceptions allows us to define a
metric to estimate the deployed detection chain efficiency.

This article is structured as follows. Section [II] provides
an overview of the concepts manipulated in the model. Sec-
tions and present respectively the attacker and the
defender’s perspectives. Section [V] details the experiment ar-
chitecture and specifies requirements for integration in existing
infrastructures. Section [VI discusses how to evaluate the
efficiency of the detection chain and how to enhance it.

II. OVERVIEW

This article formalizes the Threat Hunting process con-
ducted by an incident response team, towards ultimately
evaluating the efficiency of a detection chain. We start our
process with the attacker’s point of view; the attacker has
initiative and sets the tempo.

We begin by specifying the scope of this study and ex-
plaining the terms we will use in the rest of this article.
Thus, this section successively details the infrastructure under
consideration, the attacker’s scope, and then the defender’s
scope before outlining how we will be able to compare their
two points of view with the help of two graphs.

a) The infrastructure: The targeted network is the infor-
mation system hosting the attacker’s final objective. In this
network, we distinguish the components from the objects.
The components are assets (i.e., machines) with logging ca-
pabilities over which the defender has full control, such as
computers, servers, or appliances. The objects are measurable
events or stateful properties relative to malware characteriza-
tion, intrusion detection, incident response or digital forensics.
These objects correspond to the observable objects defined in
the STIX standard [5]. Each object plays a precise role in the
context of an event. This role specifies the function that the
object holds in the event. The set of possible roles is here
denoted by R. Each role r is associated with a unique type
that specifies the nature of any object playing this role. By
denoting T the set of possible types, the type associated with
a role is defined through the function 7 : R — T.

For our implementation, we used the MITRE Cyber Analyt-
ics Repository (CAR) [6] data model to name objects’ roles.
An object can play different roles associated with different
types. For example, the object maliciousfile.com can
hold the role destination hostname with the type domain, the
role file name, or even the role executable with the type file.
The three columns on the left of the Table [Il detail some
examples of objects and their relative types and roles. IP
addresses, domain names, or files are examples of frequently
observed types.

Although the attacker also has his own machines, which
could be components, in this model, we only consider the vic-
tim’s components since those of the attacker cannot be reached
by the defender, in a strictly defensive posture. Nevertheless,
the defender may have an insight into some of the attacker’s
objects (e.g., a domain name, a hash value, an IP) because the
attacker would have exposed them. The attacker will, however,
be able to discover and gain access to part of the victim’s

components through objects. For these reasons, this article
highlights only the set of components of the targeted network,
refering to it as C. We denote by Op the set of objects relative
to the victim (some of them related to components of C), by
04 the set of objects relative to the attacker and by O the set
Op UO4,4.

b) The attacker scope: The attacker can be an individual,
a group, or a Red Team, but for the sake of clarity, we simply
refer here to the attacker. In the same way, the presence of
multiple attackers in the victim’s network is not an obstacle
because the ambition of this model is to provide a more
exhaustive view of the compromised components. The attacker
is at the initiative of the attack campaign and has his own
components at his disposal, which is part of his infrastructure.
He also owns a collection of attack procedures (denoted
TTP,4) often related to techniques described in the MITRE
ATT&CK matrix. These procedures may be parameterized by
objects from Op as well as objects from O 4. These procedures
are executed on components in the targeted network (in C)
only if the attacker has already discovered these components.
The attacker scope is completely formalized in section

c) The defender scope: The defender can be the victim
itself, the security team of a company, an external security
team, or a Blue Team. For the same reasons, we simply refer
here to the defender. The defender has defensive procedures
to cope with an attack campaign. The defender only observes
the events occurring on components in C that he has chosen to
monitor. The relevant events to be monitored by sensors are
specified in their configuration S. The defensive procedure
Dlogs allows him to generate traces from events that occur on
these components. The defensive procedure phunting €xploits
these traces in an attempt to identify in C the components
compromised by the attacker. The defender scope is formalized
in section [Vl

d) Confronting perspectives: We propose here to rep-
resent the attacker network propagation during an attack
campaign by a persistent graph G4 between objects and
components. This graph will be computed from the sequence
of attack procedures and the involved objects. These objects
represent characteristic information that the attacker cannot
conceal and is aware of exposing.

Similarly, we represent the defender perception of the
attacker’s propagation by a second persistent graph Gp. This
graph computation relies on the defensive procedures executed
by the defender. Figure [I] gives a global overview of this
process, including the attacker and the defender scopes.

TABLE I
EXAMPLES OF OBJECTS, THEIR RELATIVE TYPES, POSSIBLE ROLES, AND EXISTENCE IN BOTH DIRECTORIES.
0€O0p r e R 7(r)=teT D, (t,0) Dp(t,0)
Object Role Type Attacker directory (extract) Defender directory (extract)
src_i . . .
10.0.1.4 dest_iI;) ip address (ip address, scranton.dmevals.com) (ip address, scranton.dmevals.com)
file n;me
m.exe N file None None
exe
dmeval o dest_hostname domain (domain, newyork .dmevals.com) None
evais.co file_name file None None
warehouse dest_hostname domain None (domain, warehouse.dmevals.com)

Attacker scope TTP, Config S Defender scope
; 1l : : Rules R ToC
param (0;,1;) Procedure exec : Object | Da i Component |——p Traces :
e > o 4f._._> e H Sensor X D)
i i : H — ¢ :
param (0", r!") : ! re H ! : : :
: / \ Cognitive agent :
¢ param (ol,r!) : - H H : :
: 7 : Procedure exec : Object | Da @ : Component | : Traces : Indexer :
: —> _ — > —— | Sensor X —— SIEM — | Eol generate_loC
: param (o'’ r"}) e =(...(e1.)) : %j ref 1t <) : ¢ : () :
: Jo : F : : : :
: H : ; : Phunting
L : P : O ST :
- . : i |
param (03,1;) Procedure exec : Object Dy : ¢ Component | : Traces : i
: e > o 4t-—> & > Sensor X, I
: param (03", r}") i : reb i : * }
: campaign A : : Plogs 1
...................... : !
v v

Fig. 1. Model overview.

The knowledge of the attacker and the defender of the
targeted network are enriched by their own directory. For both
the attacker and the defender, their directory determines how
an object with a given type is relative to a component from
his own perspective. In the following, D4 will be the attacker
directory and Dp, the defender directory. Both D4 and Dp, are
possibly imperfect or incomplete; they are here represented
by two functions from T x Op to C U {None}. When the
attacker (resp. the defender) has no information concerning
an object o with a type t or if the object o in a type t does not
correspond to a component, then D4(t,0) is equal to None
(resp. Dp(t,0) = None). The representation of a component
¢ from the attacker’s point of view may be different from the
representation of the same component ¢ from the defender’s
point of view. For example, the defender may know that a
machine has a given IP address, is a web server, owns files,
and has a name, while the attacker only knows the IP address
of this machine. In the Table [l example, the two right columns
show if an object with a specific type is related to a component
using the attacker and the defender directory.

