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Abstract

We adapt the optimization’s concept of mo-
mentum to reinforcement learning. Seeing
the state-action value functions as an analog
to the gradients in optimization, we inter-
pret momentum as an average of consecutive
g-functions. We derive Momentum Value It-
eration (MoVI), a variation of Value iteration
that incorporates this momentum idea. Our
analysis shows that this allows MoVI to av-
erage errors over successive iterations. We
show that the proposed approach can be read-
ily extended to deep learning. Specifically,we
propose a simple improvement on DQN based
on MoVI, and experiment it on Atari games.

1 Introduction

Reinforcement Learning (RL) is largely based on Ap-
proximate Dynamic Programming (ADP), that pro-
vides algorithms to solve Markov Decision Processes
(MDP, Puterman| [1994]) under approximation. In the
exact case, where there is no approximation, classic
algorithms such as Value Iteration (VI) or Policy Iter-
ation (PI) are guaranteed to converge to the optimal
solution, that is find an optimal policy that dominates
every policy in terms of value. These algorithms rely on
solving fixed-point problems: in VI, one tries to reach
the fixed point of the Bellman optimality operator by
an iterative method. We focus on VI for the rest of the
paper, but the principle we propose can be extended
beyond this. Approximate Value Iteration (AVI) is a
VI scheme with approximation errors. It is well known
|[Bertsekas and Tsitsiklis, [1996] that if the errors do
not vanish, AVI does not converge. To get some in-
tuition, consider a sequence of policies being greedy
according to the optimal g-function, with an additional
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state-action dependant noise. The resulting sequence
of policies will be unstable and suboptimal, even with
centered and bounded noise. Dealing with errors is how-
ever crucial to RL, as we hope to tackle problems with
large states spaces that require function approximation.
Indeed, many recent RL successes are algorithms that
instantiate ADP schemes with neural networks for func-
tion approximation. Deep Q-Networks (DQN, Mnih
et al.| [2015]) for example, can be seen as an extension
of AVI with neural networks.

In optimization, a common strategy to stabilize the
descent direction, known as momentum, is to average
the successive gradients instead of considering the last
one. In reinforcement learning, the state-action value
function can be seen informally as a kind of gradient, as
it gives an improvement direction for the policy. Hence,
we propose to bring the concept of momentum to rein-
forcement learning by basically averaging g-values in a
DP scheme.

We introduce Momentum Value Iteration (MoVI) in
Section It is Value Iteration, up to the fact that
the policy, instead of being greedy with respect to the
last state-action value function, is greedy with respect
to an average of the past value functions. We analyze
the propagation of errors of this scheme. In AVI, the
performance bound will depend on a weighted sum of
the norms of the errors at each iteration. For MoVI, we
show that this depends on the norms of the cumulative
errors of previous iteration. This means that it allows
for a compensation of errors along different iterations,
and even convergence in the case of zero-mean and
bounded noises, under some assumption. This compen-
sation property is shared by a few algorithms that will
be discussed in Section [6l We also show that MoVI
can be successfully combined with powerful function
approximation by proposing Momentum-DQN in Sec-
tion 5] an extension of MoVI with neural networks
based on DQN. It provides a strong performance im-
provement over DQN on the standard Arcade Learning
Environment (ALE) benchmark [Bellemare et al.,2013].
All stated results are proven in the appendix.
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2 Background

Markov Decision Processes. We consider the RL
setting where an agent interacts with an environment
modeled as an infinite discounted horizon MDP. An

MDP is a quintuple {S, A, P,r,v}, where S is a ﬁniteﬂ

state space, A a finite action space, P € AgXA is a
Markovian transition kernel (writing Ax the simplex
over the set X), 7 € [~Tmax, "max]° <" a reward func-
tion and v € (0,1) the discount factor. A policy m maps
the state space to distributions over actions 7(-|s). We
define the g-value ¢, of a policy 7 as, for each s € S
and a € A,

q‘ﬂ'(87a> = E7T [Z ’ytT(St,a,t)

t=0

50:S,a0:a‘|7

where E; denotes the expected value over all trajec-
tories (s1,a1,S2,as,...) produced by w. The value
is bounded by ¢max = Tmax/(1 — 7). Let us de-
fine the transition kernel operator associated to =
as, for each ¢ € RS*A and for each (s,a) € S x A,
as [P‘n'q}(saa) = Es’~P(-|s7a),a’~7r(-|s’)[Q(sl7a/)]' The ¢-
function of a policy is the fixed point of its Bellman
evaluation operator, defined for each ¢ € RS*4 as
Trq =r+ vPrq. An optimal policy 7, is such that for
any other policy 7, we have that, for each (s,a) € Sx A,
Gr, (8,a) > qr(s,a). The Bellman optimality operator
is defined as T,q = max, T,q, and we have that g, is
the unique fixed point of T,. A policy is said to be
greedy with respect to ¢ € RS*A if T,q = Trq. We
denote the set of these policies G(q). Note that such a
policy can be computed without accessing to the model
(the transition kernel).

Finally, for p € Asxa we write dr , = (1 —v)p(l —
vP;)~1 the discounted cumulative occupancy measure
induced by m when starting from the distribution g
(distributions being written as row vectors). We define
the y-weighted £,-norm as, for each ¢ € RS*4, lall,,,,. =

(Eqeuaron lals, @) ).

Approximate Value Iteration. Approximate Dy-
namic Programming provides algorithms to solve an
MDP under some errors. One classic algorithm is Ap-
proximate Value Iteration. It looks directly for the
fixed point of T, with an iterative process

{ﬂ'k-s-l € G(qx)

(AVI)
Q1 = Ty Gk + €y1-

Notice that here, Tr, ., qx = Txqx. In this scheme, we
call the first line the greedy step, and the second line

! This is for ease and clarity of exposition, the proposed
algorithm and analysis can be extended to continuous state
spaces.

the partial evaluation step. AVI satisfies the following
bound for the quality of the policy

2ymax;<p [lel
(1—7)?

This explains why AVI is not resistant to errors:
max; < |||, can be high even if each ¢, is zero-mean.

