N
N

N

HAL

open science

LIO*: Low Level Information Flow Control in F*

Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, Niki Vazou

» To cite this version:

Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, Niki Vazou. LIO*: Low Level Information

Flow Control in F*. 2020. hal-03137132

HAL Id: hal-03137132
https://inria.hal.science/hal-03137132
Submitted on 10 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03137132
https://hal.archives-ouvertes.fr

2004.12885v1 [cs.CR] 27 Apr 2020

arxXiv

LIO*: Low Level Information Flow Control with F*

JEAN-JOSEPH MARTY, INRIA, IRISA, France
LUCAS FRANCESCHINO, INRIA, IRISA, France
JEAN-PIERRE TALPIN, INRIA, IRISA, France
NIKI VAZOU, IMDEA Software Institute, Spain

We present Labeled Input Output in F* (LIO*), a verified framework that enforces information flow control
(IFC) policies developed in F* and automatically extracted to C. We encapsulated IFC policies into effects, but
using F* we derived efficient, low-level, and provably correct code. Concretely, runtime checks are lifted to
static proof obligations, the developed code is automatically extracted to C and proved non-interferent using
metaprogramming. We benchmarked our framework on three clients and observed up to 54% speedup when
IFC runtime checks are proved statically. Our framework is designed to aid development of embedded devices
where both enforcement of security policies and low-level efficient code is critical.

Additional Key Words and Phrases: verified programming, refinement types, embedded devices, information
flow control

1 INTRODUCTION

Low-level embedded devices are part of connected environments that bring wisdom into systems
(e.g., smart cars, appliances, and houses) or combine various sources of information, as in connected
health. Such devices are programmed in low-level languages, like C, to form components, e.g.,
bus or GPS, that need to be efficient and resource-constrained. At the same time, being part of
interconnected systems, it is critical that they enforce security policies for component separation.

Information Flow Control (IFC) [Sabelfeld and Myers 2006] policies can be used to ensure
component separation, but the current techniques that enforce such policies either use heavy
runtime checks [Austin and Flanagan 2012; Austin et al. 2017; Tromer and Schuster 2016; Yang et al.
2016] or rely on advanced type systems of high level programming languages [Buiras et al. 2015a;
Myers 1999a; Schoepe et al. 2014]. For example, Labeled Input Output (LIO) relies on Haskell’s
monads to soundly and effectively enforce IFC policies when reading/writing to databases or to the
web [Parker et al. 2019; Stefan et al. 2017].

Direct application of LIO to embedded devices faces two major obstacles. First, LIO’s policy
enforcement relies on automatically generated runtime checks that would unpredictably crash
the device. Second, Haskell’s garbage collector and lazy evaluation might lead to memory leaks
rendering automatic code extraction for devices with limited memory resources nearly impossible.

In this work we develop Labeled Input Output in F* (LIO*), a variant of LIO that is implemented
and verified in FStar (F*) [Swamy et al. 2016], and automatically extracted to efficient C via KreMLin
(KreMLin) [Protzenko et al. 2017]. Concretely, we used F*’s effects to encode IFC encapsulation
in the spirit of LIO’s monadic programming. This lead to three advantages: First, we lifted policy
enforcement from runtime checks to static proof obligations, using F*’s Dijkstra Monads [Maillard
et al. 2019] leading, when possible (§ 2), to provably crash-free code. Second, the low-level code
generated from KreMLin does not require a runtime library nor a garbage collector, so it is suit-
able to execute on embedded devices. Third, we used F*’s meta-programming support MetaStar
(Meta*) [Martinez et al. 2019] to prove that the actual LIO*’s clients enjoy non-interference. In
short, we propose a methodology to generate both verified and runtime optimized IFC applications.

Our contributions are the following:

Authors’ addresses: Jean-Joseph Marty, INRIA, IRISA, Rennes, France, jean-joseph.marty@inria.fr; Lucas Franceschino,
INRIA, IRISA, Rennes, France, lucas.franceschino@inria.fr; Jean-Pierre Talpin, INRIA, IRISA, Rennes, France, jean-pierre.
talpin@inria.fr; Niki Vazou, IMDEA Software Institute, Madrid, Spain, niki.vazou@imdea.org.

2 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

e We developed LIO*, an F* library that enforces IFC policies (§ 3). LIO* is statically verified
by F* which allows for both 1) more efficient implementations, since dynamic IFC checks
are statically proved and are thus redundant (§ 3.3) and 2) low-level generated C code that is
automatically extracted using KreMLin.

o We designed a mechanized meta-programming procedure that proves that clients of LIO* are
non-interferent and applied it to two benchmarks and various toy clients (§ 4). Concretely, we
used F*’s meta-programming facilities (Meta*) to prove, for the first time, non-interference of
the actual IFC clients, instead of idealized models. We report conclusions and some limitations
of this endeavor.

e We benchmarked LIO* on three client applications (§ 5): 1) BUS*, that implements a bus
system with IFC policies between communicating system components, 2) MMU*, that imple-
ments a software-defined memory management unit with policies on concurrent resources,
and 3) DB*, that implements a database with explicit IFC policies. From these benchmarks, we
conclude that extraction of C code under the IFC effect is possible and that the replacement
of runtime checks with static proofs leads to cleaner code and up to 54% speedup (Table 7).

2 OVERVIEW

This section provides an overview of the interface of
three IFC libraries we implemented, that are summarized

in Figure 1. DLIO*, presented in § 2.1, provides IFC using 1 DLIO*

runtime checks, which may unpredictably raise excep- 2

tions during execution, but requires zero static verifica- g .

tion effort from the developers. SLIO*, presented in § 2.2, &€ SLIO

lifts IFC to the verification of static proof obligations, thus §

minimizing runtime overhead and failures. However, the = GLIO”
developers are required to statically discharge all proof . >
obligations. GLIO*, presented in § 2.3, both lifts all IFC static effort

checks as static proof obligations and marks all IFC priv-

ilege tracking information as computationally irrelevant Fig. 1. The three versions of LIO”

to remove all IFC-related information from the runtime

code, making it ideal for closed-loop execution but inconvenient when dynamic IFC information
is necessary. We conclude that in applications where performance is critical, e.g., embedded sys-
tems, the static effort required by GLIO* might be worth the effort, but for mainstream software
development SLIO* provides an ideal trade-off among runtime checks and verification effort.

2.1 DLIO™*: naive translation of LIO into F*

We start with an overview of the interface of DLIO*, an IFC library that, like LIO, we uses a lattice
of security labels to protect sensitive data.

Labels to protect values. We use security labels to express information flow control policies. As
a trivial security label, consider an enumeration of three values: type label = | Low | Medium |
High. To protect data, we assign them labels and ensure that data labeled as, e.g., Medium can only
be accessed by users with Medium or higher privileges.

The label system can be generalized to any lattice [Denning 1976] where the privileges hierarchy
is defined by a partial order relation C. The label interface is generalized as an F* type class defined
in § 3.1. Importantly, the lattice type class contains the least upper bound (join, L) of two labels,
the label ordering (canFlowTo, C), as well as proofs that the above methods form a partial order.

LIO*: Low Level Information Flow Control with F* 3

The IFC Effect. DLIO* enforces IFC using runtime checks. Concretely, it provides two methods
to label and unlabel data, that are defined in § 3.2 and have the interface below.

val label :a > | — Ifc (labeled)
val unlabel : labeled « — Ifc a

The method label takes a value v and a label 1 as inputs and returns a labeled value, ie., it wraps
the value v with the label 1. Dually, unlabel returns the value of its labeled, protected input. Both
operations have an Ifc effect, which tracks the current label cur, that is, the accumulated privileges
required to perform the current computation. Concretely, unlabel 1lv updates the current label by
joining it with the label of 1v. label v 1 only returns a labeled value when the current label can
flow to 1 (cur E1). When it cannot, we are at risk of transmitting a value v of high privilege (i.e.,
cur) to a level of lower security (i.e., 1). To prevent this violation, label fails with an exception.

Notations. To simplify the type signatures, we use « for types that support decidable equality
a:Type{hasEq a} and I for instances of the lattice type class, a simplification permitted by using
F*’s functors (as explained in § 3.1). Additionally, most trivial ensures and requires clauses, e.g.,
requires A _ — T, are omitted from function signatures to improve readability.

Example. Consider below two functions that label and unlabel data below. On the left, eqLabeled
takes two labeled data as input and unlabels them to compare their values. On the right, checkLabeled
labels its input value and uses it to call eqLabeled.

let eglLabeled (v1 v2 :labeled a) let checkLabeled (1:1) (i:a) (lv:labeled «)

: Ifc bool : Ifc bool
let i1 = unlabel v1 in let 1v' = label i 1 in
// cur := cur U labelOf v1 // exception if cur Z 1
let i2 = unlabel v2 in i1 = i2 eqLabeled 1lv 1v'
// cur := cur U labelOf v2 // cur := cur U labelOf 1lv

Each time eqlLabeled unlabels a value, the current label is joined with the label of the value, while
when checkLabeled labels a value a runtime check is performed.

Extraction to C. DLIO*, as described so far, is equivalent to LIO where Haskell’s LI0 monad is
replaced by F*’s Ifc effect. Wadler and Thiemann [2003] established that, in theory, the transition
from monads to effects is always possible. In practice, this transition from Haskell to F* gives us
the ability to extract low-level C code, using KreMLin [Protzenko et al. 2017] that automatically
translates an F* program to readable C code. For example, if our main program calls the function
checkLabeled (1,i) with label 1 and int32 i, KreMLin will generate the following C code.

bool checkLabeled__int32_t(label 1, int32_t i, labeled___int32_t 1v) {
label cur = getCurrent();
if (!canFlow(cur, 1)) fail("invalid labelling");
labeled___int32_t 1v_ = { .data =1, .tag =1 };
return eqlLabeled__int32_t(lv, 1lv_);
}

That is, the C code directly accesses the current label cur and checks if it can flow to the argument
label 1. If so, it packs the input value i with the label 1 and uses it to call the C translation of
the eglLabeled function. Otherwise, it fails with a runtime check. Below is the extraction of the
eqLabeled function instantiated on integer labeled values.

bool eglLabeled(labeled___int32_t v1, labeled___int32_t v2) {
labels c@ = getCurrent();

4 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

labels c1 = join(c@, labelOf__int32_t(v1));
setCurrent(cl);

int32_t i1 = vl.data;

labels c2 = getCurrent();

labels c3 = join(c2, labelOf__int32_t(v2));

setCurrent(c3);
int32_t i2 = v2.data;
return i1 == i2;

3

That is, for each call to unlabel v, the C translation 1/ gets the current label, 2/ joins it with the label
of v, 3/ sets the current label to the joint label, and 4/ gets the value of v. Finally, the comparison of
the two values is returned.

