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Programming at the Edge of Synchrony
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Synchronization primitives for fault-tolerant distributed systems that ensure an effective and efficient coopera-
tion among processes are an important challenge in the programming languages community. We present a new
programming abstraction, RESYNc, for implementing benign and Byzantine fault-tolerant protocols. RESYnC
has a new round structure that offers a simple abstraction for group communication, like it is customary in
synchronous systems, but also allows messages to be received one by one, like in the asynchronous systems.
This extension allows implementing network and algorithm-specific policies for the message reception, which
is not possible in classic round models.

The execution of RESYNC programs is based on a new generic round switch protocol that generalizes the
famous theoretical result of ?. We evaluate experimentally the performance of RESYNC’s execution platform,
by comparing consensus implementations in RESyNc with LiBPaxos3, ETcD, and BFT-SMART, three consensus
libraries tolerant to benign, resp. byzantine faults.
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1 INTRODUCTION

Fault-tolerant distributed algorithms are notorious for being hard to design and implement. One
needs to take into account features of a non-deterministic network, behaviors of faulty processes,
as well as the asynchrony of the actions performed by correct processes. These algorithms underpin
many distributed applications and critical services, e.g., Zab [?], Zyzzyva [?] or more recent
blockchains like Tendermint [?] or Libra [?]. These systems are implemented in general-purpose
programming languages that support the asynchronous programming paradigm. This programming
paradigm is error-prone and facilitates bug occurrences [???] even when implementing protocols
that have been formalized and proved like Paxos [?]. These bugs show that going from (verified)
protocols to implementations is a difficult task. The asynchronous programming paradigm, despite
its pitfalls, is preferred because it enables important performance optimizations but also because
other suitable programming abstractions and synchronization primitives are lacking. Therefore, our
goal is to identify new synchronization primitives that simplify programming distributed systems,
tolerant to benign and byzantine faults.

The seminal work [?] defines the basic round model, the first abstract computational model that
offers rounds as a synchronous primitive. The model establishes its notoriety because it can solve
consensus, i.e., n processes trying to agree on a value, provided that the network satisfies the partial
synchrony assumption. Consensus is not solvable over asynchronous networks in the presence of
faults [?] and partial synchrony is one of the weakest theoretical assumptions that allows us to
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solve it. Partial synchrony means that the network eventually becomes synchronous, i.e., there
exists a bound A on the message delay and a bound @ on the relative speed of processes, however
these bounds hold only from some time on, called global stabilization time GST. (There are two
other definitions of partial synchrony in [?], which are less used.) The basic round model, and the
follow-up round-based approaches [???], rely on an abstract global clock. The abstract global clock
synchronizes all processes, that is, all processes execute the code of a round in lockstep (at the
same time), where a round is a sequence of sending messages, receiving (some or all) messages sent
in that round in one atomic step, followed by some local updates based on the received messages.
To “execute” a consensus-solving algorithm in a round model, one has to implement an algorithm
that computes when the round switch should locally happen such that processes switch rounds
at the same time. To this, ? use an algorithm that implements a distributed clock, exploiting A
and @ from the partially synchronous network assumption. The distributed clock determines the
round switch at each process. Roughly, before GST the system is in an arbitrary state (different
processes may have different clock values), but after GST, the distributed clock is guaranteed to
simulate the abstract global clock and implicitly synchronizes all the correct processes. This is a
purely theoretic result, since it requires multiple synchronization steps (clock steps) within a round,
and it makes simplistic assumptions regarding the time spent by processes sending and receiving
messages or performing local computation. In general, round-based solutions are infamous for
their prohibitive performance, although most existing solutions for consensus rely on the partial
synchrony assumptions and implicitly on rounds.

Among the systems that rely on partial synchrony are PBFT [?], BftSmart[?], ViewStamped
Replication [?], Zookeeper’s atomic broadcast protocol [?], Apache Cassandra [?], libPaxos [?],
or the more recent works emerging from blockchain research like Tendermint [?], RedBelly [?],
Lumiére [?], Hot-Stuff [?], or Libra [?]. Each of these systems, use rounds implicitly and propose
a new algorithm for the round switch that exploits partial synchrony in a different way, thus
resulting in a new solution for consensus (state machine replication) either in the benign, or in the
Byzantine case. Although solving the same problem under similar network assumptions, these are
stand-alone systems, sharing no high-level control structure. They are implemented in error prone
asynchronous programming paradigms (as shown by numerous bug reports), which are preferred
for facilitating performance optimizations. These systems exploit the synchronicity of the network
after GST differently, and they guarantee that soon after GST, correct processes are synchronized
(a property called eventual synchrony [?]), and reach consensus. To implement eventual synchrony,
these systems use asynchronous features like properties on the set of received messages (e.g., a
message with a certain payload or from a certain sender has been received, or a certain number of
messages have been received) that trigger a local round switch or timeouts on the local duration of
a round, which ensure that after GST the processes get synchronized. These features are opaque in
the basic round model as they are hidden in the theoretical implementation of the distributed clock.
In the basic-round model, and in all follow-up round-based programming abstractions, processes
have no control over the set of received messages and no control over the round switch.

Problem statement. In this paper we ask the following question: is there a programming abstrac-
tion that systematizes the optimization principles used in implementations of consensus protocols
for partially synchronous networks? More widely, is there a synchronous round-based model that
allows protocol specific optimizations, which today are possible only in asynchronous programming
frameworks?

We propose RESYNC, a new programming language with a novel round structure which preserves
the abstraction level of theoretical round-based models and reasonably matches the performance
demands of large-scale systems like BFT-SMART [?] or LiBPAx0s3 [?]. RESYNC is a parametric
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framework that accommodates various implementations of the eventual synchrony property, rather
than a fixed implementation, as it is the case in all previous works. We systematize the optimization
principles used in large-scale systems that solve consensus and wrap them into a domain-specific
language, that facilitates future consensus implementations under partial synchrony, and in general
facilitates exploiting the network specifics.

RESYNC is addressed to the algorithm designer who wants to prototype algorithms without
worrying about network code and data management, and to the programmer less versatile in
reasoning about interleavings and partial synchrony.

Key insights. In synchronous (or round-based) models, computations are structured in a sequence
of rounds, where in each round all processes send messages and then update their local state
based on the set of received messages. Rounds are communication-closed [?] and are a powerful
synchronization primitive: messages are not received outside the round they were sent. The message
reception of a round is hidden from the protocol’s perspective: a non-deterministically chosen
subset of the messages sent is received in one atomic step. Round structures are known for their
poor performance due to an excessive need of synchronization. Any execution framework for
the round-structure must implement a round switch algorithm. All known approaches are either
too general [?] and hence purely theoretical due their poor performance, or they are restricted
to a sub-class of distributed protocols like PSync [?] which implements one solution for eventual
synchrony (that is not customizable). It is well established that there is no unique round switch
algorithm that fits the performance needs of all protocols. Therefore, to design a more flexible way
to implement the round switch we turn to asynchronous computational models.

Asynchronous computational models are preferred for implementing systems due to their better
performance. Still, algorithm designers, present their asynchronous solutions in terms of rounds,
phases, epochs, ballots, etc., e.g., [???]. These notions encode some logical time that allows to
structure and decompose distributed computations along the time line. Although presented in
rounds, the system is implemented under the asynchronous semantics because it enables network-
specific performance optimizations: messages are received one-by-one, which allows the system to
react quickly to incoming messages, as opposed to the round structure that would wait for all the
messages of the current round before reacting. For example, under the asynchronous semantics a
process could switch rounds fast, as soon as it receives a message that contains the information
it was waiting for, e.g., the first message that is receives comes from the leader and contains the
value all processes agree on. In contrast, when executing the synchronous round-based model, a
process would wait for all the messages sent in that round, even if the followers (the processes that
are not leaders) only relay the message from the leader for fault-tolerance purposes.

The main insight is that we want a round structure where messages are received one by one, instead
of all in one atomic step. Therefore, we define a new round structure where a round combines:

Sending messages,

A message accumulator that is a new round component which allows programming the message
reception within the round-based model, and computes the sequence of messages received in
a round, and

A round computation that updates the local state, depending on the mailbox of the current
round computed by the message accumulator.

The executions of the new round model preserve the lockstep semantics at the round boundaries,
but, within a round, messages are received asynchronously by the message accumulators of different
processes. In this way, messages are received one-by-one and the accumulator decides when to wait
for more messages or transition to the next round. This removes the need for extra synchronization,
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i.e., synchronization barriers needed to satisfy the (conservative) guarantees of the round model
but which are not required for the protocol-specific progress condition.

The implementation of the message accumulator, more precisely the termination of a message
accumulator, uses new features that are not available in any other round-based programming
abstraction. First, the language provides constructs to control the termination of a message accumu-
lator using timeouts, or using properties satisfied by the received messages for the current round.
These features are sufficient to program message accumulators for distributed protocols whose
specification is solvable in asynchronous networks.

However, timeouts and conditions on the set of messages received for the current round are
not sufficient for implementing a round-switch in consensus protocols. The implementations of
consensus exploit the partially synchronous nature of the network to synchronize processes after
GST. For that, they use features that are not communication-closed, i.e., they cannot be implemented
directly in a round-based model, e.g., a process reacts to messages sent in rounds different from
the process’s current round. The key to ensure synchronization is to fine-tune the moment when
processes locally switch rounds, such that after GST all correct processes are roughly in the same
round. The number of correct processes is determined by the system being tolerant to byzantine or
benign faults. Byzantine systems are parametrized by the number of tolerated byzantine processes,
denoted F. Instead of using a distributed clock to define the round switch, like in [?], we use
hardware clocks and we introduce two synchronization primitives that trigger the termination of
the message accumulator:

Catch-up. The message accumulator terminates and the process switches to a future round r,
when it receives F + 1 messages sent in rounds greater than or equal to r, where F is a
parameter of the system, the maximal number of byzantine processes.

Synchronize F + 1 processes. The message accumulator terminates and the process switch to
the next round only if it observes that at least F + 1 correct processes switched to the next
round, where F is again the number of byzantine processes.

Each round is parametrized by the enabling/disabling of these primitives for protocol-specific
values of F. To compute a round switch, the runtime of RESyNc integrates the implementation of
these primitives (when enabled) with the timeouts (or other conditions) defined in the message
accumulator. We show that the execution model implemented by the runtime of RESyNc matches
the theoretical guarantees for eventual synchrony provided in [?], under similar assumptions.