(1)

Hq* — Qmy, ”oo S 27kqmax +

3 Momentum Value Iteration

In the context of optimization, momentum aims at
stabilizing gradient ascent (or descent) methods. Con-
sider we want to maximize a concave function f whose
gradient is not known analytically, and we use a classic
(stochastic) gradient ascent algorithm. This algorithm
iterates from a value xg by computing an approxima-
tion gi of V f(z), and updating zx4+1 = xx +ngk. One
can then use momentum [Qian) [1999] to stabilize the
process through a smoothing function hy = phy + g,
with p € R, and an update z;+1 = z + nhg. This can
stabilize the ascent as the gradient may vary greatly
from step to step.

In the context of ADP, the g-function intuitively gives
the direction that guides the policy, in the same way
that the gradient is the improvement direction of a
variable. In particular, we can rewrite the greedy step
(in AVI) as m,(s) € argmax,(|ea, (@ (5 ), 7(-15)),
thus seeing this step as finding the policy being state-
wise the most colinear with g,. This is also reminiscent
of the direction finding subproblem of [Frank and Wolfe
[1956). Consequently, the greedy step can be seen as
an analog of the update in gradient ascent (the policy
7 is analog to the variable z), the differences being
(i) that ¢ in AVI is not a gradient, but the result of
an iterative process, ¢ = Tr,qr—1, and (ii) that the
policy is not updated, but replaced.

This analogy is thus quite limited (g is not really a
gradient, there is no optimized function, the policy is
replaced rather than updated). However, it is sufficient
to adapt the momentum idea to AVI, by replacing the
g-function in the improvement step by a smoothing
of the ¢-functions, hy = phgr_1 + qx. We can then
notice that G(hy) = Q(ﬁ—’“p), allowing us to compute a
moving average instead of a smoothing, hy = Sphr_1 +
(1 — Br)qx, which leads to the following ADP scheme,
initialized with hg = qq,

Tht1 = G(hg)
Q1 = Trpy G + €p41
hig1 = Begrhe + (1 — Brg1)qrr1-

(MoVI) (2)

We call this scheme Momentum Value Iteration (MoVT),
we analyze it in the following section.
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4 Analysis

For the analysis, we consider a specific case of the
scheme in Equation , with an empirical mean rather
than an iteration-dependant moving average. This
amounts to define B = kiﬂ in Eq. (2). We study
the propagation of errors of MoVI, to see how it is
impacted by the introduction of momentum, compared
to a classic AVI scheme (see Eq. )

4.1 Error propagation analysis

First, let us define some useful notations. We denote
Pjy =P, Pr,_, ... Pr, if 1 <i < j, Pjyy = I otherwise,
where 7; is the policy computed by MoVI at iteration
j. We then define the negative cumulative error Ej =
— Z?Zl €;, and the weighted negative cumulative error

o
B ;== Pivjir1(I —vPr,)ei

To study the efficiency of the algorithm, the natural
quantity to bound is the loss g. —gx, > 0, the difference

between the value of the optimal policy and the (true)
value of the policy computed by MoVI.

Theorem 1. After k + 1 iterations of Mo VI, we have

1 _
qx _qﬂ'k+1 S 71 (I_’VPF*) 1(Ek+1+Qk+1 _q0)

E+1

k—1 k
—(I—’ypﬂk+1)71 (Z,YJEI;,]_FZ VJszl(TmQO—QO)>] .
j=0 j=0

To understand and then discuss this result, we provide
a bound of a pu-weighted ¢1-norm of the loss: the norm

is what one would want to control in a practical setting.

Notice that we could similarly derive a bound for the
p-weighted £p-norm.

Corollary 1. Let u be the distribution of interest,
and v the sampling distribution. We introduce the
following concentrability coefficient (the fraction being
componentwise)

dr
v

C = max
s

o

Suppose that we initialize hg = qo = 0. At iteration
k41 of MoVI, we have

C
g = grpallip < [CE D) <||Ek+1||1.,u+
k

-1
'yj HEI/q,J ||1,V + 2Qmax> .
7=0

Theorem [1| shows that ¢. — ¢, depends on two error
terms, Ej and a y-discounted sum of Ej ;. The first

0 1000 2000 3000 4000 5000
Iterations (k)

Figure 1: Tllustration of the convergence of MoVI. We
represent the empirical mean and standard deviation
of the error over 100 MDPs.

term corresponds to a sum of errors, that can then com-
pensate, which is not the case in AVI (see Equation (T))).
The normalization by k%rl reduces the variance of this
term, and that can lead to convergence under some
assumptions (see Section . However, the second
term is more cumbersome. The terms El'w» depend
on sums of error weighted by composed kernels F;.;.
Would these kernels be arbitrary, this could lead to
further variance reduction. However, the corresponding
average is done over the state-action space in addition
to over iterations, and the kernels are dependent of
the error they weight, this dependency being hard to
quantify. We further discuss this next.

Still, the algorithm can converge in practice, and we
illustrate its behaviour on a simple case. We give our-
selves a tabular representation of a randomly generated
MDP, with access to a generative model. The approxi-
mation comes from the fact that the Bellman operator
is sampled at each iteration (instead of being evaluated
exactly); we compare it to AVI in the same scenario.
We report the average error between g,, and ¢, in Fig-
ure [} This experiments illustrate how AVTI oscillates
with high error, while MoVTI converges to g..

We note that our proof technique should hold with a
constant 3 too (moving average instead of average). In
this case, instead of having an average error (k~1E}),
we would have a moving average of the (weighted)
errors. This would not vanish asymptotically, even
with zero-mean bounded noises €, but this would still
reduce the variance, and improve upon the AVI bound.

4.2 About the sample complexity

To better understand MoVI, we analyze its sample
complexity in a simple case, Sampled-MoVI. In this
setting, we have access to a generative model of the
MDP and we give ourselves a tabular representation
of the MDP. At each iteration of Sampled-MoVI, for
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each (s,a) € § x A, we sample a state s’ ~ P(:|s,a)
and perform the update from Equation with only
this state. We denote T}, the resulting sampled Bell-
man operator, Tr, ¢(s,a) = r(s,a) + yq(s’, 7 (s)). The
error at iteration k is then, for each (s,a), ex(s,a) =
T qi—1(5,a) — Tr, qr—1(s,a). It is thus zero-mean and
centered. We provide a detailed pseudo-code in the
Appendix.