This translation from DLIO* to low-level C brings us one step closer to our goal of generating an
IFC library suitable to program embedded devices. But, we still face a big challenge: the generated
code contains runtime checks (as seen in the above example) that are generated by calls to label
and are not documented and thus unpredictable by DLIO*’s clients. These potential runtime failures
make DLIO* unsuitable for our goal, as hardware devices have critical sections that must not fail.

2.2 SLIO*: turning IFC runtime checks into static proof obligations

Next, we describe SLIO*, a static version of LIO*, where IFC checks are statically verified by F*,
instead of being tested at runtime, as in DLIO*.

The crux of SLIO* is that the IFC check performed by the label function is now lifted to a
precondition of its Ifc effect [Maillard et al. 2019]. To call label (v, 1), the client needs to prove
that the current label can flow to 1 as expressed by the requires statement cur T 1 below.

val label (v:a) (1:1) : Ifc (labeled «)
(requires A cur — cur C 1)
(ensures A 1i x 1f — 1labelOf x = 1 A valueOf x == v A 1f = 1i)

val unlabel : (vl labeled «) : Ifc «
(requires A _ — T)
(ensures A 1li x 1f — 1f = (1i U labelOf vl) A x == valueOf vl)

The Ifc effect that allows the expression of such a requirement is defined in § 3.3. To allow F* to
discharge IFC requirements expressed as pre-conditions, functions with an Ifc effect must stipulate
a post-condition, by mean of an ensures clause, that exactly captures their behaviors, i.e., the
returned value and how the current label is modified. For instance, as specified above, label leaves
the current label unchanged, while unlabel joins its initial label 1i with the label of its input v1.

Propagation of Proof Obligations. The IFC requirement of label is propagated to all its clients.
For example, the checkLabeled will not be verified unless we supply it with the requires below:

let checkLabeled (1:1) (i:a) (lv:labeled a): Ifc bool
(requires A 10 — 10 C 1)
(ensures A 1li x 1f — 1f = 1i u 1 U labelOf 1lv) // definition as in 2.1

let eglLabeled (v1 v2 :labeled a) : Ifc bool
(requires A _ — T)
(ensures A 1li x 1f — 1f = 1i U labelOf v1 U labelOf v2) // definition as in 2.1

LIO*: Low Level Information Flow Control with F* 5

To enable verification of its clients, checkLabeled also specifies the modifications it performs
to the current label by an ensures post-condition. In turn, the verification of checkLabeled’s
post-condition is only possible by the above guarantee of eqLabeled, which itself verifies by the
guarantee of unlabel.

Handing Dynamic Data with Path Sensitivity. Of course, it is not always possible to statically
discharge proof obligations, especially when they depend on dynamic data. For example, the
function dynCheck below uses a function getDynamiclLabel that dynamically returns a label 1 (e.g.,
from the console, a database or a random input). Then, it calls checkLabeled with that label.

let dynCheck (i:a) (lv:labeled a): Ifc bool =
let 1 = getDynamicLabel() in // e.g., getDynamiclLabel () = intTolLabel(getRandom())
let 1c = getCurrent() in
if IcE1
then checkLabeled 1 i 1v
else ...

Since it is impossible to statically prove that the current label can flow to the dynamic 1, then the
call to checkLabeled must be guarded by the required runtime check. Because verification in F* is
path-sensitive, the call to checkLabeled will easily verify. The decision of what happens when the
check fails is left to the user: if the user desires the code to be crash-free, then they should ensure
the else-branch be properly covered, an alternative that was not existent in DLIO*.

Runtime-check free C code. Having paid the price of static IFC check propagation and verification,
which in fact is highly aided by F*’s automation, we can enjoy C code without runtime checks. For
example, the extracted C code for the checkLabeled function now simplifies to the below.

bool checklLabeled__int32_t(labels 1, int32_t i, labeled___int32_t 1lv) {
labeled___int32_t 1lv_ = { .data =1, .tag =1 };
return eqlLabeled__int32_t(1lv, 1lv_);

}

Now, checkLabeled simply packs the inputs to a labeled value and calls eqLabeled. The extracted
code, compared to DLIO*, lacks all the runtime checks and exceptions derived from calls to label,
leading to code amicable for unattended devices. But, code extracted from calls to the unlabel
function remains unchanged. For instance, each call to eqLabeled is still updating the current label,
which greatly slows down execution, especially in cases where it is actually unused.

2.3 GLIO*: ghosting the current label

The final variant of LIO* is GLIO* which, in addition to removing the dynamic IFC checks like
SLIO*, also removes all updates to the current label before runtime. To do so, the current label is
marked as computationally irrelevant, using F*’s Ghost module. In practice, this means that the
current label is preserved at compile time, to verify static IFC proof obligations, but it is erased at
runtime, thus the C extraced code is free from current state book-keeping.

The implementation is presented in § 3.4. and suffers from two inconveniences:

Inconvenience I: Lifting from and to ghost values. The Ifc effect keeps track of a ghost state that
preserves an erased label. To pass this label to functions, e.g., methods of the lattice type class
that expect a label, we need to use F*’s reveal function that reveals the content of erased values
within specifications. Dually, to turn labels into erased labels, e.g., to compare them with the current
label, we need to use F*’s hide function that erases values.

For example, the specification of checkLabeled gets polluted with reveal and hide, as below:

6 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

let checkLabeled (1:1) (i:a) (lv:labeled «): Ifc bool // definition in 2.1
(requires A 1i — reveal 1i C 1)
(ensures A 1i x lo — lo = 1i U 1 U reveal (labelOf 1v))

The semantics of the requires and ensures clauses remains the same, but now the argument label 1
exists at runtime, while the label arguments of the clauses are erased, thus conversions are required.

Inconvenience II: Dynamic Checks require explicit book-keeping. GLIO* turns really inconvenient
when static IFC checks involve dynamic data. For instance, consider that we want to replicate the
function dynCheck from SLIO*, that calls checkLabeled with a label 1 obtained at runtime.

let dynCheck (i:a) (lv:labeled a): Ifc bool =
let 1 = getDynamiclLabel () in
let 1c = ??? // was getCurrent () in 2.2
if IcE1
then checkLabeled 1 i 1v
else ...

In SLIO*, we used a runtime check to ensure that the current label can flow to 1. This is not possible
anymore, since the current label is erased at runtime. Now, what is a potential check we could
perform to persuade F* that calling checkLabeled with the dynamic 1 is valid?

We can always construct a label 1c so that the checkLabeled call verifies, by explicitly passing
around the current label. This essentially means that the clients need to manually and correctly,
replicate all the current label accumulation that SLIO* was automatically doing. Of course, this is
error prone and not encouraged, but suggests that handling dynamic data is possible in GLIO*,
though defeats its design. In short, unlike low-level applications, clients rely heavily on dynamic
checks (as DB* of § 5) will not benefit from GLIO*.

Current-label free C code. Though strenuous at times, GLIO* comes with the huge advantage that
the extracted C code is completely free from label information. For instance, below is the extracted
C code from the functions checkLabeled and eqlLabeled.

bool checklLabeled__int32_t(int32_t i, int32_t 1lv) {
int32_t 1v_ = i;
return eqlLabeled__int32_t(lv, 1lv_);

}

bool eqlLabeled_int32_t(int32_t v1, int32_t v2) {
int32_t i1 = v1;
int32_t i2 = v2;
return i1 == i2;

}

At runtime all labels are removed, thus labeled values are represented purely by their values. Thus,
extraction to C erases not only all the current label book-keeping information, but also the data
field selectors from labeled values. In short, the extracted code is light and amenable to low-level
embedded systems, as supported by our benchmarks (§ 5). At the same time, IFC checks have been
verified to statically hold by F*.

An additional benefit of GLIO* is that, due to its lack of stateful updates, it is amenable to
prove metatheorems. Concretely, in § 4 we define a metaprogramming procedure that encodes
a noninterference lemma on clients of GLIO*. Intuitively, this procedure uses Meta* to derive
1/ the “low view” of a GLIO* function, ie., the view of an adversary with low privileges, and

LIO*: Low Level Information Flow Control with F* 7

2/ a lemma that encodes that low view is preserved by evaluation, and thus, as in Russo et al.
[2008], encodes noninterference. We used this procedure on both the example functions eqLabeled
and checkLabeled, as well as on two of our benchmarks (§ 5). In all these cases, F* was able to
automatically prove the noninterference, mechanically derived lemmata.

3 IMPLEMENTATION OF LIO*

This section presents the three versions of our IFC library, all of which express IFC policies using a
verified label type class described at § 3.1. Concretely, we define

(§ 3.2) the dynamic DLIO*, where IFC policies are checked at runtime,

(§ 3.3) the static SLIO*, where IFC policies are lifted to compile time proof obligations, and

(§ 3.4) the ghost GLIO*, where the IFC label tracking is ghosted, i.e., totally erased at runtime.

3.1 Labels as a type class

IFC policies are represented by a lattice [Denning 1976]. We encode the lattice of policies as an F*
parametric type class that defines the lattice operations, constants, and properties. This encoding
allows one to instantiate the type class to fit the policy of a domain-specific application, while
ensuring all algebraic properties of the expected lattice operations are satisfied.