Evaluation. We evaluated RESYNC on one benign and one byzantine implementation of Paxos and
compared it against L1BPAx0s3 [?], an open source implementation of the Paxos algorithm, ETcD an
implementation of consensus based on Raft [?], and BFT-SMART [?], an open source implementation
of byzantine agreement. RESYNcC performance are at most 30% worse than LiBPAx0s3 for a small
number of replica, and 10% faster with more replicas. The results are show a 3.5X improvement of
RESYNC over PSync and RESYNC and 25X faster than GooLoNG [?].

Contributions. We propose a new programming abstraction, called RESync, embedded into
the Scara programming language. We are the first to propose a language that lies between the
synchronous and the asynchronous paradigms. Our main contributions are:

e We propose a new round structure that lets programmers use asynchronous optimizations
without breaking the synchronous structure.

e ReSyNc is suitable for both benign and byzantine fault-tolerant protocols.

e RESyNc allows the algorithm designer to write custom code that locally controls the round
boundaries, i.e., the message accumulator with synchronization primitives, expressing a wide
range of protocols.
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e ReSync compiles to efficient asynchronous code, that can be executed over any asynchronous
network. The runtime environment ensures a sound and efficient round structure for benign
and byzantine faults, based on seminal work by ?.

2 OVERVIEW

A program in RESYNC is parametric in N, the number of processes, and F, the number of byzantine
ones among them. All (correct) processes execute the same code. A program is a sequence of
rounds, called phase. In a round, processes send and receive messages, and then update their
local state (depending on the set of received messages). RESYNc has a round-based semantics,
which facilitates writing programs, and an equivalent runtime asynchronous semantics to execute
programs efficiently. In the following, we focus on the round-based semantics of RESyNc, where
rounds proceed in lockstep. Thus, there are no interleaving of actions performed by processes in
different rounds.

Example. As example protocol, we consider a round-based version of ViewChange [?], a protocol
used in PBFT [?]. The goal of PBFT is to receive requests from a client, and to store all of them on
N replicas, in the same order, tolerating F byzantine faulty processes, where N = 3F + 1. Ideally,
all replicas have the same history of client requests, however due to faults this is not the case.
ViewChange ensures that a majority of correct replicas—i.e., at least F + 1 correct replicas—agree
on the most recent history of requests. To this, it elects a leader, which makes sure that all the
replicas in its quorum agree on the most recent history.

The protocol is structured in three rounds,
which form a phase. Fig. 1 shows an execu- DoVC Forward NewView

tion of ViewChange. In the first round, called
DoVC, all replicas broadcast their current his- W" ///"‘ W

tory (all-to-all communication). We assume au-
thenticated communication channels between

any two processes [??], i.e., the receiver of a

message can be sure which process sent the %x W
message. All processes, including the leader,

wait for 2F + 1 messages. However, only F +1 of

these messages may come from correct replicas, Fig. 1. Lock-step executions for N =4 and F = 1.

which does not provide sufficient information
to compute the most recent history of the system. The leader’s ID is a function of the phase number
(rotating leader), so the protocol uses the same leader in the next two rounds.

In byzantine systems, receiving one message is not sufficient to trust the received value, because
byzantine processes might send different (possibly faulty) values to different processes. Therefore,
to help the leader trust the received histories, in the second round, called Forward, the replicas that
receive at least 2F + 1 messages in the first round, forward these messages to the leader. The leader
trusts an history h; sent by process p;, if F + 1 processes acknowledge that they received h; from
p;. If the leader receives 2F + 1 trusted values, based on them it computes, in the second round, the
most recent trusted history in the system.

In the third round, called NewView, the leader broadcasts the previously computed history and
the set of trusted pairs that the computation was based on. Also in the third round, because the
leader might be byzantine, the other processes echo to the entire network the acknowledgments
sent to the leader (in the second round). A process p that receives the leader’s message, checks that
the latest history was correctly computed, using the messages from the other replicas to trust the
values communicated by the leader.
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1val DoVC_mbox:List[(ProcessID, Hist)
2val skip_next_round:Boolean

sval history: Hist

1

snew EventRound[Hist]{//Round: DoVC

, def send(): Map[ProcessID,Hist] = {
7 broadcast(history)

& 3

9 def receivelnit(){

10 Progress.timeout(to)

11 Progress.catchUp(true)

12 Progress.sync(F+1)

13}

14 def receive(sender: ProcessID) = {

15 if (mbox.size >= 2F+1)
Progress.goAhead

16}

17 def finishRound(mbox: List[(ProcessID,

Hist)1) = {

18 if(mbox.size >= 2F+1)

19 DoVC_mbox = mbox

20 else // timeout

21 skip_next_round=true

22 13}

Fig. 3. The 1st round of ViewChange (PBFT) in RESYNC.

The protocol executes these three rounds in
a loop, because the execution of one phase does
not guarantee that a majority of correct replicas
are up to date, e.g., if the leader is byzantine.
Fig. 2 shows an execution of a phase where al-
though the leader is not byzantine, there are too
many faults in the system to update sufficiently
many replicas.

The algorithm is safe if less than a third of the
processes are faulty and it is live, if eventually
there is a good period where a quorum can

def receivelnit(){
Progress.waitMessages
Progress.catchUp(false)
Progress.sync(0)

def receive(sender: ProcessID) = {
if (mbox.size >= 2%F+1)
Progress.goAhead

Fig. 4. Another message accumulator for
the round in Fig. 3

DoVC Forward NewView

N /s

Fig. 2. Lock-step executions for N =4and F = 1.

communicate within itself and with the leader. This is an instance of partial synchrony, which states
that eventually all correct processes can talk to each other.

Encoding in RESyNnc. The code of the first round, i.e., DoVC, is given in Fig. 3. The round imple-
ments four methods: send, defining the messages to be sent, receiveInit and receive computes
the set of messages received in the round, i.e., the message accumulator, and finishRound that
defines the round computation based on the received messages. In this round, all processes broad-
cast their current histories. Therefore, send uses the primitive broadcast and returns, at line 7,
a (key, value) map, where the keys are all the process identities (the recipients) and the value is
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the history of the sender, i.e., a sequence of requests (type Hist). The method send is executed
synchronously by all processes.

Message accumulator. In classic round-based models [?], the set of received messages is a subset
of the sent messages, non-deterministically chosen by an adversarial environment. We enhance the
round-based model with a message accumulator (specific to each round) that receives messages
one by one. This gives the programmer the capabilities to react to a non-deterministic execution
environment. The message accumulator is defined by a Progress object and two methods that use
it, receiveInit (line 9) and receive (line 14). The main bottleneck of round-based models is an
inefficient round-switch policy that requires synchronizing correct process. Using the methods of
Progress, called progress conditions, the programmer guides the execution platform of RESync,
speeding up or slowing down the default round-switch policy. They are high-level constructs im-
plemented by the execution platform. For example, using Progress. timeout(to) the programmer
fixes in line 10 the time interval the execution engine waits for the messages of the current round,
i.e., it waits for to milliseconds. Two other progress conditions are enabled.

Table 1. Network assumptions.

Lossy links Reliable link
benign process crash F=0and UDP  F=0 and TCP
authenticated byzantine processes | F>0and UDP  F>0 and TCP

A message accumulator is designed taking into account the underling network. In this paper we
consider different fault models, given in Table. ??. Regarding process failure, processes can crash
(and not recover) or they can be byzantine. A byzantine process does not follow the protocol, it may
send any messages up to forging the identity of other processes. We assume authenticated byzantine
processes which cannot impersonate other processes, and this is done using digital signatures.
The number of byzantine processes, denoted F, is a parameter of the program. If F equals zero
then the program tolerates only benign faults. The size of the network is fixed by the parameter
N. For the link failures, we consider either lossy links, where messages can be lost, reordered,
duplicated, or reliable links where every message sent it is eventually received. In practice lossy
links are ensured by UDP and reliable links by TCP. The design of a message accumulator can take
advantage of any other network properties the programmer is aware of, it is not restricted to the
network assumptions discussed in this paper.

Synchronization primitives. RESYNC has two synchronization primitives, Progress.catchUp and
Progress.sync. They are implemented by the execution platform, for the types of network given
in Table. ??. Note that a network with lossy links is a weaker network assumption than reliable
links and it is one of the weakest network assumptions that one can consider. These primitives do
not have a round-based definition for lossy links (Progress.catchUp does not have a round-based
implementation even over networks that ensure reliable links).

The primitive Progress.catchUp(true), Fig. 3 line 11, enables a process to switch rounds faster
at runtime, as soon as it has received F + 1 messages with a higher round from different processes.
It is used to resynchronize processes by advancing a slow process to the round of a faster correct
one.

The primitive Progress.sync(F+1), Fig. 3 line 12 requires that F + 1 correct processes switch
rounds together, at runtime. Its implementation forces processes to receive at least 2F + 1 messages
from different processes for the current round cr, or a higher one, before moving to the next
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one, i.e., cr + 1. Note that the network might drop more than F messages in a round (we recall
N = 3F + 1). If the timeout expired and less than 2F + 1 messages are received, the execution
platform first increases the timeout but if this is not sufficient, it resends the messages of the current
round (if the round does not use an all-to-all communication, the execution platform insert dummy
messages to implement the synchronization requirement) '. Progress.sync(F+1) overrules the
timeout constraints set by Progress. timeout (to). Byzantine system cannot resynchronize (after
an asynchronous period under partial synchrony) unless at least F + 1 processes are within the
same round [?]. Therefore, even if Progress.sync(F+1) potentially slows down the round switch,
it is necessary for byzantine consensus protocols.

For each round, the Progress object is configured in the method receivelInit. Messages are
received one by one: the method receive takes as input a received message and implements
the conditions under which this should be the last message received in the current round. Each
process, in each round, has a fresh mailbox, that contains the queue of messages received (inputs to
receive) by the process in that round. This mailbox is populated by the execution platform. The
execution of the message accumulator starts with receivelInit, continues with multiple calls to
receive, and stops when the progress conditions are met. The accumulator in Fig. 3 stops either
due to Progress.catchUp or because Process.sync(F+1) holds and either the timeout expired
or the control reached Progress. goAhead in Fig. 3 line15. Since Process. sync(F+1) is enabled,
the message accumulator continues to collect messages until the progress condition is met even if
the timeout expired. The messages accumulators of the same round execute asynchronously across
processes.

Round computation. The method finishRound implements the computation done by a process
in a round, based on the set of received messages. All (non-byzantine) processes execute the
same code, however due to different mailboxes and branching, processes have different behaviors.
finishRound is executed when a process stops receiving messages. The only computation done in
the first round in ViewChange is to store the mailbox in the variable DoVC_mbox, in line 19. Across
rounds, RESyYNC respects the classic round-based semantics: at the end of a round the mailbox of
each process is purged and the computation moves in lockstep to the next round.