In the following, Section |[V|explains how the comparison of
G4 and Gp allows confronting the perceptions of the attack
campaign from both points of view: that of the attacker and
that of the defender. We also show how the Threat Hunting
operation can be greatly improved by increasing the quality of
Indicators of Compromise (IoC) and Events of Interest (Eol)
used by the defender.

e) Experiment: APT29 simulated campaign: In the con-
text of cybersecurity product evaluations, MITRE creates at-
tack scenarios inspired by real-world threats. Two of them con-
cern the so-called APT29, which is a state-sponsored attackers
group that has been active since 2008. During these attacks,
the attacker used different procedures to collect and exfiltrate
sensitive files from the targeted network after exploring it.
These two scenarios detail the steps of an APT campaign using
the threat actor’s TTPs as they were observed by the infosec
community. Subsequently, Roberto Rodriguez [3|] was at the
initiative of a dataset of logs recorded on an infrastructure

allowing the procedure execution from scenarios. We decide
to merge these two scenarios because of their similarities in
targeting the same infrastructure and the fact that they mimic
the same APT actor. Among the traces in the dataset, we
focused on those coming from the Sysmon sensor, which
is the one recommended according to state of the art [7].
Experimentation infrastructure is detailed in section [V] and
the results of this experiment are discussed in section

III. ATTACKER’S PERSPECTIVE

The attacker is modeled through a graph of objects and
components. The components belong to the targeted network,
with which the attacker interacts while executing an offensive
procedure. The objects represent the traces that the attacker is
aware of leaving on the target infrastructure while executing
these procedures. This section details the construction of this
graph by taking into account both actions, which define the
whole attack campaign, and progression of the attacker’s
knowledge about the targeted network.

A. Actions of the attacker

An attack campaign A is composed of a sequence
e, - ,ey of executions of N attack procedures pi,---,pn
on components in C of the targeted network. We assume
here that the attacker knows at least one initial component
of the targeted network. This component could have been
discovered by the attacker through an external reconnaissance
of the exposed services provided by the targeted network or
even by a social engineering attack. When the attacker has
compromised at least one component of the targeted network,
he is able to apply attack procedures inside it. Here begins the
Network Propagation phase [8]].

The execution e of an attack procedure p € TTP4 requires
the knowledge of:

e a machine M(e): a component ¢ € C named through a

relative object 0 and a type t occurring in its directory D
where the procedure will be executed (thus ¢ = D4 (t, 0)).

This machine is typically the host where the procedure
will be executed, satisfying a technical intention (also
known as Tactic) such as Privilege Escalation,
Discovery or even Persistence;

o some parameters ((01,ry), -, (0,,T,)): objects 0; in O
with their roles r; that configure the procedure;
o some sub-executions (ep,--- ,e€y) corresponding to

the invocation of sub-procedures orchestrated by p and
such that for each e;, the host component M(e;)
is accessible through a relative object appearing in
((o1,ry),- -+, (0,,1,)) the parameters of p.
An execution e (designated by a unique identifier ide) of an
attack procedure p € TTP4 on a component ¢ = D4(t, 0) #
None can thus be formalized by:

€= (ide9 P, (0’ t)’ ((01, rl)’ Tt (On, rn))’ (el’ e ’em))

Listing [I] gives the example of an attack procedure com-
monly used by the attacker. This procedure performs a
lateral movement using psexec. It allows the attacker to
execute a command-line process on a remote machine and
redirect console applications output to its local system. In
this example, the host component for the main procedure
is SCRANTON.dmevals.local, the component for the
sub-procedure is NASHUA.dmevals.local. The attacker
launches the malware file named python.exe remotely,
with the user’s privileges of pbeesly on both sides.

{ "name": "8.C",
"cmp": "SCRANTON.dmevals.local",
"description": "Execute payload on secondary computer”,

"obj": [
{"role": "dest_ip", "value": "192.168.0.5"},
{"role": "user", "value": "pbeesly"},
{"role": "command_line", "value": ".\\PsExec64.exe —accepteula \\

NASHUA -u \"dmevals\\pbeesly\" —p \"FlOnk3rtOn!TOby\" —i
{WILDCARD} \"C:\\Windows\\Temp\\python.exe\""},
{"role": "exe", "value": "PsExec64.exe"},
{"role": "dest_hostname", "value": "NASHUA"},
{"role": "image_path", "value": "C:\\Program Files\\SysinternalsSuite
\\PsExec64.exe" }],
"invol": [
{ "name": "8.C.1",
"cmp": "NASHUA.dmevals.local",
"description": "Execute payload",
"obj": [
{"role": "dest_ip", "value": "192.168.0.4"},
{"role": "dest_ip", "value": "10.0.1.6"},
{"role": "dest_fqdn", "value": "SCRANTON.dmevals.local"},
{"role": "user", "value": "pbeesly"},
{"role": "exe", "value": "python.exe"},
{"role": "image_path", "value": "C:\\Windows\\Temp\\python.exe"
}
11}
Listing 1
ATTACK PROCEDURE: LATERAL MOVEMENT USING psexec.

B. Attacker propagation in the targeted network from the
attacker point of view

We represent here the attacker propagation by a graph whose
nodes are the objects involved in the attack campaign and their
potential relative components from the attacker perspective.
Each execution of an attack procedure requires the attacker

to use objects and components either from his own resources
or objects and components he has already discovered in the
targeted network. In this model, we consider that the attacker’s
knowledge about the targeted network is frozen and already
fully described through his directory D4. If we wanted to
make this directory dynamic, it is necessary to formalize a
Discovery procedure that allows the attacker to improve
his knowledge of the targeted network infrastructure.

a) Small step propagation: From each execution e
of an attack procedure p, we build an oriented graph
G(e), whose nodes are the objects and their rela-
tive components involved in this execution referenced by
the attacker’s directory. This graph represents one step
of his attack campaign. Formally, G(e) is defined for

e = (ide7p’ (O’ t),((OI,rl),' T (On,l'n)), (el"" ’em)) by

m
G(e) = (Ve, —e) @ () Gler)
i=1
and computed from:

« the nodes V., which are the host component, all the ob-
jects used in the procedure execution, and their potential
relative components known by the attacker:

{M(e)sol, o

« the edges —¢ connecting the host component with param-
eters (objects) and the components linked to these objects
according to the attacker’s directory:

-,0,} U{c =Du(7(r;),0;) # None}

n

g {M(e) Leri, 0,-} U

i=1

ref ,
0, — ¢ |

¢’ =D4(7(r;),0;) # None

o and the union of graphs P G(e;) issued from sub-

procedures called during e. "ll"_lie operator @ denotes here
the classical union between two graphs.

Figure [2] presents graph G(psexec) computed from the
specific psexec attack procedure execution as previously
described in Listing [} In this graph, dark blue nodes are
components and light blue nodes are objects. The labels on
thin black edges define the object role in the procedure. The
thick green edges define objects that are related to another
component according to the attacker directory. Given that a
Lateral Movement procedure, by definition, involves two
components, both are represented on the graph, connected by
"ref" edges.

) D
y o) P,

a4

-
P,

\ oy,
-

Fig. 2. G(psexec)

b) Big step propagation: Finally, an attack campaign
A composed of executions ep,---,ey can be modeled by
the graph G4 (A) resulting from the union of all the graphs
associated with each execution: G4(A) = EBf\il G(e;). The
computation of this graph allows the attacker to represent all
the objects he exposes during his attack campaign. This graph
can be seen as an attack footprint exposed to a defender.
Moreover, in a Red versus Blue exercise, this graph allows
an omniscient team (i.e., the White Team) to measure the
distance between what the Blue Team has actually found and
the attacker’s actual footprint.

