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There’s No Free Lunch:
On the Hardness of Choosing a

Correct Big-M in Bilevel Optimization

Thomas Kleinert1,2, Martine Labbé3,4,
Fränk Plein3,4, and Martin Schmidt5

Abstract. One of the most frequently used approaches to solve linear bilevel
optimization problems consists in replacing the lower-level problem with its
Karush–Kuhn–Tucker (KKT) conditions and by reformulating the KKT comple-
mentarity conditions using techniques from mixed-integer linear optimization.
The latter step requires to determine some big-M constant in order to bound
the lower level’s dual feasible set such that no bilevel-optimal solution is cut
off. In practice, heuristics are often used to find a big-M although it is known
that these approaches may fail. In this paper, we consider the hardness of two
proxies for the above mentioned concept of a bilevel-correct big-M . First, we
prove that verifying that a given big-M does not cut off any feasible vertex
of the lower level’s dual polyhedron cannot be done in polynomial time un-
less P = NP. Second, we show that verifying that a given big-M does not cut
off any optimal point of the lower level’s dual problem (for any point in the
projection of the high-point relaxation onto the leader’s decision space) is as
hard as solving the original bilevel problem.

1. Introduction

A bilevel optimization problem consists in a constrained optimization problem
in which some constraints specify that a subset of variables constitutes an optimal
solution of a second (auxiliary) optimization problem. Since the publication of
the first and seminal paper [7], research on the subject has become increasingly
important. Indeed, the bilevel structure allows the modeling of a large number of
real-life problems involving two types of decision makers, a leader and a follower
(or several followers) interacting hierarchically. Such optimization problems appear
in many fields of application like energy markets [1, 10, 18–21, 23, 25], critical
infrastructure defense [8, 9, 14, 29], or pricing [26, 27, 31].

Due to their ability of modeling hierarchical decision processes, bilevel optimiza-
tion problems are inherently hard to solve. In [13, 22] it is shown that even the
easiest instantiation, i.e., bilevel problems with linear upper and lower level, is
strongly NP-hard. Moreover, even checking local optimality for a given point is
NP-hard as well [32]. For other hardness results we refer to, e.g., [4]. For general
surveys of bilevel optimization see [3, 11–13] and [33] for a survey focusing on
linear-linear (LP-LP) bilevel problems.
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In this paper, we consider the LP-LP bilevel problem

min
x∈Rn,y∈Rm

c>x+ d>y (1a)

s.t. Ax+By ≥ a, (1b)

y ∈ arg min
ȳ
{f>ȳ : Cx+Dȳ ≥ b} (1c)

with c ∈ Rn, d, f ∈ Rm, A ∈ Rk×n, B ∈ Rk×m, a ∈ Rk, C ∈ R`×n, D ∈ R`×m, and
b ∈ R`. Problem (1a)–(1b) is the so-called upper level and (1c) is the lower level.
Here, we consider the optimistic version of bilevel optimization [12]. This means
that whenever the lower-level problem has multiple solutions y, the leader chooses
the most favorable one in terms of the upper level’s problem.

LP-LP bilevel problems are often solved by a reformulation to an equivalent single-
level problem. Usually, this is done by one of the following two approaches. One can
replace the lower level with its primal and dual feasibility conditions as well as the
strong-duality equation or one replaces the lower level with its Karush–Kuhn–Tucker
(KKT) conditions. Both approaches have their drawbacks: The strong-duality based
technique yields nonconvex bilinear terms whereas the KKT approach leads to the
following mathematical program with complementarity constraints (MPCC):

min
x,y,λ

c>x+ d>y (2a)

s.t. Ax+By ≥ a, D>λ = f, (2b)
0 ≤ Cx+Dy − b ⊥ λ ≥ 0. (2c)

Here, for two non-negative vectors 0 ≤ a, b ∈ Rn, a ⊥ b abbreviates aibi = 0 for all
i = 1, . . . , n. The single-level reformulation (2) of the bilevel problem (1) explicitly
models the optimistic version of bilevel optimization by construction. Consequently,
there is no need anymore to distinguish between y and ȳ. In what follows, we thus
call x the upper-level and y the lower-level (primal) variables. The lower-level dual
variables are given by λ ∈ R`.