Different message accumulators. To solve byzantine consensus, it is sufficient that only some
rounds force F + 1 correct processes to be synchronized. Therefore, in ViewChange at least one of
the three rounds should enable Process. sync, but not necessarily the first one. If we consider the
message accumulator from Fig. 3 with Process.sync(0), then the message accumulator might
stop due to an expired timeout, before receiving 2F + 1 messages. Therefore when finishRound
is executed, line 21 is reachable and skip_next_round is true. In ViewChange, processes that do
not receive 2F + 1 messages in the first round move on to the next phase. In the round-based
structure processes cannot skip rounds. However, they are not forced to send messages or do
any computation in a round. The flag skip_next_round is used to encode the behavior of these
processes, which go through the second and third round of the current phase without sending any
messages or doing any computation.

Let us consider the message accumulator in Fig. 4 which uses Progress.waitMessages instead
of Progress. timeout. The semantics of Progress.waitMessages states that calls to receive are
made until Progress. goAhead is reached. Since Progress. catchUp is disabled, the only way for a
process to switch round is if 2F + 1 messages are received. This message accumulator can get stuck,
if the program is executed over a network that provides unreliable communication. However, if

1The implementation of Progress.sync(F+1) is possible only for partially synchronous networks.
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1// Commit request 1// Vote (Yes/No)
2new EventRound[Int]{ 2new EventRound[Boolean]{
def send(): Map[ProcessID,Int] = { 3 def send(): Map[ProcessID,Boolean] = {
I if (id == leader) { 4 Map( leader -> commit )
5 broadcast(transactionID) 5}
6 } else { Map.empty } ¢ def receivelnit = {
} 7 if (id != leader) Progress.goAhead
s def receivelnit = { 8 else Progress.waitMessage
9 Progress.waitMessages o}
10 Progress.catchUp(false) 10 def receive(sender: ProcessID, payload:
i} Boolean) = {
12 def receive(sender: ProcessID, 11 if(!payload || mbox.size == n)
payload: Int) = { Progress.goAhead
13 Progress.goAhead 12}
14} 13 def finishRound(mbox: List[(ProcessID,
15 def finishRound(mbox: Boolean)1) = {
List[(ProcessID, Int)]) = { 14 if (id == leader) {
16 commit = check(localState, mbox) 15 decision = head(mbox)._2
17} } 1} 33}

Fig. 5. Voting phase of the Two phase commit protocol in RESyNc.

executed with reliable communication between correct processes, e.g., TCP, it is an implementation
(in the new round model) of the synchronization primitive Process. sync(F+1).

The message accumulator can also depend on the value in the payload of messages. Let us look
at the two-phase commit protocol. Fig. 5 presents the first two rounds — i.e., the first phase — of the
protocol. It is an atomic commitment protocol, executed by n benign processes (that is all processes
follow the protocol). This protocol assumes crash recovery, i.e., the nodes have stable storage and
they can resume operation after a crash. Therefore, the processes block until they receive the
messages they expect.

In the example, the transaction identifier is an integer that the leader proposes (at line 5) to
all processes. Processes blocks until they receive the message from the leader (lines 9 and 13).
Each process checks locally whether it can locally commit the transaction (without violating the
consistency of the database) at line 16. In the second round, on the right, processes send (at line 4)
their vote to the leader. The two-phase commit protocols says that a transaction can commit only
if all the participants agree. Therefore, the leader wait for N “yes” votes or a single “no” vote (line
11). In the next two rounds, which we omit for brevity, the coordinator sends a commit or abort
message to all and after it receives acknowledgments from all processes, it informs the client of the
decision and restarts with a fresh transaction.

In our example, we do not give concrete values for timeouts. The actual timeout value might vary
across rounds as they are influenced by the amount of computation required by handling messages.
For example, if we consider networks with non-authenticated communication channels, messages
are signed using public encryption policies, and the signatures are checked by the recipients. The
timeout depends on the size of the information to be signed and on the signature algorithm. By
choosing a timeout that takes only the network delay into account, the round switch may happen
too fast, and processes could miss messages that are delivered by the network.
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DoVC Forward NewView Phase 1 ... Phase20 DoVC Forward

W Ny

Phase 1 Phase 20
(b)

Fig. 6. Runtime executions for N =4and F = 1.

(space between the two runs J

Runtime executions. Fig. 6(a) and Fig. 6(b) show two runtime executions of ViewChange in
RESYNC. At runtime, processes are not all in the same round (due to the asynchronous nature of the
network). Therefore, processes receive messages from different rounds out of order. The runtime
discards the late messages and stores the messages from the future rounds. It delivers only the
messages for the current round. Since Progress.sync(F+1), at runtime, a process will not finish
DoVc when the timeout expired, unless it has received at least 2F + 1 messages for the current
round (or a higher one). However, a process finishes the other two rounds independently of the
number of received messages.

Not all processes are forced to wait for 2F + 1 messages. The progress condition catchUp makes
processes jump to a future round, if they received more than F + 1 messages for that round (or a
higher one). For example, in Fig. 6(b), the bottom process is slowed down in the round DoVc of the
first phase and jumps to round DoVC of the 20th phase, when it receives F + 1 messages for it. This
process is not forced to wait for 2F + 1 messages as the reception of F + 1 messages for a higher
round guarantees that there were (other) F + 1 correct processes synchronized. We show that the
runtime executions are refinements of the lockstep executions: processes at runtime go through
the same sequence of local states as in the round-based semantics. For example, the execution in
Fig 6(a) is a refinement of the execution in Fig 1.

3 SYNTAX OF RESYNC

The syntax of an RESYNC program is given in Fig. 7. A program defines the code executed by one
process. In RESync all processes execute the same code. However, within a round the programmer
can encode different roles (e.g., coordinator, follower) by branching. The branching conditions may
be over the process identifier or received messages (which can vary non-deterministically across
processes).

A program is defined by an interface and the program’s body. The interface is an object with a
list of methods that are used to communicate with other distributed programs. The interface has
inbound operations, for example to get a new client request, and outbound operations (callbacks),
called to deliver some results to the client, e.g., acknowledgments that the request has been
processed. The program’s body has variables declaration, an initialization function, the main
distributed computation part, and sequential pure function. All variables are local to a process. The
communication between processes is done exclusively by message passing.

Variables. All RESYNc programs have several predefined variables: N the total number of pro-
cesses, F the number of byzantine processes (both parameters of the program), and r the round
number. These variables are read-only.
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program == interface EventRoundpm
body mbox: List[P X M]
body == wvar_decl* Progress: ProgressC
pure_fun* send: () = [P —> M]
init receivelnit: () — ()
phase receive: (s: P, m: M) — ()
phase = round" finishRound: (mbox) — ()

Fig. 7. RESYNC abstract syntax.

Initialization. Each program implements an init method, which configures the initial state of a
process: the initial values are obtained using the inbound interface operations. The method init
takes as input interface objects, it does not return any values. It modifies the process’s variables
without sending or receiving messages. Implicitly, init initializes the round number r to zero.

Rounds. The distributed computation part is structured into a fixed sequence of rounds, called
phase. Each round is an instance of an abstract class EventRound, whose structure is described in
Fig. 7. Rounds are parameterized by a payload type M and have two attributes: 1) mbox, of type
List[(P, M)], is a queue of messages, where P is the process type, and a progress object, Progress,
where ProgressC is the class of progress conditions. In the code snippets, we use process identifier
(ProcessID) for P. For the semantics, these two types are the same. Rounds contain a few methods
which define their behaviors. The methods send and finishRound must be defined by the program.
An implementation of the methods receivelnit and receive is optional. If receiveInit and
receive are implemented, the round is called an open round, otherwise it is called a closed round.
In closed round Progress.catchUp and Progress.sync(F+1) are enabled by default.

The type of messages exchanged in different rounds might differ, however within a round, all
messages have the same payload type. The control flow of a round is a sequence of method calls,
starting with send, followed by receiveInit and a loop of calls to receive, if the latter two are
present, and lastly finishRound. The round variables mbox and Progress are visible in all methods
of the same round.

Sending messages. The method send does not take any inputs, and returns a partial map from
process identity to a payload type, i.e., [P — M], which associates receivers with payload values,
i.e., the sent messages. The method send is side-effect free w.r.t. the algorithm variables.

Message accumulator. A message accumulator collects the messages delivered by the network in
a round (to the process that executes it). The message accumulator stops, when a certain condition
holds. Next, the method finishRound is executed and the control switches to the next round.

The algorithm designer implements the message accumulator by defining receiveInit and
receive and controls when the accumulator terminates using different progress conditions. A
progress condition is a method or an attribute of a ProgressC object. They impose different
conditions on when the accumulator may stop receiving messages:

e Progress.timeout(to: Milliseconds), the accumulator is enabled to end receiving mes-
sages after a timeout expired, that is to time units after the round started;

e Progress.goAhead, the accumulator is enabled to end as soon as the method goAhead is
called;

e Progress.waitMessages is a flag; when set, it means that there is no timeout to stop the
message reception.
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e Progress.catchUp(b: Boolean) allows or disallows the execution platform to (re-)synchronize
processes under a partial synchrony assumption;

e Progress.sync(k: Int) is a global synchronization primitive that constraints the message
accumulators of k correct processes to end synchronously.

The method receiveInit configures the progress conditions. The programmer may implement
different progress conditions for different processes in the same round by branching. The method
receive defines the mbox and checks if the message accumulator should terminate. It takes as
input an incoming message, that is, a pair (sender, value), where sender is the process which
sent the message , and value a value of the round’s the payload type. Each execution of receive
adds the input pair (sender, value) to the mbox of the current round. In receive the programmer
uses Progress. goAhead to terminate the message accumulator when a condition on the mailbox
computed so far holds.

When the methods receivelnit and receive are not implemented, the mailbox is a non-
deterministic subset of the sent messages.

Round computation. In the method finishRound the programmer defines how the process state
changes at the end of a round. The method finishRound takes as input the queue of messages re-
ceived, i.e., takes as input mbox. It may call outbound operations from the interface, to communicate
the results of the computation to a client.

4 LOCK-STEP SEMANTICS OF RESYNC

Given a program %, all (non-byzantine) process execute, in a loop, the sequence of rounds defined
in the program. The semantics of a program is given by the synchronized parallel composition
of the transition systems associated with each process. We denoted by [#] the set of executions
defined by the transition system in Fig. 8, Fig. 9, Fig. 10, and Fig. 11.