We are interested in controlling the distance of our
policy to the optimal policy, precisely in the norm
llg« — ¢r,. |0 at iteration & of Sampled-MoVI. We have,
as a direct consequence of Thm. [1| that

1
lgx = Grpir lloo < [CED =] <Ek+1||ooJr

k—1 .
Z’y]HEllﬂ,jHOO +2qmax> (3)

=0

Informally, using an Hoeffding argument, we have
k™Y Exlle = O(k™2). However, bounding a term
max;<y, || By, ;lleo is more involved. This could typi-
cally be done using the Maximal Azuma-Hoeffding
inequality. Yet, this requires the errors to be centered
and bounded. In our case, the sequence of estimation
errors {€1(s,a),...ex(s,a)} is a martingale difference
sequence with respect to the natural filtration Fj_4
(generated by the sequence of states sampled from the
generative model), that is E[eg(s,a)|Fr—1] = 0. This
is sufficient for controlling the term FEj, but the terms
E,’f ;j are more difficult. Indeed, there, the errors are
multiplied by a series of transition kernel matrices. For
an arbitrary kernel P, independent of €, we would
have E[Peg(s,a)|Fr—1] = PEler(s,a)|Fr-1] = 0. Un-
fortunately Pr, ., depends on 7,1, which is greedy
with respect to hy, which is computed using ¢ and
so depends on €. Thus, the independence cannot be
assessed. To control the error in Sampled-MoVI, we
consequently make the following assumption.

Assumption 1. VZ,] Z ]., E [Pj+i:j+16j|fj—l] =0.

This assumption may seem very strong, as the depen-
dency is hard to quantify. However, we have that
Thi1 € G(h) = G(Ehe—1 + 77 TreGh—1 + 7 €k)-
Thus, the influence of €5 on 7, diminishes with time.
Indeed, assuming that E [Pj+i:j+1€j|-Fj—l] = 0(%)
should be enough to ensure convergence, but at a lower
speed. We study numerically this assumption in Sec-

tion [71

Proposition 1. Suppose Asm. 1| holds. After k itera-
tions of Sampled MoVI, with probability at least 1 — &

oo —ame oo < Zmas |13 207N
el = T2 [k (T -9) B

This result only holds under the strong Asm. [I] Under
this setting (tabular representation, generative model),
there exist algorithms with faster convergence [Wain-
wright| [2019]. However, they are not easily extandable
beyond this setting, contrary to MoVI that can be easily
turned into a practical large scale deep RL algorithm.

5 Momentum DQN

We now propose an extension of MoVI to Momentum-
DQN, introducing stochastic approximation and using
deep neural networks for function approximation. We
base ourselves on Deep Q-Networks (DQN , Mnih et al.
[2015)), using the same algorithmic structure. We
propose an off-policy algorithm, using a replay buffer as
in DQN: we can apply the Bellman evaluation operator
to the estimated g-function in an off-policy manner.

We parametrize the g-function by an online network
Qg of weights 0, and we keep a copy of these weights
in a target network Q~ of weights #~. We addition-
ally define the averaging network Hy of weights ¢, and
their target counterparts H~ and ¢~. Momentum-
DQN interacts in an online way with an environment
collecting transitions {s,a,r,s'} € S x A x R x S, that
are stored in a FIFO replay buffer B. In DQN, the
algorithm performs gradient descent to approximate
the partial evaluation step by regressing an approxima-
tion of T, ()~ , and periodically copies the weights of
the online networks to the target networks. The loss
minimized at each step is almost the same as in DQN,
replacing an approximation of T,Qy by an approxima-
tion of the evaluation operator of the greedy policy
with respect to the averaging network, Tgg, Q™. We
define a regression target for QQy as

Q(r,s') = r+7Q (s, argmax H(s',)),

and a regression loss
L0 =88 |(Qn) - @) | @

with E the empirical loss over a finite set. Then, we
define a regression loss for the averaging network as
an approximation of Equation . We use the general
scheme from Equation with a possibly variable mix-
ture rate B;. The regression target H for the averaging
network is computed as

H(s,a,r,8') = BH (s,a) + (1 — Bx)Q(r, s),
which leads to a regression loss

L) = Es {(H(s a,r,s") — Hy(s, a)ﬂ .5

Momentum-DQN interacts with the environment with
the policy G., (H) that is eg-greedy with respect to H,
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the averaging network (e, depends on k because we
use a classic decreasing schedule for the exploration).
During training, it minimizes losses £, and £} with
stochastic gradient descent (or a variant), and update
the target weights with the online weights every C
gradient steps. A detailed pseudo-code is given in
Algorithm |1} and we evaluate this algorithm in Section
)

On the mixture rate. We aim at considering a rate
close to the one of MoVI, [ = kLH Due to stochastic
approximation, an iteration of Momentum-DQN does
not match one iteration of MoVI, rather we should
wait for several target updates before considering we
have performed such an iteration. Consequently, we
consider a rate such that 8, = %, with k a rate
update period (an hyperparameter), that is the number
of environment steps between each change of .

Algorithm 1 Momentum-DQN
Require: K € N* the number of steps, C' € N* the
update period, F' € N* the interaction period, x € N*
the rate update period.
Initialize 6, ¢ at random
B={}
0 =0,9" =¢
for k=1to K do
Collect a transition t = (s,a,r,s") from G, (Hg)
B+ BU{t}
if £ mod F == 0 then
Br = LkL%ﬁ-l
On a random batch of transitions B, C B,
update 6 with one step of SGD of £, see
On a random batch of transitions B, C B,
update ¢ with one step of SGD of Ly, see
end if
if £ mod C == 0 then
0~ 0,07 < ¢
end if
end for
return G(Hy)

6 Related work and discussion

The closest approaches to MoVI are Speedy Q-Learning
(SQL) [Azar et al.l 2011] and Dynamic Policy Program-
ming (DPP) |Azar et all [2012] (generalized by [Kozuno
et al.|[2019] as Conservative VI, with similar guaran-
tees). Both approaches are extensions of AVI that also
benefit from a similar compensation of errors along iter-
ations. As fat as we know, they are the sole algorithms
with this kind of guarantee. We first discuss extensively
the links to SQL and DPP, before mentioning other
(less) related works.