Figure [3| presents the graph G4 computed by the attacker
during the APT29 simulated campaign in 49 steps corre-
sponding to execution procedures, 4 compromised components
SCRANTON, NASHUA, NEWYORK and UTICA, which are the
four on which the attacker actually executed procedures during
the attack campaign. Those 4 components are also defined in
his directory.

Fig. 3. G4 computed by the attacker during APT29 simulated campaign.

IV. DEFENDER’S PERSPECTIVE

We consider the same attack campaign but now from the
defender’s perspective. The defender is never considered to
have initiative. The aim of the defender is to compute a rep-
resentation of the attacker propagation in the targeted network
from his (the defender’s) point of view. In other words, his
goal is to compute a graph of objects and components that
are as similar as possible to the one produced by the attacker
on his side. To this end, the defender uses his own defensive
procedures. The semantic framework proposed in this article
allows for generalizing offensive or defensive procedures. We
specify that we have already identified several other tactics that
would be generalizable. These include, for example, pgiscoverys
which consists for the attacker to browse a namespace to
discover new components.

In the following, we describe two main defensive proce-
dures: piogs and Phuning, Which must be implemented by the
defender to conduct incident response operations. Attack cam-
paigns against the targeted network generate events on its com-
ponents. We represent an event ev by a tuple (e, ¢, O) where

€ € & denotes the type of ev (with & the set of event types
that can be observed), ¢ € C is the component over which the
event is observed, and O = {(01,11), -, (0, rn)} COXR
contains all the objects involved in this event associated with
their role from the defender’s point of view.

Depending on the configuration of sensors, events can
generate traces. A trace X is a tuple (idy, ¢, €, ¢, Q) where idy
is the trace identifier, ¢ is a timestamp, € € & is the type of
events causing this trace, ¢ € C is the component where the
event causing this trace has been observed and O are all the
objects together with their roles involved in this trace. A single
object can assume several roles in a single event and therefore
appears several times in the O set. In contrast, each role is
unique within the same trace.

In a Threat Hunting process, the defender can influence the
quality of his results on three aspects: sensor configuration,
detection rules, and his IoC database.

First, the defender decides through his defensive procedure
Dlogs Which components on the targeted network are monitored
by sensors and which events produce traces that will be
forwarded to the Security Information Event Management
(SIEM). This procedure, detailed in subsection [[V-A] will
generate a huge number of traces allowing the defender to
identify the traces relative to the attacker’s activity.

The second defensive procedure called ppynging, detailed in
subsection [TV-B] exploits those traces.

A. Targeted network monitoring

Technically, the defender is able to monitor almost any event
occurring on the targeted network’s components. Nevertheless,
many of these events tend to be irrelevant from a security point
of view and may generate too many false-positives in a SIEM
alerting system.

As the traces raised by the sensors are the only way for
the defender to perceive a part of the attacker’s activity, the
defender has to pay very close attention to the configuration S
of sensors. The more meaningful a trace is, the more valuable
it is to the defender.

We assume here that all components can be observed,
and their monitoring is configured by a sensor configuration
S. In this configuration, the defender defines the relevant
event types for each component ¢ € C, which need to be
traced and filtered on objects according to their roles. The
configuration S(c¢) makes it possible to monitor the component
c. The configuration is defined by a set of tuple (e, ¢, R¢)
where € € & is the event type raised by the sensor when
the condition ¢ holds true. ¢ expresses properties on the
objects involved in the observed event (e,¢,0) and their
corresponding roles. We write O | ¢ when objects in O
satisfy condition ¢. The syntax of ¢ and satisfaction relation
= are defined in Appendix [A]

Re C R contains the roles considered to be relevant to
this type of event. Objects with one of these roles could
be exploited in a Threat Hunting approach because of their
searchability. For example, the string 10.0.1.4 (the object)
with the role dest_ip and the observable type IP address
can be searched in the logs.

<Sysmon schemaversion="4.22">
<EventFiltering>
<ProcessCreate onmatch="exclude">
<CommandLine condition="is">
\SystemRoot\System32\smss.exe
</CommandLine>
</ProcessCreate>
<NetworkConnect onmatch="include">
<Image condition="begin with">
C:\Windows\Temp
</Image>
</NetworkConnect>
</EventFiltering>
</Sysmon>

Listing 2. Sysmon sensor configuration example, part of a pjogs procedure.

Listing [2| presents the part of a Sysmon configuration.
Sysmon is Windows service that monitors and logs system
activity. In this example, the monitored component is the
machine running on Windows; the condition ¢ expresses
that Sysmon will generate ProcessCreate traces for all
the Process creation events, except if the command line
is exactly \SystemRoot\System32\smss.exe (false-
positives are frequently generated, possibly due to legitimate
command line). Moreover, this Sysmon instance will generate
NetworkConnect traces for all images (i.e., PE binary files)
stored in C:\Windows\Temp filesystem folder. Table
gives examples of relevant roles R for these two event types.
As a model of system-level events, we use the MITRE Cyber
Analytics Repository (CAR) [6].

TABLE I
RELEVANT ROLES IN A SYSMON TRACE AND THEIR CAR NAME.

Relevant roles Re € R

Image (image_path)

CommandLine (command_line)

Parentlmage (parent_image_path)

ParentCommandLine
(parent_command_line)

Event type € € &
ProcessCreate
(CAR: process create)

User (user)

Hashes (md5, shal, sha256)

Image (image_path)

User (user)

Sourcelp (src_ip)

SourceHostname (src_hostname)
Destinationlp (dest_ip)
DestinationHostname (dest_hostname)

NetworkConnect
(CAR: flow start)

Finding an adapted sensor configuration is very tricky
because the defender has to find an optimal position between
logging every single observed event and defining highly re-
strictive conditions (including specific or excluding generic
objects). The first option will generate too many traces and
risks producing many false-positives. The second option will
rarely be positively satisfied and thus will produce a very few
numbers of traces, which will lead the defender to misjudge
the threat.

Finally, the defender’s defensive procedure determines the
monitored events and the reported traces in the procedure
Plogs- This procedure is parameterized by S that specifies the
configurations associated with components and by E a set of
events that occurred on the components.

Dlogs generates a set of traces X, for each component c:

procedure pjog (S, E)
for all ev=(¢c¢0)€E:
if (¢,¢,Re) €S(e) and O E ¢:
Xe = X U{(idx, t,€,¢,{(0,r) €O | r € Re})}
return {X.|ce C}

Listing [3|is an example of a trace raised by Sysmon sensor.
It happens because the configuration in Listing [2] observed
a Network Connection event for which the object with
the role Image (i.e., executable file name) matched with
an expected location in the filesystem (i.e., the Windows
Temp folder). The sensor thus logged it. The produced trace
indicates that this event has occurred on the component
NASHUA.dmevals.local and has some objects to give
more information to this event, such as DestinationIp,
User, or the full path of the Image.