The execution progresses in lockstep, that is, all processes execute the same round in the
same time. Within a round, the methods send and finishRound are executed synchronously by
all processes, while the executions of receivelnit, receive, and the network transitions are
interleaved across processes within the round boundaries. Locally, a process executes a sequence
of calls to round methods corresponding to

init; (send; ((receivelnit; receive®) | NondetNet) ;finishRound)*

where NondetNet represents a network transition. All processes execute the same sequences of
rounds.

The state S of a RESYNC program over the set of processes P is represented by the tuple
(gstep, s, r, msg) where:

o gstep € {Send, Recv, Net, Fin} indicates whether the next method is send, receive, a network
transition, or finishRound, respectively;

e s € [P — Vars U {Istep} — D] stores the local states of the processes, Vars is the union
of all variables, D is the domain of values, and Istep is a special variable taking a value in
{Send, Recv, Net, Fin} and ;

e r € N is a counter for the executed rounds;

e sms C 2P"M-P i5 3 set of sent messages in a round and dms C 2PMF is a ordered set of
delivered messages, all the messages in sms and dms have a different pair of sender/receiver,
i.e.,, a process can only send one message to another process in each round.

To model correct, crashed, and byzantine processes we use the sets CoP, Cr, and ByzP. CoP is
the set of correct processes, Cr is the set of crashed processes, and ByzP contains the byzantine
processes. These sets form a partition of the processes, i.e., P = CoP & Cr & ByzP. N and F takes
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INIT
init(),oP
Vp € Pr.x — s(p) O={op |pePr}

0.{initp(lpePr},O

® = (Send, s, 0, 0, 0)
SEND-OPEN
mp=phase[r].send(),0
Vp € Pr.s(p) — sp)  sms=|J{p.m ) g€ PA(gm)emp)
pEP

0,{sendp(mp)|peP},0
(Send, s, r, 0, 0) B (Recv, s, r, sms, 0)
SEND-CLOSED
mp=phase[r].send(),0
Vp € Pr. s(p) — s(p) sms = U{(p, m,q) | qg€PA(qg,m)€mp}
peEP

0,{sendp(mp)|peP},0
Sl

(Send, s, r, 0, 0) (Net, s, r, sms, 0)

RECVSTART RecvEND
Vp € Pr. s(p)lvars = 5'(p)ars A 5'(p)(Istep) = Reco Vp € Pr. s(p)(Istep) = Fin
0,0,0 0,0,0
(Recv, s, r, sms, dms) = (Recv, s, r, sms, dms) (Recuv, s, r, sms,dms) = (Fin, s, r, sms, dms)
FinisHRouND

hase[r].f1inishRound(s(p)(mbox)),
VpePros(p) SRR ) S(p)mbox) =[] ' =r+1  O=1{o,|pePr}

0, {finishRoundp (s(p)(mbox))|pePr}, O
-

(Fin, s, r, sms, dms) (Send, s’,r’, 0, 0)

phase[r].m,o

Fig. 8. The global semantics of RESYNc. A transition s(p) — s’(p) denotes that p executes, in
local state s(p), the method m of the EventRound phase[r]. The execution produces observable events o,
corresponding to calls to methods from the interface.

Dror CRrASH
sms =sms’ ¥ {m} sS(p)=L Vq.q#p=s(q)=5'(q)
(s, sms, dms) 2 (s, sms’, dms) (s, sms, dms) < (s’, sms, dms)
DELIVER

sms=sms' W {(p,v,q)} (p€ByzPvo=27) dms =dmsU{(p, v, q)}

(s, sms, dms) 23 (s, sms’, dms’)
Fig. 9. Network transition on the message pools.

the values N = |P| and F = |ByzP]|. For crashed processes, we set their local state to the special L
value, i.e., for a store s we have Cr = {p € P | s(p) = L}. Crashed processes never recover. Pr is a
shorthand the set of running processes, i.e., Pr = P \ Cr.

The rules for the round structure where the processes work in lockstep are shown in Fig. 8.
Later, we will see additional rules for the network (Fig. 9), closed rounds (Fig. 10), and open rounds

(Fig. 11). Global lockstep transitions are written as S E’;? S’ where S, S’ are states, E is a set of
labels that identify network transitions, O is a set of labels defined from the names of the methods
in the interface. I is a set of labels not in the interface corresponding to internal transitions. A
client of a RESYNC program can only observe the transitions with labels in O. Local transitions of a
process are written with — and transition of the network are denoed with .

Init. Initially the state of the system is undefined, denoted by . The first transition of the system,
captured by the rule INIT in Fig. 8, defines the initial state of the protocol by calling init on all
processes. All processes execute in lockstep (synchronously) init. The method init does not
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CLOSED-NETWORKSTEPS
N
(s, sms, dms) +— (s’, sms’, dms’)

(Net, s, r, sms, dms) N’=‘M| (Net, s’, r, sms’, dms’)
CLOSED-MAILBOX
Vp € Pr. s(p)(Istep) = Net A s'(p)(Istep) = Fin
As(p)lvars = SI(P)l\/ars A S'(P)(mbox) = [(q, m)|(g, m, p) € dms]

0,0,0
(Net, s, r, sms, dms) = (Fin, s’, r, sms, dms)

Fig. 10. Network transitions for closed rounds.

return a value and defines the local state of a process using inbound operations from the interface.
The global transition INIT emphasizes the inbound operations called by init, denoted o,, where
o is the operation’s name and p is the process executing it. INIT sets the round counter to 0, the
message pools are empty (there are no messages in the system), and globally the system transitions
to a Send state, i.e., gstep = Send. Rounds are executed in a loop. Next, we define the semantics of
around.

Send. In every round, the first transition is a global one, which executes locally in lockstep the
method send on all processes. Its semantics is formalized by the rules Send-Open and Send-Closed
in Fig. 8. Only one of the two rules applies in a round. Send-Open is applied when init and
receive are defined. The control label gstep becomes Recv, i.e., the control goes to the implemen-
tation of a message accumulator. Send-Closed is applied when init and receive have the default
implementation and in this case the control goes to the network, that is gstep equals Net, otherwise
gstep equals Recv. The method send has no process local side effects and returns a map from
receivers to payload values, i.e., the messages sent by the process that executes send. The rules
Send-Closed, resp. Send-Open add the messages sent by processes to the pool of sent messages,
sms. The messages in sms are triples of the form (sender, payload, recipient), where the sender and
receiver are processes and the payload has type M. The triples are obtained from the map returned
by send to which we add the identity of the process that executed send.

After sending messages the control passes to the network that non-deterministically decides
which messages to deliver and which to alter.

Network transitions. The pool of messages sms and the lists of delivered messages dms are
managed by a special network process that modifies the pool of messages sms and dms (for simplicity
the rules omit its identity), and in the case of open rounds controls also the progress conditions.
The rule Deliver, in Fig. 9, captures how the network takes a message m from the message pool sms
and puts it into the delivery set dms. For the byzantine case, we model the malicious behaviours by
changing the delivered messages to arbitrary values. This way of modeling means we can keep
uniform rules for sending and processing messages. The rule Drop captures how the network can
drop sent messages by removing them from the send pool sms. Processes may crash (see Crash)
and never recover.

Message reception in closed rounds. When receiveInit and receive are missing (they are not
redefined), after Send-Closed, the rule NoRecv-NetworkSteps is applied, a nondeterministic number
of times, followed by the rule NoRecv-Mailbox, from Fig. 10. The mailbox of each process is set to
be equal with the content of the delivery queue of the process. It is totally under the control of the
network, that populates mbox with a non-deterministic chosen (possibly altered) subset of the sent
messages.
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Progress transitions

PROGRESS.GOAHEAD PROGRESS.WAITMESSAGES PROGRESS.SYNC
s’ (p)(goAhead) —s’(p)(to) s’ (p)(sync)
receivelnitp() receivelnity receivelnity
receivep(q, v) receivep(q,v) receivep(q,v)
s(p)  —  $(p), si(p)  —  s'(p) si(p)  —  $'(p)
PROGRESS.CATCHUP(TRUE) PROGRESS.TIMEOUT
s’ (p)(catchUp) s’ (p)(to)
receivelnity receivelnitp
receivep(q,v) receivep(q,v)
sp) — S sp) — ')

Accumulator transitions

Acc-INIT
receivelnit, ,

s(p)(Istep) = Recv s(p) i s'(p) s(p)lvars = S/(P)|Vars

{receivelnit,},0

(s(p), sms, dms) — (s'(p), sms, dms)

Acc-Recv
receiveqy(q,v)

—s(p)(goAhead) dms = dms” W {(q,v,p)} s(p) — s’(p)
s(p)(Istep) = s"(p)(Istep) = Recv s(p)lvars = s'(p)lvars  s"(p)(mbox) = (g, v) :: s(p)(mbox)

{receive,(q,v)},0

(s(p), sms, dms) — (s'(p),sms,dms')

Acc-END
s(p)(Istep) = Recv (s(p)(GoAhead) V s(p)(to) V s(p)(catchUp))
s(P)Vars = s'(P)lvars  §'(p) =Fin  =s"(p)(GoAhead) ~ —s'(p)(to)

(s(p), sms, dms) 29 (s'(p), sms, dms)

Global transitions

Acc-NETWORKSTEP Acc-PROCESSSTEP
N 1,0
(s, sms,dms) —> (s', sms’, dms') (s, sms,dms) — (s', sms’, dms')
N,0,0 , , , 0,1,0 , , ,
(Recv, s, r,sms,dms) — (Recv, s',r,sms’, dms ) (Recv, s, r,sms,dms) = <Recv, s’ r,sms’, dms )

Fig. 11. Message accumulator transitions.

Message accumulator (message reception in open rounds). The implementation of the message
accumulator starts after sending messages (after apllying SEND-OPEN), by updating the local variable
Istep to Recv (see rule RecvStart in Fig. 8). To compute the mailbox of an open round, process
executes first receiveInit (see rule Acc-Init in Fig. 11) and afterwards a loop of calls to receive
(see rule Acc-Recv in Fig. 11). Calls to receive stop when the progress conditions configured in
receivelnit are met (see rule Acc-End).

Receivelnit. The progress conditions of a round are set in receiveInit. To formally define them
we use auxiliary boolean local variables: goAhead, catchUp, to, and sync. Because the semantics is
given at the lockstep level and the progress conditions are hints to control the runtime algorithms,
the progress condition does not have much impact on the semantics. For instance, the timeout is
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abstracted as a boolean value and the accumulator can non-deterministically continue receiving
messages or end.