The “can flow to” operation (C) defines the partial order relation between labels. The operations
meet (M) and join (L) respectively define the greatest lower bound and the least upper bound of
the two labels in this lattice. Finally, bottom (L) is the minimum lattice element. As in [Parker et al.
2019], the type class is refined with the required lattice properties:

e bottom is the smallest lattice value (lawBot),

e each label can flow to itself (lawFlowReflexivity),

o if two labels can flow to each other they are flow-equivalent (lawAntisymmetry),

e if three labels can flow in chain then the minimum can flow to the maximum (lawTransitivity),
e any label lower than a pair of labels can flow to the glb of these two labels (1awMeet), and

o the lub of a pair of labels can flow to any label accessible by this pair (1awJoin).

class lattice a = {

1l: a;

C: a = a — Tot bool;
M: a —» a — Tot a;
U: a — a — Tot a;

lawBot: l:a — Lemma (L C 1);
lawReflexivity : 1l:a — Lemma (1 C 1);
lawAntisymmetry : x:a — y:a — Lemma ((x E y A X) = X = y);

cC
yAYyEZ) = xELE z);

y
lawTransitivity : x:a — y:a — z:a — Lemma ((x C
lawMeet : z:a — x:a — y:a
— Llemma (z = (xMy) = zCxAzCyA (Y (l:a).1ExALlCy=1ECz);
lawJoin : z:a — x:a — y:a
— Llemma (z = (xUy) =>=xCEzAyEzA:a). xE1IAYELl =2zCl));
}

To generate an IFC policy, one needs to instantiate the lattice type class with a concrete lattice.
One such simple instance is, for example, the minimalistic classification of Low for public data,
Medium for sensitive information, and High for private data:

type simple_lattice = | Low | Medium | High

8 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

The next step is to define the partial order lcanFlow using a comparison function 1t between
the three label values, and then the join and meet operations; as below:

let 1t a b = match a, b with
| Low, Medium — true
| Medium, High — true
| Low, High — true
| _, _ — false
let lcanFlow a b =1t ab || a=b
let 1join a b = if 1t a b then b else a
let Imeet a b = if 1t a b then a

else b

The above functions define an instance of the lattice type class. All the lattice’s laws, e.g., Lemma
(L C 1), are automatically proved by F* using the above function definitions. Consequently, the
instance does not need to provide any explicit proof terms, which are hence left as unit returning
functions, e.g, A _ — (.

instance SimplelLattice: lattice simple_lattice = {
= lcanFlow;

Imeet;
ljoin;

= C OJmn
1

= Low;
lawBot = (A _ — O);
lawReflexivity = (1 _ — ());

lawAntisymmetry = (A _ _ —));
lawTransitivity = (A _ _ _ — O);
lawMeet = (A _ _ _ — O));

lawJoin = (A _ _ _ — O);

}

To simplify away the lattice type class constraints, our libraries behave as parametrized
modules’ over a lattice type. That is, in the rest we use the type I to refer to some lattice instance.

3.2 DLIO*: IFC with dynamic runtime checks

Next, we present DLIO*, an IFC library where security policies are dynamically checked with
runtime checks. This library is basically LIO [Giffin et al. 2012] where the Haskell LI0 monad is
encoded as an F* effect.

Data protection in DLIO* is implemented by wrapping data with a security label to form a
labeled value. To protect labeled values from policy-invalid access, an abstract public data type,
called labeled, hides the actual data structure of the private type definition, called labeledTCB.
The type labeledTCB is private and belongs to the library’s Trusted Computing Base (TCB). As
described in § 3.1, it uses [as an abstract data type that instantiates the lattice type class. To
access the tag field of labeled values we define the operation valueOf. The data field is the goal of
IFC protection, thus cannot be accessed.

private type labeledTCB a = { data: «a; tag : [; }
type labeled o = labeledTCB «
let labelOf (vl:labeled a): I = vl.tag

1Because parametrized modules @ la OCaml are not available in F*, we trick, instead, F* module system.

LIO*: Low Level Information Flow Control with F* 9

The IFC Effect. To securely access the value of labeled data we define the Ifc effect that accumu-
lates the highest label required to perform that access. The Ifc effect is a state effect that carries a
context and is defined below.

type context = {cur: I}
effect Ifc (a:Type) =IFCa (A _p >V r.pr)

The effect Ifc is parametric over the return type a and has trivially true pre- and post-conditions.

To keep the description simple, we present the context to only be the current label, while our

implementation also supports the LIO-style clearance optimization, defined as in [Giffin et al. 2012].
The Ifc effect comes with two primitive operations that set and get the current label.

private assume val setCurrent : [— Ifc unit
assume val getCurrent : unit — Ifc [

The setter function is required to manipulate the context of the Ifc effect, but can be used to break
policy enforcement by arbitrarily setting a low current label. Thus, it is not exposed by our library,
i.e.,, is defined as private. Both of these functions are dropped during C extraction and are replaced
with concrete C definitions. *

To run an Ifc computation, one should extract his program (either in OCaml or in C); F* by
itself is not intendeed at running code.

Data Unlabelling. To unlabel a labeled value v1 the current label is raised to the label of v1, thus
accumulating the privileges required to access v1.

let unlabel (vl:labeled a) : Ifc a =
raise (labelOf vl);
vl.data

Where the function raise sets the current label to the join of its argument and the old current label.

let raise (1:1) : Ifc unit =
let ¢ = getCurrent () in
setCurrent (c U 1)

Data Labelling. The function label v 1, labels the input value v with the input label 1, when
the current label can flow into 1, otherwise it fails with a runtime error.

let label (v:a) (1:1) : Ifc (labeled a) =
let 1i = getCurrent () in
if 1i £1
then {data=v; tag=1}
else fail "invalid label";

Where the function fail is a wrapper around C’s failing function, assumed to be in the Ifc effect:

assume val fail : string — Ifc «

?Defining these setter and getter functions directly using the canonical LowStar (Low™*) way of dealing with C memory
would litter our code with reasoning about the low-level memory model, a problem that will be addressed by F*’s layered
effect, currently under development.

https://github.com/FStarLang/FStar/wiki/Proposal:-Effect-Layering
https://github.com/FStarLang/FStar/wiki/Proposal:-Effect-Layering

10 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

Addressing the “label creep problem”. The “label creep problem” appears when an effectful com-
putation, say cmp, requires access to sensitive data and as a result raises the current label too high.
As in [Buiras et al. 2015b], to address this problem we define the tolLabeled function that first
computes the result of the sensitive computation cmp, then restores the current label to the original
one, and finally returns the result of cmp labeled with the current label right after the cmp was
computed.

let toLabeled (cmp:b — Ifc a) (params:b) : Ifc (labeled a) =

let c@ = getCurrent () in (x save current label *)

let v = cmp params in (* run cmp with the given parameters *)

let ¢1 = getCurrent () in (x get new current label *)
let vl = label v ci in (* result with the new current label *)
setCurrent co; (*x restore the old current label, return *)
vl

Since the result of cmp is labeled with the current label requires for cmp’s call and the current label
is explicitly set to the original current labels, toLabeled addresses the label creep problem: the
result of cmp is properly protected, while the current label remains unchanged.

In short, DLIO* is defined by naively implementing the original LIO implementation to F*. Yet,
even this naive porting provides a great benefit. Taking advantage of KreMLin one can export
DLIO* to high quality, low-level C code.

3.3 SLIO*: IFC with static proof obligations

Next, we present SLIO* where the IFC policy checks are turned into static proof obligations that
are semi-automatically discharged by F*’s verification system. Intuitively, our goal is to lift the
runtime check of label into a static assumption that prevents failure. To do so, we need to 1/ refine
the Ifc effect with a context propagation weakest precondition and 2/ refine all Ifc functions
with descriptive assertions, so that static verification precisely propagates the context information
required to discharge label’s assumption.

The GTot effect to define specifications. In F*, specifications (namely type refinements, ensures
and requires clauses) belong to the GTot effect, which stands for Ghost and Total. Their purpose
is to serve static verification and they are erased at compile-time. This clear boundary of what is
and what is not used at runtime, allows us to define functions that provably will not be called at
runtime. For example, below we define the valueOf accessor

let valueOf (vl:labeled a) : GTot a = vl.data

A call to valueOf at runtime will simply destroy the whole purpose of our library, since it uncondi-
tionally accesses protected data. Yet, wrapped within the GTot effect, we rest assured that valueof
will only be used to define specifications and never leak the data of a labeled value at runtime.

Refinement of the Ifc effect. The Ifc effect is now indexed with a pre and post-conditions defined
below using F*’s Dijkstra Monads [Ahman et al. 2017].

effect Ifc (a:Type) (pre:l — GTot Type@) (post:l — a — [— GTot Type@) =
IFC a (A (ci:context) (p:a — context — GTot Type@) — pre ci.cur A
(V (v:a) (co:context).
(pre ci.cur A post ci.cur v co.cur) = p Vv co))

LIO*: Low Level Information Flow Control with F* 11

The 1fc effect definition is a standard state effect that consists of the return type a of the computation,
the pre-condition pre on the the current label and the post-condition post. The pre- and post-
conditions return F*’s proposition type Type@ within the GTot effect. Using F*’s Dijkstra Monads
we define, in a standard way, the weakest predicate transformer (WP) so that 1/ the pre-condition
is valid with the initial context label pre (c@.cur) and that 2/ for any returned value v and final
context co that satisfy the pre- and post-condition, then the post-condition p v co also holds.

With this indexing, the Ifc functions can use precise ensure predicates to describe their behavior.
For example, with refine the getCurrent and setCurrent operations as follows.

assume val getCurrent : unit — Ifc (I)
(ensures A 1li x lo —» 1i =1lo A x = 1lo)

private assume val setCurrent : (1:1) — Ifc (unit)
(ensures A 1li _ 1lo —» lo = 1)

The function getCurrent ensures that the current label is preserved (i.e, 1i = 1lo) and returned
(ie,x = 1lo). The function setCurrent 1 ensures that the current label is setto 1 (i.e, lo = 1).
F* also needs requires clauses, where when omitted the trivial (requires A _ — T) is implied.

Data Unlabelling. The definition of data unlabelling, i.e., unlabel, and label raising, i.e., raise,
are exactly the same as in DLIO*. But now, both functions come with specifications that precisely
capture their behavior.

let unlabel (vl:labeled «): Ifc (a)
(ensures A 1i x lo — lo = 1i U (labelOf vl) A x == valueOf vl)

let raise (1:1) : Ifc unit
(ensures A 1i x lo — lo =1i u 1)

The ensure clause of unlabel specifies that the output label is the join on the input and the label
of the argument, while the returned value is the value of the argument. The verification of this
definition is only possible when the raise function also comes with a precise ensure clause that, as
above, states that the current label is joint with the function’s argument.

Data labelling. The crux of the SLIO* library is that the definition of label is now changed to
be crash-freedom free. Now label v 1 simply labels the value v with 1, while its precondition
ensures that no information is leaked.

let label (v:a) (1:I) : Ifc (labeled a)

(requires A 1i — 1li C 1)

(ensures A 1li x lo — (labelOf x) = 1 A (valueOf x) == v A lo = 1i)
= {data=v; tag=1}

IFC is captured by the requirement that the current label should flow to the argument label 1, while
the ensure clause precisely captures the function’s behavior of label to aid static verification of
label’s clients.