{ "Hostname": "NASHUA.dmevals.local",
"UtcTime": "2020—05-02 03:16:19.454",
"RecordNumber": 353256,

"SourceName": "Microsoft—Windows—Sysmon", "EventID":3,
"Sourcelp": "10.0.1.6",

"SourcePort": "60215",

"Destinationlp": "192.168.0.4",

"DestinationPort": "8443",

"Image": "C:\\Windows\\Temp\\python.exe",

"ProcessId": "2172",

"User": "DMEVALS\\pbeesly", ... }

Listing 3. Extract of a "Sysmon/Network connection” trace.

B. Attacker propagation from the defender’s point of view

We assume here that all traces produced by the sensors are
reported to a SIEM. The second defensive procedure used by
the defender is the procedure ppyning. This procedure helps
the defender to construct a graph Gp from the observed
traces. The graph Gp is built on the same model as the
graph G4 constructed by the attacker: nodes are objects or
components, edges between two nodes indicate that these
objects or components are relative in this attack campaign from
the defender point of view. The graph Gp is not built directly
from the raw set of traces reported to the SIEM because these
traces cover a lot of objects and components irrelevant to the
hunting process. It is for this reason that the defender has to
filter the traces reported to the SIEM to focus only on traces
dealing with an Event of Interest (Eol).

a) Highlighting Events of Interest: The defender relies
on a database of Indicators of Compromise IoC and a set of
detection rules R to define the traces that have to be considered
as Events of Interest. An Indicator of Compromise (IoC) is
an object o with a type t that indicates, with high confidence,
malicious activity on a network. An IoC is similar to an
artifact generated along with a malicious activity. Table
gives an extract of the IoC database used by the defender
during the APT29 Threat Hunting process. In this example,
objects like toby or m.exe with the observable types of
user and file respectively, are searchable in a local scope.
Those are local ToC. The defender decides this classification
because the user has been created in the target information

system, so it makes little sense to look for it globally,
in other victims’ networks, due to the high risk of false-
positives caused by its detection. However, cod. 3aka3.scr
and 9d1c5ef38e6073661c74660b3a7la76e, with the
observable types of file and hash respectively, are searchable
in a larger scope and may make sense in other networks: those
are global 1oC.

TABLE III
EXTRACT OF THE IoC DATABASE USED BY THE DEFENDER DURING
APT29 THREAT HUNTING PROCESS.

Object 0 € Op Type t € T | Scope

toby user local

m.exe file local
cod.3aka3.scr file global
9d1c5e£f38e6073661c74660b3a7la7be hash global

A database IoC = {(0y, t;), -, (0,,t,)} is maintained by the
defender who can update it through sharing his knowledge
with other security teams (global IoCs) or through his own
investigations on his network (local IoCs). A detection rule
r € R expresses a defender-specific condition specifying that
a trace has to be considered as an Event of Interest. We write
x | r when the condition specified by r is satisfied by the
trace x. The syntax of rules and satisfaction relation |= are
inductively defined in Appendix [Al

Finally, the set of detection rules R and the IoC database
allow the defender to specify the function Eolg joc, which
filters the traces in order to highlight the traces that are Events
of Interest exclusively. More precisely, Eolg 1oc(X) provides
two sets: the subset Ry of R containing rules satisfied by x, and
the subset Oy of IoC containing objects occurring in X. Hence,
a given trace x is an Event of Interest if at least one of these
subsets is not empty. Formally, given a trace x = (idy, t, €, ¢, O)
this function is defined by Eolg 1oc(X) = (Rx, Ox) Where:

Ry={reR|xEr}

[(o,t) | (0,t) € ToC and
and - Oy = { (0,r) €O and 7(r) =t }

Listing [4] details a rule commonly used by a defender to detect
execution of psexec by analyzing process_creation
event types observed by sensors such as Sysmon with an object
matching » \PsExec64.exe. The object has the role Image
(i.e., executable file name). Following this detection, the Eol
function returns, in particular, the trace (Cf. Listing E]), which
resulted in the verification of the condition set out in the rule.

b) Small step: Each observation of a trace x =
(idy,1,€,¢,0) considered as an Event of Interest leads to
the creation of a graph G(X, Ry, Ox) (where Eolg roc(x) =
(Rx, Ox)) representing this trace. The nodes of this graph are:

« the component ¢ where the trace has been collected;
« the objects o occurring in O;
« the components referred by an object from the trace in the
defender’s directory {¢’ = Dp(7(r),0) # None | (o,r) €
0}.
The edges in G(x, Ry, Ox) permit to connect:

Uhttps://github.com/Neo23x0/sigma/blob/master/rules/windows/other/win_
tool_psexec.yml

action: global
title: PsExec Tool Execution
id: 42c575ea—e41e—41f1-b248-8093c3e82a28
description: Detects PsExec service installation and execution events
tags:
— attack.execution
— attack.t1035
— attack.s0029
detection:
condition: 1 of them
fields:
— EventID
— CommandLine
— ParentCommandLine
— ServiceName
— ServiceFileName

logsource:
category: process_creation
product: windows
detection:
sysmon_processcreation:
Image: ' *\PSEXESVC.exe’
User: ' NT AUTHORITY\SYSTEM’

Listing 4. Extract of Sigma detection mlc{I] for psexec.

« all the objects 0 € O to the component c:
r,R(o,r),is_ioc
0

(o,r)e0 {

Each edge is labeled by the role of o, the subset R,
of Ry defined by:

Ror) ={r € Rx | (idx,1,€,¢,0 \ {(0,1)}) £ r}

and by a boolean is_ioc, which is true iff there exists

(0,t) € IoC such that 7(r) = t. Hence, to remove the edge
r,R(o,r),is_ioc

¢ ———— o from G(x, Ry, Oy) it suffices to disable
rules in R(,) and to remove (o, t) from IoC when is_ioc
is true.

o and all the components ¢’ referenced in the defender
directory ¢/ = Dp(7(r),0) # None (such edges are just
labeled by ref).

Figure [] gives an example of graph computed by the
defender from the trace described in Listing [3] This graph is
thus the perception of the execution of the psexec attack
procedure on the network. At the center of the graph in
Figure [] is the component on which the trace has been
observed. Around this component are the relevant objects
involved in the trace. This graph can contain objects similar
to the small step attacker’s graph, presented in Figure

v "
Pashe ot

o™ /-\
parent_image_path parent_command_line
w v
o 9 Use,-
O . O

Fig. 4. Computed graph from a single trace which is considered by the
defender as an Eol.

https://github.com/Neo23x0/sigma/blob/master/rules/windows/other/win_tool_psexec.yml
https://github.com/Neo23x0/sigma/blob/master/rules/windows/other/win_tool_psexec.yml

c) Big step: Finally, an attack campaign A observed by
a defender through a collection of traces X can be modeled
by the graph G(X) = P, G(x, Ry, Ox) resulting from the
union of all the graphs associated with each Event of Interest
computed from a set of traces X.

Figure [5 is the graph computed by the defender during the
APT29 simulated campaign with rules from the public project
Sigma. Section [V] gives all the details on its computation and
discusses how to deal with the objects present.