Receive. The method receive when executed by process p, takes as input a delivered message
in the set dms (see rule Acc-Recv) and adds it to the mailbox of the current round. In each round, at
most one message is received from any process, i.e., duplicates if present are eliminated. Another
call to receive follows only if the progress conditions are not met, see rule Acc-End in Fig. 11. The
message accumulator ends because either the catchUp condition holds, or the synchrony condition
holds together with either the goAhead or the timeout condition (see rule Acc-End). Note that the
catchUp, synch, and timeout progress conditions are in this lockstep semantics under the control
of the network, and the protocol assumes the network respects their semantics. The execution
platform provides an implementation of these primitives.

The accumulator transitions are interleaved with the network transitions defined in Fig. 9. While
collecting messages, the local variable Istep equals Recv until it gets updated to Fin at the end of the
message accumulator. Globally the systems transitions into a Fin global state when all non-crashed
processes have their local variable Istep equal to Fin, rule RecvEnd in Fig. 8.

Round-based Algorithm transition. In a FINISHROUND transition (Fig. 8), all processes execute
synchronously (without any interference) the method finishRound of the current round. Locally,
on each process p, the set of received messages mbox, (computed previously) is the input of
finishRound. The finishRound operation might produce an observable transition 0,. At the end
of the round, sms and gmsg are purged and r is incremented by 1.

5 RUNTIME OF RESYNC

We introduce an execution platform for RESYNC over asynchronous networks. The runtime execu-
tions are refinements of the lockstep executions from Section ??. For closed rounds, if the underlying
network is partially synchronous, the runtime eventually synchronizes correct processes, ensuring
that they can communicate reliably with each other.

5.1 Runtime semantics

The runtime algorithm in Listing 1 defines the code executed at runtime by one process. Listing 1
shows an extract from the actual implementation (which has lines of code) that highlights the control
structure of the runtime algorithm. Given a RESyNc program P, the set of runtime executions
[Plrun is defined by the asynchronous parallel composition of N transitions systems corresponding
to Listing 1.

The runtime algorithm defines a wrapper for the RESync code. It has the following structure:
declaration of the variables that keep track of the timeout, the round number, and the buffer of
delivered messages (line 6), a few auxiliary methods (lines 15-29), and a big while loop where every
iteration corresponds to the execution of one round (lines 32-59). All processes go through all
rounds in order. Each loop iteration is further split into initialization (lines 37-40), send (line 34),
message accumulator (lines 42-54), and finishing the round (lines 56-58). The message accumulator
is a loop where at each iteration one message is received and processed. The exit of this loop
triggers a round switch.

The runtime uses phase, the sequence of len rounds defined in RESync, and the variable
currentRound holding the current round number. In Fig. 1, phase[currentRound] is the k*#
EventRound defined in the RESYNC program, where k equals currentRound%1len. The runtime uses
the implementations of send, receivelnit, receive, finishRound given in RESync by calling
phase[currentRound]. send, etc. Each call is wrapped by checkProgress that implements the
semantics of the progress conditions.
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Listing 1. RESYNC Runtime Algorithm

// Global constants

id: Pid; N, F: N //own process id, number of processes, malicious processes

round: Array[EventRoundm] //Program

// State shared with the program

Progress: ProgressC

mbox: List[Msg]l = [1 // mailbox of the current round

// Internal state

currentRound, nextRound: N = 0

roundStart, timeout: Time

strict, inSync: B = false // flags to control the progress

maxRound: Map[Pid, N1 = Map[for (p <- Pid) yield (p, )] // keep the max round seen for each process
pendingMessages: Map[N, Msg] = Map[for (n <- N) yield (n,0)] // buffered messages (asynchrony)

// Auxiliary Methods
def processReceive(message: Msg ) { // Receiving a message
if (V m € mbox. m.sender # message.sender) { // check duplication (UDP or byzantine)

mbox = message :: mbox
round[currentRound].receive(message.sender, message.payload)
checkProgress()
y 2
def checkProgress() { // Update timeout and strict according to Progress
if (Progress.isTimeout) { timeout = Progress.timeout; strict = !Progress.catchUp }

else if (Progress.isWaitMessage) { timeout = oo; strict = true }
else if (Progress.isGoAhead) { strict = false; nextRound = max(nextRound, currentRound + 1) }
if (Progress.syncNb > 0) {
if (maxRound.values.filter( _ >= currentRound).size >= Progress.syncNb + F) { strict = false }
else { timeout = oo; strict = true }
2
def catchUpTo() = maxRound.values.sorted[N - F - 1] // highest round excluding byzantine processes

//Execute the program, each iteration of the loop corresponds to one round
while(true) {

// SEND

for( (dest, payload) <- round[currentRound].send() )

Network.sendTo(dest, Msg(id, currentRound, payload))

// RECEIVE INIT

strict = false; mbox = [] // clean

roundStart = currentTime() // set time

round[currentRound].receiveInit()

checkProgress()

// RECEIVE

for ( message <- pendingMessages[currentRound] ) processReceive(message) // deliver buffered msg
while ((nextRound == currentRound V strict)) { // not enough messages received

message = Network.receiveWithTimeout(roundStart + timeout - currentTime())
if (message == null) { // timeout
strict = false
nextRound = max(nextRound, currentRound + 1)
} else {
maxRound[message.sender] = max(maxRound[message.sender], message.round)
if (message.round < currentRound) { } // late message, ignore
else if (message.round == currentRound) { processReceive(message) }
else { pendingMessages[message.round].add(message) // buffer and
nextRound = max(nextRound, catchUpTo()) } // check if catching-up is needed
} 3
// FINISHROUND
round[currentRound]. finishRound(mbox)
currentRound += 1; maxRound[id] = currentRound
nextRound = max(nextRound, currentRound)
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Message reception is implemented using the method receiveWithTimeout in line 44 that either
returns a message or null if the timeout (given by the RESYNC program) expired. If the progress
condition waitMessages is active, receiveWithTimeout is called with an infinite timeout. The
messages delivered to a process are from different rounds. For instance, if two processes p and g
are in different rounds, and send messages for their current rounds to some process r, r’s message
buffer will contain messages from different rounds. The runtime implements a filtering of these
messages. To each sent message it adds as metadata the current round number of its sender. When a
message is received, the runtime discards it, if it was sent in a round smaller than the current round
of the receiver, and it buffers it in the buffer pendingMessages if it is a message that comes from a
future round. The mailbox contains messages only from the process’s current round. The default
behavior of receiveInit is to set a timeout, enable catchUp and enable the synchronization of
F + 1 processes. The default behavior of receive is to add a received message to the mailbox, when
it belongs to the current round. Messages in pendingMessages are moved to the mailbox when
the process reaches the round they were sent in. The function checkProgress updates the local
variables that gate a round switch at line 43. This function is called after the reception of a message
(line 51) and in the beginning of every round with the call of receiveInit (line 40) but also on the
buffered set of messages for the current round (line 42) received while the system was operating in
a lower round.

CatchUp algorithm. This primitive enables a process to jump over over some rounds at runtime,
so that it can catch-up with processes that made quicker progress. Catch-up is a mechanism used by
many asynchronous systems, e.g, Paxos, ViewStamped, PBFT. Implementing this primitive requires
breaking communication-closure which is possible only at execution time.

In the benign case, i.e., F = 0, when a message m from a future round fr is received, instead of
storing it and continuing with the current round, the runtime jumps to the round fr and starts
the message accumulator of fr with m in the mailbox. Note that catch-up is useful to synchronize
processes (with the faster ones) the under lossy links, because messages of the current round might
be lost, but also under reliable links due to message reorder (see Table ??). The implementation
of catch-up uses two variables nextRound, ranging over round numbers, and strict which is a
boolean mirroring Progress.catchUp.

In the byzantine case, i.e., F > 0, it is not sound for a process to catch-up upon a single message
reception, because a Byzantine process may send arbitrary round numbers. Therefore, the runtime
keeps not only the buffer of pending messages but also an array maxRound, that for each process
stores the highest round value it sent in a message. Instead of jumping to the maximal round
number, the runtime ignores the F highest round values (line 29) in the array maxRound, and jumps
to the F + 1st highest one (at least one correct process made progress until that round).

In case of a jump, the message accumulator of the current round stops, and finishRound is
executed for the current and all the other rounds, up to nextRound.

Synchronization algorithm. Although all protocols may use Progress. sync(k), except for two
phase commit (where k = N)), this primitive is useful mainly in byzantine protocols, where k equals
F + 1. It ensures that k correct processes, i.e., non-byzantine and not-crashed, are synchronously
switching at runtime the respective round.

The implementation of Progress. sync(k) forces the runtime to wait for F + k messages sent by
different processes for the current round or any other higher round before terminating the current
message accumulator, and do a round switch. This is done using the maxRound map which stores the
highest round number received from each process. Over networks with reliable links, two timeouts
ensure that between round switches the waiting time is long enough to let correct process exchange
messages. However, over networks with lossy links timeouts are an underestimation. The transport
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layer is responsible for resending the messages of the round, and therefore, the synchronization
algorithm an infinite timeout assuming the transport layer will eventually deliver enough messages.
The implementation of this synchronization primitive is possible in the round-based model only
under reliable networks, i.e., TCP. Resending the messages of a round breaks the round structure,
which requires the number of sent messages to be bounded by the state of the process and the
number of processes in the network. Also, over networks with lossy links it is necessary to consider
messages from higher rounds. A message that is from a round fr greater than the current round
cr, witnesses that the process which sent it was at some point in cr, therefore it will be counted
among the 2F + 1 messages (from different processes) required to validate the synchronization
barrier. This behavior it is not possible implementable directly in the round model.

The runtime uses an auxiliary method processReceive to check that only one message per process
per round is delivered. This deals with malicious processes which may send multiple messages and
link faults, e.g., UDP may duplicate packets.

5.2 Runtime correctness

At runtime, the executions are asynchronous, i.e., processes may be in different rounds at the same
time, and processes may receive messages coming from rounds that are different from their current
one. We show that these runtime asynchronous executions are indistinguishable from the RESync
lockstep semantics.

Definition 5.1 (Indistinguishability). Two executions & and n’ are indistinguishable w.r.t. a set of
actions A, denoted 7 ~4 7', iff for every process p, the projection of both executions on p and on
the actions in A agree up to finite stuttering.

Next, by send, receivelnit, receive, and finishRound, we refer to the execution, at runtime, of the
wrappers of those respective methods in RESYNC program.