The hardness of Problem (2) stems from the complementarity conditions (2c).
Since these constraints can be reformulated in a mixed-integer linear way, the KKT
approach is often preferred in practice. Typically, one applies the reformulation
introduced in [15], which requires an additional binary variable zi ∈ {0, 1} for every
i ∈ {1, . . . , `} and the additional constraints

λi ≤Mdzi, (Cx+Dy − b)i ≤ (1− zi)Mp, i ∈ {1, . . . , `}, (3)

where Md and Mp are sufficiently large constants, called big-Ms. In this note, we
focus on the big-M for bounding the lower-level dual variables, i.e., on M = Md.
Since we show that finding Md is hard, this obviously implies that finding Md and
Mp is hard as well. Applying (3) requires to bound the lower level’s dual polyhedron
such that no point λ∗ that is part of an optimal solution (x∗, y∗, λ∗) of (2) is cut
off. Stated differently, one needs to choose an M that preserves all bilevel-optimal
points (x∗, y∗). We call an M with this property a bilevel-correct big-M .

When the dual of the lower level has a finite optimal value, there exists an
optimal solution λ∗ that is a vertex of the associated feasible polyhedron. Hence,
it is sufficient to obtain bounds on the dual variables that—independently of the
upper-level decision—do not cut off (i) any feasible vertex of the lower level’s dual
polyhedron or (ii) any optimal vertex of the lower level’s dual polyhedron. Note
that these requirements do not take into account bilevel optimality but still preserve
all optimal solutions (x∗, y∗, λ∗) of (2), i.e., (i) and (ii) still yield bilevel-correct
big-M ’s. This means, that (i) and (ii) are sufficient (but not necessary) conditions
for a big-M to be bilevel-correct.
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The choice of the big-M is often done heuristically, which may result in a severe
issue: If the big-M is not chosen large enough, a “solution” of (2) with (2c) replaced
by (3) does not need to be a bilevel-optimal point. In fact, this point does not even
need to be bilevel-feasible. See, e.g., [30], where a common heuristic for computing
a big-M is shown to deliver wrong results.

The contribution of this note is twofold. First, in Section 2, we consider the
hardness of verifying that a given big-M does not cut off any feasible vertex of the
lower level’s dual polyhedron. We show that there is no polynomial-time algorithm
for this verification unless P = NP. Second, in Section 3, we show that validating
that a given big-M does not cut off any optimal point of the lower level’s dual
problem (for any given feasible upper-level variable x) is as hard as solving the
original bilevel problem. Both results together imply that there is no hope for an
efficient, i.e., polynomial-time, general-purpose method for verifying or computing
a correct big-M in bilevel optimization unless P = NP. Thus, our results strongly
indicate that problem-specific bounds on the lower level’s dual variables need to
be investigated if the given bilevel problem is going to be solved using the KKT
approach combined with the classical big-M linearization of KKT complementarity
conditions.

2. Hardness of Bounding the Vertices of an Unbounded Polyhedron

Whenever the bilevel problem (1) is feasible, the lower-level primal and dual
problem have a finite optimal solution. In particular, there is a vertex of the
feasible region of the lower-level dual problem at which the optimal dual solution is
attained. Thus, one way of preserving every bilevel-optimal solution in the KKT
reformulation (2) is to choose a big-M such that no lower-level dual vertex is cut
off. This bounding approach yields a bilevel-correct big-M . In this section, we
show—even more generally—that bounding the vertices of an unbounded polyhedron
is hard. This result is then applied to the lower level’s dual polyhedron. Since
the hardness result is mainly based on the unboundedness of this polyhedron, the
question arises whether this situation frequently appears in practical LP-LP bilevel
problems. It turns out that this is the case for almost all instances of bilevel test
sets from the literature—which is also supported by the theoretical results in [34].

To obtain a hardness result in the Turing model of computation, we assume that
all problem data are rational and thus are Turing representable. Let P (A, b) :=
{x ∈ Qn : Ax ≤ b} be an unbounded polyhedron defined by A ∈ Qk×n and b ∈ Qk.
For M ∈ Q and j ∈ {1, . . . , n}, let Qj(A, b,M) := {x ∈ Qn : Ax ≤ b, xj ≤M} be
the polyhedron obtained from adding the bound xj ≤M to P (A, b). To validate a
given big-M , we need to verify that for every j ∈ {1, . . . , n} the bound xj ≤M is
satisfied by all vertices of P (A, b). This results in the following decision problem.