Algorithmic comparison. First, let us consider
DPP, in the DPP-RL Versiorﬂ |Azar et all 2012, Algo-
rithm 2]. Define the scalar product on A for all policy 7
and g-value q as (m,q)(s) = > _,c 4 7(als)q(s,a). DPP
estimates a quantity ¥ € RS*4, as

P = VYp—1 + Tny V-1 — (T, Yr—1) + €5, (6)

with 7 € G(¢y). Without error, ¥ (s, a) converges to
g« (s,a) when a is the optimal action in state s, and
to —oo otherwise. This makes difficult an extension of
DPP to a function approximation setting (unbounded
function).

Secondly, SQL updates a g-value g as

1
qk = Q-1+ —(TuQh—2 — qr—1)

k
k—1
+ T(T*qkq —Tiqp—2). (7)

We then re-write SQL as an update on similar quantities
as DPP. Let us define ¥y, = kg, and consider the policy
e = G(qr) = G(¢¥r). SQL is then equivalent to

Y = Yr—1 + Ty V-1 — VPry_ Yr—2 + €. (8)

Finally, we also position MoVI in this setting. Here,
we define ¢y, as ¢y = (k+ 1)hy = Zf:o g;. We con-
sider the sequence of policies m, = G(hi) = G(¢r).
With some work (detailed in Appendix) we can rewrite
Equation (2) as an update on v, as

Ve = Yr—1 + Try V-1 — VPrYr—2 + €. (9)

Comparing MoVI, SQL and DPP through the prism
of Egs. @, @ and , we observe that these three
schemes are similar. They all share the first part of
their update in common, and differ only in the subtrac-
tion term — that allows for error compensation. This
term is yPr, ¥r_2 in MoVI, which is replaced by a
VP, k-2 = Titpr—2 in SQL, and by (mg,Yr_1) in
DPP. This writing eases comparison, but we highlight
that it is not how algorithms are defined initially, and
implemented, except for DPP (SQL and MoVI do not
require estimating an unbounded function).

Performance bounds. We now compare perfor-
mance bounds of various algorithm. SQL and DPP
both propagates averaged errors instead of errors, as
they both satisfyf’]

k
2’}/ k—1q 87Qmax
qx —qrn OOS v T E; T )
lge = ar, k(lv)(;ﬂj Il + =22

2DPP considers general softmax policies, of which greedy
policies are a special case, that correspond to DPP-RL.

3The bounds in the original papers differ slightly by
their multiplicative constants, the one provided here is true
for both.
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This is to be compared to the bound for MoVI given
in Eq. . MoVI, DPP and SQI enjoys similar bounds,
the main difference being in the nature of the error
terms. Both SQL and DPP depend on a term of the
from Z?:o ¥ || Ey| ., that is a discounted sum of the
norm of averaged errors. On the other hand, in MoVI,
we have the dependency in Z?:o k=i HE,’w HOO, S0 not
averaged errors, but averaged weighted errors. In the
generative model setting, the bound is less favourable
for MoVI. Indeed, in this case, the errors are zero-
mean, so the dependence on their average in DPP and
SQL is a strong advantage. However, we empirically
show that MoVI behaves similarly to SQL and DPP
in this case (see Sec.[7.1). In a more general case (e
corresponding to a regression error), none of the bounds
can be easily instantiated, because the quantity we can
hope to control is ||lex||2, 4, not || Egl2,,. This, we will
check the algorithms’ behaviors empirically.

From a practical point of view, neither SQL or DPP
have been originally implemented in RL on large scale
problems. A deep version of a variation of DPPE| have
been proposed by [Tsurumine et al.| [2017], but it is
only applied on a small number of samples. The prin-
cipal issue of a practical DPP is that it has to estimate
¥k, a quantity that is asymptotically unbounded. It
could then be applied on short training environments,
when this value is updated a relatively small number
of times, and stays numerically stable. However, on en-
vironments like the ALE, where one needs to compute
millions of environments steps, DPP is likely to diverge,
and fail due to numerical issues. In Section [7.2] we
provide a experiment in a larger setting. We extened
MoVI to deep learning, and, for the sake of somparison,
we propose deep versions of SQL and DPP. These two
last algorithms are variations of DQN that make use
of updates in Equations and @ to define DQN-
like regression targets. We could not obtain satisfying
results with both of these implementations. Experi-
mental results and details are given in Section and
in the Appendix.

Other related methods. MoVI shares also algo-
rithmic similarities with other algorithms, Softened
LSPI [Pérolat et al., 2016] and Politex [Lazic et al.l
2019|. [Pérolat et al.|[2016] consider the zero-sum games
setting, and propose a Policy Iteration (PI)-based algo-
rithm. It relates to MoVI in the sense that it averages
the g-values of consecutive policies. Politex is also a
PI-scheme, where the policy is a softmax of the sum
of all g-values. These two algorithms share the idea of
averaging the g-values, but are derived from different

4Specifically, it is the update described by [Azar et al.
[2012] Eq. (24)], that also lead to an asymptotically un-
bounded function, and thus to numerical instability.

principles. [Pérolat et al. [2016] build their algorithm as
a quasi-Newton method on the Bellman residual and
rely heavily on linear parameterization, while Politex
build upon prediction with expert advice, and deals
with the average reward criterion, instead of the dis-
counted one. Moreover, none of these two approaches
offer the kind of guarantee about the propagation of
averaged errors that DPP, SQL or MoVI have.

7 Experiments

In this Section, we present experimental results from
MoVI and Momentum-DQN. First, we consider small
random MDPs (Garnets), to check empirically Asm.
and to compare to DDP and SQL on a tabular setting,
with access to a generative model. Then, we experiment
Momentum-DQN on a subset of Atari games, and
compare to DQN (a natural baseline) as well as deep
versions of DPP and SQL. Further experimental details
are provided in the appendix.