THEOREM 5.2 (CORRECTNESS). Given a RESYNC program P, for every execution ae € [(P)|run,
there exists an indistinguishable execution se € [P] with respect to the actions C = {init, send,
receivelnit, receive, finishRound}, that is, ae ~¢ se.

PROOF SKETCH. Let us consider an asynchronous execution ae € [(?)]|run. The main ingredient
is that the runtime only provides messages for the current round to the RESYNc program. Thus,
reduction arguments [???] due to communication closure allow us to reduce to indistinguishable
executions where globally actions are ordered with non-decreasing round numbers. Then, we use
the fact that send and receive are left and right movers [?], resp. This generates indistinguishable
executions that have all the init and send as well as the finishround for the same round appearing
in a block, so that they can be reduced to synchronized actions as required for se € [#]. Timeout
actions to (and additional sends for byzantine rounds) in the asynchronous executions lead to
stuttering invisible events, which we may drop and maintain indistinguishability. O

Theorem 5.2 implies that the specifications closed under indistinguishability are preserved by
the execution platform. These specifications (also called local properties in [?]) form an important
class, which includes consensus, k-set agreement, and leader election.

For networks that are partially synchronous we prove a stronger result. Partially synchrony is
defined over the physical model of the network, with immediate consequences over the runtime ex-
ecutions, but also over the high-level round-based executions. Let T(m) be the time it takes between
the moment a message m is added to the send pool sms and the moment it either gets dropped
by the network or it is delivered to its recipient. A (physical) network is partially synchronous
if there exists a A, and a global stabilization time GST, such that the transmission delays of all
messages m sent after GST from a correct processes to a correct process satisfy T(m) < A. The
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original definition in [?] assumes also that a bound on the relative speed of processes holds only
after GST. However, on modern architectures this bound holds during the entire computation. Note
that before GST arbitrarily many messages might be dropped.

In the round-based model, the existence of GST means that from some round on, called GSR,
all messages sent by correct processes to correct processes are received. Prior to GSR arbitrarily
many messages may be dropped. Given a program %, the set of partially synchronous lockstep
executions of P is a subset of [#P]], consisting only in those executions where there exists global
synchronization round GSR.

THEOREM 5.3 (PS CORRECTNESS — CLOSED). Given a RESYNC program P with closed rounds, for
every execution ae € [(P)]|run over a partially synchronous network, there exists an indistinguish-
able partially synchronous execution pse € [P] w.r.t. the common actions C = {send, receivelnit,
receive, finishRound}, that is, ae ~¢ pse.

The proof of Theorem 5.3 follows similar ideas as the proofs in [?]. In the following, we emphasize
a few crucial differences that make the execution platform of RESync practical. A distributed clock
is constructed [?], which ensures that at least F + 1 correct processes have closely synchronized
local estimates of the clock. The distributed clock has two purposes: (i) it ensures that after GST all
correct processes will quickly resynchronize and (ii) a process uses the clock ticks to determine how
long to wait for the messages of a round. In [?], at every process, the steps of the distributed clock
algorithm are interleaved with the steps of the consensus protocol that is executed. During a round
of the consensus algorithm, the clock ticks multiple times, as the clock is used to burn time and slow
down fast processes (to wait sufficiently long for messages). Each tick is implemented by an instance
of a distributed clock synchronization scheme, which involves all-to-all communication. In practice
this would flood the network with many messages and slow down the consensus computation (due
to interleavings of the clock with the algorithm).

Instead of using a distributed clock to timeout messages, the runtime of RESyNc uses a hardware
clock, and it implements a distributed clock only to synchronize the round start, that is, it uses
only one clock value per round, contrary to many clock ticks in [?]. By replacing many distributed
clock ticks with a hardware clock RESYNC’s runtime gives the programmer the possibility to use
timeouts that 1) estimate the time it takes for the slowest correct process to resynchronize with the
fastest correct process and 2) estimate the time to process and transmit a message.

Definition 5.4 (Observational refinement). Given two transition systems TS1 and TS2 and a set of
actions of the two systems O, called observable actions, TS1 observationally refines TS2, denoted
TS1>p TS2, iff all executions of TS1 projected on the observable actions O are included in the
executions of TS2 projected on the observable actions O.

The observable actions of a RESYNC program are calls to the interface methods. The runtime
executions and the lockstep executions are w.r.t. the interface actions. In [?] sequentially consistency
is proven equivalent with observational refinement for commutative clients, i.e., when the interface
operations commute. This proof is adapted straightforward to indistinguishability.

COROLLARY 5.5. Given a program P the runtime semantics of P observationally refines the RESYNC
semantics of P w.r.t. the actions O in the interface of P, if the interface actions commute for the client,
that is, [(P[true])|run >0 [P[truelll and [(P[PSD]run >0 [PIPSI]-

5.3 Runtime Implementation Details

The runtime implements the algorithm in Listing 1. We discuss in this section aspects related to
the message structure and memory management, which are not explicitly visible in the algorithm
in Section 5 as its presentation focuses on the computation.
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Typed rounds and serialization. From the user’s perspective, the communication is typed, i.e. the
rounds specify the type of the message payload. All the serialization is encapsulated within the
rounds. The runtime itself is agnostic to the message content, it just moves bytes.

Since we consider Byzantine processes, serialization is a weak point and can often be abused by
malicious processes. While hardening against that type of attack is outside the scope, we take basic
protection measure. We use Kryo (https://github.com/EsotericSoftware/kryo) for the serialization
which requires explicit registration of the types which can be deserialized. While we provide safe
serializers for simple types, e.g, collections of primitive types, any serializer for more complex
objects needs to be provided by the user and properly hardened.

Self messages bypass. Sending a message to self would be wasteful. RESYNc detects these messages
and handles them separately. In particular, these messages are kept within the round itself and
directly forwarded to the receive method. This makes it possible to keep the program simple, i.e.,
treat the current processes just as another process, without incurring any extra cost.

Memory management aspects. One important aspect when implementing the runtime is keeping
the maximal amount of used memory bounded. Bounding the memory is essential when considering
malicious attackers. Since we store messages that are supposed to be delivered later, in the buffer
pendingMessages, a malicious process could send many messages with very high round number
and thus make pendingMessages grow arbitrarily large. Therefore, we put a bound on the maximal
number of incoming messages per process that are stored. When there are too many messages, we
evict the ones with the smallest round number.

Reallocating all the data structures required by the runtime, e.g., mnaxRound, pendingMessages,
with each new program execution, causes an important performance loss. Therefore, we pool and
reuse the objects with a complex internal structure as well as the memory buffers for sending and
receiving messages.

Round number and overflow. During an execution the round number can grow arbitrarily. While
we could use arbitrary precision number to account for that grow, we decided to implement numbers
with finite precision and take advantage of the wrap around semantics of integers on the JVM. This
means a comparison a > b becomes a — b > 0. The advantage of this solution is its simplicity and
efficiency. Theoretically speaking, it is only correct as long as the distance between the fastest and
slowest correct processes is smaller than half of the range of an int (23! - 1).

6 EXPERIMENTAL EVALUATION

We have implemented RESYNC in Scara on top of the PSync [?] codebase and evaluated it experi-
mentally. The goal of the experiments is to 1) compare the performance RESyNc with largely-used
distributed systems 2) compare the expressiveness and performance of RESyNc with other domain
specific languages, especially with PSync, and 3) compare different RESyNc implementations of the
same theoretical algorithm.

We run our experiments on servers with 2 Intel Xeon X5650 (6 cores at 2.67 GHz), 48GB of RAM,
and a gigabit network interface. The average ping between any two machines is around 0.17ms. The
servers run Debian stretch with Linux kernel 4.14 and we use the OpenJDK 11. As the JVM has a slow
startup and the runtime of RESync allocates most resources at the beginning, we report averages
over runs of 5 minutes. The implementation is available at https://github.com/dzufferey/psync and
a exlpanation on how we run the experiments is available at https://github.com/dzufferey/resync_
oopsla20_artifact. The RESYNc model is agnostic to the transport layer. We support TCP and UDP in
the benign case. Authentication for Byzantine protocols is implemented using TLS on top of TCP?.

2The user of RESyYNC still needs to provide the mechanism used to authenticate processes, e.g. check certificates.
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This also protects from a large class of Sybil and replay attacks. Being able to precisely identify the
sender and only receive from expected senders is necessary for the integrity of the model.

6.1 Throughput evaluation

We perform two experiments comparing the throughput of consensus algorithms in RESYNC against
widely used systems solving consensus. The first experiment looks at the case of benign faults
while the second one compares Byzantine fault-tolerant implementations.

Benign consensus. RESYNC is evaluated on an iterated version of Paxos (multi-Paxos), that uses an
adaptation in RESyYNc of round-based version of Paxos given by [?], called LastVoting. To this, we
implemented a message accumulator where the leader progresses as soon as it receives a majority
of votes and the acceptors progress after receiving a message from the leader. The algorithm is used
in a key-value store. Each decision reached by an instance of the consensus algorithm (LastVoting)
handles a batch of requests. The batch contains 32KB of data. We measure the amount of data
that the system can process per second. The results are shown in Fig. 12a. The throughput of the
system is measured in MB per second. To test the scalability of the system, we run the test on 3 to
9 replicas.

We compared the RESyNc implementation of consensus with LiBPaxos3 [?], ETcD [?], GOOLONG
[?], PSync [?], and ZaB [?]. LiBPAx0s3 is a C implementation of multi-Paxos. The system processes
requests which are simple arrays of bytes. We use requests size of 32KB to match the size of a
batch in RESYNC. ETCD version 3.4.3, is a Go implementation of the Raft algorithm by [?]. We use
the provided benchmarking tool with 1000 clients making request of 32KB. With more clients the
throughput stops increasing and the system becomes unstable. GOOLONG is a multi-Paxos written
in Go. It is also used in a key-value store and processes requests in batches of 100KB of data. PSync
also implements the Last Voting algorithm but instead of a message accumulator it waits until it
reaches the timeout. We also include the performance numbers from Zab [?] taken from the paper
as a baseline reference.’ Overall, RESync follows the behavior exhibited by LiBPAax0s3 and ZAB
which are production systems used in industry. With a smaller number of replicas, we can see
the cost of the round abstraction. With more replicas, this cost disappears as more messages help
RESYNC keep a tighter synchronization between processes. ETCD and GooLONG behave differently.
ETCD uses a compression layer which penalizes the system with few replicas. On the other hand, it
is not strongly limited by the network. For 8 and 9 replicas it exceeds what the network bandwidth
allows without compression. GoorLonG is CPU bound independently of the number of replicas®.