The graph on the Figure [5|has to be compared with the graph
representing this same attack campaign from the attacker’s
perspective on the Figure

Fig. 5. Gp computed by the defender during APT29 simulated campaign.

d) Quality of the defender perspective: The quality of
the graph G(X) constructed by the defender is influenced
by three parameters: the configuration of the sensors S, the
set of detection rules R database, and the IoC database. In
a Threat Hunting process, updating the sensor configuration
or the set of detection rules is too long and too impactful to
be done straightaway. On the other hand, the IoC database
can and must be updated each time a trace is considered to
be of interest by the function generate_IoC((Ry, Oy), X, 10C).
All objects that appear in a trace considered as an Event
of Interest are candidates to become IoC and, in particular,
objects with roles corresponding to types of observables such
as IP address, hashes or domain. Although Kurogome
et al [9] have already proposed to automate this function
generate_loC, the intervention of an expert can be considered.
The defender therefore has two main defensive procedures
Plogs,» Which he uses to designate the components to monitor
and information to report. The ppyning procedure completes
this first defensive procedure by computing the defender’s
graph and updating the IoC database for each trace considered
as an Event of Interest. phuniing can be formalized as follows.
Starting from scratch, Gp = (0, 0).

procedure phunting(X, Gp,10C)
for all xe X:
(Rx, Ox) = Eolg 10c(X)
if Rx#0 or Ox #0:
Gp =Gp 9 G(x)
TIoC = IoC U generate_IoC((Rx, Ox), x, IoC)
return (Gp,IoC)

During a Threat Hunting operation, the defender goes to
build from Gp, a restricted graph that highlights the objects
shared between several components. This means that these
objects with relevant roles and involved in Events of Interest
have been observed on at least two components. This graph
is useful for orientation during the hunt.

V. MODEL EXPERIMENTATION

Integrating our approach in a production environment would
allow both the attacker and the defender on either side to
become aware of the traces left on the victim’s network. The
attacker could use this information to improve the stealthiness
of his procedures, and the defender could use it to improve his
Threat Hunting process. In practice, its deployment in existing
architectures requires:

« on the attacker’s side: a logging system for executed
procedures formatted according to Listing [I} a directory
that corresponds to the attacker’s current knowledge of
the victim’s network;

« on the defender’s side: sensors installed on defended
components and configured as presented in Listing [2]
and whose relevant roles are specified as presented in
Table a directory that corresponds to the defender’s
current knowledge of the victim’s network; an indexer
enriched with a set of detection rules as in Listing {4} an
IoC database, such as in Table an analyst for tasks
that are not automatable to date, such as IoC generation.

In this article, we take the point of view of an omniscient
actor, which allows us to answer the following questions.

How to measure the quality of defensive architecture?
The comparison of the graphs G4 and Gp allows cal-
culating the coverage rate of objects coming from the
attacker into the defender’s graph. This allows estimating
the relevance of the detection chain.

How to reduce the defender’s graph to unveil the
attacker?

Too many objects in the defender’s graph Gp can make it
unusable. We are therefore looking for ways to reduce the
number of objects while maintaining a sufficient coverage
rate to provide potential IoC to a Threat Hunting team.

For this, we exploited traces of a realistic attack scenario on
defensive infrastructure representative of that which we find
in modern companies.

A. Attack scenario

We choose to experiment our model with an independent
and representative attack scenario. We rely on the cyberse-
curity project Mordor [3] maintained by Roberto Rodriguez.

The Mordor project provides pre-recorded security events
generated after simulating adversarial techniques. It was up-
dated in 2020 with a new dataset called APT29. The dataset
provides the logs built by replaying both parts of an attack
scenario designed by MITRE in the context of their ATT&CK
Evaluations [4]. The attack scenario emulates a 2-part attack
led by the threat group APT29. The attack aims to collect
and exfiltrate sensitive data. The first part is a rapid "smash
and grab" collection and exfiltration of specific file types after
an initial infection due to a widespread phishing campaign.
Then the attacker drops a toolkit used to further explore and
compromise the network. The second part is a targeted and
methodical breach. It is a low and slow takeover of the target.

A part of the attack procedures is described in the listing [3]
The complete list of attack procedures is described on the
MITRE-Engenuity websit

1.A The scenario begins with an initial breach, where a legitimate user
clicks (T1204) an executable payload (screensaver executable)
masquerading as a benign word document (T1036). Once executed,
the payload creates a C2 connection over port 1234 (T1065) using
the RC4 cryptographic cipher.

2.A The attacker runs a one—liner command to search for filesystem for
document and media files (T1083, T1119), collecting (T1005) and
compressing (T1002) content into a single file (T1074).

6.C The attacker then harvests password hashes (T1003).

8.C This new payload is executed on the secondary victim via the PSExec
utility (T1077, T1035) using the previously stolen credentials (T1078)

Listing 5. Part of all procedures from the Mordor APT29 attack campaign.

Two videos were also recorded by the author which gives an
informal understanding of the attacker’s perspective during this
attack and of the objects that he was aware of exposing to the
defender. We wrote all the attack procedures of this campaign
according to the format presented in Listing [T} This allows us
to build the attacker graph G4. Thus for each procedure, a
central node that corresponds to the component is created. It
is then connected by edges to each of the objects, presumed
to be the attacker’s, to be exposed during the execution of
the procedure. Each of these edges is tagged with the role of
the object in the procedure and also with an identifier. Where
an involved procedure exists, an object designating the third
component is created. The object is linked to the appropriate
node with an edge annotated "Ref". Figure [3] presents this
graph, characterized by 4 components, 180 unique objects,
and 359 edges.

B. Targeted infrastructure and defensive architecture

The targeted infrastructure, on which the scenario that
produced the Mordor APT29 dataset took place, has been
reproduced according to the environment described by MITRE
as part of their ATT&CK Evaluations as shown in Figure [6]

The victim’s network consists of three workstations, one file
server, and one domain controller. All ran Microsoft Windows

Zhttps://attackevals.mitre-engenuity.org/APT29/operational-flow.html
3©2018 - 2020 The MITRE Corporation. This work is reproduced and
distributed with the permission of The MITRE Corporation.

K=}

AZURE NETWORK

'DOMAIN: DMEVALS

ATTACKER INFRASTRUCTURE
Host Machine

T
—14

m

OpenveN

O]
=

Ubuntu VeN
10024

=

R
19216805

s
10017
Windows 10 Pro

Fig. 6. APT29 Evaluation Environment (source: MITREE]).

operating systems. The targeted infrastructure’s systems are
monitored by Microsoft Windows Sysmon, which provides
detailed information about processes, network connections,
and file manipulations. Microsoft Windows Sysmon produces
the traces used to compute the defender view. These traces
form a dataset of 783367 log entries corresponding to two
days of observation (attack duration).

We have injected all the traces from the Mordor dataset
into a Splunlﬂ indexer. In this raw dataset, we now have to
reveal the Events of Interest (Eol). In this experiment, the
set of rules R is formed by the 565 commonly used rules
from the public detection project Sigmzﬂ Sigma is an open
community project which aims to capitalize on detection rules
sharing the same formalism and which are thus convertible to
a large number of SIEM or directly integrated into malware
analysis platforms such as VirusTotaﬂ At the beginning of
the experiment, our Indicators of Compromise IoC database
is empty. The first pass made it possible to detect 6100 Eol,
thanks to the matching of 22 detection rules among the 565
enabled rules. We can now build the defender’s graph with
these Eo]ﬂ The computed graph has 4 components and 1758
unique objects. Table [[V] presents this graph’s specifications.