7.1 Garnets

A Garnet [Archibald et al., (1995 Bhatnagar et al.
2009| is an abstract MDP. It is built from three param-
eters (Ng, Na, Np). Ng and N4 are respectively the
number of states and actions. The parameter Npg is
the branching factor, the maximum number of states
accessible from any other state. The transition probabil-
ities P(s’|s,a) are then computed as follows. For each
state-action couple (s,a), Np states (s1,...Sn,) are
drawn uniformly without replacement. Then, Ng — 1
number are drawn uniformly in (0,1) and sorted as
(po =0,p1,...PNg—1,PN5 = 1). The transition proba-
bilities are assigned as P(si|s,a) = pr — pr—1 for each
1 <k < Npg. The reward function is drawn uniformly
in (—1,1)Ns.

Assumption check. First, we want to check that
Asm. [T]is reasonable. Given a step j of the algorithm
and a size [, we compute an empirical estimate of
E[Pjti1j41€;]. With Garnets, we have access to the
transition kernel, so we can compute the error at step
J,€i(s,a) = Tm q;(s,a)—Tx,q;(s,a). Given a fixed Gar-
net, we first compute the value ¢; with MoVI. Then, on
a number N of runs, we re-start MoVI from the same
gj, re-run the algorithm for { steps from there, and com-
pute the values Pjii.j11,n€jn(s,a), with n € [|1; N|].
We get an estimate ¢ n of ||E[Pjy1j41€6;|Fj-1]]

oo

N

_ 1 P (s, a)

€ILLN = max -— E i+1:j+1,n€in S, Q)| .
(s.a)eSxA | N JHhgtlntgnis

We want to check that ey — 0 when N — oo. For
several values of I, We compute €,y for N between 0
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Figure 2: Evolution of the empirical weighted average
error €,y with N (log scale) for different values of I.
We need a convergence towards 0 for our assumption
to be numerically verified, which seems to be the case.

10t

10°

g = qn.ll

0 2000 4000 6000 8000 10000
Iterations (k)

107!

Figure 3: Error on the policy value of different ADP
schemes. Each curve represents ||¢. — ¢, ||;, where 7,
results from AVI, MoVI, SQL or DPP.

and 200, and average these results over 100 garnets. We
report the evolution of the means of € y (over Garnets)
in Figure @ We observe that the limit of  n seems
to be 0 for each [, which experimentally validates our
assumption. With [ = 0, we get the “natural” norm
of errors (not multiplied by any matrix). We see here
that, for every tested [ > 0, the norm is lower than for
[ = 0, meaning that the policies kernels do not have
a negative impact on the expected value, but seem to
further reduce variance.

Algorithms comparison. We compare VI, MoVI,
SQL and DPP on random Garnets, using the sampled
version with a generative model described in Section
We run each algorithm on 100 Garnets, an we report
the norm of the empirical error on the uniform distri-
bution ||¢« — ¢x,[|;- We can compute the exact value
of 7, with access to the model. The four algorithms
are compared in Figure |3l We observe an almost iden-
tical behaviour for MoVI, DPP, and SQL. They all
converge towards v, at roughly the same speed, while
AV oscillates around a sub-optimal policy.

7.2 Atari

Atari is a standard discrete-actions environment intro-
duced by Bellemare et al.|[2013] with a high dimensional
state space. We use this environment to validate our
Momentum-DQN architecture. Our baseline is DQN as
it is implemented in the Dopamine library [Castro et al.,
2018]. We used the same architecture and the same
hyperparameters as DQN, and notably we used sticky
action with a rate of 0.25 to introduce stochasticity as
recommended by Machado et al.|[2018], and our state
consists in the stacking of the 4 last frames. Every 4
steps in the environment, we perform a gradient update
on 6 and ¢. Every C=25000 environment steps, we
update the target networks. We report the average
undiscounted score obtained during learning on the
last 250000 steps (named an iteration). On the figures,
the thick line show this average score averaged on 5
random seeds, while the semi-transparent parts denote
the standard deviation with respect to the seeds.

We evaluate Momentum-DQN on a subset of 20 Atari
games. This games are selected to represent the cate-
gories from |Ostrovski et al.| [2017, Appendix A], exclud-
ing the hardest exploration ones — we have no claim in
helping DQN in this setting. Here, we used a sched-
ule of B as defined in Section with £ = 2500000
that we tuned on a small subset of game (Asterix,
Zaxxon, and Jamesbond). As an example, we give
the comparison of Momentum-DQN and DQN on the
game Spacelnvaders in Figure [d] In figure [] we report
the normalized improvement of Momentum-DQN over
DQN using the Area Under the Curve (AUC) metric.
These results show a clear improvement using Momen-
tum. Momentum-DQN outperforms DQN on 16 games
out of 20, with an average normalized improvement of
45%. Tt only under-performs DQN on three games by
a low margin, while the improvement goes up to 200%
for the game Seaquest. In the Appendix, we report the
score obtained for the 20 games, along with experiments
testing the influence of various (§j schedules.

Spacelnvaders

6000
-- DQN

Momentum-DQN
5000

Averaged score
N w »
o o o
o o o
o o o

1000

0 25 50 75 100 125 150 175 200
Iterations

Figure 4: Scores obtained on Spacelnvaders by DQN
(dashed-dotted, blue) and Momentum-DQN (orange).
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Momentum-DQN vs DQN. Average improvement: 45.0%

Normalized improvement over DQN
o g = N N w
w o wv o w o

o
=)

2 b S " o3 X
SE TGS

Figure 5: Normalized improvement of Momentum-
DQN over DQN. We obtain an almost constant im-
provement on these 20 games.

Deep-SQL and Deep-DPP. We implemented
Deep versions of SQL and DPP (respectively DSQL
and DDPP), that we tested on Atari, also based on the
architecture and hyperparameters of Dopamine’s DQN.
For both algorithms, we derive an update rule based
on the ADP scheme, using the same parametrization
as DQN (we report specific equations in Appendix).
We were however not able to obtain satisfying — i.e.
competitive with DQN — scores with these algorithms.
We report the experimental results of DDPP and DSQL
versus DQN in Figures [6] and []] We used the same
parameters as for Momentum-DQN, in particular the
same [ schedule for DSQL. On these two graphs, we
see that both DSQL and DDPP underperform DQN
on most of the games.