Byzantine consensus. We have implemented in RESyNc the normal decision algorithm from
PBFT [?]. The algorithm uses a leader which sends requests to all the replicas. Then all the replicas
perform two rounds of all-to-all communication to establish and confirm a quorum larger than
2n/3 around that request. During the all-to-all rounds, only digests instead of the full requests are
forwarded. We use SHA-256 to compute the digest of the request. We compare our implementation
against BFT-SMART [?]. BFT-SMART is a high-performance Byzantine fault-tolerant state machine
replication library developed in Java. This library implements a protocol similar to PBFT together
with complementary protocols to boost performance. The results are shown in Fig. 12b. Similar to
the benign case, RESYNc has a higher overhead for small numbers of replicas. The overhead tappers

3 Benchmarking distributed algorithms fairly is difficult. Each system has many parameters which can be tuned to achieve
the best performances. Therefore, we want to include a baseline comparison with a system tuned by its authors. To make
the comparison fair, we run the test on old machines that match the evaluation of Zab performed in 2011 [?]. The system
has very likely been evaluated on Intel Xeon X5630. The X5630 processors compared to the X5650 have 4 cores instead of 6
and run at 2.53 GHz instead of 2.67 GHz.

4 The reported throughput is in line with the numbers reported in ?. We contacted on of the author to report this behavior.
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Table 2. Expressivity of RESYNC versus PSyNc

Protocol faults PSync RESyNcC Message accumulator

LastVoting benign v v Progress.timeout Progress.catchUp(true)
One third rule benign v v Progress.timeout Progress.catchUp(true)
Two-phase commit  benign X v Progress.waitMessages Progress.catchUp(false)
Failure detector benign X v Progress.timeout Progress.catchUp(false)
©-Model benign X v Progress.timeout Progress.catchUp(false)
Game of life benign X v Progress.waitMessages Progress.catchUp(false)
ViewChange byzantine X v Progress.sync(F+1) Progress.catchUp(true)
NormalOp byzantine X v Progress.sync(F+1) Progress.catchUp(true)

off as the number of replicas increases. On the other hand, RESyYNc has a larger synchronization
overhead due to the synchronization primitive that forces F + 1 processes to stay synchronized,
which is more visible with a small number of processes. An interesting point to observe is the
transition between 6 and 7 replicas for RESYNC: 6 replicas tolerate 1 fault and 7 replicas tolerate 2
malicious processes. In both case, 5 messages are expected for a quorum. Therefore, if some replicas
are slow, e.g., due to garbage collection, it has less impact as RESYNC waits for the first 5 messages.

6.2 Comparison with PSync

We compared the expressiveness and performance of RESync with PSync whose runtime we build
on top of. Table 2 shows protocols that are implementable in RESyNc and PSync. Last Voting by [?]
(the round version of Paxos), one third rule by [?], and two-phase commit are consensus protocols.
We implement the strong failure detector by [?](given in Appendix A.1.2) and the perfect failure
detector in the ©-Model by [?]. ViewChange (given in Appendix A.1.3) and NormalOp are protocols
from the round-based version of PBFT by [?]. We highlight for each protocol the constructs used to
implement the message accumulator. In PSync the programmer can vary only the timeout, which
restricts the set of protocols implementable in PSync.

Fig. 12a includes a performance comparison between the implementation of Paxos in RESync and
the one in PSync. Although the core algorithm implemented in the two domain specific languages
is the same—Last Voting [?]—the evaluation shows the advantage of using RESync. Implementing
a message accumulator gives an average speed up of 3.5X. We see that the performance curve
of PSync is much flatter and the progress towards agreeing on a decision value is limited as the
rounds end with a timeout. To get the maximal performance, we find the minimal timeout value
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protocol

which allows the proposer to receive enough replies to form a quorum. With 3 replicas the timeout
is 3ms, 4 — 7 replicas use 4ms, and 5ms for 9 replicas. With a message accumulator, RESync does
not need such tuning and can progress much faster.

There are no other domain specific languages that allow programming algorithms tolerant
to both benign and byzantine faults. For the benign case we have experimented with Distarco
[?]. However, their multi-Paxos implementation keeps the whole log of operations as a set in
memory. The access gets slower as the algorithm progresses. Thus, we could not get performance
measurement on longer runs as the algorithm stops making progress.

6.3 Comparing the effect of deployment conditions on message accumulators

We performed more tests on the implementation of our runtime by evaluating the performance of
benign Paxos and two-phase commit using different message accumulators. In these experiments,
rather than maximizing the throughput using large requests which saturate the network, we try to
generate many small packets which increase the load on the RESYNc runtime. We report the speed
of the system by the number of requests where each request is processed independently.

Two-phase commit. The two-phase commit protocol is interesting as the message accumulator
inspects the received value. The protocol succeeds only if all the replica agrees. In Fig. 13a, we
compare two message accumulator one which waits for all the replies before processing them in
bulk and another one which terminates on the first negative reply. We can observe that the latency
to process a request drops by one third when ReSyNc inspects the message content.

Paxos. We use Paxos in two different scenarios of deployment.

Serializability (Ser): The system calling our consensus implementation, ensures the serializability
of decisions reached by different consensus instances. Only when one consensus instance has
terminated the next consensus instance starts.

Sliding Window (SW): We use a sliding window to increase the system load. While a decision
is still pending in a consensus instance, the system already starts the next consensus instance.
The size of the sliding window is the limit on how many decision can be performed in parallel.
Decisions can happen out-of-order but they are reordered before being applied to the system. We
use a sliding window of size 20.

Waiting on some messages, all messages, or the timeout. We modified our Paxos implementation
to test how different waiting conditions affect the algorithm. The replicas progress as soon as they

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



Programming at the Edge of Synchrony 1:25

receive message from the leader. On the other hand, the leader progresses (switches rounds) either
when it received messages from a quorum or timeout (Quorum), or when it received messages
from all the replicas or timeout (All), or on timeout (TO). The results are shown in Fig. 13b.

We see that the (TO) approach, which coincides with the one used in PSync, is much slower
than the rest. For (Quorum) and (All), we can observe some interesting behaviors. The throughput
is not monotonically decreasing with the number of replicas. These behaviors can be explained by
the waiting condition of the message accumulator: To switch rounds and make progress towards
the agreement, the leader needs to receive messages from a quorum of processes which includes
the leader itself. So for 3 replicas, the 1st out of 2 messages leads to progress. For 4 replicas, the
leader needs to receive 2 out of 3 messages and, for 5 replicas, 2 out of 4 messages. So each time we
transition from an odd to even number of replicas the leader waits for one more message. When
going from an even to odd number of replicas, the leader waits for the same number of messages
but there is one more process sending. This effect is particularly pronounced when looking at the
(Quorum) tests and, in a lesser extend, is also visible in the (All) tests.

Varying the timeout. One critical parameter is finding an appropriate timeout value for the
duration of a message accumulator and implicitly for the duration of a round, which influences
the synchronization of rounds across processes. Compared to other approaches where a timeout is
used only to detect crashes, it may be better to not be conservative when picking the timeout in
RESyNC. RESYNC’s round synchronization primitives, catchUp and sync, are determined by the
received messages, and timing out early results in several retries hence in sending more messages
to synchronize the system.

Fig. 13c shows what happens when running Paxos on 9 replicas for different timeout values over
either TCP or UDP. For this test, we use timeout values of 1, 2, 3, 5, 10, 20, and 50ms. Recall that
the network latency is 0.17ms and RESyNc timeout granularity is 1ms. It is interesting to observe
that in the Ser scenario, the system is sightly faster over UDP than TCP. On the other hand, with a
higher load TCP has a clear advantage. With higher load, we can observe that the performance
starts degrading when the timeout gets below 5ms with UDP, while TCP makes a much better
job at keeping the system synchronized with a small timeout. The TCP layer is highly-optimized,
includes congestion control, and message retransmission. As TCP is lower down the networking
stack, it can retransmit message more efficiently. At the application layer, the retransmission is
more costly.

7 RELATED WORK AND CONCLUSION

In this section we discuss the relation with other close lines of work and future persepectives.

Asynchronous programing languages. Programming languages for distributed systems have been
developed recently with the goal of formal guarantees: the language P [?] for asynchronous event-
driven applications has a dedicated specification language and a testing tool for concurrency bugs.
The language P simplifies the asynchronous control structure. It would be interesting in the future
to combine the two approaches (RESyNc and P) using for example P like structures to program the
message accumulators.

Ivy [?] is a framework that uses a high-level language to specify and implement systems, and
do verification. Protocols in Ivy are written in a general protocol language, using an event-based
asynchronous semantics, out of which an EPR specification of the systems is extracted and executed
under certain conditions. RESyNc takes a different approach: it identifies synchronization primitives
inherent to fault-tolerance. These programing concepts can be used by engineers who want to
fine-tune their implementations or verification tools alike.
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DistAlgo [?] is a domain specific language that focuses on synchronization primitives (and
not on verification). It uses quantified queries to express synchronization conditions. DistAlgo
mixes asynchronous programming and formal specifications as it uses quantified queries to express
synchronization conditions. In contrast, RESYNC proposes new synchronization primitives that
alleviate the programmer from implementing systems using quantifiers.

There are also languages like Go and Erlang which are designed for programming in the dis-
tributed setting, or Rust which focusses on memory safety.

However, all these languages are either rooted in general programming languages or too focused
on verification, and lack synchronization primitives that are inherent to fault-tolerance, such as an
abstract notion of logical time [?].

Round-based programing languages. Synchronous round-based models [?], with their inherent
logical time provided by the round number, relieve the programmer from implementing any notion
of logical time. Partially synchronous round-based models [???] were the inspiration and the main
motivation of this work. Our programming abstraction extends round-based models by allowing
the programmer to implement custom optimizations for the round-switch, addressing one of the
main concerns raised w.r.t. the performance of round structures.

The closest related work is PSync [?] that we build upon. Psync [?] is a programming language
based on a classic round based model, called Heard-Of [?]. Psync focuses on formal verification
and execution of a strict subset of the partially-synchronous systems captured by the Heard-Of
model. For example, two-phase commit is not implementable in PSync, although other consensus
protocols are. The reason is that two-phase commit is designed for synchronous systems which
requires that all messages sent in a round should be delivered in the round, which is not guaranteed
by PSync. PSync guarantees this only eventually, that is, from some round on. The runtime of
PSyNc is rigid and cannot be customized to accommodate protocol-specific requirements regarding
the received messages. Contrary to PSYNc, or any other round model, RESYNC proposes a new
programming abstractions where round boundaries are under the control of the programer instead
of a non-deterministic network or a restricted runtime. RESyNc can handle byzantine faults, which
is not the case of PSync, and the new synchronization primitives are essential to achieve this.