Addressing the “label creep problem” The tolLabeled function that addressed the label creep
problem is the same as before. Yet, to pass static verification yet, its type signature requires a slight
modification. Concretely, we use F*’s argument metaprogramming $ key to define the type of
toLabeled as follows:

let tolLabeled #a #b #pre #post
($cmp:b—Ifc a (requires pre) (ensures post))

12 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

(params:b)

: Ifc (labeled a)

(requires A 1li — pre 1i)

(ensures A 1i x lo — 1i = 1lo A post 1li (valueOf x) (labelOf x))

The arguments a b pre post are implicit, thus marked with #. The input computation cmp is infixed
with the $ key that disable subtyping, inferring the implicit pre and post arguments based on cmp’s
pre- and post-conditions. Then, the precondition is propagated as the toLabeled’s precondition to
allow the call to cmp statically verify. The postcondition of toLabeled ensures that the current label
is not modified. With this type signature, the definition of toLabeled is left the same as before and
now the call of cmp is statically verified, since its precondition is propagated as a precondition to
tolLabeled.

In short, SLIO* has lifted the IFC runtime check of label to a static assumption. This assumption
propagates to direct and indirect clients of label. To discharge these assumptions, all SLIO* func-
tions come with precise postconditions. Then verification proceeds using the weakest preconditions
of F* as specified in the definition of the Ifc effect. This way, SLIO* clients are extracted to efficient
C code that is runtime check free.

3.4 GLIO*: label tracking becomes ghosted

Finally, we present GLIO* where all label tracking information is explicitly marked as computational
irrelevant — using F*’s ghost mechanism — and are thus removed from runtime.

Computational Irreleval Values. To encode computationally irrelevant values we use three func-
tions below from F*’s Ghost module. Erased values are decorated with the erasable attribute E. The
reveal function allows to access labeled values within the GTot effect, hence at compile-time only,
whereas the hide function allows to erase them.

module G
type erased (a:Type) = | E of a
val reveal : #a:Type — erased a — GTot a
val hide : #a:Type — a — Tot (erased a)

Ghosted Labeled Data. The label field of a labeled value is now marked as erased: it is used to
check policy enforcement at verification time and to make it explicitly unavailable at runtime. The
definition and accessors of the labeled type are as follows:

private type labeledTCB a = { data:a; tag:G.erased label; }
type labeled « = labeledTCB a (* public version x)

let valueOf (vl:labeled @) : GTot (a) = vl.data

let labelOf (vl:labeled «) : (G.erased I) = vl.tag

The public version of the labeled type is, as before, a wrapper around labeledTCB, which now
contains an erased label. The value accessor remains unchanged, and can access the data at compile-
time under the GTot effect. Importantly, the label accessor now returns an erased label, which pass
be arbitrarily passed around, but can only be revealed in specifications, i.e., under the GTot effect.

Ghosted IFC Effect. We further erase the current label field of the context.
type context = { cur:G.erased [;}

In our implementation, the context also contains a predicate over labels that we use to encode
clearance-style optimizations. Yet, for simplicity here we omit this field.

LIO*: Low Level Information Flow Control with F* 13

We adjust the Ifc effect of SLIO* to account for the fact that now the current label is erased.
Concretely, each access to the current label needs to also reveal its value, which is possible, since
specifications live in the GTot effect. We declare gc as the function that first accesses the current
label and use it to define the Ifc effect as follows:

let gc (c:context): GTot [= G.reveal c.cur
effect Ifc (a:Type) (pre:l — GTot Type@) (post:l —» a — [— GTot Type@) =
IFC a (A (ci:context) (p:a — context — GTot Typed) — pre (gc ci) A
(V (v:a) (co:context).
(pre (gc ci) A post (gc ci) v (gc co)) = p v co))

Compared to the Ifc definition on SLIO*, we simply switched c. cur to gc c.

The getter and setter functions of the ghost Ifc effect will also not be used at runtime. So, instead
of wrapping C code (as in SLIO*) now use the private Ifc functions IFC?.get and IFC?.put that
are provided by F* as part of the effect definition.

let getCurrent (_:unit) : Ifc (G.erased [) =
let cc = IFC?.get () in cc.cur

private let setCurrent (l:G.erased [) : Ifc (unit) =
IFC?.put {cur = c}

The getter function getCurrent returns the erased current label, which can be revealed only at
compile-time. The setter function setCurrent could still be used by clients to violate IFC policies,
so remains part of the libraries TCB and thus, is marked as private.

The same holds for the tolLabeled function, and in general each function that does not perform
lattice operations (e.g., T, U) on erased labels. When lattice operations are performed, like the
functions raise, label, and unlabel below, careful conversion is required between erased and
actual labels.

Raising the Current Labels. The function raise that is joining the current label on with its
argument now takes as input an erased label. This edit is required, since in practice labels are
generated after operations with the current label. Since the current label is not erased and cannot
be revealed by clients without lifting the whole client as ghost, the label arguments to functions
are turned into erased labels. Dually, it is always feasible to generate erased labels within the Ifc
effect. That is because hide, that erases labels, is defined in the Tot effect, which is automatically
lifted to Ifc.

The definition and specification of raise is the following:

let raise (l:G.erased I) : Ifc unit
(ensures A 1li x lo » 1lo = 1i U G.reveal 1) =
let 1i = getCurrent () in
setCurrent (G.hide (G.reveal 1li U G.reveal 1))

The ensure clause simply reveals the argument label 1, since it is in the GTot effect. To join the
current labels 1i with the argument label 1 both need to be revealed, producing the GTot effect.
This effect though is encapsulated by the hide operation that turns the result on the join backed to
erased.

Data Labelling and Unlabelling. The definitions of data labelling and unlabelling do not use any
lattice specific operations, thus remain unchanged. Yet, their specifications require the addition of
the reveal function each time erased labels are passed to lattice methods or compared. Concretely,
the specifications of unlabel and label turn to the following:

14 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

let unlabel (vl:labeled a): Ifc (a)
(ensures A 1li x lo — lo = 1i U G.reveal (labelOf vl) A x == valueOf vl)

let label (v:a) (l:G.erased I) : Ifc (labeled a)
(requires A 1i — 1i C G.reveal 1)
(ensures A 1li x lo — G.reveal (labelOf x) = G.reveal 1 A valueOf x == v A lo = 1i)

The only difference compared to the respective specifications of SLIO* is that G. reveal is properly
inserted on erased labels, before the lattice operations or equality is performed. This addition is an
inconvenient, by type-directed process.

Retrieving The Ghost Current Label. The fact that in GLIO* the run-time representation of the
current label is erased does not imply a loss of expressivity, since with great effort, one could
emulate the current label at run time.

In fact, GLIO* is as expressive as SLIO*, since SLIO* can be implemented as an external definition
on the top of GLIO*. Such a definition will take the shape of a state monad, carrying —at runtime—
a label; it would provide wrappers for the label, unlabel, raise and tolLabeled operations, acting
as user defined proxies to GLIO*’s own operations. These definitions would be written so that
the state monad would maintain a specific F* invariant: the runtime label stays equal to GLIO*’s
erased label.

In practice, a GLIO* user would selectively choose to pass around a runtime label that is provable
to be equal to GLIO*’s erased label. Obviously, proving this label coherency property has the
non-negligable human-time cost of writing proofs.

In short, GLIO* is using the ghost module of F* to mark the current label and the label inside
labeled values as computation irrelevant, and thus erase it at runtime. The co-existence of erased
and non erased labels makes writing specifications an inconvenient process, where reveal and hide
annotations have to explicitly be provided. On return, as overviewed in § 2 and benchmarked in § 5
clients of GLIO™ translate to cleaner and more efficient, low-level C code.

4 META-METATHEORY: PROOFS OF NON INTERFERENCE

In this section we make use of F*’s metaprogramming facilities (Meta* [Martinez et al. 2019]) to
define a procedure, concretely the metaprogram genNILemma, that takes as input a toplevel name of
a GLIO* client, say f, and generates a lemma statement that f is noninterferent. We applied this
procedure to two benchmarks from § 5 and the examples from §2. In all these cases F* automatically
proved the correctness of the mechanically derived, noninterference lemma.

4.1 Statement of Non-interference

Consider a GLIO* function f that given an argument of type « returns an Ifc computation with a
precondition pre, postcondition post, and return value of type b.

val f : a — Ifc b (requires pre) (ensures post)

We express noninterference of f using the low view preservation of Russo et al. [2008]. That
is, f is noninterferent when its low view is preserved by evaluation. This low view intuitively
represents the view of an adversary with low privileges. More concretely, the low view on a level
1:1 is defined by an €; function that forgets (i.e., replaces by a “hole”) all the data that are protected
by a label higher than 1. The evaluation of the Ifc function f with an argument x on the initial
context c is denoted as [“f(x). With these notations, we express the noninterference lemma, i.e.,
preservation of erasure by evaluation, as follows:

LIO*: Low Level Information Flow Control with F* 15

Lemma: NI = V(1:l) (x:a) (c:context {pre c}). e1({°f(x)) = ex({°(er(f)) (%))

The above fNI lemma states that the evaluation of f (i.e., [°f(x) on the left hand side) and the
evaluation of its erasure (i.e., |°(e1(f))(x) on the right hand side®) cannot be distinguished after
erasure, for any erasure level 1, input x, and initial context c that satisfies f’s precondition.

Our goal is to define a metaprogram that takes as input the binder of a function *f and encodes
the noninterference lemma for f. To do so, we need to encode evaluation and erasure in F*.

Encoding of evaluation. In F* evaluation of effectful computations is encoded by Filinski [1994]’s
reification that changes effectfull calls from implicit monadic style to explicit passing style. That is,
the evaluation [*f(x) in the noninterference lemma fNI is encoded in F* as reify (f x) c.