Component-wise valid bound for the vertices of a polyhedron (CVBVP).
Input: A ∈ Qk×n, b ∈ Qk, j ∈ {1, . . . , n}, M ∈ Q.
Question: Does v ∈ Qj(A, b,M) hold for every vertex v of P (A, b)?

We will see in the following that validating a big-M is related to the problem of
finding an optimal vertex v in an unbounded polyhedron with respect to a linear
objective function h>v. If the polyhedron is bounded at least in the direction of
optimization, then this problem is equivalent to linear optimization. However, in the
general case of polyhedra that are unbounded in the direction of optimization, this
is a difficult task. As shown in [16], the decision problem that studies the existence
of a vertex of a given polyhedron such that the corresponding objective function
value is larger or equal to a certain threshold K is strongly NP-complete. The proof
is based on a reduction from the Hamiltonian path problem [17, Problem GT39]
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and can easily be extended to the decision problem that decides whether a vertex
with an objective function value strictly larger than a certain threshold exists:
Optimal vertex of a polyhedron (OVP).
Input: A ∈ Qk×n, b ∈ Qk, h ∈ Qn, K ∈ Q.
Question: Is there a vertex v of P (A, b) with h>v > K?

As pointed out above, w.r.t. the linearization (3), we are interested in the special
case h = ej . The related decision problem is the following:

Component-wise optimal vertex of a polyhedron (COVP).
Input: A ∈ Qk×n, b ∈ Qk, j ∈ {1, . . . , n}, K ∈ Q.
Question: Is there a vertex v of P (A, b) with vj > K?

We now show that even for this subclass of instances, the decision problem is
strongly NP-complete. In what follows, vert(P (A, b)) denotes the set of vertices of
the polyhedron P (A, b).

Theorem 1. COVP is strongly NP-complete.

Proof. We prove the result for j = 1. For any other j′ ∈ {2, . . . , n}, e1 can be
replaced with ej′ in the proof.

It is clear that the problem is in NP. We prove its hardness by reduction from
OVP. Let A ∈ Qk×n, b ∈ Qk, h ∈ Qn, K ∈ Q be a given OVP instance and assume
h 6= 0. Otherwise, the corresponding instance is trivial. Now take j ∈ {1, . . . , n}
with hj 6= 0. We construct a basis of Qn by replacing ej with h. If we put h as the
first basis vector, the corresponding linear transformation is given by the inverse of
matrix B = [h, e1, . . . , ej−1, ej+1, . . . , en] and can be computed in polynomial time.
Using this basis change, we now linearly transform the hyperplanes defining the
polyhedron P (A, b) and the objective function vector h of the given OVP instance.

We construct an instance of COVP by Ã = AB−>, b̃ = b, K̃ = K. Note that
B−1h = e1 holds. It remains to show that there exists a vertex v of P (A, b) with
h>v > K if and only if there exists a vertex ṽ of P (Ã, b̃) with ṽ1 > K̃. Let
v ∈ vert(P (A, b)) such that h>v > K and define ṽ := B>v. Then,

Ãṽ = AB−>B>v = Av ≤ b = b̃, ṽ1 = h>B−>B>v = h>v > K = K̃.

Thus, ṽ ∈ P (Ã, b̃) and it is clear that ṽ is also a vertex of P (A, b).
Conversely, let ṽ ∈ vert(P (Ã, b̃)) with ṽ1 > K̃ and define v := B−>ṽ. Then,

Av = AB−>ṽ = Ãṽ ≤ b̃ = b, h>v = h>B−>ṽ = ṽ1 > K̃ = K.

Thus, v is a vertex of P (A, b). �

Using problem COVP, we can deduce the complexity of CVBVP.

Theorem 2. CVBVP is strongly coNP-complete.

Proof. The decision problem CVBVP, i.e., the complement of CVBVP, is to find
a vertex v ∈ vert(P (A, b)) such that vj > M holds. This is equivalent to COVP
with K = M . �

Finally, we can state the main result of this section.