Through this experimentation, we evaluated the relevance
of two rule-disabling strategies in order to determine the
approach, which is the most efficient to reduce the number of
false-positives and make the defender graph Gp exploitable.

VI. RESULTS

As we previously discussed, the attacker graph misses
certain objects that the attacker is not aware of exposing. In
our experiment, the components present in the attacker’s graph
are all present in the defender’s graph, which is not surprising
because they have proper monitoring, and all rules are enabled.

However, the number of objects in the attacker’s graph (180)
is significantly inferior to the number of objects (1758) in
the defender’s graph. This suggests that the defender’s graph
contains many false-positives. In this context, false-positives

4https://www.splunk.com

Shttps://github.com/Neo23x0/sigma

Shttps://developers.virustotal.com/v3.0/reference#sigma-analyses

"Datasets, code, and full graphs are publicly available at https://gitlab.inria.
fr/cidre- public/from-ttp-to-ioc-dataset

https://attackevals.mitre-engenuity.org/APT29/operational-flow.html
https://www.splunk.com
https://github.com/Neo23x0/sigma
https://developers.virustotal.com/v3.0/reference#sigma-analyses
https://gitlab.inria.fr/cidre-public/from-ttp-to-ioc-dataset
https://gitlab.inria.fr/cidre-public/from-ttp-to-ioc-dataset

TABLE IV

DEFENDER POINT OF VIEW: BIG GRAPH SPECIFICATIONS.
item value
Components 4
Objects 1758
Relations (edge between objects and components) 15788
Events of Interest injected 6100
Objects connected to 4 components 18
Objects connected to 3 components 48
Objects connected to 2 components 398
Objects connected to 1 component 1294
Attacker perspective’s objects coverage 27.78 %
Unique rules producing Eol 22

are generally legitimate or native objects of the system and
whose normal behavior triggers inappropriate or lax detection
rules R, or even verbose sensor configuration S. In other
words, a false-positive is an object that can never become an
IoC since it would not make sense to look for it in a wider
scope or because it is not directly related to the malicious
event that occurs on the victim’s system.

In order to reduce these false-positives, the intervention of
a cognitive agent is often necessary. However, it would be
possible to automatically mark objects which correspond to
legitimate behaviors of the system while paying attention to
malicious actions falling within the Living-off-the-Land [10]]
paradigm. These actions have the particularity of staying under
the radar since they rely on native objects of the system in
order to satisfy the attacker’s technical intentions. The next
step is to find a method to remove these false-positives. It has
to be done because their preponderance on the graph may
reduce the importance of interesting objects. The defender
will, therefore, have to find a more efficient way to identify
them instead of manually qualifying each of them.

A. How to measure the quality of defensive architecture

From an omniscient perspective, the model allows for
comparing data from both sides, attacker and defender. The
number of objects from G,4, existing also in Gp, allows for
estimating the efficiency of the entire defender detection chain.
We compute that 27.78% of all attacker objects are effectively
considered by the defender as Events of Interest (Eol). If this
percentage is high enough to allow the defender to initiate a
Threat Hunting operation, the large number of objects present
in the defender’s graph may disturb him. Consequently, the
defender may not pay attention to particular objects in Gp
that could become new IoCs. Some of them are objects that
have very discriminating characteristics, like those presented
in Table and it would be productive to search for them in
a wider scope. Those could be qualified by a cognitive agent
as new IoC and be added in the IoC database.

B. How to reduce the defender’s graph to unveil the attacker

Threat Hunting is a cyclical discipline where the defender
identifies new IoCs, modifies detection rules to search for them
in a wider scope, analyzes the collected objects, and extracts
new IoCs. In this process, not all objects can become IoCs.

For example, if an attacker uses the attack procedure
psexec to perform lateral movements, and if the victim’s

administration team’s performs remote tasks with this tool,
then considering psexec.exe or one of its hashes as an
IoC will cause a large number of false-positives. It is then
necessary to write a detection rule which will allow us to
specify the legitimate context of these administrative actions
(e.g., by specifying the source IP addresses and user accounts
involved). The disabling of too verbose rules can be done
in post-processing to clean up Gp and to make it more
exploitable. We have experimented with two rule-disabling
strategies called Top-objects and Top-events. The Top-objects
strategy consists of a sequence of rounds of disabling the
rule that created the largest number of new unique objects
in the defender’s graph. This stops upon reaching the highest
coverage rate, without having too many objects in the graph
and having the fewest rules disabled. The Top-events strategy
is similar but first disables the rules, which are at the origin
of the largest number of Eol.

Given a defender’s graph Gp = (Vp,—p), disabling a
set of rules Rp leads to a new defender’s graph, written
Update(Gp, Rp), defined by removing from Gp, all the edges:

r,R(o,r),is_ioc
C—o0

such that Ry r) \ Rp = 0 and is_ioc = false and to remove
(if it exists) the edge labeled by ref starting from o together
with the component ending such edge. Starting from:

« the attacker’s graph G4 = (V4, —4) containing objects
in 04 =Vano;

« the defender’s graph Gp = (Vp, —p) containing objects
in Op =VpNO;

« an empty set Rp of disabled rules;

« and an initial value coverage = v > 0 for coverage;

while coverage > 0:
r = most_used(—p)
Rp =Rp U{r}
Update(Gp, Rp)
Card(OaNO0p)

Card(o, <100

coverage =
return Rp

Listing 6. Algorithm to compute coverage rates.

Listing [6] defines an algorithm to compute Rp according to
the Top-events strategy, where:

« most_used(—p) is a function providing the rule appear-
ing the most times in Gp;

« Update(Gp, Rp) is a function that updates the graph Gp
view by excluding the events resulting from the rules Rp.

Implementing Rp as a list allows us to keep the order in which
the rules were disabled and therefore revert the graph Gp to
an earlier state.

Figure [/| shows two 3D curves which correspond respec-
tively to the deactivation of Top-objects and Top-events strate-
gies. We can observe that the Top-objects strategy seems to be
the most effective because it allows maintaining high coverage
while considerably reducing the number of objects. So when
there are only 63 objects left in the graph and only 4 rules
have been deactivated, the coverage rate is 24.4%.

"Top-objects" strategy

2 1,500
g
5 1000,
1,000
O N
0
500

10

10

20 20 1

Disabled rules 25

Coverage (%)

"Top-events" strategy

Objects

1,000

10

10

20 20 15

Disabled rules 25

Coverage (%)

Fig. 7. Evolutions of coverage rates and count of objects present in the graph Gp according to the number of disabled rules.

C. Discussion

By applying a rule disabling strategy, the defender will thus
considerably reduce the number of objects to be investigated
while maintaining a sufficiently high coverage rate. However,
it should be emphasized that, unlike a detection system which
aims to automatically contain a technical threat (e.g., anti-
malware, Endpoint Detection and Response), the defensive
infrastructure, as described in this article, aims to collect as
much Cyber Threat Intelligence as possible related to the
adversary in order to be able to better hunt it in the victim’s
network. Thus, an exhaustive detection is not necessary since
the objective is not to block unknown threats but simply to
ensure the sufficient number of IoC that will allow it to be
tracked in the victim’s network. This approach of measuring
the coverage rate is possible only in the context of Red versus
Blue exercises. However, the disabling of too verbose rules can
be done in post-processing without observing the evolution of
the coverage rate, but simply in order to clean up the graph
generated by the defender and to make it more exploitable.