For DDPP, the reason is quite simple, as the ()-network
has to estimate a value that diverges to —oo, causing
heavy numerical issues, and the algorithms fails on
most of the games after a few iterations. It is less clear
why DSQL underperforms DQN. Our hypothesis is
that Momentum-DQN enjoys a separate network that
approximate the average of the g-values, while DSQL
needs to compute its update from consecutive target.
However, when using deep networks and stochastic
approximation, the consecutive target networks cannot
securely be associated to consecutive g-values computed
in ADP, making the update in DSQL less reliable.

8 Conclusion

We introduced a new ADP scheme, MoVI, inspired by
Momentum in gradient ascent. To adapt Momentum
to RL, we made an analogy between the g-values in DP
schemes and the gradient in gradient ascent methods,
interpreting Momentum in RL as an averaging of con-
secutive g-function. We provided an anlysis of MoVI,
showing that the Momentum brings compensation of

DSQL vs DQN. Average improvement: -10.8%
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Figure 6: Normalized improvement of DSQL over DQN.
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Figure 7: Normalized improvement of DDPP over
DQN.

errors to AVI. We also derived a partial analysis of the
sample complexity when instantiated in the tabular
case. These results are similar to what are to our knowl-
edge the closest algorithms to MoVI, SQL and DPP.
Our bound involves a more complicated averaging of er-
rors, extensively discussed. Yet, we have shown that all
algorithmic schemes behave similarly in toy problems.
We advocated that MoVI is better suited for deep
learning extensions and proposed Momentum-DQN,
as well as natural deep extensions of DPP and SQL.
With experiments on a representative subset of Atari
games, we have shown that, contrary to DDPP and
DSQL, momentum-DQN brings a clear improvement
over DQN. Note that in principle, Momentum could be
applied to any RL algorithm that estimates a value: a
value-based algorithm like C51 [Bellemare et al., |2017],
or an actor-critic (for example, SAC [Haarnoja et al.
2018]). It could also be extended straightforwardly to
continuous action settings, replacing the critic by the
average of successive critics. We plan to extend the
idea of Momentum to other RL algorithms in future
works.
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Content

This Appendix provides the proofs of all results stated in the paper, along with additional experiments and
experimental details.

In Appendix [A] we give the proof of Theorem [I the proof of corollary [I]is given in Appendix [B] and the proof of
proposition [I]is given in Appendix [C] In Appendix [D] we give details on how we could express MoVI and SQL in
their formulations of Equations @[) and .

Then, we complete the experiments presented in the paper. We give additional details and complete results
on Garnets in Appendix [E] Appendix [F] completes the experiments on Atari. The detailed update equations
of DSQL and DDPP are given in Appendix In Appendix [F.2] we provide details about how we conducted
experiments, in Appendix we discuss the influence of the mixture rate, and finally we present full results (on
the 20 games) in Appendi and

A Proof of Theorem [1l
In this Section, we give the proof of Theorem [I} Let us recall the definition of MoVI in this case,

7 = G(hk—1)
Gk = Tr, qr—1 + €k
hy, = ﬁhkq + ,%HQI«

We want to prove the following component-wise inequality (Theorem

k-1 K

1 ~ B 4 .

G = Ome S T (I =vPr.) " (Brr1 + qrr1 — go) = (I =Y Pryy,) < > VEL;+Y ¥ Pia(Trqo - Cm))} :
=0 =0

First, we prove a useful lemma, that essentially tells that controling a residual is enough.

Lemma 1. For any m and q, we have
G —q= (I —vPx) " (Txq — q).
Proof.

QW_q:TWQW_qu+qu_q
=YPr(¢x —q) + Trqg — ¢q
<~ qr —q= (I_7P7r)_1(Tﬂ'q_ Q)~

O
Now, let us get to the central proof. We use the following decomposition
G = Ay = @G — P+ hg — Gy -
Applying Lemma [I] to ¢, — hy and gr, ., — hi, we have that
G = Qs = (L= vPr) (T by — hi) — (1 = VP )" (T hie — hig).
Using the fact that T hy < T, hi (as mpy1 = G(hy)), we have
G = Grppn < (U= vPr) " (Tmprhe — b)) = (I = ¥ Pry )™ (Tmpys e — ). (10)

From here, we then only need to upper bound and lower bound the residual T, 41hr — hi.
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A.1 TUpper bound of the residual

We have, using the update definition, and the fact that 7 € G(hr—1)

k 1
T7Tk+1hk = mTﬂkﬂhk—l + mTMHQk
k
—T. h —
= 1 Ll 1+ k+1(Qk+1 €kt1)

= (k+1)Tr, i < KTp hie—1 + Gry1 — €xt1-
By direct induction, we obtain

(k4 )Ty e < kT, hie—1 + qry1 — €rg1

k+1 k+1
< ZQJ Z (11)
j=1

. k
By definition of hy, hy = kiﬂhk,l + k%rlqk = %ﬂ ijo qx, thus

k+1 k

> 6= i+ a1 —q = (k+ Dhr + gri1 — 0. (12)
' )

We define the negative cumulative error Ey41 = — Z;cill €;. Using this definition and Equation in Equa-

tion , we have

1
Trpiihe — by < (Qk+1 —qo + Erq1), (13)
k+

an upper bound on the residual.

A.2 Lower bound of the residual

Using the definition of hy and 711 € G(hg), and using an induction argument, we have

(k} —+ 1) 7rk+1hk (k} + l)Tﬂk hk
= k;TTrkhk—l + Tﬂ'qu
k
Z ZTﬂj qj + T7r1 qo0- (14)
j=1

Using this, we can then lower bound the residual by a sum of others residuals:

k
(k+ 1) (T hre — i) = Zijqj‘ + Ty q0 — Z%’
j*l =0

—Z T q; — +T7r1q0 qo0-

Let work on one of these residuals. We have
Tryqj — ¢5 = Try(Tr;05-1 + €5) — (Tr;q5-1 + €5)
=17 aj—1 — Tryaj—1 — (I = 7Pr,)e;
= ’YPTrj (Tﬂij—l - Qj—l) - (I - ’ypﬂj)ej
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On the other side, using the fact that by definition g = (k + 1)hy — khg—_1, we have that

Tﬂjﬂqj 7f q; = (] + 1) o] +1h ]Tﬂ'ﬂrlh (j + l)Tﬂj hj +jTTrth’*1
(]+1)( 7T]+1h Tﬂ']h )+](T7Tjhj*1_T7fj+1hj*1)
> 0.