Corollary 1. Let A ∈ Qk×n, b ∈ Qk, andM ∈ Q. Then, there exists no polynomial-
time algorithm for checking whether

vert(P (A, b)) ⊆
n⋂
j=1

Qj(A, b,M),

unless P = NP.
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Proof. Assume a polynomial-time algorithm exists. Then, for every j ∈ {1, . . . , n}
we can efficiently decide whether vert(P (A, b)) ⊆ Qj(A, b,M) holds. This implies
that we can decide CVBVP in polynomial time, and thus P = coNP must also hold.
Since P is closed under taking the complement, it follows that P = NP. �

As a final remark, note that to compute the tightest possible big-M such that no
vertex of P (A, b) is cut off, we can set

M := max
j∈{1,...,n}

{
max

x∈vert(P (A,b))
xj

}
. (4)

It is equivalent to solving COVP for j ∈ {1, . . . , n} and taking the maximum value.
Thus, (4) cannot be computed in polynomial time, unless P = NP.

3. Valid Bounds for Bilevel-Feasible Solutions

Recall that a big-M is bilevel-correct, if it does not cut off any bilevel-optimal
solution. For this, it is sufficient to find a big-M that maintains at least one optimal
lower-level dual vertex for every feasible upper-level decision. This means that, in
contrast to the big-M of Section 2, we now allow to cut off lower-level dual vertices
that do not correspond to an optimal solution.

Here and in what follows we denote the high-point relaxation of the bilevel
problem (1) as

H := {(x, y) ∈ Rn × Rm : Ax+By ≥ a, Cx+Dy ≥ b}
and the corresponding projection onto the space of x-variables is defined as

Hx := {x ∈ Rn : ∃y with (x, y) ∈ H}.
For the sake of simplicity, we make the following assumption.

Assumption 1. For every upper-level decision x ∈ Hx, the lower-level problem (1c)
admits a unique solution y and satisfies the linear independence constraint qualifica-
tions (LICQ) at y.

The assumption of a unique lower-level solution is justified in this scope given
that the bilevel problem becomes even more difficult to analyze otherwise; see, e.g.,
Chapter 7 in [12]. Moreover, the LICQ guarantees the uniqueness of the lower-level
dual optimal solution for every upper-level decision x ∈ Hx; see, e.g., Chapter 12
of [28]. Let us note that the assumption that LICQ holds at the unique primal
solution of the lower level can be very strong. However, we will show the hardness of
choosing a big-M that does not cut off any optimal vertex of the lower level’s dual
polyhedron under the simplifying Assumption 1. Thus, the problem of choosing
such a big-M is hard also for the situation in which Assumption 1 is dropped.

We start by introducing a validity criterion for the big-M proxy discussed in
this section. To this end, define the lower-level optimal value function ϕ(x) for any
upper-level decision x ∈ Hx by means of its dual as

ϕ(x) := max
λ
{(b− Cx)>λ : D>λ = f, λ ≥ 0}. (5)

Further, for any upper-level decision x ∈ Hx,M ∈ R, and i ∈ {1, . . . , `}, let ϕi(x,M)
be the optimal value function of the lower level’s dual problem with the additional
bound λi ≤M , i.e.,

ϕi(x,M) := max
λ
{(b− Cx)>λ : D>λ = f, λ ≥ 0, λi ≤M}, (6)

where we formally set ϕi(x,M) = −∞ if Problem (6) is infeasible. Under Assump-
tion 1, all bilevel-feasible solutions remain the same after adding the big-M bounds
to the lower level’s dual problem if and only if for every upper-level decision x ∈ Hx
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and for every i ∈ {1, . . . , `}, the lower-level optimal value stays unchanged, i.e., if
ϕ(x) = ϕi(x,M) holds.

We now collect some simple observations on these two optimal value functions
that are used afterward.

Observation 1. Given an upper-level decision x ∈ Hx and i ∈ {1, . . . , `}, the
following properties hold:

(a) ϕ(x) ≥ ϕi(x,M) for every M ∈ R.
(b) ϕi(x, ·) is monotonically increasing.
(c) Suppose there exists an M ∈ R with ϕ(x) = ϕi(x,M). Then, ϕ(x) =

ϕi(x, M̃) holds for every M̃ ≥M .