VII. RELATED WORKS

Threat Hunting is an agile and iterative process of searching,
characterizing, and later identifying attackers who may have
compromised the victim’s network. In 2021, it is still a
widespread focus of cyber defense research. We believe that
this area still requires further formalization efforts in order to
allow a good understanding of the different layers and their
interactions. We observe two main lines of research that should
converge: those that formalize the relationships between real-
life components; and those focusing on the improvement of
actors’ strategies, for instance, based on Game Theory.

a) Need for unified views: Gianvecchio et al. [11] point
out the semantic gap between the defender and the attacker.
Indeed, the attacker operates at the level of strategy and tactics;
he focuses on target discovery, and can deploy various kill
chains tactics [8} [12]. However, the defender spends significant
time processing low-level, rule-generated alerts and single-
log analysis can hardly reveal the complete attack story for
complex, multi-stage attacks. Gianvecchio et al. reduce this

gap by proposing an explicit model of the attacker strat-
egy using machine-readable data structures and clustering of
security events around TTP annotations from a well-known
behavioral taxonomy. This model enables the defender to
operate similarly to the attacker at the strategic level without
sacrificing their ability to drill into evidential details. For their
implementation, they used CALDERA, previously introduced
by Applebaum et al. [13] in order to automate Red Teaming
while retaining the concept of TTP.

b) From Events of Interest to objects: In [14]], Najafi
et al. are one of the first to introduce the intuition behind
global features for threat detection. They define a SIEM-based
knowledge graph allowing highlighting the most important
entities (what we call objects) and relationships observed in
Event Logs of Interest extracted from DNS and proxy logs.
These relations are enriched with information gathered from
publicly available sources of threat intelligence. Over this
knowledge graph, Najafi et al. design MalRank, a graph-based
inference algorithm designed to infer a node maliciousness
score based on its associations to other entities presented in
the graph. MalRank has successfully been helpful in identify-
ing previously unknown malicious entities such as malicious
domain names and IP addresses.

¢) From traces to Indicator of Compromise: In [9], Kuro-
gome et al propose to enhance the Threat Hunting process by
automatically generating accurate and interpretable IoCs from
malware traces. They design EIGER that takes a dataset of
traces computed from malware as input. EIGER then computes
IoCs of different abstraction levels using an enumerate-then-
optimize algorithm. Kurogome et al demonstrate that their gen-
erated IoCs bear comparison with manually generated ones,
which indicates that EIGER is an appealing complement to
endpoint malware detection in real-world security operations.
This is an example of a concrete implementation for the
function generate_IoC formalized here.

d) From logs to defender’s perspective: Pei et al describe
in [15] HERCULE a log-based intrusion analysis system. It
models the relationship between multiple logs in the sys-
tem and automatically generates a multidimensional weighted

graph with potentially valuable information for the defender
embedded within. Their proposed graph provides a panoramic
view of the logs generated by different system components
and help the defender to understand the whole attack trace.
Recently, Burr et al published a study [16] that focuses on
community detection in graphs constructed from Intrusion
Detection System (IDS) alerts.

This article is in line with these works and proposes a richer
model that offers a dual view of the Threat Hunting process
by also taking the perception into account, but also knowledge
and actions of the campaign from the attacker perspective.
We believe that in the near future, this work will allow us to
join the research conducted in Game Theory and in Security
Games [17, [18] where the Threat Hunting process requires
more accurate models [19]. In these games, the defender, who
is monitoring some collection of resources, has to decide how
to deploy a certain number of sensors or honeypots [20] at
some predetermined cost. His goal is to properly protect this
network at a minimal cost. The attacker’s goal is to cheat the
defender in order to reach his objectives.

VIII. CONCLUSION

Threat Hunting is a fundamental step of an incident response
operation that allows for spotting the components of an infor-
mation system compromised by an attacker. In this process,
the defender’s ambition is to shed light on the attacker’s
propagation area in order to best prepare the operation for
his eradication.

In this article, we have proposed a model to analyze
both the attacker propagation and the defender knowledge of
that propagation. All the steps involved in a Threat Hunting
approach have been carefully formalized here. Our approach
allows enhancing the knowledge base of the defender with
new Indicators of Compromise, which can subsequently enable
proactive threat detection. Furthermore, our model and its
experimentation highlight the existence of false-positives in
particular because of lax detection rules. This feature is
valuable for the defender since it allows him to gain efficiency
and to improve his detection tools. In particular, because the
graph analysis subserves the attack correlations by identifying
event patterns. During this study, we better understood the
origin of objects which then become IoC. We also emphasize
that some objects, which have a meaning only in the context
of the information system where they were found, can be
very interesting to exploit for Threat Hunting. Finally, our
model explains the mutual inference necessary for attacker
and defender to understand each other. The most valuable
intelligence is the understanding of attacker’s procedures.

In future work, we plan to focus on graph similarity compu-
tation in order to design metrics that could testify to the quality
of attacker and defender points of view. Such experiments
require implementing different comparison algorithms and
benchmarking them. However, beyond a metric confrontation
between two graphs, we hope the semantics introduced in this
paper allows for interpreting the differences between attacker
and defender perceptions at a deeper level, towards designing
other defensive procedures.

In the long run, our goal is to adjust defender levers defined
in this article dynamically: sensor configuration, detection
rules, and IoC database to better reveal the presence of an
attacker. To achieve this goal, we might need to define a defen-
sive strategy that takes deployment costs into account. Thus, a
Red versus Blue exercise would have concrete and immediate
technical repercussions on the company’s cybersecurity to fight
Advanced Persistent Threats.

REFERENCES

[1] E. C. Thompson, “Threat Hunting,” in Designing a
HIPAA-Compliant Security Operations Center. Apress,
Berkeley, CA, 2020.

[2] F. Maymi, R. Bixler, R. Jones, and S. Lathrop, “Towards
a definition of cyberspace tactics, techniques and proce-
dures,” in 2017 IEEE International Conference on Big

Data. 1EEE, 2017.
[3] R. Rodriguez. (2020) APT29 activity from the ATT&CK
evaluations. [Online]. Available: https://github.com/

hunters- forge/mordor/tree/master/datasets/large/apt29
[4] MITRE Corporation. (2019) ATT&CK evaluation. [On-
line]. Available: https://attackevals.mitre-engenuity.org/

[5] OASIS Cyber Threat Intelligence. (2017) STIX
a structured language for cyber threat intelli-
gence. [Online]. Available: https://oasis-open.github.

10/cti-documentation/stix/intro

[6] MITRE Corporation. (2018) The MITRE Cyber
Analytics Repository (CAR). [Online]. Available:
https://car.mitre.org/

[7] V. Mavroeidis and A. Jgsang, “Data-Driven Threat Hunt-
ing Using Sysmon,” in Proc. of the 2nd Int. Conf. on
Cryptography, Security and Privacy. ACM Press, 2018.

[8] A. Berady, V. Viet Triem Tong, G. Guette, C. Bidan,
and G. Carat, “Modeling the Operational Phases of
APT Campaigns,” in 6th Annual Conf. on Computational
Science and Computational Intelligence. 1EEE, 2019.