Encoding of erasure. In fNI erasure is used to erase both 1/ the results produced after evaluation
and 2/ the function f itself. For the first case we define the eraseCtx function below.
let eraseCtx [|hasEraser a|] (1:1) (x:a,c:context) : e« class hasEraser «
if c.curr C 1 then erase x else e {erase :: |l > a > a}

The function eraseCtx on the left, takes as input an erasure level 1 and the reification pair (x, c).
If the label of the input context can flow to 1 (i.e, c.curr £ 1), then the value x is erased, using
the erasure method erase we define on § 4.2. Otherwise, a ‘hole’ (also defined on § 4.2) is returned.
When erasure is used on the function f itself, i.e., the appearance €1 (f) in the {NIlemma, it returns
a different function, named f_erased 1, that our metaprogramming procedure systematically
generates. Intuitively, the top level function f with type t, generates a new top level function
named f_erased withtype I — t, i.e, the erasure level is explicitly passed, where all sensitive data
protected with labels above 1 are erased. In § 4.3 we describe the generation of erased functions.

NI Lemma Generation. To generate the noninterference lemma we call the metafunction genNILemma.
val genNILemma : Term — Tac unit

genNILemma takes as input the binder representation of a top level GLIO* function, e.g., *f, and
generates a top level declaration that defines the noninterference lemma of f, named as f_NI.
genNILemma takes as input a Term, that is the meta-representation of an F*’s AST defined in Meta*,
and has the Tac effect that allows inspection of the representation of values as well as function
definitions, similar to TemplateHaskell’s Q monad [Sheard and Jones 2002]. It returns a unit value,
since the top level f_NI lemma generation is an effect.

The function genNILemma is a meta-program that generates one or multiple top level definitions,
executed by the means of the instruction splice. For example, splice [1(genNILemma f) generates
the non-interference lemma below. The [] part of splice, required for scoping, is in the rest left
empty for simplicity.

%splice[](genNILemma ‘f) \\ generates the below lemma

let f_NI (1:1) (x:a) (c:ctx{pre c})

: Lemma (eraseCtx 1 (reify (f x) c) == eraseCtx 1 (reify (f_erased 1 x) c))
=0

The lemma generation metaprogram genNILemma supports functions with many arguments.
Concretely, it inspects the type of the input binder, and if it has n arguments, it creates the lemma
arguments x1..xn with the proper types and uses them to call the original and erased functions.

3 Note that the argument x does not need to be erased. Evaluation under erasure (i.e., |° (€1(f))(x)) ensures that each usage
of the argument x on the erased f will be actually erased.

16 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

For example, for the definitions of eqLabeled and checkLabeled of the overview (§ 2), the
respective generated lemmata are shown below.

%spice[](genNILemma ‘eqlLabeled_NI ‘checklLabeled) \\ generates the below lemmata
let eqLabeled_NI (1:I) (x1:labeled a) (x2:labeled a) (c:context)
: Lemma (eraseCtx 1 (reify (eglLabeled x1 x2) c) ==
eraseCtx 1 (reify (eqlLabeled_erased 1 x1 x2) c))
=0

let checkLabeled_NI (1:1) (x1:1) (x2:a) (x3:labeled «) (c:context {l.curr C x13})
: Lemma (eraseCtx 1 (reify (checkLabeled x1 x2 x3) c) ==
eraseCtx 1 (reify (checkLabeled_erased 1 x1 x2 x3) c))
=0
The erased functions checkLabeled_erased and eqlabeled_erased are defined at top level by
genNILemma and are presented in § 4.3.

F* was able to automatically prove both the above lemmata, i.e., with the trivial unit body
definition, thus showing that neither of these functions interferes. Further, using genNILemma we
proved two out of our three benchmarks (BUS* and MMU*) are noninterferent, while the third
(DB*) imposes technical limitations, we discuss in § 4.4.

4.2 Erasure of Values

Here we describe the definition of the erase 1 x methods from § 4.1 that is erasing, i.e., replacing
by a “hole”, all data inside the value x that are protected by a label higher than x.
The hole is encoded in F* as e, ie., an axiomatized polymorphic value defined below.

assume val e: (a: Type) — «

Thus e has no content and can used to replace sensitive data of any type.

Erasing a labeled value. To erase a labeled value, we define the function eraseLabeled below

let eraselLabeled [|hasEraser a|] (1:1) (x:labeled «) : labeled a =
if x.tag C 1
then { data=erase 1 (x.val); tag=x.tag }
else { data=e; tag=x.tag }

Erasure of the labeled value x checks if the tag of x can flow to the erasure level 1. If it can, it
recursively erases the data, otherwise it replaces the x’s data with a e. At each case, the tag field
remains untouched. There are two things to note here: First, our implementation forcefully violates
the labeled privacy, specified in the GLIO* implementation. Second, all the erased labeled (i.e., in
the tag field) are revealed. Both of these are implemented using a trick on F* module system to
emulate lacking OCaml-like module functors.

We use the eraselLabeled definition to define the hasEraser instance on the labeled type.

let labeledHasEraser [|hasEraser «|]: hasEraser (labeled a) = {
erase 1 x = eraselLabeled 1 x

3

For the rest types the hasEraser instance definition acts as a homomorphism. For primitive types
(like B, Z or unit), we defined the hasEraser instance to be the identity. For inductive data types
were defined a metaprogram that using generic programming techniques automatically defines
the hasEraser instances. For example, for lists, our metaprogram follows the list structure to
mechanically generate the eraseList below.

LIO*: Low Level Information Flow Control with F* 17

let rec eraseList [|hasEraser «a|] (1:1) (x:list a) : list a =
match x with
| Cons hd t1 — Cons (erase 1 hd) (eraseList 1 tl)
| Nil — Nil

The eraselist is used, like in eraselLabel, to define the list hasEraser instance.

In short, our metaprogram mechanically generates hasEraser instances for inductive types,
while generation of instances for other types (e.g., arrow types or higher kinded types), when
required, is left to the user.

4.3 Erasure of Functions

Function erasure is a metaprogram, eraseF :: Term — Tac unit that given a GLIO* top level
binder, say ‘f, generates the top level definition f_erased as follows. The first argument of f_erased
is a label (1Erase : [). We define erased function parametric on erasure level to avoid definition
of multiple functions for different erasure levels. Then, the specifications are left unmodified, while
the body definition of f_erased follows the AST of f where 1/ each labeled subterm is erased and
2/ each function binder is replaced by its erased version, as explained below.

1. Erasure of Labeled Subterms. If e is a labeled subterm in the function definition, it is replaced
by eraseLabeled lErase e, where lErase is the erasure level argument introduced to f_erased.
To check if e is a labeled term, eraseF defined in the Tac effect, simply type checks the expres-
sion eraselLabeled 1Erase e. Thus, for each subterm e, if eraseLabeled 1lErase e type checks it
always replaces e, leading to some benign extra checks. Of course, the subterms e are open, i.e.,
have unbounded variables, thus during AST traversal we keep an environment of the introduced
variables and use it to type check subterms.

2. Erasure of Function Binders. If g e1 ... en is a subterm of the original function, with g being
a function symbol, then g also needs to be erased. By default, we replace the function call with
g_erased lErase el ... en and recursively call eraseF on ‘g to define the erased declaration of
g, if it is not already defined. We keep a list of function binders that do not need to be erased and
calls to such functions remain untouched. First, we do not erase the functions defined in the GLIO*
since their erasure is provably an identity, as captured by their specifications. Second, we do not
erase functions imported from F* standard libraries, e.g., map, =, +, ...

Axiomatization of Contamination. The decision not to erase primitive F* functions is made to
avoid code expansion, and highlights a problem we call contamination. Contamination captures the
e propagation from arguments to results, e.g., = 42 should be equal to e. In general, if a function
g consumes it’s ith argument, then the call of g with a e on the ith position, should be equal to e.
Our implementation axiomatizes contamination for primitive functions, e.g., below we provide the
contamination axioms for = and + on their first argument.

let contaminationEql n : Lemma (e = n == e)
let contaminationPlusl n : Lemma (e + n == e)

admit ()
admit ()

Note that contamination axioms on the second argument are not required, since the SMT solver will
derive them by commutativity. Contamination axioms are not required for most functions from the
standard library, e.g., map and fold that can be normalized. To aid contamination axiom generation
and limit errors we mechanised axiom generation by the implementation of a metaprogram that
given the function name and contamination position derives the proper contamination axiom.

18 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

Examples of Function Erasure. To illustrate the function erasure process, reconsider the checkLabeled
and eqlLabeled functions from the overview (§ 2.1). Their erased version produced by calling eraseF
via splice are presented below.

%splice[add_erased, checklLabeled_erased] (eraseF (lookup (‘checkLabeled)))

let eqLabeled_erased (lErase: I) (v1 v2:labeled «)
: Ifc bool =
let i1 = unlabel (eraselLabeled lErase v1) in
let i2 = unlabel (eraselLabeled lErase v2) in
i1 = i2

let checklLabeled_erased (lErase: 1) (1:1) (i:a) (lv:labeled «): Ifc bool
(requires A 1i — reveal 1i C 1)
(ensures A 1li x lo — lo = 1i U 1 U reveal (labelOf 1v))
let 1v' = eraselLabeled lErase (label i 1) in
eglLabeled_erased lErase (eraselLabeled lErase 1lv) (eraselLabeled lErase 1lv')

From the above examples we note that the functions specifications remain unchanged, though now
reveal and hide are now identities, as discussed in § 4.2. The erasure level argument 1Erase is
passed around to prevent multiple definitions of erased functions on different erasure levels. The
functions label, unlabel are not erased because the belong in GLIO* and = is not erased because
it is a primitive F* function (it is though axiomatized for contamination). The function eqLabeled
is erased. If fact, in the above splice the original call of checkLabeled to eqLabeled triggered the
declaration of eqglLabeled_erased . Finally, we observe a redundancy on eraselLabeled wraps. The
binder 1v' is wrapped both at its definition and call site. Such redundancies can be syntactically
detected and removed, thought they do not affect our goal that is static proof of noninterference.

4.4 Discussion & Limitations

The implementation of the metaprogramming procedure for noninterference lemma extraction
genNILemma is about 800 Lines of Code (without spaces, with comments). We abstracted the GLIO*
dependencies of the implementation in such a way that genNILemma can be easily adapted by other
IFC libraries. Due to continuing modifications of the API of Meta*, our implementation is build
against a specific F* built*.

Our approach has three main limitations.

Immaturity of Meta*. Our implementation is a heavy client of Meta* which is quite immature.
Published in 2019, Meta* has still various limitations, most importantly the inability of full AST
inspection (e.g., arbitrary effect weakest preconditions cannot get inspected). More, Meta* is rapidly
changing, which makes development and use of our library inconvenient. Yet, exactly due to these
changes, we believe that is the near future all the current limitation will get addressed.