Similarly to PSync, virtual synchrony [?] gives the illusion of synchrony but does not allow
custom optimization algorithms, and does not have synchronization primitives for byzantine
protocols.

Verification perspective. Although RESYNC has a round structure, which is known for simplifying
the verification task, the focus of this paper is on overcoming the limitations of round-structures
and the performance pitfalls which arise when verification is the primary goal of a domain specific
language. Formal verification of RESyNcC programs is orthogonal and goes beyond the ambitions of
this paper. However, the improvement of performance does not make the verification task more
difficult. Rather, it allows a more structured two-step verification approach: (i) verify a round-based
algorithm and (ii) verify the implementation of the round boundaries. Regarding (i), we would
like to highlight that RESYNC preserves the benefits of PSync, and more general of classic round
structures, in proving safety properties for systems where network assumptions are required only
to ensure liveness (like Paxos). These benefits are simpler proof arguments, i.e., invariants, due to a
reduced number of interleavings compared with asynchronous computational models. Moreover,

round-based systems apply, and some of them also cover some byzantine protocols. However, we
leave as future work a verification engine for RESYNc, as it requires not only integrating known

results but also, to address (ii), new reasoning rules that compose asynchronous and synchronous
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features. Specifying these combinations can be done by adapting the so called communication
predicates in the Heard-Of model but the proof rules are future work.

Conclusion. RESYNC is a new programming abstraction for fault-tolerant distributed protocols.
It proposes the first round structure with parametrized round switching policies, making the
performance of the round-based code adaptable to the networks the programs are written for.
RESYNC supports both benign and byzantine protocols and provides theoretical guarantees at
compile time.
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Fig. 14. Two-phase-commit: (a) and (b) are lockstep executions, (c) is a runtime execution.

A APPENDIX
A.1 Examples

A.1.1  Two Phase Commit. Fig. 5 presents the first two rounds — i.e., the first phase — of the protocol
two phase commit in RESyNc. It is an atomic commitment protocol, executed by n benign processes
(that is all processes follow the protocol). The entire protocol is structured in four rounds. A
coordinating process receives transactions from a client and tries to get them committed, one by one,
at all the other processes in the network, that implement a replicated database. The coordinator’s
identity is fixed and the transactions are received via an input-output object, io: TpcIO at line ??.
Fig. 14(a) shows an execution of two phase commit, where after two back and forth communication
steps (that is four rounds) the transactions are committed at all processes, and Fig. 14(b) shows an
execution where the transaction is aborted. The first round, starts at line 2. The parameter Int is
the payload type of the messages exchanged in that round.

In the example, the integer is a transaction identifier that the coordinator proposes (at line 5) to
all processes. Each process checks locally whether it can locally commit the transaction (without
violating the consistency of the database) at line 16. In the second round, starting at line 2, processes
send (at line 4) their vote to the coordinator. If one process refuses the transaction, then the
coordinator proposes to abort, otherwise to commit. This decision is calculated at line 15 based on
the received set of messages. In the next two rounds, which we omit for brevity, the coordinator
sends a commit or abort message to all and after it receives acknowledgments from all processes, it
informs the client of the decision and restarts with a fresh transaction.

In RESYNC, processes execute in lockstep a sequence of rounds called a phase. Each round has
four methods: send, receivelnit, receive, and finishRound. Within a round, processes execute
first send, which defines the messages to be sent, followed by receiveInit and multiple or no
calls to receive, which compute the set of messages received by a process. Lastly, finishRound is
executed, which defines how the process updates its state, e.g., in round 1, processes check locally
if the transaction proposed by the coordinator can be committed, or in round 2, the coordinator
updates the decision to commit or abort based on the set of received messages. The methods send
and finishRound are executed synchronously by all processes, while receiveInit and receive
are executed asynchronously across processes (within the round boundaries). The methods send
returns a map, indexed by the identity of the receivers and the values are the payloads. Although
all messages are sent at once, we assume the protocol runs over a network that can lose or delay
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// Initially no suspicion
var lastSeen: Map[ProcessID,Int]() = Map(for (i <- @ until N) yield (i,0))
def getSuspected = lastSeen.filter{ case (_, last) => last > hysteresis }.keySet()

val rounds = phase(
new EventRound[Set[ProcessID]1{
def send: Map[ProcessID,Set[ProcessID]] = broadcast(getSuspected)
def receivelnit = { Progress.timeout(period)}
def receive(sender: ProcessID, suspected: Set[ProcessID]) = {
Progress.unchanged }
def finishRound(mbox: List[(ProcessID, Set[ProcessID])]) = {
for ( (k,v) <- lastSeen ) { lastSeen(k) = v + 1 }
for ((sender,suspected) <- mbox) {
lastSeen(sender) = 0
for (s <- suspected if lastSeen(s) != 0) {
lastSeen(s) = hysteresis + 1 } //suspect s

}

println("replica: "+id+" suspecting:

+ getSuspected)

Fig. 15. Strong Eventually Fault Detector RESyNc.

messages. Therefore, messages are received one by one until enough messages have been received
and the method finishRound is called. The message accumulators of two-phase-commit is blocking
if the network loses messages or processes crash. The call to finishRound receives as input the
list of received messages (sorted in the arrival order), called mailbox or mbox for short.

RESYNC has an efficient execution platform which does not implement synchronization barriers
at the end of each round. The round switch is determined locally, by the termination of the
message accumulator. Therefore at runtime, processes might be in different rounds, and the runtime
simulates the round structure. Fig 14(c) shows the runtime execution corresponding to the execution
in Fig 14(b). Since the transaction is aborted by the second process, the coordinator switches rounds
before receiving the third message. Actually, this message gets delivered much later, when the
coordinator is in the last round, when it does not matter anymore, as the coordinator decided
to abort the transaction. We prove that clients do not distinguish between the runtime and the
lockstep executions of RESync. From the client’s perspective, the runtime execution in Fig 14(c)
and the lockstep execution in Fig 14(b) are equivalent, the transaction is aborted in both.

A.1.2  Fault Detector. Failure detectors were introduced [?] as auxiliary modules that continuously
output an estimate of the crashed processes in the system, estimate used by another protocol, e.g.,
solving consensus in [?]. The program in Fig. 15 implements an eventually strong failure detector
in RESYNC. A process p suspects a process g to be faulty if in h consecutive rounds, p does not
receive a message from q. When process p suspects g, it broadcast this information. Any process
that receives p’s message will suspect g, unless it received a message from ¢ in the same round.
Initially no process is suspected. The protocol has one round that is executed repeatedly. Each
round execution starts with processes broadcasting the set of processes they suspect (initially
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Yalas o 7

Fig. 16. An execution of the fault-detector in Fig. 15.
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empty). In finishRound the process updates its set of suspected processes, based on the received
messages in mbox for the current round.

Fig. 16 shows an execution of the protocol in Fig. 15, where p1 is the faulty process, suspected by
p2 after three rounds (h = 3). The messages of p1 are received by p3 in the first and second round
but not by p2. In each round p2 increases lastseen of p1, counting the rounds since a message
from p1 was last received (line 11). In the third round p2 suspects p1 to be faulty in line 3, because
lastseen of p2 is greater than h. Therefore, p2 broadcasts its suspicion about p1, which reaches p3.
Consequently, p3 suspects p1 in line 15, since it did not receive any message from p1 in the current
round.

The message accumulator in Fig 15 uses timeouts. Each processes waits for messages up to a time-
out. The timeout semantics is defined in receiveInit by the instruction Progress. timeout (period)
at line 8. Next, receive is executed in a loop, populating the round’s mailbox, while the value of
the timeout is decreasing. Contrary to the previous example, there is no Progress.goAhead in
the code. The semantics of Progress. timeout states that when the timeout of the current round
expires, processes execute finishRound. Waiting up to a timeout gives the possibility of more
messages to be received (less chances of mistakenly suspect a process). However, an upper bound
on the waiting time is necessary in order to avoid blocking, because many processes can be faulty.

The runtime executions are similar with the lockstep executions, because all process wait up
to the same timeout value before doing a round switch. This value is an input of the execution
platform. If this timeout value is at least the message delay between the correct process and the
rest of the network, the algorithm implements a failure detector.

A.1.3  ViewChange. We give in Fig. 17 the implementation of the three rounds of ViewChange in
ReSync.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.



Programming at the Edge of Synchrony 1:31

1val rounds = phase(
new EventRound[Hist] {//Round: DoVC

2

3

}’

def send(): Map[ProcessID,Hist] = broadcast(val)
def receivelnit(){
Progress.timeout(to)
Progress.catchUp(true)
Progress.sync(F+1,true) }
def receive(sender: ProcessID, payload: Hist) = {
if (mbox.size >= 2%F+1) Progress.goAhead }
def finishRound(box: List[(ProcessID, Hist)]) = {
if(mbox.size > 2N/3)
DoVC_mbox = mbox }

new EventRound[List[(ProcessID, Hist)J1{ //Round: Forward

},

def send(): Map[ProcessID, List[(ProcessID, Hist)]] = Map( coord -> DoVC_mbox )
def receivelnit(){

Progress.timeout(to)

Progress.catchUp(true)

Progress.sync(false) }
def receive(sender: ProcessID, payload: Hist) = {

if (id == coord && mbox.size > 2N/3) Progress.goAhead }
def finishRound(mbox:List[(ProcessID, List[(ProcessID, Hist)1)]) = {

if (id == coord && mbox.size > 2N/3) {

decision = compute(mbox) } }

new EventRound[Either[Hist,List[(ProcessID, Hist)111{ //Round: NewView

D

def send(): Map[ProcessID, Either[Hist,List[(ProcessID, Hist)J]1] = {
if(id == coord) broadcast(Left(decision))
else broadcast(Right(DoVC_mbox)) }
def receivelInit(){
Progress.timeout(to)
Progress.catchUp(true)
Progress.sync(false)
}
def receive(sender: ProcessID, payload: Either[Hist,List[(ProcessID, Hist)]1])= {
if (mbox.size > 2N/3) Progress.goAhead
}
def finishRound(mbox:List[(ProcessID, Either[Hist,List[(ProcessID, Hist)]11)]) =
{
if( mbox.size > 2N/3 && mbox.find(_.1 == coord ) )
decision = check_computation(mbox)
out(decision) }

Fig. 17. View Change (PBFT) with authentication in RESync.
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