[9]1 Y. Kurogome, Y. Otsuki, Y. Kawakoya, M. Iwamura,

S. Hayashi, T. Mori, and K. Sen, “EIGER: automated

IOC generation for accurate and interpretable endpoint

malware detection,” in Proc. of the 35th Annual Com-

puter Security Applications Conf. ACM, 2019.

Sudhakar and S. Kumar, “An emerging threat fileless

malware: a survey and research challenges,” Cybersecu-

rity, 2020.

S. Gianvecchio, C. Burkhalter, H. Lan, A. Sillers, and

K. Smith, “Closing the Gap with APTs Through Se-

mantic Clusters and Automated Cybergames,” in Lec-

ture Notes of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications Engineering.

Springer Int. Publishing, 2019.

P. N. Bahrami, A. Dehghantanha, T. Dargahi, R. M.

Parizi, K.-K. R. Choo, and H. H. S. Javadi, “Cyber Kill

Chain-Based Taxonomy of Advanced Persistent Threat

Actors: Analogy of Tactics, Techniques, and Procedures,”

JIPS, 2019.

A. Applebaum, D. Miller, B. Strom, C. Korban, and

R. Wolf, “Intelligent, automated red team emulation,” in

[12]

https://github.com/hunters-forge/mordor/tree/master/datasets/large/apt29
https://github.com/hunters-forge/mordor/tree/master/datasets/large/apt29
https://attackevals.mitre-engenuity.org/
https://oasis-open.github.io/cti-documentation/stix/intro
https://oasis-open.github.io/cti-documentation/stix/intro
https://car.mitre.org/

Proc. of the 32nd Annual Conf. on Computer Security
Applications. ACM, 2016.

P. Najafi, A. Miihle, W. Piinter, F. Cheng, and C. Meinel,
“MalRank: a measure of maliciousness in SIEM-based
knowledge graphs,” in Proc. of the 35th Annual Com-
puter Security Applications Conf. ACM, 2019.

K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang,
Z. Zhang, L. Si, X. Zhang, and D. Xu, “HERCULE:
Attack Story Reconstruction via Community Discovery
on Correlated Log Graph,” in Proc. of the 32nd Annual
Conf. on Computer Security Applications. ACM, 2016.
B. Burr, S. Wang, G. Salmon, and H. Soliman, “On
the detection of persistent attacks using alert graphs and
event feature embeddings,” in NOMS 2020. 1EEE, 2020.
[17] A. H. Anwar and C. Kamhoua, “Game theory on attack
graph for cyber deception,” in Decision and Game The-
ory for Security. Springer Int. Publishing, 2020.

T. E. Carroll and D. Grosu, “A Game Theoretic Investi-
gation of Deception in Network Security,” in 2009 Pro-
ceedings of 18th International Conference on Computer
Communications and Networks. 1EEE, 2009.

M. Bilinski, J. diVita, K. Ferguson-Walter, S. Fugate,
R. Gabrys, J. Mauger, and B. Souza, Lie Another Day:
Demonstrating Bias in a Multi-round Cyber Deception
Game of Questionable Veracity. Springer, 2020.

R. Pibil, V. Lisy, C. Kiekintveld, B. BoSansky, and
M. Péchoucek, “Game Theoretic Model of Strategic
Honeypot Selection in Computer Networks,” in Decision
and Game Theory for Security. Springer, 2012.

[14]

[15]

[16]

[18]

[19]

[20]

APPENDIX

a) Sensor configuration: Expressions ¢ of sensor con-
figurations are built from logical constants true, false and
operators and, or, not applied over pairs (r,c) where r is a
role and c¢ is a property over the object playing this role (we
write ¢(0) to express that an object o satisfies the property c):

¢ :=true | false | (r,c) |not¢ | ¢ and ¢ | ¢ or ¢

Then, given a set O = {(o1,r}), -, (0,,r,)} € O XR, the
satisfaction relation | of a condition is defined by:

O E true

o |= (l'l',C) iff C(Oi)

O Enot ¢ iff O ¢

OE¢,and ¢, iff OF ¢y and O E ¢,
OF¢rorg, iff OF¢orOF¢

We assume here that for each role in ¢ there exists an object
in O playing it and that a role occurs at most one time in O.
b) Detection rule: Detection rules r are built from logical
constants true, false and operators and, or, not applied over
pairs (@, ¢) where « is a timestamp ¢, or an event type € € &,
or a component ¢ € C, or arole r € R, and c is a property over
a (we write c(a) to express that « satisfies the property ¢):

r m=true | false | (a,c) |notr|randr|rorr

Then, given a trace x = (idx, 7, €, ¢, O), the satisfaction relation
= of a detection rule r is inductively defined by:

X [true

xE(t,c) iff
x E (¢,¢) iff
x E (¢/,¢) iff
X E (r;,¢) iff
X | not r iff
X '= ri and ry iff
X '= ry Orrp iff

t' =t and c¢(¢)

€ =€ and c(€)

¢’ =cand c(c)

(o,r;) € O and c(o;)
X Er
XxEriandxEnr
XxXEriorxEnr

c¢) Main notations:

— C is a set of components of the targeted network; c is a
component in C

— 0 =0p U004 where Op (resp. Oy) is the set of objects
relative to the victim (resp. to the attacker); o € O

— R is a set of roles associated with objects
— T is set of types associated with roles; t is a type in T
— 7:R — T is the function from roles to types

— Dy (resp. Dp) : (Tx0p) — (CU{None}) is the attacker
(resp. defender) directory

— & is a set of types of observable events (by the defender)
on components; € is an event in &

—ev = (€,¢,0) is an observable event on a component
— O C OxRis a (sub)set of objects with their role

—x = (idy, 7, €,¢,0) is a trace observed on ¢ at date ¢

— &8 is a set of sensor configurations

— 8S(c) is a sensor configuration on the component ¢

— TTP is a set of procedures; p is a procedure in TTP
— A=ep, - ,ey is an attack campaign

— e is a procedure execution

— M(e) is a machine (component) on which e is executed
— ¢ is a condition over some objects and their roles

— Re € R are relevant roles for an event type €

— (€,¢,Re) is an element of a sensor configuration
—ToC C O X T is an Indicators of Compromise database
— R is a set of detection rules; r is a rule in R

— Eolg 10c(X) = (Rx,Ox) is the function providing relevant
rules (Rx € R) and objects (Ox € O) from a trace generated
by an Event of Interest

— G(e) = (Ve,—.) is an attacker’s graph relating to an
execution e

— GA(A) = (Vy,—>4) is the attacker’s network propagation
graph resulting from the A attack campaign

— G(x, Ry, Oy) is a defender’s graph relating to a trace x

- Gp(X) = (Vp,—p) is the defender’s perception graph
of the attacker’s propagation associated with each Event of
Interest computed from a set of traces X

	Introduction
	Overview
	Attacker's perspective
	Actions of the attacker
	Attacker propagation in the targeted network from the attacker point of view

	Defender's perspective
	Targeted network monitoring
	Attacker propagation from the defender's point of view

	Model experimentation
	Attack scenario
	Targeted infrastructure and defensive architecture

	Results
	How to measure the quality of defensive architecture
	How to reduce the defender's graph to unveil the attacker
	Discussion

	Related Works
	Conclusion
	Appendix