Reifiable Requirement. The main limitation of genNILemma is that, to state noninterference of
an Ifc function f we use reification of f, thus f should live in an effect that is reifiable to a total
computation. For example, potentially diverging expressions cannot be handled genNILemma, which
is expected since most noninterference proofs are termination sensitive [Parker et al. 2019; Stefan
et al. 2017]. This limitation is the reason why we did not apply the DB* benchmark (from § 5)

4 We use a patched version of the F* commit 0362a90a83bea851fa5e720637f1ch9d3dfed7bc, for more detail see the Nix
expression in the implementation sources.

LIO*: Low Level Information Flow Control with F* 19

to genNILemma. Our benchmark needs access to a database, thus has an effect that is not directly
reifiable to total.

There is a way to address this limitation, which is to assume the nonreifiable effect using a
specification. That is, to give static semantics by means of a dependent-type, but no dynamic
semantics, i.e., no implementation. In such a case, one is able to conduct proofs, but unable to
normalize programs (as some primitives have no implementation), which is necessary to properly
conduct the proofs on generated theorems. In the near future, we plan to follow this approach and
apply genNILemma to our DB* benchmark.

Specificity. The generated noninterference proofs are very specific. Each proof is developed for
exactly one client of GLIO*. But, our metaprogram is defined for every GLIO* client constrained
by the above limitations.

Our decision to specifically target clients of GLIO* instead of proving the correctness of the
GLIO* library stems from the fact that our goal is to verify real executable code. This is difficult,
since real code comes with various verification unfriendly constructs. Thus, instead of following
the route of [Parker et al. 2019; Stefan et al. 2017], that is to design a model of LIO and prove it
correct, we restricted ourselves to per-client proof construction. This approach comes with another
huge benefit. Both library noninterference proofs of [Parker et al. 2019; Stefan et al. 2017] impose
limitation on the programs that do not interfere, concretely, those programs should be terminating
and “safe” which intuitively means that they should not access the library’s TCB. In our proof
such assumptions do not exist. Instead, if genNILemma is called on programs that violate the safety
assumption, F* would not be able to prove correct the derived noninterference lemma.

In short, our metaprogramming approach targets clients of the real GLIO* library instead of
proving the correctness of a verification friendly model of the library. The noninterference lemma
is mechanically derived per client, by a simple call to genNILemma and the proof is automated by
F*.

5 BENCHMARKS

In this section we present three benchmarks: database in F* (DB*) in § 5.1, BUSStar (BUS*) in § 5.2,
and Memory Management Unit in F* (MMUY*) in § 5.3 and explore how their implementation on
the three versions of our library (DLIO*, SLIO*, and GLIO*) affects the size of the development F*
code, the size of the extracted C code, as well as the runtime performance of the benchmarks.

5.1 The DB* case study

Our first case study is DB*, which is inspired by the AChair conference management system of [Ste-
fan et al. 2017]. The goal of DB* is to perform the transactions of a conference selection process:
submission, assignment, review, selection, results, while maintaining anonymity of reviewers and
respecting conflicts of interest. We ported AChair examples to all three versions of LIO*.

The example below is using GLIO* to implement the scenario where the user Charles reviews
all the papers submitted by the user Mary. Concretely, the call fetchPapers_for Mary brings all the
labeled papers of Mary and the call map add_review_from_Charles adds a review from Charles
for each of the labeled papers.

let example (_:unit) : Ifc unit
(requires A _ — T)
(ensures A 1i _ 1f — 1i == 1f) =
let 1 = fetchPapers_for Mary in (% get all Mary's labeled papers *)
(* the current label does not grow because the papers are not opened *)
map add_review_from_Charles 1 (x Charles will add his review to each paper x*)

20 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

(* the map executes tolLabeled for each paper so the context is still preserve *)

The ensures clause above requires that the current label is preserved. Since fetchPapers_for
returns labeled papers it does not raise the context, but for reviewing higher privileges are required.
Locally raising the current label can only be achieved by the toLabeled function.

When we use GLIO*, where labels of labeled values are ghosted we face a problem. We are
required to locally raise the current label using the dynamic labels that protect Mary’s papers, which
is impossible. To address this problem, in this DB* benchmark, we boxed labeled values with a
label, that exists at runtime and soundly approximates the ghost label of the labeled value. We
define the box type as follows:

type box a = {

data: labeled «;

tag: (1: I{gc (labelOf data) C 13})
}

let unbox (bv:box a) : Ifc a
(ensures A 1li x 1f —» (gc 1f)
unlabel bv.data

((gc 1i) U bv.tag) A x == valueOf (bv.data)) =

The refinement type in the tag of the box ensures that the box’s tag can be safely used at runtime
when the protection label is required. In the GLIO* implementation of DB* we store box values in the
database — to be able to access the labels at runtime — while the DLIO* and SLIO* implementations
store labeled values.

In Table 5 we observe that the lines of F* program code (LoP) of the implementation increased
from 166 in DLIO* (which is very similar to the original LIO implementation) to 265 in SLIO* and
to 269 in GLIO*. This is a big increase on Lines of F* (LoF) which depicts that the verification effort
required was strenuous. The reason for that is that this specific example was developed to present
the expressiveness power of LIO and it is very heavy on dynamic IFC checks. In Table 7 we observe
that this verification effort does not pay off at runtime speedups which are only 9.1% and 12.6% for
SLIO* and GLIO*, respectively.

From this benchmark we conclude that all the libraries are equally expressive, but clients with
heavy runtime checks are advised to use the dynamic DLIO* version.

5.2 The BUS* case study

Our second benchmark is an BUS* Appli-

cation Programming Interface (API) that

uses IFC to ensure component separation. C?
Figure 2 gives flowchart of the BUS*’s
algorithm which is triggered any time a
packet is available for transport.

We enforce component separation us-
ing LIO* as follows. For each actor, i.e., a
system component, we define a security
label (i.e., type component = [). The cur-
rent label of the Ifc effect keeps track of
the accumulated BUS label. Each time an
actor reads from the BUS, the current la-
bel is raised with actor. Dually, each time Fig. 2. Flowchart of readBUS
an actor writes to the BUS, it is required

src,dst,msg = read

src=Computer

dst=EDR dst=Motor

write msg dst write msg dst

LIO*: Low Level Information Flow Control with F* 21

that the current label can flow to the actor. This behavior is similar to LIO’s unlabel and label op-
erations. Thus, to enforce component separation we simply wrap the BUS read and write primitives
to the Ifc effect via unlabel and label operations. Below we provide the wrappers as implemented
in GLIO*.

let writeBUS (actor:component) (data:byte) : Ifc unit
(requires A 1i — 1i C actor) (ensures A 1li x lo — 1li = 1lo) =

write actor (label data (G.hide actor))

let readBUS (actor:component): Ifc byte
(ensures A 1li x lo — lo = 1i U actor) =
unlabel (read actor)

EDR Computer Motor

BUS execution: BUS label label label label
) 2 E C M
let @ = read computer iN C E C M
(write a EDR); . C EuC C M
let a = read Motor in CuM EuC C M
(write aEDR); cuMm EUMUC c M

Fig. 3. Event Data Record Example using in BUS*

Figure 3 presents an Event Data Recorder (EDR) ex-
ample, where BUS* controls the transport of data from
the computer, the motor controller and the EDR. Using
BUS* to implement an EDR requires two IFC policies.
First, when the system starts, the computer is allowed
to communicate with the engine. Second, the computer
and the engine cannot exchange any information but can ctag = B9 used
only communicate with the EDR to register event data.

@ va, writing

[ctag,cstate = readStatus page]

We implemented this EDR example in DLIO*, SLIO* wrting
and GLIO*. In Table 5 we observe that our implemen- [writeStatus page {ctag, Dirty]]
r————

tation is 94 LoP in all versions, since the client did not > cstate = Dirty
require any static specifications. The lines of extracted C
code Lines of Code (LoC) greatly reduced from 100 LoC in 5
DLIO*, to 92 LoC in SLIO*, and to 68 LoC in GLIO*. This
reduction expresses that the few runtime checks imposed @’page@
by our example were trivially verified, rendering runtime [rtestatus page {ctag, Ciean]
label book tracking useless. In Table 7 we observe that
the running time of the example is in accordance with
the extracted C code size and gives 21.4% speedup for writeStatus page {ctag, Dirty} |
SLIO* and 54.6% for GLIO*. |

This benchmark illustrates that for applications that [addres_translation page offset |
are not heavy on IFC checks and do not depend on dy- é
namic labels (in contrast to § 5.1), moving from DLIO*
to GLIO™ gives significant runtime speedup with trivial
verification cost effort.

Fig. 4. Specification of MMU*’s page swap

22 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

5.3 The MMU* case study

Our third benchmark is MMU™ that uses IFC policies to isolate application memory resources. Our
implementation is inspired by [Choudhuri and Givargis 2005], that introduces the principle of a
software Memory Management Unit (MMU) for embedded devices that lack hardware virtualization.

MMU* allows us to use virtualization to isolate tasks but also to permit data transfer between
tasks memory. When writing to a memory location, a program must craft a virtual address with a
tag: the target task’s id, a page_index: the page to write, and an offset_index. This allows any
tasks to read and write on any memory location depending on the policy.

In order to perform the transaction to physical memory, the MMU™ translates the virtual address
to a physical one using a private function called translation. This function takes two arguments:
a virtual address and a boolean that indicates the type of translation (read or write). Figure 4,
illustrate the translation algorithm.

Our example, has two tasks: taskl which writes two bytes in the memory of the second task
and task2 which reads these two bytes and performs an addition. We use LIO* to show that task2
reads only its own memory, in a way similar to BUS* presented before (§ 5.2).

In this example, as in BUS*, we observe C code reduction and runtime speedup when IFC checks
are statically proved. As Table 5 presents our implementation is 124 LoP in all versions, while
LoC greatly reduced from 192 LoC in DLIO*, to 176 LoC in SLIO*, and to 155 LoC in GLIO*. As
with BUS*, the C code reduction leads to runtime speedups of 23% for SLIO* and 47.7% for GLIO*
shown in Table 7. Thus, again we get important runtime speedup with low verification effort.