Lemma 1. Suppose that Assumption 1 holds and let an upper-level decision x ∈ Hx

and M = M(x) ∈ R be given. Then, for every i ∈ {1, . . . , `}, ϕ(x) = ϕi(x,M(x))
holds if and only if M(x) ≥ max{λ∗i (x) : i ∈ {1, . . . , `}}, where λ∗(x) is the unique
optimal solution of the lower level’s dual problem (5) corresponding to x.

Proof. If M(x) < max{λ∗i (x) : i ∈ {1, . . . , `}}, then there is an i ∈ {1, . . . , `} such
that the optimal solution of the lower level’s dual problem is cut off by the bound
λi ≤M(x), which again is equivalent to ϕ(x) > ϕi(x,M(x)). �

In particular, this implies that for every fixed upper-level decision, we can validate
a given big-M by computing the corresponding unique optimal solution of the lower
level’s dual problem and by verifying that it satisfies the bounds λi ≤ M for all
i ∈ {1, . . . , `}.

For the case that all upper-level decisions are taken into account, the next result
gives a necessary and sufficient condition for the property that a big-M does not
cut off any bilevel-feasible point.

Theorem 3. Let M ∈ R be given and suppose that Assumption 1 holds. Then,
for every upper-level decision x ∈ Hx and for every i ∈ {1, . . . , `}, ϕ(x) = ϕi(x,M)
holds if and only if

M ≥ max
i∈{1,...,`}

{
max
x,y,λ

{λi : (2b), (2c)}
}
. (7)

Proof. Observe that the first constraint of (2b) defines the domain of the upper-
level decisions x, whereas the second constraint together with (2c) determine the
lower-level primal-dual optimal solution (y, λ) corresponding to x. The final result
then follows by Lemma 1 and Property (c) in Observation 1. �

Theorem 3 implies that validating a big-M requires optimizing different objective
functions over a set of constraints that are equivalent to feasibility of the original
bilevel problem. In [24], linear 0-1-feasibility has been shown to be NP-complete.
It is thus possible to adapt the techniques from [2] to show the NP-completeness
of LP-LP bilevel feasibility by reduction from linear 0-1-feasibility. Similarly to
Corollary 1, we can thus state that there is no polynomial-time validation of a given
big-M w.r.t. (7) unless P = NP. On the other hand, computing the tightest big-M
w.r.t. the proxy considered in this section requires solving a maximization problem
over all bilevel-feasible solutions for every i ∈ {1, . . . , `} and taking the maximum
objective value. Computing this big-M is therefore as hard as solving the initial
problem and there is little hope of doing it efficiently, unless the original bilevel
problem (1) can be solved in polynomial time.

4. Conclusion

Many applications of LP-LP bilevel optimization make use of the KKT reformu-
lation of the lower-level problem together with a big-M linearization of the KKT
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complementarity constraints. This results in a single-level mixed-integer linear
problem that can, in principle, be solved with state-of-the-art solvers. However,
to guarantee bilevel feasibility of a solution obtained by this approach, one needs
to validate the bilevel-correctness of the big-M that is used to bound the lower
level’s dual variables—a necessary task that is not always carried out in practice.
In general, such a big-M is bilevel-correct if it does not cut off any bilevel-optimal
point. In this note we considered two proxies for this type of correctness and proved
that even validating that a given big-M does not cut off any feasible or optimal
vertex of the lower level’s dual polyhedron cannot be done in polynomial time unless
P = NP. Both proxies abstract from upper-level optimality and, thus, are only
sufficient but not necessary conditions for a big-M to be bilevel-correct. Hence,
validating that a given big-M preserves all bilevel-optimal points can be expected
to be at least as hard since one needs to take into account another—i.e., the upper
level’s—optimization problem on top of what needs to be considered for the two
proxies.

Our results strongly suggest that the popular big-M approach needs to be applied
very carefully. If the bilevel-correctness of the chosen big-M is not guaranteed
by problem-specific insights, it cannot be formally guaranteed that the obtained
“solutions” are indeed bilevel-optimal. In such cases, we suggest to better resort
to exact approaches that do not rely on big-M ’s like, e.g., the kth best algorithm
([6] or [3, Chapter 5.3.1]) or branch-and-bound methods ([5, 22], or [3, Chapter
5.3.2]). Moreover, identifying reasonably generic sub-classes of bilevel optimization
problems for which it is easy to determine a bilevel-correct big-M is subject to
future research.
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