Therefore, we can conclude that

Tr;q; — 45 = VPr; (Tr;qj—1 — gj—1) — (I =¥ Pr;)€;
> YPr;(Tr; 1 qj—1 — @j—1) — (I — v Pr;)e;

Write Pj,; = Py, P,

M1 v

P if1<i<j P

i = I otherwise. We have by induction

Trya;—a; =2 — Zv Pjis1(I = yPr)ei + 7 Py (Tr, g0 — q0)-

Plugging this in the inequality from Equation , we get

k
(k;+1)( ﬂ'k+1 hk ZZ midj — +T7r1q0 4o
j=1
k J
=z Z ( Zwﬂpjriﬂu —YPr)ei + 7 Py (T g0 — CJo)) +Tr g0 — 9o
j=1 i=1
k-1 k—j k
> =>4 Pijin( = vPr)ei + Y7 Pia(Tr 0 — qo)-
=0 =1 =0

We define the weighted error Ej, . = = Z Pitjit1(I —yPr,)e;. With this definition, we have that

TTrk+1h‘ h‘k - k Z’Y le 7T1q0 )+Z’YJE]/€7] ) (15)

a lower bound on the residual.

Using the lower bound from Equation and the upper bound from Equation into the decomposition of
Equation proves Theorem

O

B Proof of Corollary [1]

We use the previous result to prove corollary [I} the error propagation in p-weighted ¢1-norm. Let pu be the
distribution of interest (where we want to control the error), and v the sampling distribution (from where we
have access to transitions). We have, directly from Theorem [1| (using the fact that u(I — vPr)~' = (1 =) tdx
and noticing that g, — ¢, > 0),

k—1
1 .
la- = g Hl"‘ = (k+1)(1—7) dr, | Er1] + dmﬂ’”;v] |EL
Ay
llgk+1ll o + llgol] 1
+ +1llco 4 Z’Y HTm(IO qo”oo (16)

(k+1)(1—7) (k+1)(1

By
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drop

Let us work on the term Aj. We have, using the fact that dr , < ||[=£[|ov, that
1 k=1
A = FFrDi=7) Ao i | Bt | + dm+1,u;)’}’] | B
k-1
< DT \ el |l + \ Irics ) an
We now introduce the following concentrability coefficient
C = max s )
P v ole
and we have directly from Equation that
c k-1 .
A < m ||Ek+1||1,u JF;'Y ||Ek7j||1,u : (18)

Now, we upper bound the term Bjy. Assume that we initialize MoVI with hg = go = 0. We have

gkl 1 u ;
R (e A e PR G

= o
< Gmax (1= ") rmax
~(k +21)(1 -7 (k+1)(1—79)?
S cEy =) 1)
where we used ¢max = max/(1 — 7).
Using Equations and in Equation proves Corollary
O

C Proof of Proposition

In this section, we prove our result in sample complexity. Essentially, we use the same method as |Azar et al.
[2011]. Note that we need to have Asm. |l| for the proof method to work on our case.

Let us recall the result in supremum norm

k—1
1 )
= trs oo € (1 Ersilloc + S 7 1B s lloe + 20max |-
Hq q k+1|| = (k+1)(1—')/) <|| k+1H +j:0’y || k,j' + q >

We want to prove that, with probability at least 1 — &,

S||A
1,3 21n (US]IAL
E+1 (11— k+1

2T max
Hq* - q7Tk+1HOO < (1 — 7)2

(Proposition

To prove the Proposition [I] on the sample complexity, we will apply the same proof technique as the one used
by |Azar et al.| [2011] to prove their Theorem 1.

We first notice that

k—1 ) , maX;<k—1 HE]/€7]
S VB flloe € ————=,
7=0

gl
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so we just need to bound the terms || Ej 1], and max;j<yp_1 HE,’” . Precisely, we need to prove the following

bound with probablility at least 1 — ¢ =
1 , 67 max 4|S||A|
Bkl + T o 1Bkl < (1_7)2\/2(7C + 1) ——. (20)
Recall the definitions of Eyy1 = — 5;1 €; and E,’C,j = — Zi:f Pt jiv1(I — vPr,)e;. We bound in norm the
individual terms in the sums with
||€j||OO < ‘Tﬂjqj—l - T‘n'jqj o < quax;

and
|Pitjiv1(d = vPr)€ill oo < I = 7Pr; ||l o 2Gmax < 4qmax-

Using a Maximal Azuma-Hoeflding inequality in the same manner as [Azar et al|[2011] on Exy;, we have

4]S||A )
P <||Ek+1||Oo < qmax\/8(k: +1)In |(|$||> >1— 5

Assuming that Assumption |1| holds, we can use a similar argument on El,'C ;- This give the following bound

0<j<k-1

4|S||A )
P ( max HE,;JHOC < qmaX\/32(k +1)In |(|5||) >1- 3

Combining both results, we obtain Equation 7 and so prove the result in Proposition

O
D Additional proofs on algorithmic comparison
Here we detail how we obtain the formulations of Section @, specifically Equations @D and .
MoVI. First, we prove a recursion on (k + 1)hy.
Lemma 2. Recursion on khy_1. For each k > 0,
(k‘ + 1)hk =khr_1+Tx, [khkfl] —vPr, [(k - 1)hk,2] + €.
Proof.
(k4 1D)h, = khg—1 + qx
=khy—1+ Tr qr—1 + €k
=khp_1 + ka (k‘hk,1 — (]f — 1)hk,2) + €
= khg—1+ (k= (k= 1))r + kyPr hi—1 — (k — 1)y Pr hy—2 + €
=khp_1 + Tﬂ-k [khk_l] — ’}/Pﬂ-k [(k — l)hk_ﬂ + €k.
O

Let us write ¢y, = (k+1)hy = Z?:o ;. Note that G(hy) = G(¢). Using this in Lemma We can write the MoVI
update as
Ui = Yr—1 + T k-1 — YPr V-2 + €k,

which proves Equation @
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SQL. The SQL update is

1 k
= qp_ —(Txqr—o — qr.— —— (Thqr—1 — Tuqr—2).
qrx = q 1+k:+1( k-2 — Qk 1)+k+1( Qk—1 =y
We have

(k+1)ge = (k+1)gr-1+ Tiqu—2 — qu—1 + kTuqr—1 — kTqr—o2
= ka1 + kTeqp—1 — (k= 1)Tiqr_o. (21)

Let us define 9, = (k + 1)hy in this case. Using that Tyt — Thtb—1 = (k + 1)Tuqr — kTwqr—1 and writing
7 = G(¢r_1), we get from Equation

Yr = Vg1 + Tnyhk—1 — VPr, V-2 + €,
which is exactly Equation .