5.4 Evaluation

Finally we summarize the implemen-

tation platform and evaluation of our 500 —
. . _ O0DLIO*
hbraimes. . los10*
Figure 6 presents the hardware and 0oy loGLio* ||

software for the development and eval-
uation of our libraries. We used the
GNU C Compiler (GCC) compiler be- 200 | :
cause our work is targeting micro- H

300 - B

LoC (lines)

controller like Amtel which are not sup-
ported by the verified compiler Com-
pCert. For our benchmarks, we explic- Qg,‘ S 3
itly disable any compiler optimizations.
Figure 5 summarizes the LoF and
the extracted Lines of C Code (LoC)
for each of our three benchmarks. Fig-
ure 7 summarizes the running times for
each of the benchmark and the speedup
of each library version with respect to
DLIO*. To measure these times, we run
the BUS* and the MMU* benchmarks Fig. 5. Size measurement of all presented uses cases.
75M times and the DB* benchmarks
20k times. Concerning data set, DB* has a database with 2000 papers where 1992 belong to the user
Mary, the BUS* uses a list of packet that test all combination of the lattice labels, and the MMU*
doesn’t need a dataset.

DLIO* SLIO* GLIO*
LoF LoC | LoF LoC | LoF LoC
DB* (§5.1) | 166 456 | 265 426 | 269 414
BUS* (§5.2) | 94 100 | 94 92| 94 68
MMU* (§5.3) | 124 192 | 124 176 | 124 155
Total | 384 748 | 483 694 | 487 637

LIO*: Low Level Information Flow Control with F* 23

GCC 8.2.120181215 Processor Intel(R) Xeon(R) W-2104
Fedora 5.3.6-100.fc29.x86_64 Frequency 3.2 GHz
F* aeb4203¢841735a6f401ed8b9cd44412a68c82bb Core 4
KreMLin 882534387830a4cc259c1a543e0dfc10dcc70f52 Architecture x86_64

RAM 16GB

Fig. 6. Details our benchmark platform

_ |0epLio*
15| JosLio* {
loGLio*
Z ot 1
[}
£
[_4
51 H E
0 T T H T
Q‘b ‘b\g’) @V\Q
DLIO* SLIO* GLIO*

Time Time Speed-up | Time Speed-up
DB* (§5.1) | 10.571s | 9.602s 9.1% 9.229s 12.6%
BUS* (§ 5.2) | 7.144s 5.610s 21.4% 3.238s 54.6%
MMU* (§5.3) | 16.179s | 12.449s 23% | 8.450s 47.7%

Fig. 7. Performance measurement of all presented uses cases.

We conclude that moving from DLIO*, to SLIO*, and to GLIO*, is expected to increase the LoF
but reduces the LoC, since IFC is statically checked. Since the lines of C code are reduced and
runtime checks and label book keeping is removed, this leads to runtime speedups. From our three
benchmarks we conclude that this extra effort in static verification pays off in low-level applications,
like MMU* and BUS* that use few but critical IFC checks. On the other hand, in applications like

DB* that are heavy on dynamic IFC checks the verification effort is high and the effect on runtime
improvement small.

6 RELATED WORKS

LIO* descends from a vast line of works started from the basis of MAC in [Bell and LaPadula 1973]
to the general lattice-theoretic model proposed by Denning in [Denning and Denning 1977] to
verify the control information flow on computer or operating systems.

Today, large, security-sensitive, applications use expensive and state-of-the-art architectures, such
as Risc-V or ARM designs, to implement systematic resource isolation at supervisor and hardware-
MMU kernel level to safely sandbox legacy services of large corporate or cloud infrastructures. The
open-source RISC-V architecture supports extensions providing hardware IFC capabilities encoded
as a byte-size tag alongside with data [Ferraiuolo et al. 2018; Palmiero et al. 2018] to control data
flow in accordance with the tags privileges. ARM’s Trustzone allows to segregate encrypted and
decrypted data in physically isolated trust zones. [De Amorim et al. 2015] generalizes this meta-data
tag mechanism to implement more general software-defined IFC policies at hardware level.

24 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

Virtualization technology and resource isolation available in modern operating systems and
verified micro-kernels [Gu et al. 2016; Klein et al. 2009] is however far from available to consumer-
market, IoT-oriented, embedded micro-controller architectures. On such targets, compartmental-
ization is a cost-effective compilation technique to complement label-enforced IFC policy with
defensive code to isolate possible software faults and prevent program threads from addressing
data outside of their designated partitions [Besson et al. 2019; De Amorim et al. 2015].

Software-defined IFC helps to overcome hardware limitations and can, where available, strengthen
coarse-grain, hardware security mechanisms (trust zones, virtualization, tags) with fine-grain user-,
task- or channel-level micro-policies [De Amorim et al. 2015]. Software-level IFC was first proposed
in [Myers 1999b] to annotate Java programs with IFC policies. [Hammer et al. 2006] provides a
language-agnostic library to check IFC properties in imperative C or Java programs.

Dynamic IFC policies have extensively been developed in operating system design. [Zeldovich
et al. 2006] provides a survey covering this domain. For instance, [Krohn et al. 2007] proposes
operating system mechanisms to systematically check information flow read or written by system
threads. LIO is introduced in [Giffin et al. 2012] and showed in [Parker et al. 2019] to support
dynamic IFC for web applications using a verified implementation in Liquid Haskell. In [Buiras
et al. 2015a], LIO mixes static and dynamic verification in Haskell to mitigate the constraints of
runtime checks.

IFC [Sabelfeld and Myers 2006] policies can be used to ensure component separation, but current
techniques that enforce such policies either use heavy runtime checks [Austin and Flanagan 2012;
Austin et al. 2017; Yang et al. 2016] or rely on advanced type-checking using high level programming
languages [Buiras et al. 2015a; Schoepe et al. 2014].

LIO relies on Haskell’s monads to effectively enforce IFC policies when reading/writing to
databases or the web [Parker et al. 2019; Stefan et al. 2017]. [Gregersen et al. 2019] presents the
implementation of a statically verified IFC policy in Idris. Idris is a pure functional programming
language with dependent type and proof assistance. [Gregersen et al. 2019] shows how modelling
IFC using dependent types improves expressibility of IFC policies.

Hence, direct application of software-defined IFC policies to embedded devices with, e.g., LIO,
faces two major obstacles. First, LIO’s policy enforcement relies on automatically generated runtime
checks that would, if not properly sand-boxed, cause an unattended device to crash unpredictably.
Second, garbage collection and lazy evaluation in high-level languages may overflow their limited
memory if implemented without extensive engineering, testing and profiling efforts.

Our approach takes advantage of both the expressivity of dependent-types in the verified pro-
gramming language F* [Swamy et al. 2016], allowing us to use F*’s effects to encode monadic
IFC encapsulation, and the capability of generating bare-metal system code, by using its KreM-
Lin [Protzenko et al. 2017] code generator. This approach yields three advantages:

Like related approaches based on high-level programming languages, [Buiras et al. 2015a;
Gregersen et al. 2019; Parker et al. 2019; Stefan et al. 2017], LIO* lifts policy enforcement from
runtime checks to static proof obligations by using powerful dependent-type systems using a
minimalistic effect system defined from F*’s Dijkstra Monads [Maillard et al. 2019], leading to
verified code with minimal mechanisation, and in similar ways to [Parker et al. 2019], using Liquid
Haskell’s refinement type system.

[Buiras et al. 2015a] offers a different hybridation mechanism that ours: it eliminates IFC runtime
checks that can be ruled safe statically and keep other, call-dependent, dynamic checks. This is a
most suitable approach for transactional applications, where throwing an exception from some LIO
client application is non-critical or fail-safe. However, in the case of, possibly unattended, reactive
applications, this is not an option, as failing safe usually means to restart a real-time and potentially
mission- or safety-critical application.

LIO*: Low Level Information Flow Control with F* 25

[Sabelfeld and Russo 2010] provides a detailed review on the extensive number of related
approaches based on the static analysis of imperative system programs. The recent [Guarnieri et al.
2020], for instance, statically analyses bytecode to monitor programs that may leak unintended
information when executed on speculative architectures. As in these approaches, LIO* offers the
capability to run verified code generated from the KreMLin compiler [Protzenko et al. 2017],
without the need for a runtime library or a garbage collector, and hence for direct application for
low-level, resource-constrained, embedded architectures.

[Gregersen et al. 2019] models LIO in the domain-specific language Idris to mechanically verify its
specification by theorem proving; and [Parker et al. 2019] uses the refinement reflection mechanism
of Liquid Haskell [Vazou et al. 2017] to automate the proof for a model of LIO in the A-calculus.
LIO* verifies the actual LIO*’s client applications correct and non-interfering by using F*’s meta-
programming environment Meta* [Martinez et al. 2019].

[Sabelfeld and Russo 2010] shows static verification of IFC policies to be as strong as its, more per-
missive, dynamic enforcement via defensive code or monitors, both static and dynamic approaches
ultimately providing the same assurance of termination-insensitive non-interference.

7 CONCLUSION AND FUTURE WORKS

We presented LIO* a verified F*, IFC framework. First, we implemented three library versions: 1) the
dynamic DLIO*, where IFC policies are checked at runtime, 2) the static SLIO*, where IFC policies
are lifted to compile time proof obligations, and 3) the ghost GLIO*, where the IFC label tracking is
totally erased at runtime. Next, we used metaprogramming to define genNILemma, a procedure that
generates a lemma stating that a concrete GLIO* client is noninterferent. We applied genNILemma
to two of our benchmarks and various smaller examples, and generated noninterference lemmata
that F* automatically proved correct. We evaluated our approach using three benchmarks and
validated that moving from DLIO*, to SLIO*, to GLIO*, the verification effort (i.e., the F* Lines of
Code) increases, but the extracted C code is cleaner (and shorter) and up to %54.6 faster (in the case
of BUS*). In general, we propose a methodology that is using static verification to reduce runtime
checks and metaprogramming to prove program metaproperties, leading to both fast and provably
correct software, ideal to be executed by embedded devices.

Future works

Metaproperties. To verify our methodology, we developed a mechanized noninterference proof
of GLIO*’s clients. As discussed in § 4.4 our approach suffers from various limitations, some of
them stem from Meta*, which prevented us from proving noninterference of the DB* clients.
As Meta* gets more mature and our experience with it grows, we aim to complete the metatheory
of DB* in the near future and even apply this metaprogramming for metaproperties methodology
to generalize a noninterference proof for every GLIO* client.

Layered Effects. Our current implementation of LIO* suffers from a lack of parametricity: it is
not possible to use our framework without, for instance, Low*’s ST effect, the standard F* way of
writing low-level programs. Layered effect, a new F* feature, addresses this issue.

This last improvement of F* will enable us to define IFC effects independently of target IO
computation (memory, streams, etc) and allow to express IFC policies in a much simpler and
elegantly modular way by the composition of effects. This will make our IFC library a lot more
portable and allow to significantly reduce its TCB.

Our current implementation of LIO* only handles pure functions and we couldn’t yet use
Low™ effects to extend it with a complete memory model, which would have been much of an
improvement for, e.g., the MMU™ case study. There are several reasons why we made the design

26 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

choice to limit our working prototype with pure effects: 1/ using F*’s base effects would have
implied modifying the Low™ API to include labels, 2/ furthermore, the Low* memory model and
API are going to be revamped (C code extraction from KreMLin doesn’t currently play nicely with
reifiable effect), and 3/ the notion of layered effect, a new way of compositionally declaring effects,
is currently being tested in F*.

This last improvement of F* will enable us to define IFC effects independently of target IO monad
(memory, streams, etc) and allow to express IFC policies in a much simpler and elegantly modular
way by the composition of effects. This will make our IFC library a lot more portable and allow us
to significantly reduce its TCB.

REFERENCES

Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martinez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi, and
Nikhil Swamy. 2017. Dijkstra Monads for Free. In 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL). ACM, 515-529. https://doi.org/10.1145/3009837.3009878

Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic Information Flow. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’12). Association for
Computing Machinery, New York, NY, USA, 165-178. https://doi.org/10.1145/2103656.2103677

Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. 2017. Multiple Facets for Dynamic Information Flow with
Exceptions. ACM Trans. Program. Lang. Syst. 39, 3, Article Article 10 (May 2017), 56 pages. https://doi.org/10.1145/3024086

D Elliott Bell and Leonard] LaPadula. 1973. Secure computer systems: Mathematical foundations. Technical Report. MITRE
CORP BEDFORD MA.

Frédéric Besson, Sandrine Blazy, Alexandre Dang, Thomas Jensen, and Pierre Wilke. 2019. Compiling Sandboxes: Formally
Verified Software Fault Isolation. In Programming Languages and Systems, Luis Caires (Ed.). Springer International
Publishing, Cham, 499-524.

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 2015a. HLIO: Mixing static and dynamic typing for information-flow
control in Haskell. In ACM SIGPLAN Notices, Vol. 50. ACM, 289-301.

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 2015b. HLIO: Mixing Static and Dynamic Typing for Information-
Flow Control in Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2015). Association for Computing Machinery, New York, NY, USA, 289-301. https://doi.org/10.1145/2784731.2784758

Siddharth Choudhuri and Tony Givargis. 2005. Software virtual memory management for MMU-less embedded systems.
Center for Embedded Computer Systems (2005), 12.

Arthur Azevedo De Amorim, Maxime Dénes, Nick Giannarakis, Catalin Hritcu, Benjamin C Pierce, Antal Spector-Zabusky,
and Andrew Tolmach. 2015. Micro-policies: Formally verified, tag-based security monitors. In 2015 IEEE Symposium on
Security and Privacy. IEEE, 813-830.

Dorothy E. Denning. 1976. A Lattice Model of Secure Information Flow. Commun. ACM 19, 5 (May 1976), 236-243.
https://doi.org/10.1145/360051.360056

Dorothy E Denning and Peter] Denning. 1977. Certification of programs for secure information flow. Commun. ACM 20, 7
(1977), 504-513.

Andrew Ferraiuolo, Mark Zhao, Andrew C Myers, and G Edward Suh. 2018. HyperFlow: A processor architecture for
nonmalleable, timing-safe information flow security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1583-1600.

Andrzej Filinski. 1994. Representing Monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL *94). Association for Computing Machinery, New York, NY, USA, 446-457. https:
//doi.org/10.1145/174675.178047

Daniel B Giffin, Amit Levy, Deian Stefan, David Terei, David Maziéres, John C Mitchell, and Alejandro Russo. 2012. Hails:
Protecting data privacy in untrusted web applications. In Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12). 47-60.

Simon Gregersen, Seren Eller Thomsen, and Aslan Askarov. 2019. A dependently typed library for static information-flow
control in idris. In International Conference on Principles of Security and Trust. Springer, 51-75.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung Kim, Vilhelm Sjoberg, and David Costanzo. 2016.
CertiKOS: An Extensible Architecture for Building Certified Concurrent {OS} Kernels. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16). 653-669.

Marco Guarnieri, Boris K6pf, Jose Morales, Jan Reineke, and Andrés Sanchez. 2020. SPECTECTOR: Principled Detection of
Speculative Information Flows. In Security and Privacy Conference. IEEE.

https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/3024086
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/174675.178047

LIO*: Low Level Information Flow Control with F* 27

Christian Hammer, Jens Krinke, and Gregor Snelting. 2006. Information flow control for java based on path conditions in
dependence graphs. In IEEE International Symposium on Secure Software Engineering. IEEE Computer Press, 87-96.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 207-220.

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans Kaashoek, Eddie Kohler, and Robert Morris. 2007.
Information flow control for standard OS abstractions. In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 321-334.

Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martinez, Cundefinedtundefinedlin Hriundefinedcu, Exequiel Rivas, and
Eric Tanter. 2019. Dijkstra Monads for All. Proc. ACM Program. Lang. 3, ICFP, Article Article 104 (July 2019), 29 pages.
https://doi.org/10.1145/3341708

Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Catalin Hritcu, Monal
Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem
Rastogi, and Nikhil Swamy. 2019. Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms. In 28th European
Symposium on Programming (ESOP). Springer, 30-59. https://doi.org/10.1007/978-3-030-17184-1_2

Andrew C. Myers. 1999a. JFlow: Practical Mostly-Static Information Flow Control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL *99). Association for Computing Machinery, New
York, NY, USA, 228-241. https://doi.org/10.1145/292540.292561

Andrew C Myers. 1999b. JFlow: Practical mostly-static information flow control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, 228-241.

Christian Palmiero, Giuseppe Di Guglielmo, Luciano Lavagno, and Luca P Carloni. 2018. Design and implementation
of a dynamic information flow tracking architecture to secure a RISC-V core for IoT applications. In 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 1-7.

James Parker, Niki Vazou, and Michael Hicks. 2019. LWeb: Information Flow Security for Multi-tier Web Applications. Proc.
ACM Program. Lang. 3, POPL, Article 75 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290388

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella-
Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.
Verified Low-Level Programming Embedded in F*. PACMPL 1, ICFP (Sept. 2017), 17:1-17:29. https://doi.org/10.1145/
3110261

Alejandro Russo, Koen Claessen, and John Hughes. 2008. A Library for Light-Weight Information-Flow Security in Haskell.
In Proceedings of the First ACM SIGPLAN Symposium on Haskell (Haskell 08). Association for Computing Machinery,
New York, NY, USA, 13-24. https://doi.org/10.1145/1411286.1411289

A. Sabelfeld and A. C. Myers. 2006. Language-based Information-flow Security. IEEE F.Sel. A. Commun. 21, 1 (Sept. 2006),
5-19. https://doi.org/10.1109/JSAC.2002.806121

Andrei Sabelfeld and Alejandro Russo. 2010. From Dynamic to Static and Back: Riding the Roller Coaster of Information-Flow
Control Research. In Perspectives of Systems Informatics, Amir Pnueli, Irina Virbitskaite, and Andrei Voronkov (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 352-365.

Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. 2014. SeLINQ: Tracking Information across Application-Database
Boundaries. SIGPLAN Not. 49, 9 (Aug. 2014), 25-38. https://doi.org/10.1145/2692915.2628151

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-Programming for Haskell. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Haskell (Haskell *02). Association for Computing Machinery, New York, NY, USA, 1-16. https:
//doi.org/10.1145/581690.581691

Deian Stefan, Alejandro Russo, David Maziéres, and John C. Mitchell. 2017. Flexible Dynamic Information Flow Control in
the Presence of Exceptions. Journal of Functional Programming 27 (2017).

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-
van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 256-270. https://www.fstar-lang.org/papers/mumon/

Eran Tromer and Roei Schuster. 2016. DroidDisintegrator: Intra-Application Information Flow Control in Android Apps. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (ASIA CCS ’16). Association
for Computing Machinery, New York, NY, USA, 401-412. https://doi.org/10.1145/2897845.2897888

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala. 2017.
Refinement Reflection: Complete Verification with SMT. Proc. ACM Program. Lang. 2, POPL, Article Article 53 (Dec.
2017), 31 pages. https://doi.org/10.1145/3158141

Philip Wadler and Peter Thiemann. 2003. The Marriage of Effects and Monads. ACM Trans. Comput. Logic 4, 1 (Jan. 2003),
1-32. https://doi.org/10.1145/601775.601776

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and Stephen Chong. 2016. Precise,
Dynamic Information Flow for Database-Backed Applications. In Proceedings of the 37th ACM SIGPLAN Conference on

https://doi.org/10.1145/3341708
https://doi.org/10.1007/978-3-030-17184-1_2
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/3290388
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/2692915.2628151
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/2897845.2897888
https://doi.org/10.1145/3158141
https://doi.org/10.1145/601775.601776

28 Jean-Joseph Marty, Lucas Franceschino, Jean-Pierre Talpin, and Niki Vazou

Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY,
USA, 631-647. https://doi.org/10.1145/2908080.2908098

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maziéres. 2006. Making information flow explicit in HiStar.
In Proceedings of the 7th symposium on Operating systems design and implementation. USENIX Association, 263-278.

https://doi.org/10.1145/2908080.2908098

	Abstract
	1 Introduction
	2 Overview
	2.1 DLioStar: naive translation of lio into fstar
	2.2 SLioStar: turning ifc runtime checks into static proof obligations
	2.3 GLioStar: ghosting the current label

	3 Implementation of LioStar
	3.1 Labels as a type class
	3.2 DLioStar: ifc with dynamic runtime checks
	3.3 SLioStar: ifc with static proof obligations
	3.4 GLioStar: label tracking becomes ghosted

	4 Meta-metatheory: Proofs of Non Interference
	4.1 Statement of Non-interference
	4.2 Erasure of Values
	4.3 Erasure of Functions
	4.4 Discussion & Limitations

	5 Benchmarks
	5.1 The datastar case study
	5.2 The busstar case study
	5.3 The mmustar case study
	5.4 Evaluation

	6 Related Works
	7 Conclusion and Future Works
	References