E Experiment details on Garnets

E.1 Sampled MoVI

We provide the pseudo-code for the algorithm used in Section [£:2]in Algotithm [2]

Algorithm 2 Sampled MoVI
Require: K number of iterations. Initialize gy = 05%4, hg = qo, ™ € G(ho)

1: for k=1 to K do

2:  for (s,a) € S x Ado

3 s' ~ P(:|s,a)

4 ar(s,a) =r(s,a) + vqe-1(s", 7k (s"))
5. end for
6
7
8

_ _k 1
hie = s 7 he—1 + 557

for s € S do
: me+1(8) = argmax(hy(s,-))
9: end for
10: end for

11: return 7

E.2 Experiment details on Garnets

For our experiments, we averaged the results over 100 Garnets built with Ng = 30 (number of states), N, = 4
(number of actions), and Ng = 4 (branching factor).

Assumption check. We provide in Fig. [§| the graphs showing the standard deviation of éx over 100 garnets.
We also put the empirical means to be clearer.

Algorimths comparison. In addition, we provide in Figure [J] the graphs showing the standard deviation over

MDPs of the curves computed from Figure [3| where we compared the different ADP schemes (we also put the
means again, to be clearer).

F Additional Experiments on Atari
In this section, we provide additional experiments on Atari, and details about experiments presented in the paper.

F.1 DSQL and DDPP

We implemented deep versions of SQL and DPP. we use the same parametrization as for Momentum-DQN
(Section [f]), without needing an extra H-network.
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Figure 8: Left: Empirical mean of € n over garnets. Right: Standard deviation over garnets for different values
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Nino Vieillard, Bruno Scherrer, Olivier Pietquin, Matthieu Geist

Table 1: Parameters used for Momentum-DQN on Atari. the @-network and H-network have the same structure.

Parameter Value

C' (update period) 8000

F (interaction period) 4

v (discount) 0.99

|B| (replay buffer size) 10°

|Bh x| and |Bg k| (batch size) 32

ey (random actions rate) 0.01 (with a linear decay of period 2.5 - 10° steps)
k (mixture rate update period) 2.5-10°

Q-network structure Convg ¢ 32 — CODViA 64 — Convéﬁ 64 —FC512 —FCnyu
activations Relu

optimizers RMSprop (Ir = 0.00025)

DSQL. For DSQL, we keep two target networks, the copies of the two previous weight updates, repectively
Q7 '=Q and Q7? = (Q~)~. We define a regression target for the Q-network as

Qasa(s,a,7,5') = Q7 (s,a)+(1=Pp) (r+y max Q>(s',a")=Q " (s, a))+Byy(max Q>(s',a') —max Q' (', a')),
which leads to a loss function on the weights 6,

Lasq1(0) = Ep |(Qasqi(s,a,7,8") — Q(57a))2:| :

DDPP. We proceed similarly for DDPP, keeping the same parametrization of the @Q-network. We define a loss
function on the weights

Laapp(0) = Es [(Q (5,0) + 7 +ymax Q™ (s',a") — max Q@ (s,0') — Q(s,0))*]

F.2 Experiment details

In Table |1} we give the hyperparameters used for our experiments on Atari, including networks architecture. We
use the following notations to describe neural networks: FCn is a fully connected layer with n neurons; Convib c
is a 2d convolutional layer with c filters of size a X b and a stride of d. n 4 is the number of actions available in a
game. We highlight the fact that we used the standard Dopamine’s DQN parameters, and did not try to optimize
them (including the optimizer of the additional neural network).

F.3 Influence of the mixture rate

We look at the influence of the sequence S on Momentum-DQN. To do that, we first test Momentum-DQN(/5), a
version of Algorithm [I| with 8 = B for each k. We show training curves of this algorithm in in Figure where
we evaluate Momentum-DQN(3) on the games Asterix and Zaxxon with different values of 8. We report results
for 8 =0.1, 0.5, and 0.9. We observe for Asterix how a higher § — meaning more influence of the old Q-networks
— slows down learning in the beginning, but eventually leads to a much higher performance. We also observed
that a very high 5 (close to 1) tends to slow training so much it affects drastically the sample complexity of
Momentum-DQN. On some games, like Zaxxon in Fig. it also seemed that Momentum-DQN needed a more
aggressive update in the beginning, meaning a lower . During this experiments, we observed in general that
there was an optimal 8 per game, that could be quite different from game to game, so we could have higher
results with a problem-dependent parametrization. For example, in Figure [I0} we observe how a high 3 helps
DQN on Asterix, but can damage Zaxxon if too close to 1.

This observation justifies the utilization of a schedule of increasing 5y as described in Section 5} The schedule
defined here is inspired by the the theory, but we could also imagine a heuristic increasing schedule, with for
example B = 0.1 L%J We tested similar schedules that gave almost the same performance as the one presented
here.
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Figure 10: Influence of 8 on Asterix (left) and Zaxxon (right). Each curve is shows the evolution of the score
obtained by Momentum-DQN trained with a fixed 8. In blue and dashed-dot line, we show the DQN baseline. In
orange 3 = 0.1, in green 8 = 0.5, in red 8 = 0.9. This shows how a higher 3 slows learning in the beginning but
allows for a higher final performance.
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Figure 11: AUC improvement over DQN of Momentum-DQN (orange), DSQL (green) and DDPP (purple).

F.4 Joint comparison on Atari

We provide the joint graph showing the AUC improvement over DQN of Momentum-DQN, DSQI and DDPP in
Figure

F.5 Full results on Atari

We provide the learning curves on the 20 considered Atari games, for Momentum-DQN, DSQL and DPP, compared
with a DQN baseline, in Figures [12] and [I3]
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